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The coalescence of compact objects is one of the most promising sources, as well as the source of
the first detections, of gravitational waves for ground-based interferometric detectors, such as ad-
vanced LIGO and Virgo. Generically, compact objects in binaries are expected to be spinning with
spin angular momenta misaligned with the orbital angular momentum, causing the orbital plane to
precess. This precession adds rich structure to the gravitational waves, introducing such complexity
that an analytic closed-form description has been unavailable until now. We here construct the first
closed-form frequency-domain gravitational waveforms that are valid for generic spin-precessing qua-
sicircular compact binary inspirals. We first construct time-domain gravitational waves by solving
the post-Newtonian precession equations of motion with radiation reaction through multiple scale
analysis. We then Fourier transform these time-domain waveforms with the method of shifted uni-
form asymptotics to obtain closed-form expressions for frequency-domain waveforms. We study the
accuracy of these analytic, frequency-domain waveforms relative to waveforms obtained by numeri-
cally evolving the post-Newtonian equations of motion and find that they are suitable for unbiased
parameter estimation for 99.2%(94.6%) of the binary configurations we studied at a signal-to-noise
ratio of 10(25). These new frequency-domain waveforms could be used for detection and parameter
estimation studies due to their accuracy and low computational cost.

PACS numbers: 04.80.Nn,04.30.-w,97.60.Jd

I. INTRODUCTION

Spin is ubiquitous in Nature; under the influence of a
generic perturbation any astrophysical system will rotate
even if the initial state was perfectly spherically symmet-
ric. When massive stars give birth to neutron stars (NSs)
or black holes (BHs) through supernova explosions, the
newly-born remnant typically spins rapidly even if the
progenitor was spinning slowly. This is possibly due to
asymmetries in the supernova explosion inducing a “kick”
on the remnant causing it to rotate [1]. At a fundamental
level, the physics at play here is the same as that which
causes a soccer ball to spin after kicked.

The spin angular momenta of the components of a com-
pact binary system will not necessarily be aligned with
the orbital angular momentum. For example, consider
an isolated binary system of two stars with spins aligned
with the orbital angular momentum. The most massive
star will first fill its Roche lobe and transfer mass to the
companion before going supernova. The compact rem-
nant (BH or NS) receives a kick spining it up [1] and
tilting the orbital plane, since the kick’s direction is typi-
cally correlated with the spin of the exploding star [2, 3];
the various angular momenta become misaligned [4, 5].
Eventually, the second star also fills its Roche lobe and
the binary enters a common envelope phase. In this
phase, the angular momenta could partially align through

tidal effects. But, again, the phase ends with the star go-
ing supernova and endowing the binary with a kick that
spins the remnant up and typically tilts the orbital plane,
misaligning the angular momenta yet again [4, 5].

Few mechanism exist that could prevent misalignment
or re-align the spins of compact binary components with
the orbital angular momentum. One possibility is if the
supernova kicks are in the orbital plane, i.e. perpendic-
ular to the spin angular momentum, such that the or-
bital plane is not tilted [4]. This possibility is remote,
with models and data suggesting that the kick is actu-
ally aligned with the spin angular momentum [2, 3, 6].
A mechanism for re-alignment is through torques ex-
erted by a circumbinary accretion disk on BH bina-
ries [7]. Such disks, however, are only expected in galaxy
mergers of supermassive BHs, whose gravitational waves
(GWs) would be outside of the sensitivity band of the
ground-based detectors advanced LIGO (aLIGO) and ad-
vanced Virgo (AdV). Besides the formation mechanism
described above, dynamical formation channels are ex-
pected to result in binaries with arbitrarily distributed
spin directions [8]. Finally, we note that the binary might
undergo spin-orbit resonances during its evolution [9].
These resonances, however, do not align the spins with
the orbital angular moment, but rather maintain certain
special (“resonant”) precessing configurations [5, 9–12].

Compact binaries emitting GWs in the sensitivity band
of aLIGO and AdV will thus have spins with arbitrary
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magnitudes and directions, though the spin of NSs will
typically be smaller than that of BHs. Such GWs are
very different from those emitted by non-spinning bina-
ries or binaries with spins aligned with the orbital angular
momentum for one main reason: precession. When spins
are misaligned with the orbital angular momentum, all
angular momenta precess about the total angular mo-
mentum, causing the orbital plane to precess too. This
induces amplitude and phase modulations in the GWs,
for example through the changing inclination angle of the
system relative to the line of sight. Accurately modeling
these modulations can be important for detection and
parameter estimation of GW sources [13, 14].

GWs with such rich and complex structure are double-
edged swords: on the one hand, this structure can encode
new information about the source and break degeneracies
in parameter estimation; on the other hand, this intrin-
sic complexity comes at the cost of an increased diffi-
culty to model these waves. First, the temporal evolution
of the orbital phase depends on the angular momenta,
which themselves satisfy certain precession equations, in-
creasing the overall complexity of the differential system.
Second, precession introduces mathematical catastrophes
when computing the Fourier transform of the GWs: de-
generate critical points in the orbital phase, where the
first and second time derivatives vanish, violating the as-
sumptions of the standard stationary phase approxima-
tion1 (SPA) and rendering it non-applicable [17].

Accurate modeling of GWs is important for detection
and crucial for parameter estimation with ground-based
detectors, since the expected signals might be deeply
buried in the detector noise. The optimal strategy for
extracting known signals from noise is by fitting wave-
form models to the interferometric data and minimizing
the residual. The efficiency of this method relies on the
accuracy of the waveform model, with parameter estima-
tion placing more stringent requirements on the accuracy
of the models used. Inaccuracies in the models can lead
to missed signals or systematic errors in the extracted
parameters.

This has motivated the construction of waveform mod-
els for coalescing compact binaries. During the inspi-
ral, the binary can be modeled with the post-Newtonian
(PN) formalism, an expansion in small characteristic ve-
locities and weak gravitational fields [18]. When the bi-
nary components are not spinning or when their spin is
aligned/anti-aligned with the orbital angular momentum,
the equations of motion have been derived and solved up
to 3.5PN order2 including radiation reaction due to GW
energy loss. When the spins are misaligned with the or-
bital angular momentum, the orbital equations of motion

1 The SPA is the leading-order term in the asymptotic expansion of
a Fourier integral through the method of steepest descent [15, 16].

2 A term is of APN order is proportional to (u/c)2A relative to its
controlling factor, where u is some characteristic velocity and c
the speed of light.

and the precession equations have been derived to 2.5PN
order. In this case, a closed form solution has not been
obtained due to the complexity of the differential system.

To this day, four main representations of GWs from
spin-precessing compact binaries exist. The first repre-
sentation is based on the fact that the precession equa-
tions admit a closed-form analytic solution when only one
object is spinning [19–23]. The ensuing motion is sim-
ple precession and the resulting waveform is ideal for
BHNS systems [24]. The second representation is based
on the effective-one-body formulation of the general rel-
ativistic two-body problem [25–27]. The resulting wave-
form is ever improving through fits of its non-precessing
part to numerical relativity simulations [28–30] and de-
scribes the full coalescence, albeit at the expense of
prohibitive computational cost. The third representa-
tion utilizes a coordinate frame in which precessional ef-
fects are minimized [31, 32] to compute a simpler wave-
form [30] and map it back to the source frame [33, 34].
This approach applies to the full binary coalescence and
the waveform was found to be sufficiently good for de-
tection, but could introduce biases in parameter estima-
tion [23]3.

The final representation of GWs from inspiraling spin-
precessing systems was through a multiple scale anal-
ysis (MSA) [16], a well-known mathematical technique
to solve differential systems that have distinct charac-
teristic scales by expanding in the ratio of these scales.
For the problem at hand, the orbital timescale is much
shorter than the precession timescale, which in turn is
much shorter than the radiation reaction timescale. This
technique has already been applied successfully to nearly
aligned [38] and slowly spinning [39] systems. The lat-
ter are accurate representations of NSNS inspirals, both
for detection and parameter estimation [13, 14, 40]. In
this paper we utilize two recent breakthroughs to con-
struct waveforms for spin-precessing systems with arbi-
trary spin magnitudes and orientations with MSA.

The first breakthrough in the modeling of generic spin-
precessing binaries was by Kesden, et al. [10–12]. Ne-
glecting radiation reaction, the authors found an exact
solution to the precession equations that govern the evo-
lution of the orbital and the spin angular momenta of
the binary. By identifying certain constants of the pre-
cessional motion, they were able to express all angular
momenta as functions of the total spin magnitude, which
satisfies an ordinary differential equation. We here solve
this differential equation analytically and obtain an ex-
act solution to the precession equations in the absence
of radiation reaction. We then use MSA to introduce
radiation reaction perturbatively as an expansion in the
ratio of the precession to the radiation reaction timescale.

3 It is worth emphasizing, thought, that the first GW detection [35,
36] did not suffer from such systematics due to its orientation and
minimal precession [35, 37].
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NSNS BHNS BHBH HSNSBH

m1 1.6M� 10M� 10M� 10M�
m2 1.4M� 1.4M� 5M� 1.4M�

cos θL 1 1 1 1
φL 0 0 0 0

cos θ1 0.5 0.5 0.5 0.5
φ1 1.2 1.2 1.2 1.2
χ1 0.08 0.7 0.7 0.7

cos θ2 0.7 0.7 0.7 0.7
φ2 2.5 2.5 2.5 2.5
χ2 0.1 0.1 0.6 0.6

TABLE I: Parameters of the systems we use for comparisons
of our analytic solution to the numerical solution to the PN
precession equations. All parameters are defined at 50Hz and
in a frame were the orbital angular momentum is aligned with
the z axis.

With this at hand, we obtain time-domain waveforms in
terms of the parameters of the system only.

The second breakthrough in the modeling of generic
spin-precessing binaries was by Klein, et al. [17], and
tackles the failure of the SPA. The authors introduced
the shifted uniform asymptotics (SUA) method where
the waveform is decomposed into Bessel functions, the
Fourier integral is evaluated term by term in the SPA,
and then resumed using the exponential shift theorem.
The result is a closed-form analytic expression for the
gravitational wave in the frequency domain as a series of
time-domain waveforms evaluated at shifted stationary
times. Unlike previous approaches, both the time- and
frequency-domain waveforms that we obtain are valid for
arbitrary mass ratios, arbitrary spin magnitudes and ar-
bitrary spin orientations. This waveform was first pre-
sented in Ref. [41], while this paper provides the details
of its derivation.

Closed-form expressions for the waveforms have sev-
eral advantages. From a theoretical standpoint, analytic
solutions shed light on the physical processes at play,
the structure of the resultant signal, and the transition
through different resonant states. From a practical stand-
point, analytic solutions are in general faster to evalu-
ate, avoiding costly numerical integrations and discrete
Fourier transforms. Estimating the computational gain
from closed-form, analytic expressions relative to numer-
ical ones is not straightforward since it depends heavily
on the implementation. However, we estimate that in
the restricted waveform case (when only one harmonic is
used) the closed-form, analytic frequency-domain wave-
forms computed here can be an order of magnitude faster
than the implementation of [17], and are at worst com-
parable.

The remainder of the paper provides the details of the
waveform construction described above. Throughout, we
use geometric units where G = c = 1 and use the follow-
ing conventions:

• Vectors are written in boldface, with components

A = [Ax, Ay, Az] and magnitude A. Unit vectors

are denoted with a hat, e.g. Â.

• The masses of the two binary components are mA,
with A ∈ {1, 2}, the total mass M ≡ m1 +m2 is set
equal to 1, the mass ratio is q ≡ m2/m1 < 1, the
symmetric mass ratio is η ≡ m1m2 and the mass
difference is δm = m1 −m2.

• The Newtonian orbital angular momentum of the
system is L, the spin angular momentum of each
body is SA, and the total angular momentum is
J = L+S1+S2. The dimensionless spin parameter
of each object is χA ≡ SA/m2

A with A ∈ {1, 2}.

• The orbital angular frequency in a frame fixed to
the orbital plane is ω, while the PN expansion pa-
rameter we use is v ≡ ω1/3 = ηL−1.

• We test our analytic solution by comparing it to
the numerical solution to the precession equations
for certain systems. We select a NSNS, a BHNS,
a BHBH, and a highly spinning (HS)NSBH system
with parameters given in Table I in a frame were
the z axis is aligned with the orbital angular mo-
mentum. The angles θL and φL are the polar angles
of L, while θA and φA are the polar angles of SA.

II. SPIN AND ANGULAR MOMENTUM
EVOLUTION

A quasicircular binary system consisting of generic
spinning compact objects is subject to spin-orbit and
spin-spin interactions that force all angular momenta to
precess. Averaging over one orbit4, the precession equa-
tions governing the conservative evolution of the orbital
and spin angular momenta are [42–44]5

˙̂
L =

{(
2 +

3

2
q

)
− 3

2

v

η

[
(S2 + qS1) · L̂

]}
v6
(
S1 × L̂

)
+

{(
2 +

3

2q

)
− 3

2

v

η

[(
S1 +

1

q
S2

)
·L̂
]}
v6
(
S2 × L̂

)
+O(v7), (1)

Ṡ1 =

{
η

(
2 +

3

2
q

)
− 3v

2

[
(qS1 + S2) · L̂

]}
v5
(
L̂× S1

)
+
v6

2
S2 × S1 +O(v7), (2)

4 Orbit-averaging should be well-justified provided there is a clean
separation between the orbital and the precessional time scales,
as is the case in the early inspiral.

5 The precession equations used here are only strictly valid for
BHs, as for NSs they acquire additional terms describing the
quadrupole moment of the bodies [45]. However, the extra terms
are degenerate with the spins [46] and difficult to measure.
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Ṡ2 =

{
η

(
2 +

3

2q

)
− 3v

2

[(
1

q
S2 + S1

)
·L̂
]}
v5
(
L̂× S2

)
+
v6

2
S1 × S2 +O(v7). (3)

Radiation reaction drives the evolution of the magni-
tude of the orbital angular momentum, leaving the mag-
nitude of the spin angular momenta unaltered to our
current knowledge of the PN expansion and ignoring all
energy and angular momentum flux through BH hori-
zons [47, 48]. The magnitude L is related to the evolu-
tion of the orbital frequency ω, and the PN expansion
parameter v, leading to

v̇ =
v9

3

1∑7
n=0 [gn + 3g`n ln(v)] vn

. (4)

The coefficients {gn, g`n} are functions of the symmetric
mass ratio and inner products of the angular momenta,
given in Appendix A.

Equations (1)-(3) describe the conservative dynamics,
while Eq. (4) describes the dissipative dynamics. The
former models the spin-spin and spin-orbit interactions,
that change only the direction of L,S1 and S2. We use
only the leading PN order expressions in each interac-
tion6. We do not use higher PN order corrections because
the spin-spin and spin-cubed terms have not been fully
calculated for generic precessing orbits yet [51, 53]. In
principle, we could have included the spin-orbit correc-
tions. However, as explained later, our solution makes
use of a certain quantity [54] that is conserved by the
leading-order in spin-orbit and spin-spin interactions pre-
cession equations. If we use partial precession equations
(including spin-orbit but not spin-spin corrections) it is
not clear if we can modify this quantity so that it remains
conserved. Once the spin-spin and spin-cubed terms have
been fully calculated we can revisit this problem.

The dissipative dynamics govern the GW frequency
evolution by changing the magnitude of the Newtonian
orbital angular momentum L = η/v. This equation is
known to 2.5PN order in all spin interactions [53], 4PN
in linear-in-spin terms [50, 53, 55–58] and 22PN order
in the point particle limit, neglecting spins and BH ab-
sorption effects [59–62]. In our analysis we keep terms
in Eq. (4) to 3.5PN order since this is the highest com-
plete PN order, ignoring spin-spin terms. In this case, we
can easily include partial PN terms in radiation reaction
to make the evolution more accurate. When the 3PN
spin-spin term has been fully calculated for precessing
orbits [51] we can include it in our model.

Conservative and dissipative equations evolve on dis-
tinct timescales. The former evolve on the precession

6 Spin-orbit corrections can be found in [49, 50], spin-spin in [51],
and spin-cubed in [52].

timescale

Tpr ≡
|S1|
|Ṡ1|

∼ v−5, (5)

while the later evolve on the radiation reaction timescale

Trr ≡
v

v̇
∼ v−8. (6)

The ratio Tpr/Trr ∼ v3 is a small quantity in the inspiral
and thus a natural expansion parameter.

Recently, Kesden et. al. [10] found an exact solution
to the precession equations [Eqs. (1)-(3)] ignoring radi-
ation reaction [Eq. (4)]. This solution can be used to
“precession-average” the full precession equations with
radiation reaction (analogously to orbit-averaging). The
final precession-averaged equations depend only on quan-
tities that vary on the radiation reaction timescale, and
can be numerically integrated with a larger step size [11].

Here we take a different approach. Rather that
precession-averaging Eqs. (1)-(3) and numerically ac-
counting for Eq. (4), we make explicit use of the fact
that Tpr/Trr ∼ v3 to solve the precession equations ana-
lytically. We use a perturbation theory technique known
as multiple scale analysis (MSA) and treat radiation re-
action as a slowly-evolving perturbation on top of pre-
cession. This approach allows us to find a solution to the
full set of Eqs. (1)-(4) as an expansion in Tpr/Trr.

III. ANALYTIC SOLUTION TO THE
PRECESSION EQUATIONS WITHOUT

RADIATION REACTION

Ignoring radiation reaction, the precession equations
can be solved analytically by making use of certain con-
served quantities of the system. Below we review and
complete the solution first presented in [10].

A precessing binary has a total of 9 degrees of free-
dom arising from the 3 components of 3 Newtonian vec-
tors (L,S1,S2). The precession equations lead to 7 con-
served quantities, reducing the degrees of freedom to 2.
Of the remaining degrees of freedom, one is associated
with the choice of a coordinate system, while the other
corresponds to a dynamical quantity that changes with
time. This dynamical quantity is chosen to be the magni-
tude of the total spin angular momentum S = |S1 +S2|.

The conserved quantities are λ ≡ (S1, S2, L, J, Ĵ , ξ):
the magnitudes of the spin angular momenta, the mag-
nitude of the orbital angular momentum, the magnitude
and direction of the total angular momentum, and the
mass weighted effective spin [54]

ξ ≡ (1 + q)S1 · L̂+ (1 + q−1)S2 · L̂. (7)

In the effective-one-body formalism, ξ corresponds to the
projection of the spin angular momentum of the body at
the center of mass onto the orbital angular momentum.
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Once the system is allowed to evolve under radiation re-
action, S1, S2, and ξ are still conserved, while L, J and
Ĵ evolve on the radiation reaction timescale.

In the remainder of this section we use these 7 con-
served quantities to geometrically solve for the 9 com-
ponents of the angular momenta as a function of S in a
specific coordinate system. We then complete the solu-
tion for the angular momenta as a function of time by
solving a differential equation to determine S(t).

A. Precession in a non inertial frame

The identification of Ĵ as a conserved quantity sug-
gests a coordinate frame where ẑ = Ĵ (see Fig. 1). We
further pick the x and y axes to be precessing around
ẑ (a non inertial frame), following the precession of the
orbital angular momentum which is chosen to be in the
x− z plane, at an angle

cos θL = Ĵ · L̂ =
J2 + L2 − S2

2JL
, (8)

from the ẑ axis. This allows us to express L as

z

y

x

~J

~L

~S
θL

~S1

~S2

θ′

φ′

φz

FIG. 1: Initial configuration of the angular momenta in a non
inertial frame precessing around ẑ.

L(S;λ) = L [sin θL, 0, cos θL]. (9)

The total spin angular momentum then is

S(S;λ) = J −L = [−L sin θL, 0, J − L cos θL]. (10)

In another frame with ẑ′ = Ŝ, ŷ′ = ŷ, and x̂′ = ŷ′×ẑ′,
we define angles (θ′, φ′) (see Fig. 1) such that

S′1 = S1[sin θ′ cosφ′, sin θ′ sinφ′, cos θ′]. (11)

Using the definition of ξ given in Eq. (7) we get

cos θ′ = Ŝ1 · Ŝ =
S2 + S2

1 − S2
2

2SS1
, (12)

cosφ′=
{
(J2 − L2 − S2)

[
S2(1 + q)2 − (S2

1 − S2
2)(1− q2)

]
−4qS2Lξ

}
/[(1− q2)A1A2A3A4], (13)

where

A1 =
√
J2 − (L− S)2, (14)

A2 =
√

(L+ S)2 − J2, (15)

A3 =
√
S2 − (S1 − S2)2, (16)

A4 =
√

(S1 + S2)2 − S2. (17)

In the original unprimed system

S1(S;λ) = R(ŷ, θS)S′1, (18)

where R(ŷ, θS) is a rotation around ŷ by an angle θS and

cos θS = Ŝ · Ĵ =
J2 + S2 − L2

2JS
. (19)

Once we have S1 in the original unprimed system, then

S2(S;λ) = J −L− S1. (20)

Equations (9), (18), and (20) determine the angular mo-
menta in a non-inertial frame as a function of S up to
the sign of sinφ′ in Eq. (18), which we will tackle shortly.

At this point, the various orbital angular momenta
have been written in a non inertial frame in terms of
S using purely geometrical arguments. The evolution
equation of S can be derived from Eqs. (1)-(3):(

dS2

dt

)2

= −A2
(
S6 +BS4 + CS2 +D

)
. (21)

where the coefficients A,B,C,D depend only on quan-
tities that change on the radiation reaction timescale.
Their explicit form is given in Appendix B. The roots of
the polynomial on the right-hand side of Eq. (21) have
a simple interpretation. When S2 is equal to one of the
roots, its derivative is zero. Therefore, two of the roots
are the maximum S2

+ and the minimum S2
− of S2. The

third root S2
3 does not correspond to any physically inter-

esting scenario; in fact, it is negative for most systems7.
Making explicit use of the roots of the polynomial, we

can rewrite Eq. (21) as(
dS2

dt

)2

= −A2(S2 − S2
+)(S2 − S2

−)(S2 − S2
3). (22)

The solution to this equation is

S2 = S2
+ + (S2

− − S2
+) sn2(ψ,m) (23)

7 In the most generic case, a third order polynomial with real co-
efficients can have complex roots. However, we argue that this
is an unphysical scenario. Unless two of the roots are real, S2

will increase or decrease with no bound. If two roots of a third
order polynomial with real coefficients are real, then the third
root must be real too.
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where sn is a Jacobi Elliptic function (see Section 16
of [63] for a detailed introduction to the Jacobi Ellip-
tic functions, and [64] for a physics-oriented approach),
ψ is its phase, and m ∈ [0, 1]. When m = 0, sn reduces
to a sine, while for m = 1 it gives a hyperbolic tangent.
The period of S2 is 2K(m), where K(m) is the complete
elliptic integral of the first kind. The phase and the pa-
rameter m are given by

dψ

dt
=
A

2

√
S2

+ − S2
3 (24)

and

m =
S2

+ − S2
−

S2
+ − S2

3

. (25)

Clearly, this solution requires that S2
+ 6= S2

3 , which is
almost always the case because S2

+ and S2
3 are defined

to be the largest and smallest roots respectively. The
only possible case when S2

3 = S2
+ is when S2

+ = S2
−,

but then S2 is constant in the first place and there is
no precession. The phase ψ can be obtained by noticing
that ψ̇ is constant if we ignore radiation reaction, so that

ψ =
A

2

√
S2

+ − S2
3 t. (26)

The final ingredient we need in order to have a com-
plete expression for all angular momenta as function of
time in a non-inertial frame precessing around ẑ is the
sign of sinφ′. Equation (11) implies that

sign(sinφ′) = sign(S1 · y′), (27)

which after some algebra can be shown to be equivalent
to

sign(sinφ′) = sign
[
(L̂× S1) · S2

]
= sign

(
−dS

2

dt

)
= sign [sn(ψ,m)cn(ψ,m)] , (28)

where cn(ψ,m) is another Jacobi Elliptic function and in
the last equality we have used Eq. (23).

B. Precession in an inertial frame

All angular momenta so far have been expressed in a
non inertial frame that precesses around Ĵ . An Euler
rotation of L,S1, and S2 around ẑ by some angle φz
and substitution into the precession equations yields [10]

dφz
dt
≡ Ωz =

J

2
v6

{
1 +

3

2η
(1− ξv)

−3(1 + q)

2qA2
1A

2
2

(1− ξv)
[
4(1− q)L2(S2

1 − S2
2)

−(1 + q)(J2 − L2 − S2)(J2 − L2 − S2 − 4ηLξ)
]}
.

(29)

The precession angle φz changes on the preces-
sion timescale through S and on the radiation-reaction
timescale through J and L. We recast it in the form

φ̇z
J

= a+
c0 + c2 sn2(ψ,m) + c4 sn4(ψ,m)

d0 + d2 sn2(ψ,m) + d4 sn4(ψ,m)
, (30)

where a, the di’s and the ci’s are quantities that evolve
on the radiation reaction timescale only. Their explicit
form is given in Appendix B. Now φ̇z can be integrated
exactly in the absence of radiation reaction to give

φz
J

= Aφ
ψ

ψ̇
+ iBφ

F [i sinh−1 (sc(ψ,m)), 1−m]

ψ̇

+ iCφ
Π[nc, i sinh−1 (sc(ψ,m)), 1−m]

ψ̇

+ iDφ
Π[nd, i sinh−1 (sc(ψ,m)), 1−m]

ψ̇
, (31)

where ψ̇ is given by Eq. (24), F is the elliptic integral
of the first kind, Π is the elliptic integral of the third
kind, and sc is a Jacobi elliptic function. The quan-
tites Aφ, Bφ, Cφ, Dφ, nc, nd are functions of {a, ci, di},
and they are constant in the absence of radiation reac-
tion. They are given in Appendix B.

This concludes the solution to the precession equations
in the absence of radiation reaction in a frame where
Ĵ = ẑ. In summary, at some initial time:

• The orbital angular momentum L is given by
Eq. (9), which depends on the angle θL given in
Eq. (8). The latter depends on S, which varies on
the precession timescale as described in Eq. (23);

• The spin angular momentum of the heavier body
S1 is given in Eq. (18), which depends on the an-
gle θS given in Eq. (19) as well as on S′

1 given in
Eq. (11) in terms of the angles (θ′, φ′) of Eqs. (12)
and (13). All of these depend on S, which again is
described by Eq. (23);

• The spin angular momentum of the lighter body S2

is given by Eq. (20), which depends on L and S1

described above.

The full precessional motion of these angular momenta
in an inertial frame is obtained by rotating them around
ẑ by φz, given in Eq. (31).

IV. ADDITION OF RADIATION REACTION

The exact solution to the precession equations ob-
tained in the previous section is valid only in the absence
of radiation reaction. The problem of including radiation
reaction admits a perturbative solution owing to its two
distinct timescales: radiation reaction unfolds on a much
longer timescale than precession. This natural separa-
tion of timescales allows us to treat radiation reaction
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as a slow perturbation of the more rapid precession, a
technique formally known as multiple scale analysis [16].

In MSA, every quantity is expanded in the ratio of the
two distinct timescales. In our case, we expand in the ra-
tio of the precessional timescale Tpr to the radiation reac-
tion timescale Trr; radiation reaction is a 1.5PN effect on
top of precession. This is not the first application of MSA
to the precession problem. In fact, the precession equa-
tions we started with are orbit-averaged, which would be
the first term in an MSA expansion about the ratio of
the fast orbital timescale to the precession timescale.

A. Choice of an inertial frame

The precession solution of Sec. III was built around
the assumption that Ĵ is conserved and aligned with ẑ.
Our first task when adding radiation reaction is to check
whether this remains true. If it does, then the functional
form of Eqs. (9), (18), and (20) holds, since they were
derived solely on geometrical arguments.

Radiation reaction does not strictly conserve the di-
rection of the total angular momentum. However, it has
been argued [19] that in the context of simple precession

(S2 = 0) the variation of Ĵ in a precession cycle aver-
ages out. Here we show that this is approximately true
for generic precession as well [65].

Equations (1)-(3) imply

J̇ = L̇L̂, (32)

and after some algebra we can rewrite this as

˙̂
J =

L̇

JL
L− J̇

J2
J . (33)

Averaging over φz we find〈
J̇x

〉
φz

=

〈
L̇

J
sin θL cosφz

〉
φz

, (34)

〈
J̇y

〉
φz

=

〈
L̇

J
sin θL sinφz

〉
φz

, (35)

〈
J̇z

〉
φz

= 0. (36)

This averaging induces an error in
˙̂
J that is O(Tpr/Trr),

or
˙̂
J − 〈 ˙̂

J〉φz ∼ v3. At this order, we can treat L̇ as a
constant, since the spin couplings in Eq. (4) first enter
at O(v3). They are therefore of the same order as the
averaging error, and can be neglected.

Working to this order we have〈
J̇x,y

〉
φz
∼ 〈sin θL cosφz〉φz

∼
〈√

1−
(
J2 + L2 − S2

2JL

)2

cosφz

〉
φz

. (37)

Since L ∼ O(v−1), J ∼ O(v−1), and S ∼ O(v0), a PN
expansion yields schematically〈

J̇x,y

〉
φz
∼ 〈cosφz〉φz+ v2

〈
S2 cosφz

〉
φz

+O(v4). (38)

The first term vanishes, while the second is of higher PN
order and we neglect it. This situation is different from

simple precession. In the latter the averaging out of
˙̂
J is

exact, while here it requires a PN expansion. We there-
fore expect this result to become less and less accurate
as the binary approaches merger.

The above calculation implies that 〈 ˙̂
J〉φz = 0; radia-

tion reaction changes the magnitude of J while leaving
its direction approximately constant. The components Jx
and Jy are expected to oscillate with an amplitude much
smaller than Jz without exhibiting any secular growth.
Figure 2 tests the validity of this statement. We select 4
systems with typical parameters as expected for NSNS,
BHNS, BHNS, and HSNSBH binaries (see Table I) and
plot the components of J obtained by numerically solv-
ing Eqs. (1)-(4) as a function of the GW frequency f . In
all cases Jx and Jy are at least 2 orders of magnitude
smaller that Jz and oscillate around 0, with no signs of
secular growth.

Based on this result we can build a solution to the
precession equations including radiation reaction in the
inertial frame introduced in Sec. III. That is, we ne-
glect any variation in the direction of Ĵ and align it with
ẑ. This choice of frame automatically means that the
functional form of Eqs. (9), (18), and (20) for the or-
bital and spin angular momenta respectively is still valid,
since they were derived on purely geometric arguments.
On the contrary, any quantity that was derived based
on Eqs. (1)-(3) needs to be revisited and recalculated by
taking Eq. (4) into account. This involves the remain-
ing 5 conserved quantities of precession (S1, S2, L, J, ξ),
Eq. (22) for the magnitude of the total spin angular mo-
mentum, and Eq. (30) for the precession angle.

B. Constants of the precessional motion

In principle, the constants of the precessional motion
need not remain constant when radiation reaction is in-
voked. The magnitudes of the two spin angular momenta
S1 and S2, and the mass weighted effective spin ξ remain
constant under radiation reaction to the PN order we
work here and ignoring horizon absorption. The magni-
tude of the orbital angular momentum L is updated by
definition through L = η/v. The magnitude of the to-
tal angular momentum J depends on L and also changes
under radiation reaction. The evolution equation for J
averaged over one period of S(t) is [10]〈

dJ

dL

〉
pr

=
J2 + L2 −

〈
S2
〉

pr

2JL
. (39)
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FIG. 2: (Top Panel) Comparison between the numerical PN and the analytic components of the total angular momentum as a
function of the GW frequency for the NSNS (Top Left), the BHNS (Top Right), the BHBH (Bottom Left), and the HSNSBH
(Bottom Right) system of Table I. (Bottom Panel) Fractional error between the magnitude of the total angular momentum
obtained numerically and analytically.

This can be integrated exactly to yield

J2 = L2 +
2c1
η
L− L

∫ 〈
S2
〉

pr

L2
dL, (40)

where here and in what follows J is approximated by
its precession average, and c1 is an integration constant.
As we will show below,

〈
S2
〉

pr
is constant when ignoring

high-order PN effects, and the integral of Eq. (40) can be
calculated to give

J2 = L2 +
2c1
v

+
〈
S2
〉

pr
+O(v). (41)

The quantity
〈
S2
〉

pr
can be computed from Eq. (23):

S2
av≡

〈
S2
〉

pr
=

1

m

[
(m− 1)S2

+ + S2
− +

E(m)

K(m)

(
S2

+−S2
−
)]
,

(42)

where K(m) and E(m) are the complete elliptic integrals
of the first and second kind respectively. PN expanding
S2

+ and S2
− around their initial value we find

S2
± = S2

±,0 +O (v) , S2
3 = O

(
v−2

)
, (43)

which together with Eq. (25) yields

m = O
(
v2
)
, (44)

and

S2
av =

1

2

(
S2

+,0 + S2
−,0
)

+O
(
v2
)
. (45)

In the above expressions S2
±,0 are the roots computed

from the initial conditions.
Combining the result for J obtained here and Sec. IV A

where we justified keeping Ĵ aligned with ẑ, our analytic
approximation for the total angular momentum is

J = [0, 0, J ]. (46)

To verify that this approximate J stays close to the nu-
merical PN solution we plot it in Fig. 2 as a function of
the GW frequency for our three study systems. The ana-
lytic Jx and Jy are identically zero, so we omit them. The
bottom panel shows the fractional error in the magnitude
of the total angular momentum when approximated by
Eq. (41). The maximum discrepancy in the magnitude
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J is of O
(
10−2

)
in those particular examples indicating

both that Eq. (41) is accurate and that setting Jx and
Jy equal to zero is justified.

C. Magnitude of the total spin angular momentum

Once radiation reaction is included, Eq. (22) for the
magnitude of the total spin angular momentum needs
to be solved with MSA. We first explicitly separate
the timescales by writing S2(t) = S2(tpr, trr), where
tpr denotes variation on the precession timescale, while
trr = εtpr denotes variations on the radiation reaction
timescale, with ε a bookkeeping parameter.

Expanding S2 as

S2(tpr, trr) =
∑
n≥0

εnS2
n(tpr, trr). (47)

and substituting this expression into Eq. (22), at leading
order in ε, we recover Eq. (22) for S2

0(tpr, trr) with the
time derivative taken on the precession timescale tpr:(

∂S2
0

∂tpr

)2

= −A2(trr)[S
2
0(tpr, trr)− S2

+(trr)] (48)

× [S2
0(tpr, trr)− S2

−(trr)][S
2
0(tpr, trr)− S2

3(trr)].

The solution to this differential equation is similar to
Eq. (23), except that quantities that were previously con-
stant are now promoted to functions of trr:

S2
0 = S2

+(trr) +
[
S2
−(trr)− S2

+(trr)
]

sn[ψ(tpr, trr),m(trr)],

(49)

where S2
+(trr), S

2
−(trr), and m(trr) now depend on time

through L(trr) and J(trr).
The angle ψ(tpr, trr) satisfies

dψ

dt
=
A(trr)

2

√
S2

+(trr)− S2
3(trr). (50)

where we keep terms of O (ε) by taking the derivative
with respect to t rather than tpr. We can integrate this
equation using a PN integration, i.e. expanding it in
powers of v and integrating term by term. The result is

ψ = ψ0 −
3g0

4
δmv−3

(
1 + ψ1v + ψ2v

2
)
, (51)

where ψ0 is an integration constant, and the constants
ψ1, ψ2 are given in Appendix C. We find that expanding
Eq. (51) to relative 1PN order suffices.

We test this solution for S in Fig. 3 by plotting the
numerical PN, analytic, and hybrid magnitude of the to-
tal spin angular momentum S as a function of the GW
frequency for the 4 systems we study. The hybrid S is
obtained through Eq. (49) but with a numerical solution
to Eq. (50). For all systems, the amplitude of S shows
excellent agreement with the numerical PN results, which

is controlled by the roots S2
+ and S2

−. For the NSNS and
BHBH systems, the analytic phase ψ also shows very
good agreement with the numerical PN result, although
the dephasing for the BHNS and HSBHNS systems is
about 2 cycles. However, both systems are dominated
by the spin of the BH, making the motion close to that
of simple precession; the variation in S is very small as
demonstrated by the scale of the y axis of the right panels
of Fig. 3 and this dephasing should not affect the emitted
waveform considerably.

On the other hand, the phase of the hybrid S is al-
ways in excellent agreement with the numerical solution,
indicating that if we do indeed need an improved solu-
tion in the future8 we can obtain it by carrying out the
expansion of Eq. (51) to higher order.

D. Precession Angle

The final quantity that needs to be recalculated to ac-
count for radiation reaction is the precession angle. Its
derivative, given in Eq. (30), depends both on the preces-
sion and the radiation reaction timescale, so it requires
a MSA treatment.

We write

dφz
dt

= Ωz[S(t), L(t), J(t)] = Ωz[S(tpr, trr), L(trr), J(trr)],

(52)

and expand the precession angle as

φz(tpr, trr) = ε−1φz,−1(tpr, trr)+φz,0(tpr, trr)+O (ε) . (53)

The reason φz includes a term of O
(
ε−1
)

is because the
binary precesses even in the absence of radiation reaction.

Solving Eq. (52) order by order in ε, we find to O
(
ε−1
)

1

ε

∂φz,−1

∂tpr

= 0 , (54)

which means φz,−1 = φz,−1(trr). To next order, we find

∂φz,−1

∂trr
+
∂φz,0
∂tpr

= Ωz(tpr, trr) , (55)

and averaging over tpr we find

dφz,−1

dtrr
= 〈Ωz〉pr

(trr), (56)

where we set 〈∂φz,0/∂tpr〉pr
= 0 to cancel secular terms.

Equation (56) can be solved with a PN integration. Go-
ing back to Eq. (55) we get

∂φz,0
∂tpr

= Ωz(tpr, trr)− 〈Ωz〉pr
(trr). (57)

Integrating the first term on the right hand side of
Eq. (57) we recover Eq. (31) for φz in the absence of ra-
diation reaction. Integrating the second term is straight-
forward.
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FIG. 3: Comparison between the numerical PN (black solid), the analytic (red dashed), and the hybrid (blue dot-dashed)
magnitude of the total spin angular momentum as a function of the GW frequency for the NSNS (Top Left), the BHNS (Top
Right), the BHBH (Bottom Left), and the HSNSBH (Bottom Right) system of Table I.

The full solution for φz is then

φz = φz,−1 + φz,0 +O(ε), (58)

where

φz,−1 =

∫
〈Ωz〉pr

(trr) dtrr, (59)

φz,0 =

∫
Ωz(tpr, trr) dtpr −

∫
〈Ωz〉pr

(trr) dtpr. (60)

The meaning of each term in the MSA expansion is clear.
The first term φz,−1 is averaged over the fast (relative to
radiation reaction) precession timescale, and then inte-
grated over radiation reaction. The next term φz,0 is a
first order correction to this precession averaging.

1. Leading order MSA

The leading order MSA term is defined in Eq. (56)
which to first order in ε is equivalent to

〈
dφz
dt

〉
pr

= 〈Ωz〉pr
. (61)

The average of Ωz can be obtained by taking the dif-
ference between Eq. (31) evaluated at ψ = 0 and at
ψ = 2K(m), where recall that K(m) is the complete
elliptic integral of the first kind. However, for reasons
explained in Appendix E, we prefer to use Eq. (30) and

find an alternative way of calculating
〈
φ̇z

〉
pr

. We write

φ̇z
J
− a ≡ φ̇red.

z =
c0 + c2 sn2(ψ,m) + c4 sn4(ψ,m)

d0 + d2 sn2(ψ,m) + d4 sn4(ψ,m)
⇒

[d0 + d2 sn2(ψ,m) + d4 sn4(ψ,m)]φ̇red.
z = c0 + c2 sn2(ψ,m) + c4 sn4(ψ,m)⇒
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d0

〈
φ̇red.
z

〉
pr

+ d2

〈
sn2(ψ,m)φ̇red.

z

〉
pr

+ d4

〈
sn4(ψ,m)φ̇red.

z

〉
pr

= c0 + c2
〈

sn2(ψ,m)
〉

pr
+ c4

〈
sn2(ψ,m)

〉
pr
,

where on the third line we average over precession.
Unfortunately, no closed form expressions exist for〈

sn2(ψ,m)
〉

pr
and

〈
sn4(ψ,m)

〉
pr

for arbitrary m. We

can, however, calculate these averages as an expansion
in m � 1 since, as already discussed, m ∼ O(v2). We
could in principle retain high order in m terms in this ex-
pansion, but in practice we find that working to leading
order in m suffices. Expanding the above expression to
leading order in m� 1, we find

d0

〈
φ̇red.
z

〉
pr

+ d2

〈
φ̇red.
z sin2 ψ

〉
pr

+ d4

〈
φ̇red.
z sin4 ψ

〉
pr

= c0 +
1

2
c2 +

3

8
c4 ⇒

8 For example, if and when LIGO’s sensitivity increases, so will its
requirement for more accurate waveforms.

d0

〈
φ̇red.
z

〉
pr

+ d2D2

〈
φ̇red.
z

〉
pr

+ d4D4

〈
φ̇red.
z

〉
pr

= c0 +
1

2
c2 +

3

8
c4 ⇒〈

φ̇z

〉
pr

= J
(
a+

c0 + 1
2c2 + 3

8c4

d0 + d2D2 + d4D4

)
, (62)

where we have defined

D2≡

〈
φ̇red.
z sin2 ψ

〉
pr〈

φ̇red.
z

〉
pr

=

〈
c0+c2 sin2 ψ+c4 sin4 ψ
d0+d2 sin2 ψ+d4 sin4 ψ

sin2 ψ
〉

pr〈
c0+c2 sin2 ψ+c4 sin4 ψ
d0+d2 sin2 ψ+d4 sin4 ψ

〉
pr

,

(63)

D4≡

〈
φ̇red.
z sin4 ψ

〉
pr〈

φ̇red.
z

〉
pr

=

〈
c0+c2 sin2 ψ+c4 sin4 ψ
d0+d2 sin2 ψ+d4 sin4 ψ

sin4 ψ
〉

pr〈
c0+c2 sin2 ψ+c4 sin4 ψ
d0+d2 sin2 ψ+d4 sin4 ψ

〉
pr

.

(64)
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The quantities D2 and D4 are functions of v and can be
calculated exactly. For reasons explained in Appendix E
we do not wish to use these full expressions, but rather
we keep the quantities D2 and D4 constant and set them
equal to their leading PN order expressions.

We can now integrate the right hand side of Eq. (62)
by first PN expanding it. However, we find it more con-
venient to factor J out of 〈Ωz〉pr

and PN expand the re-
maining terms. We do so to avoid artificial divergences in
the small mass ratio limit arising from expanding around
essentially η/v; see Appendix E. We, then, have to per-
form an integral of the form

φz,−1 =

∫
J

ξ3

5∑
n=0

〈Ωz〉(n) vndξ, (65)

where the coefficients 〈Ωz〉(n) are given in Appendix D.
This integral can be directly calculated to give

φz,−1 =

5∑
n=0

〈Ωz〉(n)φ(n)
z + φ0

z,−1, (66)

where φ
(n)
z are functions given in Appendix D and φ0

z,−1

is an integration constant.

2. Correction to MSA

The first-order correction to MSA is given in Eq. (60).
The solution to the first integral is Eq. (31) where we set
m = 0. The second integral is trivial since 〈Ωz〉pr

does not
depend on the precession timescale tpr, and the result is
〈Ωz〉pr

tpr. In that expression, we choose for convenience

to substitute tpr = ψ/ψ̇.
Collecting all the elements together, the correction to

the precession phase is given by

φz,0 =
Cφ

ψ̇

√
nc

nc − 1
arctan

[
(1−√nc) tanψ

1 +
√
nc tan2 ψ

]
+
Dφ

ψ̇

√
nd

nd − 1
arctan

[
(1−√nd) tanψ

1 +
√
nd tan2 ψ

]
, (67)

where ψ̇ is given in Eq. (24), ψ is given in Eq. (51) and
Cφ, Dφ, nc and nd are functions of v given in Appendix B.

3. Comparisons

In Fig. 4 we plot the numerical PN and analytic so-
lutions for φz with and without the MSA corrections.
The small oscillations of the numerical PN phase are re-
produced by the analytic phase with MSA corrections.
These oscillations are more pronounced for the NSNS and
BHBH systems where both spins contribute significantly
to the dynamics. The bottom panel shows the error in
the precession phase with and without MSA corrections.

V. BUILDING THE WAVEFORM

Using the solution for the angular momenta described
above, we calculate an analytic time-domain waveform
for generic precessing binaries. The gravitational wave
signal emitted by a precessing binary system as observed
in an interferometric detector is [18, 19, 24, 31, 66]:

h(t) = F+h+ + F×h×, (68)

where

F+ =
1

2

(
1 + cos2 θ′N

)
cos 2φ′N cos 2ψp

− cos θ′N sin 2φ′N sin 2ψp, (69)

F× =
1

2

(
1 + cos2 θ′N

)
cos 2φ′N sin 2ψp

+ cos θ′N sin 2φ′N cos 2ψp, (70)

are the antenna pattern functions, h+,× are the GW po-

larization states, (θ′N , φ
′
N ) are the polar angles of N̂ in a

frame tied to the arms of the detector with ẑ′ the normal
to the detector plane, and ψp is given by

ψp = arctan


(
PN Ĵ

)
· ẑ′(

N̂ × Ĵ
)
· ẑ′

 , (71)

where PN acts as a projection along N̂ .
The polarization states can be decomposed into a spin-

weighted spherical harmonic basis [24, 31, 66]

h+ − ih× =
∑
l≥2

l∑
m=−l

H lm(θs, φs)e
−imΦ, (72)

where

Φ = φorb − 3v3(2− ηv2) ln v , (73)

and (θs, φs) are the spherical angles of N̂ in a frame

where Ĵ is aligned with the z-axis, φorb is the orbital
phase, and

H lm = hlm
l∑

m′=−l
Dl
m′,m(φz, θL, ζ)−2Ylm′(θs, φs), (74)

where sYlm are the spin-weighted spherical harmonics,
the amplitudes hlm are in [18], Dl

m,m′ are the Wigner
D-matrices, the angles θL and φz are the spherical angles
of L̂ in the frame where Ĵ is aligned with the z-axis, and
ζ satisfies ζ̇ = φ̇z cos θL. In order to solve for ζ we can
employ the same techniques as for φz, namely MSA. An
explicit expression for ζ is given in Appendix F.

The above prescribe a waveform h(t) in the time do-
main. To compute its Fourier transform, we use the
shifted uniform asymptotics method of [17]

h̃(f) =
√

2π
∑
m≥1

Tme
i(2πftm−mΦ−π/4)
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FIG. 5: (Top Panel) Amplitude of the GW including only the dominant (` = 2,m = 2) harmonic as a function of the GW
frequency for the numerical PN and analytic SUA waveforms for the NSNS (Top Left), the BHNS (Top Right), the BHBH

(Bottom Left), and the HSNSBH (Bottom Right) system of Table I. The reference amplitude |h̃ref | is the numerical PN SUA
amplitude at 50Hz. (Bottom Panel) GW dephasing between the numerical PN and analytic SUA waveforms.

×
∑
l≥2

kmax∑
k=−kmax

ak,kmax

2− δk,0
Hlm(tm + kTm), (75)

where tm and Tm are defined by

2πf = mΦ̇(tm), (76)

Tm =
1√

mΦ̈(tm)
, (77)

Hlm =
1

2
(F+ + iF×)

×
l∑

m′=−l
hlmDl

m′,m(φz, θL, ζ)−2Ylm′(θs, φs)

+
1

2
(F+ − iF×)

×
l∑

m′=−l
hl,−mDl

m′,−m(φz, θL, ζ)−2Ylm′(θs, φs),

(78)

and the constants ak,kmax satisfy the linear system

(−i)p
2pp!

=

kmax∑
k=0

ak,kmax

k2p

(2p)!
, (79)

for p ∈ {0, . . . , kmax}. In this expression, Eq. (76) ex-
presses the stationary time tm as a function of the fre-
quency f . For a LIGO-type detector, Hlm depends on
time through φz, θL, and ζ.

Figure 5 compares the frequency domain GWs for the
4 systems of Table I using only the leading (` = 2,m = 2)
harmonics of Eq. (75). The two waveforms are computed
with the numerical solution to the PN precession equa-
tions and with the analytic solution described in Secs. III
and IV. Both waveforms are Fourier-transformed with
SUA, allowing us to assess the effect of our new analytic
solution to the GW amplitude and phase. The agree-
ment between the wave amplitudes is excellent over a
wide range of frequencies, while the dephasing between
the two waveforms never exceeds 0.3 radians, even for our
BHBH system. This figure serves as a first indication of
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the accuracy of our model to accurately capture generic
precessing features in GWs.

VI. WAVEFORM COMPARISON

In order to have a more complete picture of our wave-
form’s ability to model generic systems, we carry out
a Monte Carlo study randomizing over the 15 parame-
ters describing a quasicircular compact binary waveform.
For the randomization, we draw the components’ masses
form a flat distribution in log space between [1, 2.5]M�
for NSs and [2.5, 20]M� for BHs, while the components’
spin magnitudes are uniformly distributed in [0, 0.1] for
NSs and [0, 1] for BHs. We selected seemingly low BH
masses in order to focus on systems for which the inspiral
part is the most important. Indeed, those are the ones
for which the accurate modeling of the precession effects
are the most challenging, due to the increased number
of precession cycles that low masses entail. All direc-
tions (spin, sky location, orbital angular momentum) are
drawn uniformly on a unit sphere. The phase of coales-
cence is assumed to be uniform in [0, 2π], while the time
of coalescence and the distance are fixed at 105 seconds
and 100Mpc respectively.

The large number of systems simulated can only be
analyzed through some appropriate and efficient statistic;
we use the faithfulness (or match) defined as

F ≡ max
tc,φc

(h1 | h2)√
(h1 | h1) (h2 | h2)

. (80)

The faithfulness is calculated between two waveforms h1

and h2 with the same physical parameters, but maxi-
mized over any un-physical parameters: the time tc and
phase φc of coalescence. As such, it is a good estimator
of a model’s suitability for parameter estimation. The
faithfulness always falls between −1 and 1, with the lat-
ter indicating perfect agreement between the waveforms.

Unlike fitting factors9, selecting a value for the faith-
fulness that is ‘good enough’ is not straightforward. The
nominal fitting factor threshold of 0.965 corresponds to a
10% drop in detection rates. On the other hand, a faith-
fulness threshold should be translatable to a requirement
about parameter estimation accuracy: the systematic
mismodeling error should be smaller than the statistical
measurement error. The latter depends on the signal-to-
noise ratio (SNR) of the signal, while the former does not,
meaning that any faithfulness threshold should take the
strength of the signal into account. In Appendix G we
calculate the faithfulness threshold as a function of the
SNR and find that for an SNR of 10(25)[50], a faithfulness

9 A fitting factor is the faithfulness maximized over all model pa-
rameters, quantifying a model’s suitability for detection.

Waveform Threshold NSNS BHNS BHBH HSNSBH

RWF 0.965 0.06% 0.33% 1.85% 1.14%
RWF 0.994 0.3% 1.6% 10.4% 9.2%
FWF 0.965 0.06% 0.33% 1.85% 1.26%
FWF 0.994 0.3% 1.6% 10.7% 9.9%

TABLE II: Percentages of subthreshold systems encountered
in our analysis for each type of system.

of 0.96(0.9936)[0.9984] suffices for accurate parameter es-
timation. Led by the SNR of the first detected GW [67],
we set our faithfulness threshold to 0.994.

In our study h1 is a waveform calculated by numer-
ically solving the precession equations, while h2 uses
our new analytic solution. Both waveforms are Fourier-
transformed with the SUA method, justified by [17]
where it was shown that SUA induces a negligible loss
of faithfulness compared to a discrete Fourier transform.
The use of SUA in both waveforms allows us to isolate the
effect of our new solution: any mismatch is solely caused
by the solution to the precession equations described in
this paper.

The inner product in Eq. (80) is defined in the usual
way

(h1 | h2) ≡ 4<
∫ fmax

fmin

h̃1(f)h̃∗2(f)

Sn(f)
df , (81)

where fmin = 10Hz is aLIGO’s lower frequency cutoff,
fmax is the frequency that corresponds to an orbital sepa-
ration of 6M , and Sn(f) is aLIGO’s design zero-detuning,
high power noise spectral density [68].

Figure 6 shows the distributions of 1 − F for 4 sets,
each containing 10, 000 systems. The first 3 sets contain
systems with masses and spins corresponding to NSNS,
BHNS, and BHBH systems respectively. The fourth set
contains an additional, less astrophysically motivated but
useful to test our model in the most challenging setting,
type of system where both masses were drawn from a log-
flat distribution ranging from 1M� to 20M�, and both
spin magnitudes uniformly distributed in [0, 1]. We study
2 different types of waveforms: full waveforms (FWF)
contain all the known harmonics in Eq. (75), while re-
stricted waveforms (RWF) contain only the dominant
(` = 2,m = 2) harmonic.

The agreement between our analytical waveform and
the numerical PN one is excellent for a wide range
of parameters. In the NSNS case we find that only
0.06%(0.3%) of the systems have a faithfulness below the
0.965(0.994) for both waveforms, while for BHNS sys-
tems, this number is 0.33%(1.6%) for both waveforms.
The percentage of systems below the nominal faith-
fulness threshold is increased to 1.85%(10.4%) (RWF)
and 1.85%(10.7%) (FWF) in the case of BHBHs and
1.14%(9.2%) (RWF) and 1.26%(9.9%) (FWF) for the 4th

generic set. This increase is not unexpected, since preces-
sional feature are more pronounced, and hence more dif-
ficult to model, when the spins are large and the masses
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FIG. 6: Distribution of 1−F for NSNS (Top Left), BHNS (Top Right), BHBH (Bottom Left) and the 4th generic set containing
all masses and spins (Bottom Right) for waveforms with full harmonic content (solid black line) and waveforms restricted to
the leading (` = 2,m = 2) mode (dashed red line). Top panels show cumulative distribution functions, and bottom panels give
the corresponding probability distribution function. The leftmost vertical line denotes a faithfulness F = 0.994, corresponding
to 0.3% of systems for NSNS (both waveforms), 1.6% for BHNS (both waveforms), 10.4% (RWF) and 10.7% (FWF) for BHBH,
and 9.2% (RWF) and 9.9% (FWF) for the 4th set. The other vertical lines correspond to the medians of the distributions, which
are 1− F = 2.7× 10−6 (RWF), and 1− F = 6× 10−6 (FWF) for NSNS, 1− F = 7.6× 10−5 (RWF), and 1− F = 8.3× 10−5

(FWF) for NSBH, 1−F = 7.1× 10−4 (RWF), and 1−F = 7.4× 10−4 (FWF) for BHBH, and 1−F = 9.3× 10−4 (RWF), and
1− F = 8.6× 10−4 (FWF) for the 4th set.

different. In the next section we study the various sources
of error in our analytical waveform and quantify their ef-
fect. Table II summarizes these results.

VII. SOURCE OF ERROR

The subthreshold systems of Fig. 6 can be split into
two rough categories: systems for which the faithfulness
is very low F . 0.8, and systems for which the faith-
fulness is high, but not high enough 0.8 . F . 0.994.
Systems falling into the first category can mainly be ex-
plained by the effect described in Appendix E. For them
the orbital angular momentum becomes approximately

(anti)aligned with the total spin angular momentum at
some point in the evolution of the systems. In this case
the PN expansion of Eq. (62) becomes ill-defined. Our
specific choice for the values of D2 and D4 in Eqs. (63)
and (64) to some extent ameliorates this problem, yet it
does not fully solve it. We have explored many choices
for D2 and D4, some even leading up to 8% of systems
with faithfulnesses below 0.96 in the BHBH case. The
particular values for D2 and D4 we employ in our model
[Eqs. (E3) and (E4)] yield the best results among all the
expressions we tested.

Systems falling in the second category can be modeled
accurately only for low SNR signals. The unfaithfulness
of these systems can be attributed to the various approxi-
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mations we have used in our model construction. In order
to quantify the effect of each approximation, we retrace
the steps we followed in Sec. IV to add radiation reaction
effects to the exact precession solution of Sec III.

1. Our first task when adding radiation reaction ef-
fects is to specify a coordinate system. In Sec. IV A
we assume that Ĵ is constant and identify it with
the ẑ axis of our system.

2. In Sec. IV B we use MSA to solve for the magnitude
of the total angular momentum J .

3. In Sec. IV C we use MSA and a PN approximation
to solve for the total spin magnitude S.

4. Finally, in Sec IV D we use the J and S obtained
above to solve for the precession angle φz.

Overall, the addition of radiation reaction effects re-
quires the identification of a coordinate system and the
solution to 3 coupled differential equations. Below we
perform each of these steps numerically and each time
compute matches for BHBH systems in order to quantify
the improvement. The unfaithfulness distributions are
given in Fig. 7, while the inset focuses on the region of
interest F ∈ [0.9, 0.999] with the vertical line denoting
F = 0.994. The different curves in this figure represent
the following:
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FIG. 7: Cumulative distribution of 1 − F for waveforms in-
cluding different degrees of numerical and analytical calcula-
tions. The difference between these distributions is a quan-
tification of the error from each analytic approximation we
have made. The inset shows the faithfulness range of interest
F ∈ [0.9, 0.999], while the vertical line denotes the faithful-
ness threshold F = 0.994. See the text for more details and
discussion.

• The black solid line corresponds to the fully ana-
lytic waveform also studied in Fig. 6, with approx-
imately 10% of the systems below 0.994.

• The maroon dashed line was created with a wave-
form that evaluates Eq. (52) for φz with the ana-
lytical J and S, and then solves this equation nu-
merically, bringing the percentage of subthreshold
systems down to ∼ 4%.

• The green dot-dashed line again uses a numeri-
cal solution to Eq. (52) but where now S and J
are obtained and substituted by numerically solv-
ing their corresponding differential equations. We
stress that in this version of the waveform, S and
J are solved for numerically only when used in
Eq. (52). This corresponds to the most accurate
solution for φz possible and results in ∼ 2% of sub-
threshold systems.

• The blue dot-double-dashed line again uses the
most accurate φz from the previous waveform, and
now the numerical S is also used for the entire wave-
form. This brings the percentage of subthreshold
systems down to ∼ 1%.

• Finally, the red dotted line is produced with a wave-
form that solves for all φz, S, and J numerically.
The faithfulness distribution for this waveform is
almost indistinguishable from the previous wave-
form with ∼ 1% of subthreshold systems.

The above results suggest a clear-cut way to improve
our model if a more faithful waveform model is required
in the future. The largest improvement would be ob-
tained if we found a more accurate solution to Eq. (52)
for the precession angle φz, either by improving the PN
solution to Eq. (61), or by taking Eq. (67) to higher order
in MSA. We have studied those two error sources sepa-
rately, and have found the former to dominate over the
latter. The second step would be to improve the solution
for the total spin magnitude by employing elements of
MSA to solve Eq. (22), or a more accurate PN prescrip-
tion for Eq. (50) for the phase of S. Finally, improving
the solution for the magnitude of the total angular mo-
mentum J will not affect the waveform considerably.

Even with these improvements, we still have ∼ 1% of
our systems with F < 0.994. The only approximation
we have made for these systems is that the total angular
momentum has a fixed direction, and to verify that this
approximation indeed breaks, we studied 100 of these sys-

tems explicitly. We evolved ~J and found that 2 of these
systems undergo the effect of transitional precession [19].
The remaining 98 systems do not undergo transitional
precession but (i) have parameters that are statistically
consistent with what is required for transitional preces-
sion (small mass ratios, large and misaligned spin for the
larger body, everything else random), and (ii) the com-
ponents Jx and Jy always remain smaller than Jz, but
by about an order of magnitude only. Compare this with
Fig. 2 where Jx and Jy remain at least 3 orders of mag-
nitude below Jz for all frequencies.

As a concluding remark, we should mention the ef-
fect of the inclination angle L ·N on our results. It is
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well-known that binaries observed approximately edge-
on (L ·N ∼ 0) exhibit the largest precessional effects.
We indeed find that all other things being equal, the
more edge-on the binary is, the lower its faithfulness.
This is because when precessional effects become more
pronounced, a better and better modeling of them is re-
quired in order to achieve a certain goodness of fit. In
other words, inclination does not cause problems on its
own, but rather it amplifies preexisting ones, an effect
also observed in [37]. We should note, however, that
edge-on systems are less likely to be detected by aLIGO
due to selection effects [69].

VIII. DISCUSSION

We have constructed the first closed-form fully ana-
lytic GW template in the frequency domain that can ac-
curately model quasicircular systems of generic masses,
spin magnitudes, and spin orientations in the inspiral
phase. We expand the exact solution to the precession
equations in the absence of radiation reaction derived
by Kesden et al. [10] to include radiation reaction us-
ing elements from multiple scale analysis. This allows us
to derive the first closed-form time-domain GW model
valid for generic inspirals. We then use the method of
shifted uniform asymptotics to transform this waveform
from the time domain to the frequency domain.

The resulting waveform is ideal for extracting param-
eters from generically precessing quasicircular inspirals
as demonstrated by a Monte Carlo study of 40, 000 sys-
tem; only 0.8%(5.4%) of them had a faithfulness with a
numerical PN waveform that solves the precession equa-
tions numerically below 0.965(0.994). The remaining in-
accuracies of our model can be mapped back to specific
assumptions we made while solving the spin-precession
equations including radiation reaction. Analytical under-
standing of all these assumptions and the elements that
enter our waveform construction enable us to improve the
accuracy of our model if deemed necessary when more
sensitive GW detector networks become available. This
is, perhaps, the most attractive feature of having analytic
control over complicated processes like spin-precession.

Finally, analytic methods have the potential to be
much faster than numerical ones, while still encompass-
ing all precessional effects. We estimate that our an-
alytic SUA waveform can be up to 15 times faster to
evaluate than the numerical SUA waveform in certain
regions of the parameter space. Interestingly, the region
of the parameter space where the analytic SUA waveform
presents the maximum improvement over the numerical
SUA waveforms (the BHBH case) is distinct from the re-
gion where the numerical SUA waveform is much faster
than fully numerical PN time-domain models (the NSNS
case) [17]. This suggests that a hybrid model where the
numerical or the analytical SUA is called depending on
the system’s mass can achieve both high accuracy and
numerical efficiency. Further improvement could be ob-

tained through reduced order modeling and reduced or-
der quadrature integration in data analysis implementa-
tions [70]. We leave such studies to future work.

As a final remark, we note that our results lay the
framework for the construction of full inspiral-merger-
ringdown (IMR) waveforms following similar procedures
as IMRPhenomP [23, 33, 34]. This is a promising avenue
for future research since such an IMR waveform has the
potential to be more accurate than the IMRPhenomP
due to more accurate description of precessional dynam-
ics, as well as faster than SEOBNRv3 [29] due to the
analytic treatment of the inspiral dynamics.
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Appendix A: Coefficients of v̇

The coefficients of the evolution of the PN parameter
v as defined in Eq. (4) are

g0 =
1

a0
, (A1)

g2 = −a2

a0
, (A2)

g3 = −a3

a0
, (A3)

g4 = −a4 − a2
2

a0
, (A4)

g5 = −a5 − 2a3a2

a0
, (A5)

g6 = −a6 − 2a4a2 − a2
3 + a3

2

a0
, (A6)

g`6 = −3b6
a0
, (A7)

g7 = −a7 − 2a5a2 − 2a4a3 + 3a3a
2
2

a0
, (A8)

with all other terms vanishing. The coefficients {ai, bi}
are given in Appendix A of [39]. The spin couplings
in the above expressions are evaluated with all angular
momenta averaged over one precession cycle using the
solution of Secs. III and IV. The error induced by this
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is of 4PN order, higher that the order to which we know
the v̇ expansion. Explicitly, we use

S1 · L̂→
〈
S1 · L̂

〉
pr

=
c1(1 + q)− qηξ

η(1− q2)
, (A9)

S2 · L̂→
〈
S2 · L̂

〉
pr

= −q c1(1 + q)− ηξ
η(1− q2)

, (A10)

S1 · S2 → 〈S1 · S2〉pr
=
S2

av

2
− S2

1 + S2
2

2
, (A11)

(S1 ·L̂)2 →
〈

(S1 ·L̂)2
〉

pr

=
〈
S1 ·L̂

〉2

pr

+
(S2

+ − S2
−)2v2

0

32η2(1− q)2
,

(A12)

(S2 ·L̂)2 →
〈

(S2 ·L̂)2
〉

pr

=
〈
S2 ·L̂

〉2

pr

+
q2(S2

+ − S2
−)2v2

0

32η2(1− q)2
,

(A13)

(S1 · L̂)(S2 · L̂)→
〈

(S1 · L̂)(S2 · L̂)
〉

pr

=
〈
S1 · L̂

〉
pr

〈
S2 · L̂

〉
pr

− q(S2
+ − S2

−)2v2
0

32η2(1− q)2
, (A14)

where v0 corresponds to the value of v at the initial time,
ξ, S2

av, c1 are defined in Eqs. (7), (45), and (41) respec-
tively, and S2

+, S
2
− are the roots of the right hand side of

Eq. (21).

Appendix B: Coefficients of the precession solution

Below, we provide explicit expressions for the coeffi-
cients appearing in the precession solution of Sec. III.

The coefficients of Eq. (21) are

A = − 3

2
√
η
v6 (1− ξ v) , (B1)

B = (L2 + S2
1)q + 2Lξ − 2J2 − S2

1 − S2
2 +

L2 + S2
2

q
,

(B2)

C = (J2 − L2)2 − 2Lξ(J2 − L2)

− 2
1− q
q

(S2
1 − qS2

2)L2 + 4ηL2ξ2

− 2δm(S2
1 − S2

2)ξL+ 2
1− q
q

(qS2
1 − S2

2)J2, (B3)

D=
1− q
q

(S2
2 − qS2

1)(J2 − L2)2 +
δm2

η
(S2

1−S2
2)2L2

+ 2δmLξ(S2
1 − S2

2)(J2 − L2). (B4)

The coefficients of Eq. (30) are

a =
1

2
v6

{
1 +

3

2η
(1− ξv)

}
, (B5)

c0 =
3

4
(1− ξv)v2

{
η3 + 4η3ξv

−2η
[
J2 − S2

+ + 2(S2
1 − S2

2)δm
]
v2

−4ηξ(J2 − S2
+)v3 +

(J2 − S2
+)2

η
v4

}
, (B6)

c2 = −3η

2
(S2

+ − S2
−)

(
1 + 2ξv − J2 − S2

+

η2
v2

)
(1−ξv)v4,

(B7)

c4 =
3

4η
(S2

+ − S2
−)2(1− ξv)v6, (B8)

d0 = −[J2 − (L+ S+)2][J2 − (L− S+)2], (B9)

d2 = −2(S2
+ − S2

−)(J2 + L2 − S2
+), (B10)

d4 = −(S2
+ − S2

−)2. (B11)

The coefficients of Eq. (31) are

Aφ = A+
c4
d4
, (B12)

Bφ =

(
c4
d4
− c0 + c2 + c4
d0 + d2 + d4

)
, (B13)

Cφ = C1 + C2, (B14)

Dφ = C1 − C2, (B15)

nc = 2
d0 + d2 + d4

2d0 + d2 + sd
, (B16)

nd =
2d0 + d2 + sd

2d0
, (B17)

where

C1 = −1

2

(
c0
d0
− c0 + c2 + c4
d0 + d2 + d4

)
, (B18)

C2 =
c0(−2d0d4 + d2

2 + d2d4)− c2d0(d2 + 2d4)

2d0(d0 + d2 + d4)sd

+
c4d0(2d0 + d2)

2d0(d0 + d2 + d4)sd
, (B19)

sd =
√
d2

2 − 4d0d4. (B20)

Appendix C: Coefficients of ψ

The coefficients in Eq. (51) are

ψ1 = 3
2ξη2 − c1
ηδm2

, (C1)

ψ2 =
3g2

g0
+

3

2η3

{
2∆− 2

η2

δm2
S2

av − 10
η

δm4
c21

+2
η2

δm2

7 + 6q + 7q2

(1− q)2
c1ξ −

η3

δm2

3 + 4q + 3q2

(1− q)2
ξ2

+
η

(1− q)2

[
q(2 + q)S2

1 + (1 + 2q)S2
2

]}
, (C2)

where

∆=

{{
c21η

qδm4
− 2c1η

3(1 + q)

qδm4
ξ − η2

δm4
[δm2S2

1 − η2ξ2]

}
×
{
c21η

2

δm4
− 2c1η

3(1 + q)

δm4
ξ − η2

δm4
[δm2S2

2 − η2ξ2]

}}1/2

.

(C3)
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Appendix D: Coefficients of φz

For the PN expansions of the coefficients of Eq. (65)
we define

Rm = S2
+ − S2

−, (D1)

cp = (S2
+η

2 − c21), (D2)

cm = (S2
−η

2 − c21), (D3)

a1 =
1

2
+

3

4
η, (D4)

a2 = − 3

4η
ξ, (D5)

ad =
−3(S2

1 − S2
2) η
δm + 3 c1η (c1 − 2ξη2)

4
√
cpcm

, (D6)

cd = − 3

128

Rm
η
√
cpcm

, (D7)

hd =
c1
η2

(
1− cp + cm

2
√
cpcm

)
, (D8)

Ωz,0 = a1 + ad, (D9)

Ωz,1 = a2 − adξ − adhd, (D10)

Ωz,2 = adhdξ + cd − adfd + adh
2
d, (D11)

Ωz,3 = (adfd − cd − adh2
d)(ξ + hd) + adfdhd, (D12)

Ωz,4 = (cd + adh
2
d − 2adfd)(hdξ + h2

d − fd)− adf2
d ,
(D13)

Ωz,5 = (cd − adfd + adh
2
d)fd(ξ + 2hd)

− (cd + adh
2
d − 2adfd)h

2
d(ξ + hd)− adf2

dhd, (D14)

With these definitions, the coefficients of Eq. (65) are

〈Ωz〉(0) = 3g0Ωz,0, (D15)

〈Ωz〉(1) = 3g0Ωz,1, (D16)

〈Ωz〉(2) = 3(g0Ωz,2 + g2Ωz,0), (D17)

〈Ωz〉(3) = 3(g0Ωz,3 + g2Ωz,1 + g3Ωz,0), (D18)

〈Ωz〉(4) = 3(g0Ωz,4 + g2Ωz,2 + g3Ωz,1 + g4Ωz,0), (D19)

〈Ωz〉(5) = 3(g0Ωz,5 + g2Ωz,3 + g3Ωz,2 + g4Ωz,1 + g5Ωz,0).
(D20)

The functions φ
(n)
z in Eq. (66) are

φ(0)
z =

J

η4

(
c21
2
− c1η

2

6v
−S

2
avη

2

3
− η4

3v2

)
− c1

2η

(
c21
η4
−S

2
av

η2

)
l1,

(D21)

φ(1)
z = − J

2η2
(c1 + ηL) +

1

2η3

(
c1 − η2S2

av

)
l1, (D22)

φ(2)
z = −J +

√
S2

avl2 −
c1

η
l1, (D23)

φ(3)
z = Jv − ηl1 +

c1√
S2

av

l2, (D24)

φ(4)
z =

J

2S2
av

v
(
c1 + vS2

av

)
− 1

2(S2
av)3/2

(
c21 − η2S2

av

)
l2,

(D25)

φ(5)
z = −Jv

(
c21

2(S2
av)2
− c1v

6S2
av

− v2

3
− η2

3S2
av

)
+

c1
2(S2

av)5/2

(
c21 − η2S2

av

)
l2, (D26)

where we have defined

l1 = ln (c1 + Jη + Lη), (D27)

l2 = ln
(
c1 + J

√
S2

avv + S2
avv
)
, (D28)

In the above expressions we keep the roots S2
+ and S2

−
constant and equal to their initial value. The complex-
ity of the roots’ PN expansion makes its use prohibitive.
Note that we do not expand the roots at all, but rather
use their initial value as a form of partial resummation
to increase the accuracy of our results. We find that this
approximation does not affect our final result for the GW
significantly.

Appendix E: Justification of the φz calculation

The precession-averaged 〈φ̇z〉pr given in Eqs. (62)-(64)
is exact. In principle, we could calculate D2 and D4 as
functions of v, substitute them in Eq. (62), and carry out
a PN expansion and integration to obtain 〈φz〉pr

= φz,−1.

Though this approach should work, in practice we run
into 2 considerable problems. Firstly, the resulting φz,−1

is ill-behaved in the small mass ratio limit, despite never
having assumed comparable masses. Secondly, φz,−1 di-
verges when, at any point in the evolution of a precessing
system, the total spin angular momentum is (anti)aligned
with the orbital angular momentum. We stress that this
does not mean that S is approximately (anti)aligned with
L all the time; a brief moment of (anti)alignment suffices.

Both issues are not caused by real physical divergences
in Ωz. Firstly, at no point did we assume comparable
masses. The second issue is more subtle. It might be
true that the denominator of Ωz vanishes if S and L are
(anti)aligned. However, the binary (and φz) is well be-
haved at the moment of (anti)alignment since the numer-
ator of Ωz vanishes too, leading to a 0/0 type situation10.

We argue that even though Eq. (62) is well behaved
in both the small mass ratio and the (anti)alignment be-
tween S and L limit, the same need not be true for its
PN expansion. Consider the following function11

h(x;h2, h1, h0) =

√
h2

2

x2
+
h1

x
+ h0, (E1)

10 We have verified that this is the case both analytically and nu-
merically.

11 The similarity between our toy function and J given in Eq. (41)
is not accidental.
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and its expansion around x = 0

hexp(x;h2, h1, h0) =
h2

x
+

h1

2h2
− h2

1 − 4h0h4

8h3
2

x+O(x2).

(E2)
Clearly, h(x) is finite as h2 → 0. However, hexp(x) is

not, and the h2 → 0 limit is worse and worse as we keep
more terms in the x expansion.

This is exactly the situation we encounter with Eq. (62)
both in the small mass ratio limit, and in the approximate
S and L (anti)alignment limit. Fixing the small mass
ratio limit is straightforward: we identify the problem as
originating from expanding the J multiplying the entire
right hand side of Eq. (62), and factor it out. This is the
reason behind the form Eq. (65) has.

The second problem is more complicated. We can still
identify the terms that, when expanded, cause the limit
when S and L are (anti)aligned to be problematic. How-
ever, if we do not expand them, we can no longer perform
the integral of Eq. (65). Using this fully expanded 〈φz〉pr

causes 5% of the systems studied here to have faithful-
nesses below threshold (see Sec. VI).

In light of this, we tried a number of alternative, ap-
proximate methods for calculating 〈φz〉pr

. We discov-
ered that if we keep the terms D2 and D4 in Eqs. (63)
and (64), our results are greatly improved by about an
order of magnitude: only 0.8% of the systems are below
the faithfulness threshold (see Sec. VI). We examined
a number of different definitions for D2 and D4, from
using their initial value as given directly from Eqs. (63)
and (64) to retaining different orders in a PN expansion,
but evaluated at the initial time. We found out that
these methods give comparable results, so we choose, for
simplicity, to set D2 and D4 equal to their leading PN
order:

D2 →
cp −√cpcm
Rmη2

, (E3)

D4 →
cp(cp −√cpcm)

R2
mη

4
−
√
cpcm

2Rmη2
, (E4)

where cp, cm, Rm are defined in Appendix D.
We expect this problem to be solved if we consistently

PN expand both (D2, D4) and the roots S2
+, S

2
− (see Ap-

pendix D). The complexity of the roots’ expansion poses
some serious problems in this calculation and we here opt
for the approach described above and the partial resum-
mation of the roots explained in Appendix D. This ap-
proach yields satisfactory results for the waveform preci-
sion required for aLIGO (see Fig. 6), but can be improved
if need be through expansions appropriate for these sys-
tems, like a small misalignment between S and L expan-
sion.

Appendix F: Coefficients of ζ

The angle ζ that enters in the transformation to the
waveform to the frame co-rotating with the precession of

L can be calculated by solving

ζ̇ = φ̇z cos θL = Ωz cosφL ≡ Ωζ . (F1)

The solution to this equation can be obtained through
MSA and it is very similar to the solution to Eq. (30)

ζ = ζ−1 + ζ0, (F2)

where

ζ−1 =

∫
〈Ωζ〉pr

(trr) dtrr, (F3)

ζ0 =

∫ [
Ωζ(tpr, trr)− 〈Ωζ〉pr

(trr)
]
dtpr. (F4)

Following the same steps as in Sec. IV D 1 and for rea-
sons explained in Appendix E we find

ζ−1 = ηv−3
5∑
i=0

〈Ωζ〉(n)vn + ζ0
−1, (F5)

where ζ0
−1 is a constant of integration and we have defined

〈Ωζ〉(0) = −g0Ωζ,0, (F6)

〈Ωζ〉(1) = −3

2
g0Ωζ,1, (F7)

〈Ωζ〉(2) = −3(g0Ωζ,2 + g2Ωζ,0), (F8)

〈Ωζ〉(3) = 3(g0Ωζ,3 + g2Ωζ,1 + g3Ωζ,0), (F9)

〈Ωζ〉(4) = 3(g0Ωζ,4 + g2Ωζ,2 + g3Ωζ,1 + g4Ωζ,0), (F10)

〈Ωζ〉(5) =
3

2
(g0Ωζ,5 + g2Ωζ,3 + g3Ωζ,2 + g4Ωζ,1 + g5Ωζ,0).

(F11)

and

Ωζ,0 = Ωz,0, (F12)

Ωζ,1 = Ωz,1 +
c1
η2

Ωz,0, (F13)

Ωζ,2 = Ωz,2 +
c1
η2

Ωz,1, (F14)

Ωζ,3 = Ωz,3 +
c1
η2

Ωz,2 + gd, (F15)

Ωζ,4 = Ωz,4 +
c1
η2

Ωz,3 − gdξ − gdhd, (F16)

Ωζ,5 = Ωz,5 +
c1
η2

Ωz,4 + gdhdξ + gd(h
2
d − fd), (F17)

where the Ωz,i’s, fd and hd are given in Appendix D and

gd =
3

64

R2
m

η3

c1 − η2ξ
√
cpcm

. (F18)

The first correction to MSA is given by

ζ0 =
AθL
ψ̇

(Cφ +Dφ) + 2d0
BθL
ψ̇

(
Cφ

sd − d2
− Dφ

sd + d2

)
,

(F19)
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where Cφ, Dφ, d0 and d2 are given in Appendix D, ψ̇ is
Eq. (51), and

AθL =
J2 + L2 − S2

+

2JL
, (F20)

BθL =
S2

+ − S2
−

2JL
. (F21)

Appendix G: Faithfulness requirement

The agreement between two waveforms h, h̄ with pa-

rameters ~λ is measured in terms of the faithfulness F

F (h, h̄) =
(h|h̄)√

(h|h)(h̄|h̄)
. (G1)

In the high SNR regime, a typical waveform sample from
the posterior distribution function [71] is given by

h̄ = h+ h,i∆λ
i +

1

2
h,ij∆λ

i∆λj + . . . (G2)

where the ∆~λ = ~λ−~λ0 are described by the multivariate
normal distribution

p(∆~λ) =
√

det(Γ/2π)e−Γij∆λ
i∆λj/2 , (G3)

with Γij = (h,i|h,j) and ~λ0 are the true parameters.
Treating the ∆λi as small and expanding we get

F = 1− 1

2
gij∆λ

i∆λj + . . . (G4)

where

gij =
(hi|hj)
(h|h)

− (h|h,i)(h|h,j)
(h|h)2

. (G5)

Using E[∆λi∆λj ] = Cij ' Γ−1
ij , we find

E[F ] ' 1− (D − 1)

2 SNR2 , (G6)

for the expectation value of the faithfulness, where D

is the dimension of ~λ. The factor of D comes from
CijΓij ' δii = D and the factor of −1 from the
(h|h,i)(h|h,j)/(h|h)2 removing the dependence on the
overall amplitude of the waveform, thus reducing the di-
mensions count by one.

The expected value of the faithfulness in Eq. (G6) de-
scribes the impact of statistical errors. In deciding how
accurate a waveform model needs to be, we should at a
minimum demand that the systematic errors from mis-
modeling are smaller than the statistical errors. If we
wish to model spin-precessing binaries with D = 8 in-
trinsic parameters for systems with SNRs up to 50 then
the modeling unfaithfulness should be below 8/5000 =
0.0016 (there is no −1 for just intrinsic parameters, the
amplitude is extrinsic). For and SNR of 25 we obtain the
faithfulness requirement of 0.994 that we used in Sec. VI.

To calculate the variance, it is easier to work with the
unfaithfulness, 1 − F . The expectation of the square is
given by

E[(1− F )2] =
1

4
gijgklE[∆λi∆λj∆λk∆λl]

=
1

4
gijgkl

(
CijCkl + CikCjl + CilCjk

)
' 3(D − 1)2

4 SNR4 (G7)

Thus

var[1− F ] =
2(D − 1)2

4 SNR4 (G8)

This shows that the average fathfulness is slightly less
than 1-σ from a perfect faithfulness (σ/

√
2 to be pre-

cise). This agrees with what we see when computing the
distribution of the match from MCMC waveform sam-
ples. The distribution is not Gaussian, and has a larger
tail toward small values of the match.

An alternative derivation of the faithfulness require-
ment makes direct use of the posterior distribution func-
tion in the case of uniform priors

p(~λ) ∼ e− (d−h|d−h)
2 , (G9)

where d is the data. The peak of the posterior, evaluated
at the best-fit parameters is

p(~λbf ) ∼ e−
(d−hbf |d−hbf )

2 ∼ e−
(d|d)+(hbf |hbf )−2(d−hbf )

2

∼ e− SNR2+SNR2−2SNR2 FF
2 ∼ e−SNR2(1−FF), (G10)

where FF is the fitting factor, or the faithfulness maxi-
mized over all model parameters. The posterior on the
true parameters is

p(~λ0) ∼ e−
(d−h0|d−h0)

2 ∼ e−SNR2(1−F), (G11)

From Eq. (G3) we can calculate the value of the mul-
tidimensional posterior 1 − σ away from the best-fit pa-
rameters

p(~λ1−σ) ∼ e−
Γij∆λi∆λj

2 ∼ e−
ΓijC

ij

2 ∼ e−D2 , (G12)

Assuming that the model can fit the data perfectly
for some parameters (an assumption that will lead to
a conservative faithfulness threshold) we set FF=1 and
requiring that the true parameters are less than 1 − σ
away from the best-fit ones we find

1− F <
D

2SNR2 , (G13)

where D is the number of parameters whose measur-
ability is affected by the model inaccuracy. For spin-
precessing models with 8 intrinsic parameters, D = 8.

This derivation translates the results of [72] that were
written in terms of requirements on the GW amplitude
and phase to requirement on the faithfulness.
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