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It is known that Cardassian universe is successful in describing the accelerated expasnsion of the
universe but its dynamical equations is hard to get from the action principle. In this paper, we
establish the connection between Cardassian universe and f(T, T ) gravity where T is the torsion
scalar and T is the trace of the matter energy-momentum tensor. For dust matter, we find the
modified Friedmann equations from f(T, T ) gravity can correspond to those of Cardassian models
and thus a possible origin of Cardassian universe is given. We obtain the original Cardassian
model, the modified polytropic Cardassian model and the exponential Cardassian model from the
Lagrangians of f(T, T ) theory. Furthermore, we give generalized Cardassian models from f(T, T )
theory by adding an additional term to the Lagrangians of f(T, T ) theory that give the three
Cardassian models. Using the observation data of type Ia supernovae, cosmic microwave background
radiation and baryon acoustic oscillations, we get the fitting results of the cosmological parameters
and give constraints of model parameters for all these models.

PACS numbers:

I. INTRODUCTION

Cardassian universe [1–4] has been known to describe
the accelerating expansion of the universe with remark-
able agreement with observations, whereas it lacks a solid
theoretical foundation up to now. In Cardassian mod-
els, the Friedmann equation is modified by the introduc-
tion of an additional nonlinear term of energy density
while without the introduction of cosmological constant
or any dynamical dark energy component. In these mod-
els, the universe can be flat and yet consist of only matter
and radiation, and still be compatible with observations.
Matter can be sufficient to provide a flat geometry. The
possible origin for Cardassian models is from the con-
sideration of braneworld scenarios, where our observable
universe is a three dimensional membrane embedded in
extra dimensions[5]. The modified Friedmann equation
may result from the existence of extra dimensions. But it
is difficult to find a simple higher dimensional theory, i.
e., a higher dimensional momentum tensor that produces
the Cardassian cosmology[6]. Inspired by the study on
correspondence between thermodynamical behavior and
gravitational equations, two of us studied the thermody-
namic origin of the Cardassian universe[7]. However, it
is still hard to get the dynamical equations of this model
from the action principle.

To explain the accelerated expansion of the universe,
besides adding Cardassian term or unknown fields such
as quintessence [8, 9] and phantom [10, 11], there is an-
other kind of theories known as modified gravity, which
uses alternative gravity theory instead of Einstein the-
ory, such as f(R) theory [12, 13], MOND cosmology [14],
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Poincaré gauge theory [15–17], and de Sitter gauge the-
ory [18]. On the other hand, Einstein constructed the
”Teleparallel Equivalence of General Relativity” (TEGR)
which is equivalent to General Relativity (GR) from the
Einstein-Hilbert action[19–23]. In TEGR, the curvature-
less Weitzenböck connection takes the place of torsionless
Levi-Civita one, and the vierbein is used as the funda-
mental field instead of the metric. In the Lagrangian of
TEGR, the torsion scalar T by contractions of the tor-
sion tensor takes the place of curvature scalar R. The
simplest approach in TEGR to modify gravity is f(T )
theory [24, 25], whose important advantage is that the
field equations are second order but not fourth order as
in f(R) theory. Recently, we established two concrete
f(T ) models which do not change the successful aspects
of the ΛCDM scenario under the error band of fitting
values as describing the evolution history of the uni-
verse including the radiation-dominated era, the matter-
dominated era and the present accelerating expansion
[26]. We also considered the spherical collapse and viri-
alization in f(T ) gravities[27]. Furthermore, extensions
of f(T, T ) theory[28] where T is the trace of the matter
energy-momentum tensor Tµν were constructed, whose
cosmological implications are rich and varied.

Recently, it is shown[29] that modified gravity models
may lead to a Cardassian-like expansion. In this paper,
we try to find the relation between Cardassian models
and f(T, T ) theory. Under the re-considered scheme of
f(T, T ) theory, we obtain the original Cardassian model,
the modified polytropic Cardassian model and the ex-
ponential Cardassian model through the action princi-
ple and thus give a possible origin of Cardassian uni-
verse. Furthermore, we give the generalized Cardassian
models by adding an additional term to the Lagrangians
of f(T, T ) theory that give rise to the three Cardas-
sian models. Using the observation data of type Ia su-
pernovae(SNeIa), cosmic microwave background radia-
tion(CMB) and baryon acoustic oscillations(BAO), we
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get the fitting results of the cosmological parameters and
give constraints of model parameters for all these models.
The paper is organized as follows: in section II, with

the discussion of the self-consistent form of the La-
grangian of barotropic perfect fluid, we give a new deriva-
tion of f(T, T ) theory. In section III, the actions of
the three Cardassian models from f(T, T ) theory are
given explicitly and generalized Cardassian models from
f(T, T ) theory are further given. We also examine the
observational constraints of each model in this section.
Finally, section IV is devoted to the conclusion and dis-
cussion. We use the signature convention (+,-,-,-) in this
paper.

II. f(T, T ) THEORY WITH BAROTROPIC

PERFECT FLUID

A. The Lagrangian of barotropic perfect fluid

There exist two types of Lagrangian Lm for the perfect
fluid in modified gravity theories, so we have to define one
or the other of these two. Harko has pointed out that
Lm = ǫ(ρ) is a more reasonable choice [38] in modified
gravity theories, where ǫ(ρ) is the total energy density of
the fluid and ρ is the rest mass density.
In the work of Brown[30], it is shown that the on-

shell perfect fluid Lagrangian in GR can be Lm = ρ or
Lm = −p where ρ is the rest mass density and p is the
pressure. Both Lagrangians lead to the same perfect fluid
stress-energy tensor concordant with the laws of thermo-
dynamics and hence the same equations of motion. In
the past years, some authors adopted some specific form
of Lm = −p from the work of Brown to their alterna-
tive theories of gravity [29, 31–36]. However, according
to Refs. [37, 38], we have to reconsider how to take the
form of Lm for the perfect fluid in modified gravity the-
ories including f(T, T ) theory.
The usual form of the stress-tensor of a barotropic per-

fect fluid is

T µν = −[ǫ(ρ) + p(ρ)]uµuν + p(ρ)gµν (1)

where ǫ(ρ) and p(ρ) are the total energy density and the
pressure of the fluid, respectively, which both depend on
the rest mass density ρ. On the other hand, if the La-
grangian of a barotropic perfect fluid Lm does not depend
on the derivatives of the metric, the usual definition of
the stress-energy tensor T µν

T µν = −Lmgµν + 2
∂Lm

∂gµν
(2)

where Lm can be assumed to depend on ρ only. Consider-
ing the conservation of the matter current ∇σ(ρu

σ) = 0,
one can prove that[38, 39]

δρ =
1

2
ρ(gµν − uµyν)δg

µν (3)

where the four-velocity of the fluid uα satisfies the con-
ditions uαuα = 1. Substituting these results into Eq.(2),
one can obtain[38, 40]

T µν = −ρ
dLm

dρ
uµuν −

(

Lm − ρ
dLm

dρ

)

gµν . (4)

From a comparison of Eqs.(1) and (4), we have

Lm = ǫ(ρ) = ρ[c2 +

∫

p(ρ)/ρ2dρ]. (5)

and

dǫ(ρ)

dρ
=

ǫ(ρ) + p(ρ)

ρ
, (6)

where c is the speed of light and the unit c = 1 is
taken hereinafter. In other words, Lm = ǫ(ρ) is a di-
rect and reasonable generalization from Lm = ρ in GR
to f(T, T ) theory because Brown’s argument becomes in-
valid in modified gravity theories. When compared with
it, Lm = −p is only a direct employment from GR.
Furthermore, we can verify the conservation of the to-

tal energy . Actually, one can easily obtain the divergence
of the energy density current

∇σ (ǫu
σ) =

(

1 +

∫

p

ρ2
dρ+

p

ρ

)

∇σ (ρu
σ)− p∇σu

σ. (7)

Under the conservation of matter current ∇σ (ρu
σ) = 0,

Eq.(7) is the conservation of the total energy. For exam-
ple, under Friedmann-Walker-Robertson (FRW) metric
it becomes

ǫ̇ + 3H (ǫ+ p) = 0, (8)

which is the usual form of energy conservation in cosmol-
ogy.

B. The field equations in f(T, T ) Theory

We can find a set of smooth basis vector fields ê(µ) in
different patches of the manifoldM and make sure things
are well-behaved on the overlaps as usual, where Greek
indices run over the coordinate of spacetime. The set
of vectors eA comprising an orthonormal basis is known
as tetrad or vierbein, where Latin indices run over the
tangent space Tp at each point p in M. A natural basis
of Tp is given by ê(A) = ∂/∂xA. Any vector can be
expressed as linear combinations of basis vector, so we
have

ê(A) = e µ
A ê(µ) (9)

where the components e µ
A form a 4×4 invertible matrix.

We will also refer to e µ
A as the vierbein in accordance

with usual practice of blurring the distinction between
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objects and their components. The vectors ê(µ) in terms
of ê(A) are

ê(µ) = eAµê(A) (10)

where the inverse vierbeins eAµ satisfy

eAµe
µ

B = δAB , e
µ

A eAν = δµν . (11)

Therefore, the metric is obtained from eAµ

gµν = ηABe
A
µe

B
ν , (12)

or equivalently

ηAB = gµνe
µ

A e ν
B , (13)

and the root of the metric determinant is given by |e| =√−g = det(eAµ).
In TEGR, one uses the standard Weitzenböck’s con-

nection defined as

Γα
µν = e α

A ∂νe
A
µ = −eAµ∂νe

α
A . (14)

And the covariant derivative Dµ satisfies the equation

Dµe
A
ν = ∂µe

A
ν − Γα

νµe
A
α = 0. (15)

Then the components of the torsion and contorsion ten-
sors are given by

Tα
µν = Γα

νµ − Γα
µν = e α

A (∂µe
A
ν − ∂νe

A
µ), (16)

Kµν
α = −1

2
(T µν

α − T νµ
α − T µν

α ). (17)

By introducing another tensor

S µν
α =

1

2
(Kµν

α + δµαT
βν

β − δναT
βµ

β), (18)

we can define the torsion scalar as

T ≡ Tα
µνS

µν
α . (19)

The action for f(T, T ) gravity takes the following form
[28]

S =
1

16πG

∫

ef(T, T )d4x+

∫

eLmd4x, (20)

where f(T, T ) is an arbitrary function of the torsion
scalar T and the trace T of the matter tress-energy ten-
sor. On the variation with respect to the vierbein that
leads to the field equations, a question that should be
noted is how to deal with the variation of the trace of
the energy-momentum tensor δT . This question has been
met in theories with T included in the action, including
f(R, T ) theory [29, 31] and f(T, T ) theory [28]. With
the discussion in last subsection, we can reexamine this
question now.

From Eqs. (3) and (6), the variation of ǫ is

δǫ = −1

2
(ǫ + p)(gαβ − uαuβ)δgαβ . (21)

Using (1), (6) and (21), one can express the variation of
T as

δT = δ(3p− ǫ)

= (3
dp

dρ

ρ

ǫ + p
− 1)δǫ

= (1− 3
dp

dρ

ρ

ǫ + p
)(T α

β + ǫδαβ )e
β
Aδe

A
α . (22)

The field equations then read as

fe α
A +

4

e
fT∂β(eS

αβ
σ e σ

A ) + 4S αβ
σ e σ

A ∂βfT

+ 4fTS
ασ

ρ T ρ
σβe

β
A + fT (1− 3

dp

dρ

ρ

ǫ+ p
)ǫe α

A

=

(

fT (3
dp

dρ

ρ

ǫ + p
− 1) + 16πG

)

T α
βe

β
A (23)

where fT and fT denote derivatives with respect to tor-
sion scalar T and the trace of T µν , respectively.
Contrast to f(T, T ) theory in previous papers[28, 41–

43], this is the new derivation of f(T, T ) theory with δT
re-considered since we have taken Lm = ǫ(ρ) but not
Lm = −p. The crucial difference lies in the different
choice of the matter Lagrangian Lm. The derivation of
the field equations in the references mentioned above de-
pends on the assumption that Lm = −p. And the same
assumption is used in works on f(R, T ) gravity (see [31]).
However, from the discussion in Sec. II.A and also in
Refs. [38, 40], Lm = ǫ(ρ) would be a more reasonable
choice. This is what leads to the difference between the
field equations (23) we got and the ones in the literature.
Since f(T ) theories are known to violate local Lorentz

invariance[44, 45], particular choices of tetrad are impor-
tant to get viable models in f(T ) cosmology, as has been
noticed in Ref. [46]. For a flat FRW metric in Cartesian
coordinates,

ds2 = dt2 − a(t)2(dxi)2 (24)

where a(t) is the scale factor, the diagonal tetrad eAµ =
diag(1, a, a, a) is a good choice to get viable models[46].
The torsion scalar T = −6H2, where H = ȧ/a is the
Hubble parameter. Then the equations of motion (23)
give rise to the modified Friedmann equations

fTH
2 = −4

3
πGǫ− 1

12
f (25)

and

4ḢfT =

[

fT

(

3
∂p

∂ǫ
− 1

)

+ 16πG

]

(ǫ+ p)− 3HḟT , (26)

which are consequently different from those in previous
references for f(T, T ) theory. It is easy to confirm the
energy conservation (8) from Eqs. (25) and (26).
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III. CARDASSIAN UNIVERSE FROM f(T, T )
THEORY

A. The action of Cardassian models from f(T, T )
theory

In Ref. [26], we studied the cosmology of gravity with
the Lagrangian in the forms of L ∝ −T + α

√
−T +

f(T,Lm) and L ∝ −T + βT−1 + f(T,Lm). In the first
form, the square root term is easy to be proved as null so
α is actually a free parameter, and hence the correction
of this term will not affect the local gravity tests. Similar
to Ref. [26], here we choose

f(T, T ) = −T + α
√
−T + g(T ). (27)

For dust matter, the pressure p = 0, then from (5) we
have ǫ(ρ) = ρ, and Eq. (25) reduces to

H2 =
8πG

3
ρ+

1

6
g(T ). (28)

where T = −ρ for dust matter, and ρ ∝ a−3 from Eq.(8).
It is obvious that Eq. (28) is the very equation for Car-
dassian models and it is easy to find the forms of f(T, T )
corresponding to specific Cardassian models. Here, we
examine three Cardassian models. The units 8πG = 1
is used hereinafter. For the original Cardassian model
(OC)[1]

H2 =
ρ

3

[

1 + (
ρ

ρc
)n−1

]

(29)

where ρc is the critical energy density at which the two
terms of Eq.(29) are equal, we have

g(T ) = 2ρ(
ρ

ρc
)n−1 =

2

ρn−1
c

(−T )
n
; (30)

For the modified polytropic Cardassian model (MPC)[6]

H2 =
ρ

3

[

1 + (
ρ

ρc
)q(n−1)

]1/q

, (31)

we have

g(T ) =2ρ
[

[

1 + (
ρ

ρc
)q(n−1)

]1/q

− 1
]

=2T
[

1−
[

1 + (
T
ρc

)q(n−1)

]1/q
]

;

(32)

And for the exponential Cardassian model (EC)[47]

H2 =
ρ

3
exp

[

(
ρ

ρc
)−n

]

, (33)

we have

g(T ) =2ρ
[

exp

[

(
ρ

ρc
)−n

]

− 1
]

=2T
[

1− exp

[

(
−T
ρc

)−n

]

]

.

(34)

Therefore, we claim that we find the possible origin of
Cardassian models from f(T, T ) theory.

B. f(T, T )-generalized Cardassian models

Alternatively, inspired by the Lagrangian with term
βT−1 considered in Ref. [26], if we replace the α

√
−T

term in Eq.(27) with

−3λ2H4
0

T
, (35)

we can obtain the f(T, T )-generalized Cardassian mod-
els. For generalized OC (Model I), the modified FRW
equation reads

E2 − λ2

4
E−2 = Ω0(1 + z)3 +Ωx(1 + z)3n. (36)

Here E(z) = H(z)
H0

, H0 is the Hubble parameter, Ω0 ≡
ρ0

3H2

0

= Ωm0 + Ωb0 where Ωm0 and Ωb0 correspond to

dark matter and baryon respectively, and

Ωx = 1− λ2

4
− Ω0. (37)

For generalized MPC (Model II), the modified FRW
equation reads

E2 − λ2

4
E−2

=

{

Ωq
0(1 + z)3q +

[

(Ωx +Ω0)
q − Ωq

0

]

(1 + z)3qn
}1/q

(38)

And for generalized EC (Model III), the modified FRW
equation reads

E2 − λ2

4
E−2

= Ω0(1 + z)3 exp

[

(1 + z)−3n ln

(

Ωx +Ω0

Ω0

)]

.(39)

In all the cases, the modified FRW equations can be
expressed unifiably as

E2 =
1

2

[

φ(z) +
√

φ2(z) + λ2

]

(40)

where φ(z) is the right hand side of Eqs.(36), (38) or (39).

C. Observational Constraints

In this subsection, using the observational data of
SNeIa, CMB and BAO, we give constraints and the best
fit parameters of each model. For SNeIa data, we use
the joint light-curve analysis” (JLA) sample, which con-
tains 740 spectroscopically confirmed type Ia supernovae
with high quality light curves. The distance estimator in
this analysis assumes hat supernovae with identical color,
shape and galactic environment have on average the same
intrinsic luminosity for all redshifts. This hypothesis is
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quantified by a linear model, yielding a standardized dis-
tance modulus[48, 49]

µobs = mB − (MB −A · s+B · C + P ·∆M ) , (41)

where mB is the observed peak magnitude in rest-frame
B band, MB, s, C are the absolute magnitude, stretch
and color measures, which are specific to the light-curve
fitter employed, and P (M∗ > 1010M⊙) is the probabil-
ity that the supernova occurred in a high-stellar-mass
host galaxy. The the stretch, color, and host-mass coeffi-
cients (A,B,∆M , respectively) are nuisance parameters
that should be constrained along with other cosmological
parameters.
The CMB temperature power spectrum is sensitive

to the matter density, and also it measures precisely
the angular diameter distance θ∗ at the last-scattering
surface. We use the Planck measurement of the CMB
temperature fluctuations and the WMAP measurement

of the large-scale fluctuations of the CMB polarization.
This CMB data are often denoted by ”Planck + WP”.
The geometrical constraints inferred from this data set
are the present value of baryon density Ωb0h

2, dark
matter Ωm0h

2 and θ∗ [26], where h is given by H0 =
100h km s−1 Mpc−1.

The BAO measurement provides a standard ruler to
probe the angular dimeter distance versus redshift re-
lation by performing a spherical average of their scale
measurement, see, Ref. [50]. We use the measurement of
the BAO scale from Ref. [51–53].

In Table.I, we present the best-fit parameters by using
the data of CMB+BAO+JLA, and also quote their 1σ
bounds from the approximate Fisher Information Matrix.
We also examine the constraints on parameters from 1σ
to 3σ confidence level for each model and Fig. 1-3 are the
illustrations of the constraints on Ωm0 and n for Models
I, II and III, respectively.

Parameters
Cosmological Models

OC Model I MPC Model II EC Model III ΛCDM

Ωm0 0.255+0.009

−0.010 0.255+0.010

−0.010 0.256+0.011

−0.009 0.256+0.011

−0.011 0.254+0.010

−0.010 0.251+0.010

−0.009 0.257+0.009

−0.009

n −0.022+0.052

−0.054 −0.014+0.062

−0.055 0.166+0.088

−0.098 0.377+0.102

−0.123 0.720+0.039

−0.035 0.639+0.073

−0.079 −

q − − 1.387+0.257

−0.222 1.768+0.449

−0.397 − − −

λ − 0.283+0.242

−0.246 − 0.915+0.278

−0.345 − 1.237+0.151

−0.208 −

H0 68.46+1.232

−1.197 68.46+1.213

−1.239 68.55+1.227

−1.318 68.55+1.379

−1.285 68.02+1.320

−1.241 68.77+1.299

−1.389 67.98+0.736

−0.737

Ωb0h
2 0.0221 ± 0.0003 0.0221 ± 0.0003 0.0220 ± 0.0003 0.0220 ± 0.0003 0.0222 ± 0.0003 0.0221 ± 0.0003 0.0221 ± 0.0002

A 0.141+0.007

−0.006 0.141+0.007

−0.006 0.140+0.006

−0.007 0.141+0.007

−0.007 0.142+0.006

−0.007 0.1420.007−0.006 0.141+0.007

−0.006

B 3.103+0.083

−0.079 3.103+0.088

−0.085 3.101+0.082

−0.087 3.101+0.078

−0.085 3.112+0.079

−0.079 3.112+0.086

−0.083 3.100+0.082

−0.086

MB −19.10+0.031

−0.031 −19.10+0.031

−0.032 −19.09+0.032

−0.032 −19.09+0.038

−0.035 −19.14+0.031

−0.033 −19.11+0.035

−0.036 −19.11+0.026

−0.026

∆M −0.070+0.022

−0.025 −0.070+0.022

−0.024 −0.070+0.022

−0.021 −0.070+0.023

−0.022 −0.069+0.022

−0.022 −0.069+0.023

−0.021 −0.070+0.023

0.023

χ2
min/d.o.f 683.908/738 683.907/737 683.616/737 683.590/736 688.767/738 685.693/737 684.131/739

TABLE I: Best fitting parameters for all the models.

IV. CONCLUSION AND DISCUSSION

Using the result of the Lagrangian of a barotropic fluid
given in Ref.[40], we re-derive f(T, T ) gravity, obtain-
ing the modified Friedmann equations. We find the con-
nection between f(T, T ) gravity and Cardassin universe.
For dust matter, the modified Friedmann equations from
f(T, T ) theory can correspond to those of Cardassian
models and thus a possible origin of Cardassian universe
is given. We present the Lagrangians of the original Car-
dassian model, the modified polytropic Cardassian model
and the exponential Cardassian model from f(T, T ) the-
ory. Furthermore, we get generalized Cardassian mod-
els by adding an additional term to the Lagrangians of
f(T, T ) theory that give the three Cardassian models.
Using the data of CMB+BAO+JLA, we get the fitting re-

sults of the cosmological parameters and give constraints
of model parameters for all these models.
As one of the candidates for explaining the acceleration

of the universe, Cardassian models have advantages in
that the universe can be flat and yet consist of only mat-
ter and radiation satisfying the conservation laws. But
there is not a satisfactory answer in the literature for the
origin of the Cardassian models. In our new derivation of
f(T, T ) theory, the usual energy conservation still holds,
which is necessary for Cardassian models. The conclu-
sion that we have given a possible origin of the Cardas-
sian universe from f(T, T ) gravity is thus consistent. The
connection we have found between the two theories is in-
teresting and will be good in seeking the explanation of
the accelerated expansion of the universe.
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FIG. 1: Constraints on Ωm0 and n from 1σ to 3σ confidence
level by using JLA SNe Ia + CMB + BAO for model I, while
other parameters take their best fitting values.

FIG. 2: Constraints on Ωm0 and n from 1σ to 3σ confidence
level by using JLA SNe Ia + CMB + BAO for model II, while
other parameters take their best fitting values.

FIG. 3: Constraints on Ωm0 and n from 1σ to 3σ confidence
level by using JLA SNe Ia + CMB + BAO for model III,
while other parameters take their best fitting values.
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[46] N. Tamanini and C. G. Böhmer, Phys. Rev. D 86, 044009

(2012).
[47] D. J. Liu, C. B. Sun and X. Z. Li, Phys. Lett. B 634,

442 (2006).
[48] M. Betoule et al. [SDSS Collaboration], Astron. Astro-

phys. 568, A22 (2014)
[49] D. L. Shafer, Phys. Rev. D 91, 103516 (2015)
[50] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605

(1998).
[51] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-

Smith, L. Campbell, Q. Parker and W. Saunders and F.
Watson, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011).

[52] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo,
A. J. Cuesta, K. T. Mehta and E. Kazin, Mon. Not. Roy.
Astron. Soc. 427, 2132 (2012).

[53] L. Anderson, et al., Mon. Not. Roy. Astron. Soc. 427,
3435 (2012).


