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We present a method to delens the acoustic peaks of the CMB temperature and polarization
power spectra internally, using lensing maps reconstructed from the CMB itself. We find that
when delensing CMB acoustic peaks with a lensing potential map derived from the same CMB
sky, a large bias arises in the delensed power spectrum. The cause of this bias is that the noise in
the reconstructed potential map is derived from, and hence correlated with, the CMB map when
delensing. This bias is more significant relative to the signal than an analogous bias found when
delensing CMB B modes. We calculate the leading term of this bias, which is present even in the
absence of lensing. We also demonstrate one method to remove this bias, using reconstructions from
CMB angular scales within given ranges to delens CMB scales outside of those ranges. Some details
relevant for a realistic analysis are also discussed, such as the importance of removing mask-induced
effects for successful delensing, and a useful null test, obtained from randomizing the phases of the
reconstructed potential. Our findings should help current and next-generation CMB experiments
obtain tighter parameter constraints via the internal removal of lensing-induced smoothing from
temperature and E-mode acoustic peaks.
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I. INTRODUCTION

Cosmic Microwave Background (CMB) experiments
have progressed from the first detections of gravitational
lensing of the CMB by intervening large-scale structure
[1-9] to a 400 detection of the lensing potential power
spectrum, corresponding to a measurement of its ampli-
tude with 2.5% precision [10, 11]. These measurements
have decreased the uncertainties on a variety of cosmo-
logical parameters [12-14] as well as constrained the rela-
tionship between luminous and dark matter [15-19]. Fu-
ture measurements of the lensing of the CMB can be ex-
pected to yield powerful constraints on parameters such
as the sum of the neutrino masses [20, 21]. At the same
time, CMB lensing is also becoming a limiting source of
noise for probing other fundamental physics. For exam-
ple, lensing of CMB polarization E modes converts them
into B modes, which can obscure a primordial gravita-
tional wave signal generated during inflation [21, 22]. In
addition, the smoothing of the acoustic peaks of the tem-
perature and F-mode power spectra due to lensing de-
grades the parameter constraints that can be achieved,
such as on the number of light relic particles in the Uni-
verse [21, 23, 24].

The procedure to remove the lensing signal from CMB
maps is called ‘delensing’ [25-27] and methods to achieve
this with a reconstructed lensing field from the CMB it-
self or from a tracer of lensing such as the Cosmic In-
frared Background (CIB) have been discussed in [28-30].

Recently, [31] have demonstrated delensing of the Planck
temperature data using the CIB as a tracer of the lensing
field. As the sensitivity of CMB instruments improves,
such as with the planned CMB-S4 experiment [21], de-
lensing using a lensing field derived internally from CMB
data, as opposed to an external tracer, will likely prove
to be more powerful, since external tracers are not per-
fectly correlated with the underlying lensing potential
[16, 30]. Also recently, [23] considered filtering schemes
for delensing the acoustic peaks, and calculated the ex-
pected delensed power spectra and associated parameter
constraints. They also found that delensing always in-
creases cosmological information and should thus be in-
corporated as part of the standard analysis for upcoming
surveys. That work was performed in an idealized con-
text which did not take into account effects of the finite
survey region as well as effects that arise if the lensing re-
construction is obtained from the same CMB modes that
one is trying to delens. In this work, we take a more data-
oriented approach and demonstrate a method to delens
the CMB acoustic peaks using an internally-derived lens-
ing field. In the process, we uncover and address these
additional complications as they are present in a realis-
tic analysis. We focus on delensing temperature maps as
an example, but note that similar considerations apply
for delensing E-mode acoustic peaks. The findings pre-
sented here will be important for next generation CMB
experiments that will have the sensitivity to internally
delens the acoustic peaks.



In the next section, we outline the delensing pipeline
employed. In the subsequent section, we discuss a bias
that arises if the lensing field is reconstructed using the
same CMB that is being delensed, and show a method
to avoid this bias. We note that this bias is analogous
to a similar bias found when delensing B modes [32],
however, when delensing acoustic peaks, this bias is even
more significant relative to the signal. We also discuss the
sensitivity of this delensing procedure to mask-induced
effects, and a null test that can be used to cross check
that delensing was performed successfully. In the last
section, we summarize and conclude.

II. DELENSING PIPELINE
A. Simulations

To explore delensing the temperature acoustic peaks
we use 2000 simulations of lensed temperature maps,
each with independent CMB and lensing potential re-
alizations. The simulations are generated as described in
[3] and [17]. Gaussian-distributed primordial tempera-
ture maps and lensing potential maps are generated, and
each CMB map is lensed with a potential map following
the algorithm described in [33]. A field corresponding
to about 600 square degrees is then cut out of a larger
CMB map and convolved with a 1.4 arcminute beam.
This mirrors the ‘D56" ACTPol field described in [34],
as these two works share the same simulation set and
some pipeline components. However, we model the noise
as luK-arcmin white noise to correspond to forecasted
levels for a CMB-S4 type experiment [21], and do not
include an unresolved foreground component or atmo-
spheric noise. We have run this delensing pipeline on
simulations with these extra noise sources and found the
same behavior as we describe in the Results section.

B. Lensing Reconstruction

We obtain a reconstructed lensing potential map from
a simulated lensed CMB map by exploiting the mode
coupling that lensing induces. Gravitational lensing by
large-scale structure deflects the path of a CMB photon
by an angle equal to the gradient of the projected grav-
itational potential, d = V¢, where d is the deflection
field, and ¢ is the projected potential given by
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Here U(x,x) is the three-dimensional gravitational po-
tential, x is the comoving coordinate distance, s is the
comoving coordinate distance to the last-scattering sur-
face, and D4 is the comoving angular diameter distance
[35], with D4(x) = x in a spatially flat universe. This
deflection re-maps the primordial CMB and creates cor-
relations between previously independent Fourier modes.

We use the optimal quadratic estimator [35, 36] to iso-
late the lensing-induced mode coupling. This yields, in
the flat-sky limit, an estimate of the lensing potential
given by
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where F' is the filter function that optimizes the estima-
tor, which in the case of XY =TT is

(L) = Axy(L) / (LL-1)X

HY(L-1), (2)

(L +1) - (LCIT +1L,CLT)
2(CET + NIT)(CET + NIT)

Frr(ly,1p) = (3)

Here, Axy is a normalization function and X and Y rep-
resent any of T, E, or B maps [36]. As a result, a lensing
potential estimate can be constructed from any pair of
T, E, and B or any of these paired with itself. In Eq. 3,
C’lT T is the power spectrum including the peak smearing
from lensing and NlT T is the noise power spectral density.

As an example, we create a reconstructed lensing po-
tential map from the CMB temperature map alone, us-
ing the T'T estimator. For experiments with noise levels
above 5uK-arcmin, the 7T estimator will dominate the
signal-to-noise of the reconstructed potential, so the fol-
lowing results are directly applicable. For lower noise
levels, the EB estimator will dominate, however, non-
zero correlations between the E B-reconstructed lensing
map and the temperature and E-mode maps to be de-
lensed, make the issues addressed here relevant in that
case as well.

To make the reconstructed lensing potential, we start
with a simulated lensed temperature map convolved with
a 1.4 arcmin beam and with 1pK-arcmin white noise. We
also make two splits of the lensed CMB temperature map
that have a common signal and independent instrument
noise realizations, with a noise level of v/2 x 1K -arcmin.
All three lensed CMB maps, the original and two splits,
are apodized with a mask that has a cosine-squared edge
roll-off with a width of 1.7 degrees. Each of the three
maps is then beam-deconvolved, and the non-split map
is used for the lensing reconstruction. For the recon-
struction, we use only CMB modes between i, = 500
and [ = 3000 as a standard analysis would minimize
bias from Galactic dust (Iymin cut) and extragalactic fore-
grounds (Imax cut) [39, 40] while still maximizing signal-
to-noise. We also remove vertical and horizontal strips in
the two-dimensional CMB Fourier-space map of |I,,| < 90
and |l,| < 50, as is done in many ACTPol analyses,
e.g. [37, 41]. While we only consider using temperature
maps to make the reconstructions here, we note that us-
ing polarization maps in addition should reduce the cor-
relations between the noise in the reconstructed map and
the temperature map to be delensed. Using this recon-
structed potential map, we delens the two splits of the
lensed CMB map. We then take the cross spectra of these
delensed splits to reduce instrumental noise bias, as in,
e.g., [41].



When making the reconstructed lensing potential map,
we calculate the normalization function Axy (L) analyti-
cally following [36]. To speed up the calculation in Eq. 2,
our pipeline writes the kernel of each estimator in a sep-
arable form as a sum of convolutions of two maps. In
this way, the convolutions can be calculated using mul-
tiplications in real space. Since window functions induce
mode coupling that affects the lensing estimator, we iso-
late this anisotropy signal from non-lensing mode cou-
plings. We call this non-lensing mode coupling the mean
field, and subtract it from our lensing potential estimate.
The mean-field map is calculated by averaging the re-
constructed potential obtained from Eq. 2 from our 2000
lensed CMB simulations, each with independent primary
CMB and input lensing potential realizations. Only the
non-lensing-induced mode-coupling remains in the aver-
age, and subtracting this mean-field map from each re-
constructed potential map results in an unbiased esti-
mate of the potential:

PV (L) = xy (L) — (pxv (L)) (4)

The power spectrum of the mean-field map is larger than
the true lensing potential power spectrum on large scales
where L < 100. Therefore, after subtracting this mean-
field map from each reconstructed potential map, we in
addition remove all scales with L < 100 from our re-
sulting potential map and do not use them to delens the
CMB map. In practice when dealing with real data, we
would make this L cut to reduce bias in the reconstructed
map that can arise from non-lensing induced mode cou-
plings in the data that are not perfectly captured by the
simulated mean field.

C. Delensing Procedure

Gravitational lensing shifts the unlensed CMB at po-
sition i, to a new position i + d, where the deflection
angle is given by the gradient of the projected gravita-
tional potential, V¢, and ¢ is as given in Eq. 1, i.e.

Tlensed (ﬁ) — Tunlensed(ﬁ 4 v¢) (5)

To delens the CMB we want to shift the positions of the
lensed CMB by an estimate of —V¢ so that

Tdelensed(ﬁ) _ Tlensed(ﬁ _ Vé) (6)

Following [23, 31, 38], we evaluate V¢ at the displaced, as
opposed to the unlensed position. This is expected to be
a good approximation because, while the deflections are
on arcminute scales, they are correlated on scales of order
degrees. We Wiener filter our estimated ¢ map in Fourier
space by multiplying Eq. 2 by Cf‘b/(C’fd) + App (L)) de-
rived from theory, in order to down-weight the noisy
modes. We neglect additional filtering of the CMB T
field to select the imaged temperature modes, as advo-
cated by Ref. [23], because at our noise level all tem-
perature modes are imaged above the noise. We inverse
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FIG. 1: Top panel: The mean temperature power spectra,
D, =1(141)C,/(27), of lensed and delensed CMB maps from
2000 simulations are shown as red and green points, respec-
tively. For this case, there is no noise added to simulations
and the delensing is done with the input potential maps. Bot-
tom panel: The mean lensed minus delensed power spectra
from 2000 simulations are shown as blue points, and the er-
rors represent the error on the mean. The expected theory
prediction of lensed minus unlensed power spectra is shown by
the green curve. At high ¢, the blue points fall slightly below
the green theory line due to the difference between delensing
and inverse-lensing (see text for details).

Fourier transform the filtered ¢(L) to get a ¢(f) map.
We then “lens” the lensed CMB map by the negative of
the lensing potentail map, —VQAS, following the same al-
gorithm in [33] used to generate lensed CMB maps from
input V¢ maps. Each lensed CMB split map is delensed
in this way, and we then take the cross spectrum between
them. To calculate the cross spectrum, we first compute
the mode-coupling matrix as in, e.g., [41] to take into ac-
count the effects of the mask. Applying the inverse of the
mode-coupling matrix when taking the cross spectrum,
we obtain the delensed CMB power spectrum.

III. RESULTS

In the top panel of Figure 1, we show the power spec-
tra of lensed and delensed CMB temperature maps in the
case of no noise and perfect recovery of the input lens-
ing potential. We show the mean values from the 2000
lensed and delensed simulations (red and green points)
as well as the lensed and unlensed input theory spec-
tra (solid curves). In the bottom panel of Figure 1, we
difference the lensed and delensed power from each sim-
ulation, and show the mean and errors on the mean.
We also show the expected theory prediction differenc-
ing the lensed and unlensed theory curves shown above.
In this no-noise case, where delensing is done with the
input, as opposed to the reconstructed, potential map,



one can near-perfectly remove the lensing-induced peak
smearing from the power spectrum. At high ¢, the de-
lensed points fall slightly below the theory curve due to
the difference between delensing and inverse-lensing. De-
lensing (or anti-lensing) is what is done in this work:
Tunlensed(f) — plensed(f — ¥¢), where V¢ is evaluated
at the lensed, as opposed to the unlensed, position. As
can be seen from Figure 1, this is a good approxima-
tion to inverse-lensing, which is the exact recovery of
Tunlensed (7)) using the unlensed position for evaluating
V¢ [23, 31, 38].

A. Bias from Correlated Noise

We now consider delensing in a more realistic experi-
mental context. In the top panel of Figure 2, we again
show the difference between the lensed and delensed
power spectra when we delens with the input potential
map, but we include lensing reconstruction noise corre-
sponding to that expected with a CMB temperature map
with 1pK-arcmin white noise. The reconstruction noise
is from both the primary CMB and from the instrumen-
tal noise; we approximate it as Gaussian noise with the
given power spectrum. We see that even though we are
using the input potential map to delens, the presence of
reconstruction noise and our chosen cuts limit how much
of the two-point lensing can be removed. The error bars
indicate the error on the mean from the 2000 simulations.
We fit a smooth curve to the points shown with a cubic
spline function.

Delensing the lensed CMB temperature map with
1pK-arcmin noise using the reconstructed potential map
derived from the same map yields the points shown in
the middle panel of Figure 2. Given that the noise power
was the same as that in the upper panel, these points
should have matched the points in the top panel of Fig-
ure 2. Instead they are significantly biased away from
the top panel expectation. This bias is due to the noise
in the reconstructed potential map being correlated with
the CMB map that is being delensed. We note that any
correlation between the CMB map being delensed and
the CMB map used in the reconstruction of the poten-
tial map will result in some bias.

Here we explain in more detail the origin of this bias.
Even if no lensing is present, if one performs the exer-
cise of reconstructing the potential map with the same
CMB map that is delensed, this bias will arise. This can
be verified by repeating the delensing procedure shown
in the middle panel of Figure 2 with an unlensed CMB
simulation, which yields a very similar result. To see this
mathematically, for the case of no lensing, we recall Eq. 6
and Taylor expand assuming small deflections, V¢, to get

Tdclcnsed(ﬁ) — T(fl _ qu@(ﬁ))
= T(a) - V(1) - Vé() + O($%). (7)

At zeroth order in ¢, this process will lead to a bias term
given by taking the Fourier transform of Eq. 7, replacing
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FIG. 2: Top panel: Blue points show lensed minus delensed
power spectra when delensing with the input potential map
with Gaussian reconstruction noise added corresponding to
the expected noise when reconstructing from a CMB temper-
ature map with 1uK-arcmin white noise. In this case, only
some of the lensing signal is removed, as seen by the differ-
ence between the points and green curve, the latter of which
shows the theory prediction of lensed minus unlensed power
spectra. Middle panel: Same as top, but delensing with the
reconstructed potential map. The correlation between the re-
construction noise and the CMB map being delensed results
in a large bias. Bottom panel: Same as middle panel, except
the bias has been removed by using the reconstruction from
CMB ¢-modes in a given range to delens £-modes outside of
that range. This procedure avoids correlated noise bias at the
expense of some signal-to-noise, however more delensing can
be recovered with modifications to this procedure (see text).



¢ with an estimate of ¢ from a quadratic reconstruction,
and then taking the power spectrum of that. Thus Eq. 7
becomes

elense _ d2ll /! / /! !
79! d(l)T(l)Jr/Wl A-1T1)p(1-1) (8)

since the gradient becomes an ¢1 and multiplication be-
comes convolution in Fourier space.

Substituting the qg of Eq. 2 into Eq. 8, and calculating
the power spectrum yields

<Tde1ensed(1a>Tdelensed(lb)> D) <T(la)T(lb)> 4
2/(;‘52#1/.(11,_1'),4@(1')/ (erl)lQFTT(ll,l’—ll)
X(T(1)T (1, = 1)T(WL)TA" - 1)) (9)

where D indicates these are some of the components that
make up the delensed power spectrum. If we assume
there is no lensing present in the temperature maps, and
use Wick’s theorem for a Gaussian random field! together
with the fact that (TY(1;)TY (1)) = (2m)26%(1; + 15)CY,
then we obtain

a2V
(2m)?
xFTT (=1, + 1)C,Cppyy|. (10)

Cllcnscd _ Cldclcnscd > 4/ r. (1/ + l)ATT(lI)

The right side of Eq. 10 is part of the bias shown in the
middle panel of Figure 2, and we note that higher order
terms will give additional contributions.

We remove this bias by splitting the lensed CMB tem-
perature map into annuli in ¢-space, similar to what was
done in [32] when delensing B-modes. We start at £ = 500
and end at ¢ = 3000, with each annulus having an /(-
width of 250. For the first annulus, £ € (500, 750), we
delens these /-modes using a reconstruction derived from
¢ € (800,3000). For the second annulus, ¢ € (750,1000),
we delens these modes using a reconstruction from /-
modes in the range ¢ € (500, 700) and ¢ € (1050, 3000).
We repeat this for each annulus, delensing the ¢ modes
in the annulus with a reconstruction from all /~-modes ex-
cluding the ones in the annulus. We also keep a buffer of
{-width equal to 50 between the annulus ¢-range and the
{-range used in the reconstruction to reduce bias from
correlations between neighboring f-modes arising from
the apodization window.

The bottom panel of Figure 2 shows the result. While
this procedure eliminates the large bias shown in the
panel above, less of the lensing-induced peak-smearing
is removed as indicated by the lower amplitude of the
points as compared to the curve in the top panel. In
this case, the amplitude of the delensed curve is about
a factor of 2 to 3 lower compared to the amplitude in
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FIG. 3: Lensed minus delensed power spectra using a recon-
structed potential plus bias fix as in the bottom panel of Fig-
ure 2, now with error bars representative of a CMB-S4 type
experiment with fsyy, = 0.4 and 1pK-arcmin white noise.

the upper panel, although the relationship is not a direct
scaling. In terms of a detection of delensing, the bias-fix
procedure results in a loss of signal-to-noise. To quantify
this loss for a CMB-S4 type experiment with fgz, = 0.4
and 1pK-arcmin white noise [21], we find that using an
input potential plus noise would result in a 350 detec-
tion, whereas using the reconstructed potential plus bias
fix yields a 260 detection, as shown in Figure 3.

In principle, one can split the CMB map into many
more than 10 annuli, each with a smaller /-width, or one
can also slice azimuthally [42]; this would increase the
signal-to-noise, as more modes would be used for each
reconstruction. However, keeping a non-zero ¢-width for
the boundaries between each annulus and its inverse, as
well as long computation times, will set practical limits
for this procedure. It should also be possible to estimate
this bias term in a realization-dependent manner using
the CMB map itself, for instance by evaluating Eq. 10
with Cj replaced by the power spectrum estimated di-
rectly from the data, using methods analogous to those
introduced in [3, 43-45] for lensing power estimation.

B. Mean-field Subtraction

To delens the temperature and polarization acoustic
peaks it is important to have simulations that represent
the data so that the mean-field map can be properly
modeled and subtracted from the reconstructed potential
map. Unlike when measuring the power spectrum of the
lensing potential, where only the lowest L bins are gener-
ally affected by inaccurate mean-field subtraction, a wide
range of /-modes are improperly delensed as a result of
inaccurate mean-field subtraction. In Figure 4, we show
the result when the mean-field is not subtracted from
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FIG. 4: The points show lensed minus delensed temperature
maps when delensing with a reconstructed potential map that
has not been mean-field subtracted. The red curve shows the
result from the bottom panel of Figure 2, where the mean-field
has been subtracted. Even though modes with L < 100 have
been removed in both cases, the significant difference between
pink and red curves in this plot demonstrates the importance
of mean-field subtraction for delensing acoustic peaks.

the reconstructed potential map prior to using it to de-
lens. For comparison, we show the result when the mean-
field has been subtracted, as reproduced from the bottom
panel of Figure 2. Even though for both curves shown in
this figure, the L < 100 modes have been removed prior
to delensing, the significant difference between the curves
shows how important accurately modeling and subtract-
ing the mean field is for delensing the acoustic peaks.
We also note that the offset in peak positions shown in
Figure 4 between the delensed points with no mean-field
subtraction and with proper mean-field subtraction sug-
gests that this potentially can be used as a test to check
for correct subtraction of the mean field.

C. Null Test

When CMB acoustic peaks are delensed with the cor-
rect lensing potential map, the difference between lensed
and delensed spectra will have peaks and troughs aligned
with the green theory curve in Figure 5 that represents
the difference between lensed and unlensed theory spec-
tra. However, when an incorrect potential map is used,
instead of removing lensing from the lensed CMB map,
one is effectively adding more lensing. In this case, the
difference between lensed and incorrectly delensed power
spectra will be exactly out of phase with the theory ex-
pectation. In Figure 5, we randomize the phases of the
reconstructed potential map prior to delensing. This ef-
fectively simulates delensing with an incorrect potential
map, which has the same potential power as the correct
map. A similar test using an uncorrelated, simulated re-
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FIG. 5: The blue points show the power spectrum of lensed
minus delensed temperature maps, when delensing with a re-
constructed potential map whose phases have been random-
ized. The peaks are now out of phase with the theory expec-
tation for delensing with the correct potential map shown by
the green curve in the case of no noise. Thus delensing with a
reconstructed potential map where the phases have been ran-
domized can serve as a null test to verify delensing is being
done properly with the original reconstructed map.

alization of the same lensing power was presented in [31].
Here we see the peaks and troughs of the delensed points
are out of phase with the theory curve. We consider this
a null test in the sense that it demonstrates zero delens-
ing. Thus randomizing the phases of the reconstructed
potential map prior to delensing, and checking that the
peaks move out of phase with the expectation, can serve
as a good null test to verify delensing is being done cor-
rectly.

IV. DISCUSSION

In this work, we presented a method to internally de-
lens temperature acoustic peaks, which can easily be ex-
tended to delens E-mode acoustic peaks. We identified
a bias that results when the CMB map being delensed
is also the same one used to reconstruct the potential.
The source of this bias is that the noise in the recon-
structed map is correlated with the map being delensed.
We showed the source of the leading-order term of this
bias mathematically, and demonstrated one method to
remove it. In addition, we addressed some practical con-
siderations when doing a realistic analysis, such as the
importance of carefully subtracting the mean-field, and
presented a convenient null test. The delensing pipeline
presented here (potentially with an increase in the num-
ber of annuli) can be applied to current CMB datasets
as well as near future CMB survey data from the Simons
Observatory and CMB-S4. This should allow improved
constraints on interesting parameters such as the number



of light relic species.
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