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Abstract

Observations of cosmic infrared background (CIB) radiation exhibit significant fluctuations on

small angular scales. A number of explanations have been put forth, but there is currently no

consensus on the origin of these large fluctuations. We consider the possibility that small-scale

fluctuations in matter-antimatter asymmetry could lead to variations in star formation rates which

are responsible for the CIB fluctuations. We show that the recently proposed Higgs relaxation

leptogenesis mechanism can produce such small-scale baryonic isocurvature perturbations which

can explain the observed excess in the CIB fluctuations.
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I. INTRODUCTION

Observations of near-infrared cosmic infrared background (CIB) radiation by the AKARI

and Spitzer space telescopes both have a consistent excess at the subdegree scale [1–5].

In particular, the integrated CIB fluctuation at 5 arcminutes, between 2 and 5 µm, is

δF2−5µm (5′) ' 0.09 nW m−2sr−1 [6, 7]. This measurement of the anisotropic CIB entails

that the power in the fluctuations is FCIB ≈ δFCIB/∆5′ ∼ 1 nW m−2 sr−1. The origin of this

excess has not been clearly identified, but one plausible source is the first (population III)

stars, which form at redshifts z >∼ 10 [6, 7]. While the AKARI observations can be explained

by faint galaxies, the Spitzer observations are not consistent with this explanation [8]. (The

Spitzer space telescope is able to resolve fainter point sources and does not observe a suffi-

ciently large faint galaxy population to explain the excess [8].) Zodiacal light is unable to

account for the excess [9].

The star formation rate depends on the distribution of halos, seeded by cosmological

density perturbations. It was recently pointed out that, if primordial black holes account

for dark matter, then isocurvature density perturbations arising from fluctuations in the

distribution of black holes can explain the CIB measurements [6, 7, 10, 11]. In this scenario,

the increase in the power of dark matter density perturbations on the small scales leads to

a larger fraction of collapsed halos at redshift z > 10. This results in a higher FCIB, which

can explain the CIB observations [11].

We here explore a different possibility. Depending on its origin, the baryonic asymmetry of

the universe can exhibit small-scale fluctuations. These fluctuations can have the same effect

on the CIB as the fluctuations produced by the black holes; namely, they can also increase the

number of collapsed halos. Models of ingomogeneous baryogenesis have been considered [12,

13]. In particular, the recently proposed Higgs relaxation leptogenesis models [14–16] are

expected to produce small-scale baryonic isocurvature perturbations. A similar scenario can

be constructed with other scalar fields, such as axions, or in models with an extended Higgs

sector [17–19].

This leptogenesis model is motivated by the observation that the Higgs field will gener-

ically undergo a post-inflationary relaxation epoch [20]. Higgs relaxation leptogenesis uses

an effective dimension 6 operator in the scalar sector to produce an effective chemical poten-

tial during the Higgs relaxation epoch, which distinguishes matter from antimatter. In the
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presence of a lepton-number-violating or baryon-number-violating interaction, the system

relaxes towards its equilibrium state with nonzero asymmetry.

In the Higgs relaxation leptogenesis scenario, the final baryon asymmetry depends on

the magnitude of the post-inflationary, pre-relaxation vacuum expectation value (VEV) of

the Higgs field. This can be produced by quantum fluctuations during inflation [14, 16].

Therefore this initial VEV, and consequently the produced asymmetry, will generically vary

spatially. In this work, we illustrate how these variations give rise to matter isocurvature

perturbations. Isocurvature perturbations are not affected by Silk or Landau damping, and

baryonic isocurvature perturbations cannot be converted into adiabatic perturbations prior

to the decoupling of baryons and photons [21]. Therefore, such perturbations can cause

massive regions to reach the non-linear regime earlier, enhancing star-formation at z ' 10.

This provides an elegant resolution to the problem of excess CIB radiation.

This paper is organized as follows: In Section II, we review the relevant features of the

Higgs relaxation model and illustrate how it generates matter isocurvature perturbations.

Subsequently, in Section III, we calculate the spectrum of these baryonic isocurvature per-

turbations; we then consider how these modes evolve in Section IV. The main results of this

work are contained in Section V, in which we show that these isocurvature modes cause

sufficiently many halos large enough to support star formation to collapse around z = 10

to explain the CIB observations. Finally, we present the parameter space in which Higgs

relaxation leptogenesis can both account for the observed matter-antimatter asymmetry of

the universe and explain the CIB observations in Section VI.

II. THE HIGGS RELAXATION LEPTOGENESIS MODEL AS A SOURCE OF

ISOCURVATURE PERTURBATIONS

In this section, we review the Higgs relaxation leptogenesis model, following the discussion

in [14, 16], and then explain how it generates baryonic isocurvature perturbations.

During inflation, any scalar field φ, including the Higgs field, with mass mφ < HI will

develop a vacuum expectation value (VEV)
√
〈φ2〉 through quantum fluctuations [22–24].

Due to Hubble friction, the field is unable to efficiently relax to its equilibrium value. The

average VEV can be computed via a stochastic approach, which we discuss in detail below.

At the end of inflation, the Hubble parameter decreases, and the scalar field will relax to its
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equilibrium value.

For successful Higgs relaxation leptogenesis, we additionally assume that the Higgs field

is coupled to the (B + L) fermion current, jµB+L, through an operator of the form

O6 = − 1

Λ2
n

(
∂µ |φ|2

)
jµB+L, (1)

which can be arranged by coupling φ2 to −g2W a
µνW̃

µν
a +g′2BµνB̃

µν and using the electroweak

anomaly equation, among other possibilities [14–16]. As the VEV of φ evolves in time, this

operator acts as an effective chemical potential,

µeff =
1

Λ2
n

∂t |φ|2 , (2)

for the fermion current jµB+L. In the presence of a B or L-violating interaction (such as those

mediated by heavy right-handed neutrinos), the system will acquire a nonzero B+L charge.

The available parameter space was described in Ref. [16]; here we simply emphasize that

this included regions of parameter space in which the right-handed neutrino is too heavy to

thermalize, thus suppressing thermal leptogenesis. The final lepton-number-to-entropy ratio

is in general determined by the initial VEV φ0 at the end of inflation, Y ∝ φ2
0, as explained

in Appendix A.

We emphasize that since the effective chemical potential ∝ ∂t|φ|2, it is independent of

the phase of 〈φ〉, and therefore, the same sign asymmetry is generated in all Hubble patches.

Consequently, it is not necessary for the observable universe to be contained within one

Hubble patch. Due to quantum fluctuations, these different regions of the universe will

generically have different initial VEVs φ0 right after the inflation. Since the asymmetry is

proportional to the initial VEV, different patches in the universe will end up with different

baryon asymmetries after the above-described leptogenesis mechanism is completed. As time

progresses, different scales will re-enter the horizon; as baryons become non-relativistic,

these baryonic density fluctuations will evolve, and some may collapse. The observable

universe today consists of many Hubble patches, and therefore we expect enhanced baryonic

fluctuations in the Higgs relaxation leptogenesis model.

Since the Higgs field φ is not the inflaton, and we ensure that it does not dominate

the energy density of the universe, the baryonic fluctuations generated in this manner are

isocurvature (entropy) perturbations. They are independent from the adiabatic (curvature)

perturbations produced during reheating by the decay of the inflaton.
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This production of baryonic isocurvature perturbations in Higgs relaxation leptogene-

sis was noted in Ref. [14, 16], where it was observed that these perturbations have the

potential to exceed observational bounds from the cosmic microwave background radia-

tion (CMB) [25]. Therefore, these isocurvature perturbations must be suppressed at scales

probed by the CMB. This led to the construction of the “IC-2” initial condition in those

references, in which the Higgs field φ is massive (mφ > HI) at the beginning of the inflation,

due to a coupling to inflaton via one or several operators of the form

LφI = c

(
φ†φ
)m/2 (

I†I
)n/2

Mm+n−4
pl

. (3)

While the inflaton VEV 〈I〉 is large, these operators provide a large effective mass to the

scalar field φ, suppressing the growth of its VEV due to quantum fluctuation. As inflation

proceeds and 〈I〉 decreases, the Higgs field φ becomes effectively massless (mφ < HI), and

the vacuum expectation value starts to grow. As we discuss below, the initial VEV, and

therefore the resulting asymmetry, depends on Nlast, the number of e-folds (measured from

the end of inflation) that the Higgs VEV developed during. In references [14, 16, 18], we

set Nlast ∼ 8 out of an abundance of caution; next, we discuss more precisely the exact

observational constraint.

III. SPECTRUM OF PRIMORDIAL BARYONIC ISOCURVATURE PERTURBA-

TIONS

Having explained how the Higgs relaxation leptogenesis model produces baryonic isocur-

vature perturbations, we now proceed in this section to determine the spectrum of these

primordial baryonic isocurvature perturbations. We will also apply observational constraints

to the spectrum, and we will determine how this constrains Nlast, the number of e-folds the

Higgs VEV grows during.

We will first need to calculate the spectrum of the fluctuations in the Higgs vacuum

expectation value, since this sources the fluctuations in the baryon density. As mentioned

above, in Higgs relaxation leptogenesis models, the Higgs field is coupled to the inflaton in

such a way that the vacuum expectation value grows during only the last Nlast e-folds of

inflation. If the effective mass turns off sufficiently fast, then the average VEV of φ at the
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end of inflation in a completely flat potential is

φ0 ≡
√
〈φ2〉 ≈

√∫ HI

HIe
−Nlast

dk

k

(
HI

2π

)2

=
√
Nlast

HI

2π
. (4)

This ignores curvature in the potential; a more accurate determination of the VEV is found

by first solving the Fokker-Planck equation [26]

∂P (φ, t)

∂t
=

∂2

∂φ2

[
H3
IP (φ, t)

8π2

]
+

∂

∂φ

[
P (φ, t)

3HI

dV (φ)

dφ

]
, (5)

for P (φ, t), the probability distribution function of observing the VEV equal to φ at time

t. [V (φ) is the potential for the scalar φ; in this case, our scalar is the Higgs boson.] The

time evolution of the average VEV of φ can then be computed through〈
φ2 (t)

〉
=

∫
dφ φ2P (φ, t) , (6)

with the initial condition P (φ, t = 0) = δ (φ). In our analysis, we make use of the Higgs

potential at one loop, with running couplings where the RG equations are calculated at two

loops, following [27]. We use the same potential, with thermal corrections, to evaluate the

post-inflationary relaxation of this vacuum expectation value, as in [14–16]. φ0 denotes the

vacuum expectation value at the end of inflation, which is the initial VEV for the Higgs

relaxation epoch.

This vacuum expectation value is produced by quantum fluctuations, and therefore it is

not constant in space, as was mentioned above. Perturbations are produced on all physical

spatial scales inside the horizon l <∼ H−1
I , where the Hubble parameter is evaluated when

the VEV begins to grow (that is, Nlast e-folds before the end of inflation). Therefore,

perturbations exists in all of the subhorizon modes which have physical momentum p =

k/a > HI . As the modes exit the horizon (p = k/a <∼ HI), these perturbations become

classical and are frozen with the amplitude

δφk ≡ ∆φ ≈
HI

2π
(7)

per unit interval in ln p/HI [28]. The isocurvature perturbations are approximately conserved

in the superhorizon regime because the Higgs field does not contribute significantly to the

energy density.

We define ks = a(Nlast)ps ∼ a(Nlast)HI , the comoving wavenumber corresponding to the

mode which leaves the horizon as the fluctuations in the Higgs field are first produced. The
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power spectrum of φ is then approximately

Pφ (k) ≈

0 for k < ks,(
HI

2π

)2
for k ≥ ks.

(8)

In principle, one can further determine the details of the power spectrum from the transition

from the Higgs field from an effectively massive field to an effectively massless field, which

depends on the specific form of the operators (3) which couple the Higgs to the inflaton,

generating the large effective mass during the early stages of inflation.

As discussed in Sec. II, these perturbations in the Higgs VEV φ generate isocurvature

perturbations in the baryon asymmetry YB. These perturbations have a spectrum

δYB
YB

∣∣∣∣
k

=
δ (φ2)k
〈φ2〉

≈ 2 ln1/2 (k/ks)

Nlast

θ (k − ks) , (9)

up to a large scale cutoff; see Appendix B. This makes use of the improved analytical

estimates in Ref. [18]; see the discussion in Appendix A. We note here that the CIB signal

will be dominated by k ≈ 1.4ks, as we will discuss in Section V. As the universe cools, this

induces a baryon energy density perturbation with the same spectrum

δB (k) ≡ δρB
ρB

∣∣∣∣
k

=
δYB
YB

∣∣∣∣
k

. (10)

Having determined the spectrum, we now consider observational constraints. For scales

k > 0.1 Mpc−1, measurements of the cosmic microwave background radiation (CMB) from

the Planck and WMAP collaborations constrain the baryonic isocurvature perturbation [25].

The measured upper bound on the completely uncorrelated isocurvature fraction is given by

βiso =
PSS(k∗p)

PSS(k∗p) + PRR(k∗p)
(11)

where PRR is the power spectrum of the adiabatic fluctuation, PSS is the power spectrum

of the isocurvature fluctuation, and k∗p is the pivot scale used by the Planck collaboration.

Planck reports bounds evaluated at three momentum scales for a variety of models (see

Table 15 of Ref. [29]). To constrain our model, we use the most conservative bound from

the CDI general model, making use of TT, TE, EE, low P, and WP data:

βiso(k∗p = 0.002 Mpc−1) <∼ 0.021,

βiso(k∗p = 0.050 Mpc−1) <∼ 0.034,

βiso(k∗p = 0.100 Mpc−1) <∼ 0.031. (12)

7



Since we are interested specifically in the baryonic isocurvature perturbation, we rescale the

power spectrum by a factor of (Ωb/ΩDM)2. Thus the requisite bound is:∣∣∣∣δYBYB
∣∣∣∣ <∼ ΩDM

Ωb

(βisoPRR)1/2, (13)

where P1/2
RR ≈ 2.2 × 10−9 [29]. This gives constraints of |δYB/YB| <∼ 3.4 × 10−5 at k∗p =

0.002 Mpc−1, 4.3 × 10−5 at k∗p = 0.050 Mpc−1, and 4.1 × 10−5 at k∗p = 0.100 Mpc−1.

However, these constraints may be evaded by taking ks > 0.100 Mpc−1, which corresponds

to producing isocurvature perturbations on scales smaller than those probed by Planck.

Observations of the primordial spectrum in the CMB data at these scales are limited by the

Silk (photon diffusion) damping.

At smaller scales, 0.2 Mpc−1 <∼ k <∼ 10 Mpc−1, the Lyman-α forest provides information

on the matter power spectrum, which strongly restricts isocurvature perturbations [30].

Again, we will evade this bound by taking ks >∼ 10 Mpc−1. We note that despite the large

comoving momentum, these isocurvature perturbations remain cosmologically relevant as

isocurvature perturbations are not affected by Silk damping [21].

Next, we connect ks to Nlast, the number of e-folds during which the Higgs VEV grows.

The results given below are exact in the limit that the curvature of the potential is negligible.

In our parameter space plots in section VI, we use similar reasoning with the exact calculation

of the initial Higgs VEV in a curved potential, using equation (6).

The mode that is exiting the horizon Nlast e-folds before the end of inflation (that is,

the mode that corresponds to ks) grows to a size of lEOI ' eNlastH−1
I at the end of inflation

(EOI). Subsequently during reheating, the scale factor a grows by a factor of

aRH
aEOI

=

(
ΛI

TRH

)4/3

, (14)

where ΛI is the energy scale of inflation and TRH ≈ (3/π3)
1/4
g
−1/4
∗ (TRH)

√
mplΓI is the

reheat temperature. After reheating, the entropy of the universe is conserved,

S = a3s = 2π2g∗s(T )a3T 3/45, (15)

which allows us to relate the current scale factor to the scale factor at the end of reheating,

anow

aRH
=
g

1/3
∗S (TRH)

g
1/3
∗S (Tnow)

TRH
Tnow

, (16)
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FIG. 1. The solid lines show ks as a function of Nlast, using equation (17), for various values

of the inflationary scale ΛI and reheat temperature TRH . The orange (red) region indicates the

constraints on ks from the CMB (Lyman-α forest) observations.

where Tnow = 2.73 K, the effective number of relativistic species is g∗S(TRH) = 106.75 for

T > 300 GeV, and g∗S(Tnow) = 43/11 for T = Tnow (in the Standard Model). Combining

these relations, the mode that exits the horizon Nlast e-folds before the end of inflation

corresponds to a perturbation mode with the comoving momentum

k ' 2πe−NlastHI

(
TRH
ΛI

)4/3
g

1/3
∗S (Tnow)

g
1/3
∗S (TRH)

Tnow

TRH
, (17)

where we have set the scale anow = 1, so that the comoving wavenumber coincides with the

physical wavenumber now; thus k = 2π/`now.

Therefore, the requirement that isocurvature perturbations are generated at scales ks ?

k∗ = 10 Mpc−1, which corresponds to a limit on Nlast of

Nlast > 48.2− ln

(
k∗

10 Mpc−1

)
+

2

3
ln

(
ΛI

1016 GeV

)
+

1

3
ln

(
TRH

1012 GeV

)
+

1

3
ln
(g∗S,now

3.91

)
− 1

3
ln
(g∗S,RH

106.75

)
+ ln

(
Tnow

2.73 K

)
, (18)

which is not very stringent. The allowed parameter space for baryonic isocurvature pertur-

bations is illustrated in Fig. 1. The restrictions on ks from the CMB and Lyman-α forest

discussed above can be converted into limits on Nlast through the use of (17); these are also

shown in Fig. 1.

We note that the Lyman-α forest constraints apply to the total contribution from both

adiabatic and isocurvature perturbations. We recall that adiabatic perturbations have R =
√
AS ∼= 4.7× 10−5 if one assumes a flat spectrum. Nlast ≈ 40 ∼ 50 corresponds to an initial
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FIG. 2. The variation of δB, 0(k = 1.4ks) in parameter space, with ks = 65 Mpc−1. In the green

region on the upper left, the Nlast given by equation (17) is large enough that the Higgs VEV

probes the minimum of the Higgs potential at large VEVs. (Details on the parameters used in the

calculation the potential can be found in [16].) In the red region on the lower right, ΓI > 3HI

so inflation doesn’t happen. As in Ref. [16, 18] we set the neutrino Yukawa coupling such that

right handed neutrino mass, inferred from the seesaw mechanism, is large enough that thermal

leptogenesis is insufficient to explain the observed baryon asymmetry; in the upper right hand

corner (light blue region), this would lead to a non-perturbative coupling. We see that there is a

slight variation in δB, 0 over the available parameter space.

baryonic density contrast of δB, 0 ≈ 0.02 ∼ 0.03 at k = 1.4ks, using equations (9) and (10).

This entails that the baryonic isocurvature perturbations generally dominate the adiabatic

perturbations in the range where both are present. Therefore, as Fig. 1 shows, it is indeed

necessary to impose that ks >∼ 10 Mpc−1.

In fact, we will see in section V that we best explain the CIB with ks ≈ 65 Mpc−1. We

note here that this corresponds to the perturbations beginning to grow around 46.5 e-folds

before the end of inflation with ΛI = 1016 GeV and TRH = 1012 GeV. From equations (9) and

(10), this corresponds to an initial baryonic density contrast of δB, 0 ≈ 0.025 at k = 1.4ks.

However, the second equality in equation (9), which was used with (10), holds in the limit

of a flat potential. Accounting for the curvature in the potential, using (6), decreases φ0,

and so consequently increases δYB/YB slightly. In Fig. 2, we have fixed ks = 65 Mpc−1 and
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used equation (17) to solve for the appropriate Nlast and φ0 at each point in parameter

space. We then calculated δB, 0 at k = 1.4ks at each point. (We recall that, as mentioned

above, this will be the scale most relevant to explaining the CIB excess.) As expected, δB, 0

is slightly enhanced as compared to the flat potential case; this becomes more pronounced

as ΛI decreases.1

To summarize the results of this section, the Higgs relaxation model generates baryonic

isocurvature perturbations with a spectrum given by Eq. (10). The single free parameter in

the spectrum, ks, can equivalently (for fixed ΛI and ΓI) be taken to be Nlast, the number of

e-folds before the end of inflation during which the Higgs VEV grows. (However, since Nlast

affects the VEV φ0, this then influences the final asymmetry produced by Higgs relaxation

leptogenesis.) By taking ks > 10 Mpc−1, or (approximately) equivalently, Nlast
<∼ 48, the

isocurvature perturbations evade all current observational bounds.

IV. EVOLUTION OF THE BARYONIC ISOCURVATURE PERTURBATIONS

In the previous sections, we explained how the Higgs relaxation model produces isocur-

vature perturbations, and we found the spectrum of these isocurvature perturbations. Next,

we consider the evolution of the isocurvature perturbations during the subsequent evolu-

tion of the universe. We note that due to the tight coupling between photons and baryons,

the amplitude of the isocurvature baryonic perturbations δB does not evolve before pho-

ton decoupling at z ≈ 1100. (In fact, this was implicitly used above when we imposed

constraints from the observations of the cosmic microwave background radiation and the

Lyman-α forest.)

To study the late-time spectrum of the baryonic isocurvature perturbation, we calculate

the evolution of the perturbations using the linearized Einstein equations and the linearized

equation from conservation of the energy-momentum tensor. We work in the conformal

Newtonian gauge, in which the scalar metric perturbation is parameterized as

ds2 = a2 (τ)
[
(1 + 2Φ) dτ 2 − (1− 2Φ) dx2

]
. (19)

1 As noted, in the green region at the top left, the Higgs VEV probes the global minimum at large VEV

values (see [20]). As this region is approached, the Higgs VEV explores the “hilltop” that divides the two

minima, where the potential becomes flat. Therefore, increasing ΛI leads to a larger increase in φ0, and

consequently, the denominator of δB grows at a faster rate. It grows faster than the numerator, which

scales as HI . This accounts for the decrease in δB in the top left of the figure.
11



In our analysis, we consider the following components: radiation (denoted by i = r), dark

matter (i = DM), and baryons (i = B). The equations of state are parameterized by

wr = 1/3 for radiation and wDM = wB = 0 for baryons and dark matter (that is, we

consider cold dark matter). We assume that dark matter does not support sound waves,

u2
s,DM = 0, and we make the tight coupling limit that baryons and photons share the same

velocity potential vB = vr ≡ vBr before decoupling. Therefore the effective speed of sound

squared for the baryon and radiation fluids is u2
s,Br = 1/3 (1 +RB) , where RB = 3ρB/4ρr.

However, we do not impose 4δB = 3δr, which is appropriate only for adiabatic modes.

Therefore, the complete system of equations describing the evolution of the perturbations

prior to recombination is [31]

k2Φ + 3HΦ′ + 3H2Φ = − a2

2M2
pl

∑
i

ρiδi, (20)

δ′DM − k2vDM = 3Φ′, (21)

δ′B − k2vBr = 3Φ′, (22)

δ′r −
4

3
k2vBr = 4Φ′, (23)

v′DM +HvDM = −Φ, (24)

v′Br +H RB

1 +RB

vBr +
3

4
u2
s,Brδr = −Φ, (25)

where H ≡ a′/a and a prime denotes the derivative with respect to the conformal time

defined via dτ = dt/a (t). The Hubble parameter in cosmic time, t, and in conformal

time, τ , are related by H(t) = H(τ)/a, and the Hubble parameter can be well described

by H = H0

√
Ωm/a3 + Ωr/a4 + ΩΛ with a = 1/(1 + z) after the universe enters radiation

domination. The density perturbation spectra δi generically have both isocurvature and

adiabatic contributions.

After recombination at z ≈ 1100, photons and baryons decouple and so vB and vr evolve

separately. The perturbation equations for baryons and radiation are then replaced by

δ′B − k2vB = 3Φ′, (26)

δ′r −
4

3
k2vr = 4Φ′, (27)

v′B +HvB = −Φ, (28)

v′r +
1

4
δr = −Φ. (29)
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For large scales k < ks, we assume the initial density perturbation spectra δi satisfy the

adiabatic conditions

δDM, 0 = δB, 0 =
3

4
δr, 0 = −3

2
Φ0 = R, (30)

with a scale invariant spectrum. The Planck 2015 data set gives AS = e3.08910−10 at k =

0.05 Mpc−1 [29], which corresponds to the initial amplitude R =
√
AS ∼= 4.7× 10−5.

For small scales k > ks, we include the baryonic isocurvature perturbations in addition to

the adiabatic perturbations. For the parameters of interest, the isocurvature contribution to

δB, 0 will generally dominate over the adiabatic contribution, and therefore δB, 0 (k) is given

by Eq. (10). For the other components, we take δDM, 0 = 3
4
δr, 0 = −3

2
Φ0 = R for k > kS,

since these have only the adiabatic contribution.

An example of the evolution of a single mode is shown in Fig. 3. We take ks = 65 Mpc−1,

and consider the mode at k = 1.4ks = 91 Mpc−1. The baryon density contrast given by

Eq. (10) is then 0.025. The evolution of the baryon, dark matter, and total matter per-

turbations are shown with solid lines. For completeness, we have also shown the evolution

without the isocurvature modes in dashed lines (without accounting for Silk damping). We

see that as expected the isocurvature perturbation does not evolve until decoupling; after-

wards, it grows. Prior to decoupling, it enhances perturbations in dark matter and total

matter.

In Fig. 4, we present the total matter power spectrum, which is given by

P (k, z) =
2π2

k3
Pm (k, z) =

2π2

k3
δ2
m (k, z) . (31)

By varying δB, 0, we have found that for δB, 0 ∼ 0.025, the total matter perturbation δm =

(ΩBδB + ΩDMδDM) /Ωm reaches the non-linear regime (δm >∼ 1) much earlier than it would if

only the adiabatic fluctuation were present. Thus, in the Higgs leptogenesis model, structure

formation begins earlier, which allows for earlier star formation. In the next section, we will

use this modified history of structure formation to explain the cosmic infrared radiation

excess.
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FIG. 3. The evolution of baryon (blue), dark matter (orange), and total matter (green) pertur-

bations at k = 1.4ks = 91 Mpc−1 with δB, 0 determined by: 1) (dashed lines) R = 4.7 × 10−5,

appropriate for a scenario with only primordial adiabatic perturbation, and 2) (solid lines) Includ-

ing isocurvature perturbations; following equation (10), δB = 0.025 for the k = 91 Mpc−1 mode if

ks = 65 Mpc−1. This scenario is appropriate to the Higgs relaxation scenario considered in this

work.

V. ISOCURVATURE PERTURBATIONS AND THE COSMIC INFRARED BACK-

GROUND OBSERVATIONS

In the above sections, we demonstrated that the Higgs relaxation leptogenesis scenario

generates baryonic isocurvature perturbations and studied their evolution in the early uni-

verse. Now, we proceed to connect the above results to the observed CIB radiation. The

isotropic flux (or absolute intensity) of the CIB is difficult to determine precisely due to the

large uncertainty associated with the removal of the foreground signal, galactic components,

and zodiacal light. Therefore, recent measurements concern the anisotropies (spatial fluctu-

ation) of the CIB [6]. From these measurements, one can infer the isotropic flux from the

power in the fluctuations of the CIB.

In section I, we mentioned the currently unexplained excess in observations of anisotropies

in the near-infrared cosmic radiation spectrum, δF2−5µm (5′) ' 0.09 nW m−2sr−1 at 5 arcmin

between 2 and 5 µm [7]. This relative fluctuation entails that the amplitude of the power

in the fluctuations is FCIB ≈ δFCIB/∆5′ ∼ 1 nW m−2sr−1; one is then led to consider what

sources could produce this radiation. One possibility is faint galaxies; such an explanation is

consistent with AKARI observations but not the Spitzer observations, due to the fact that
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FIG. 4. Total matter power spectra at z = 0, 10, and 20 for the cases that the primordial pertur-

bations are produced by 1) only inflaton (dashed line), and 2) inflaton plus relaxation leptogenesis

with ks = 65 Mpc−1 and Nlast = 46.5. Adiabatic perturbations to the right of the first dashed line

are affected by Silk damping, although isocurvature contributions are not. The power spectrum to

the left of the second dashed line are constrained by the Lyman-α constraints. The bump on the

right edge of the plot describes the contribution on the isocurvature perturbations.

Spitzer is able to resolve fainter point sources [8]. As discussed in Ref. [6, 7], one possible

source is early (population III) stars, at z ≈ 10. Such stars, if they exist, will contribute

significantly to the CIB and live only for a short cosmological time. In this case, the power

in the fluctuations is equivalent to the isotropic flux due to the early stars [8].

However, Ref. [7, 32, 33] shows that in the typical model of structure formation, with

only adiabatic perturbations, one requires either an abnormally large stellar formation effi-

ciency and/or an abnormally large radiation efficiency to produce the requisite amount of

CIB radiation. We now demonstrate that the presence of isocurvature perturbations alters

this conclusion. In our model, the isocurvature perturbations produced by Higgs relaxation

leptogenesis cause a larger percentage of the mass in the early universe to be in collapsed

halos which evolve non-linearly and can support early star formation. Therefore, the com-

parably large isotropic CIB flux (that is, the power in the fluctuations) can be produced

with a reasonable values for the stellar formation efficiency and radiation efficiency.

As the above discussion outlines, we are interested in the isotropic CIB flux due to early

stars. The contribution from the first stars forming inside collapsed halos can be estimated

by [7]

FFS '
c

4π
ερBc

2fHalof∗z
−1
eff = 9.1× 105εfHalof∗

(
ΩBh

2

0.0227

)(
10

zeff

)
nW m−2sr−1, (32)
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where fHalo is the mass-fraction of the universe inside halos, f∗ is the star formation efficiency,

ε is the radiation efficiency, and zeff is the effective redshift. One then finds that the halo

fraction at z = 10 is given by

fHalo = 0.16

(
0.007

ε

)(
10−3

f∗

)(
FFS
FCIB

)
. (33)

In order to have FFS = FCIB = 1 nW m−2 sr−1 (the value implied by the assumption that

early stars explain the observed CIB anisotropy) for reasonable values of the parameters

are ε ≈ 0.007 and f∗ <∼ 10−3, one must have fHalo
>∼ 0.16. (The value of ε comes from the

hydrogen burning phase of early stars, which are fully convective and radiate close to the

Eddington limit (see Ref. [11]); our preferred value of f∗ comes from the same reference.)

We fix ε and f∗ at their upper bounds and show that with isocurvature perturbations one

can have fHalo ≈ 0.16, which one cannot accomplish with only adiabatic perturbations.

To compute the fraction of matter in collapsed halos, we adopt the Press-Schechter for-

malism [34]. An overdense region which in the linear theory would have present size R has in

fact collapsed and formed structure by the time when the average density contrast δR (x, t)

exceeds δc ∼= 1.686, as calculated in the linearized theory defined by equations (25) above.

The average matter density contrast is computed by smoothing the spectrum

δR (x, t) =

∫
d3y δm (x + y, t)WR (y) , (34)

where a window function WR (y) is used to smooth the matter density so that one attains

an average; we use the top-hat function

WR (y) =
3

4πR3
θ (R− |y|) . (35)

which has the Fourier transform WR (k) = 3j1 (kR) /kR. Using this window function, the

mass contained in a sphere of radius R is approximately

M (R) =
4

3
πR3ρm, 0, (36)

where ρm, 0 is the present average matter density of the universe. The smoothed matter

density contrast δR (x, t) computed in this way is itself a Gaussian random field, whose

variance σR (t) is given by

σ2
R (t) ≡

〈
δ2
R (x, t)

〉
=

∫ ∞
0

dk

k
Pm (k, t) |WR (k)|2 , (37)
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FIG. 5. The integrand for σ2
M as a function of k/ks for various redshifts z. The dashed lines are for

the power spectrum with only adiabatic modes. The solid lines are for the power spectrum with

isocurvature perturbation turned on at ks = 65 Mpc−1. We see that the integrand is dominated by

k/ks ∼= 1.4 for the isocurvature case, neglecting the peak near zero which is present near for both

the scenario with and without the isocurvature contribution.

Using equation (36), one can solve for radius R in terms of M , the total mass contained

inside. Substituting this into σR(t) gives the variance σM(t) = σM(R)(t) as a function of

enclosed mass M .

The integrand of Eq. (37) is shown in Fig. 5, where we have fixed the radius to correspond

to a mass of 106M�. This figure shows that for multiple redshifts, the integrand is peaked

at k ∼= 1.4ks. This justifies the claim that our signal is dominated by the contribution in

this region, which was mentioned above and which motivated our choice of k/ks = 1.4 as a

reference point for characterizing δB.

Fig. 6 shows this σM(R) at various mass scales and redshifts. On both plots, the dashed

lines show σM(R) including only adiabatic perturbations, while the solid and dotted lines

includes the isocurvature perturbations generated by the Higgs relaxation mechanism, which

we emphasize only exist for k ≥ ks. The plot of the left shows the results for ks = 65 Mpc−1

(solid) and ks = 100 Mpc−1 (dotted); on the right, we show the results for ks = 30 Mpc−1.

As expected, we see that ks = 65 Mpc−1 leads to a larger deviation from the adiabatic-only

model than ks = 100 Mpc−1. (We have used the initial value of δB, 0 and R given in the

sections above.) On both plots, the black dash-dotted horizontal line corresponds to the

critical variance; above this, a significant portion of the halos of a particular mass evolve
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FIG. 6. The variance σM of the smoothed density contrast at various redshifts and mass scales.

Left: the dashed lines show the results with only adiabatic modes (R =
√
AS ∼= 4.7× 10−5), while

the solid (dotted) lines also includes isocurvature perturbations for k ≥ 65 Mpc−1 (100 Mpc−1),

with δB, 0 = 0.025 at k = 1.4ks. Right: The solid lines correspond to ks = 30 Mpc−1. The black

dash-dotted horizontal lines denotes the value σM = δc; structure formation occurs above this line.

non-linearly.

Focusing on the ks = 65 Mpc−1 solid lines (left), we see that halos of mass 105M� would

collapse around z = 20 while those of mass 106M� would collapse around z = 10 in the Higgs

relaxation model; this contrasts to the standard picture, in which such halos would form

later. At any given z, there are more halos with mass M <∼ 107M� in the Higgs relaxation

scenario than in the typical scenario which has only adiabatic perturbations. Because the

density contrast at mass scales M >∼ 107M� is unaffected, the observed large scale structure

is unchanged.

For the ks = 100 Mpc−1 (dotted) lines, the formation of small halos is still enhanced with

respect to the adiabatic-perturbations only scenario; however, these halos form later. We

focus on 106M� because such halos are near the lower bound of halos that can efficiently

support star formation through molecular hydrogen cooling [35–39]. Production of these

106M� halos is not significantly enhanced for ks = 100 Mpc−1, which means that we require

ks <∼ 100 Mpc−1 to explain the CIB. The plot on the right shows the situation with ks =

30 Mpc−1; we see that halos of mass 106M� form earlier, around z = 20. We see that

increasing ks would bring us into conflict with optical depth measurements. Therefore, to

explain the CIB excess, we require ks ≈ 65 Mpc−1.

We now show that we make sufficiently many collapsed halos. Using the variance σM in
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the matter density contrast, we calculate the probability that a region with mass M (R) has

an average density contrast δR exceeding δc at redshift z [34], which is

fHalo (M, z) = P
(
δR(M) > δc

)
=

1

2

[
1− erf

(
δc√

2σM (z)

)]
. (38)

This is equivalent to the fraction of mass which is collapsed halos of mass M , as smaller

structures form earlier.

The results of this calculation is presented in Fig. 7 for M = 106M� (solid lines) and

M = 108M� (dashed lines), first with only adiabatic modes (red lines) and then including

the isocurvature modes (blue, yellow, and green lines). The Higgs relaxation scenario, with

the isocurvature modes, is more efficient in halo formation; however, as expected from Fig. 6,

the gain in efficiency is more pronounced for smaller halos. The vertical dashed line denotes

z = 10; early stars at this time contribute significantly to the CIB. Therefore, we desire that

halos large enough to support star formation (>∼ 106M�) have formed by this redshift.

As explained above, we will have sufficient stars to produce the inferred CIB excess for

reasonable values of the radiation efficiency ε and star formation efficiency f∗ if fhalo ≈ 0.16

for halos large enough to support star formation. Therefore, we have included a horizontal

black dot-dashed line at fhalo = 0.16. In the scenario calculated with the Higgs relaxation

isocurvature perturbations, the 106M� line indeed passes near fhalo = 0.16 at z = 10 if we

take ks = 65 Mpc−1 (yellow). As expected from the above discussion, ks = 30 Mpc−1 (blue)

results in a larger percentage of the mass in collapsed halos and ks = 100 Mpc−1 (green) a

smaller percentage. In the scenario which includes only adiabatic perturbations, the fHalo

line for 106M� is significantly suppressed; this is the source of the claim that unreasonably

large radiation efficiency or star formation efficiency is required in the standard picture. We

see that for ks ≈ 65 Mpc−1 a sufficiently large percentage of the mass is in halos ∼ 106M�

to account for the inferred contribution from early stars to the isotropic CIB flux.

Finally, we note that the isotropic CIB flux from early stars is inferred from the anisotropic

flux measured at scales of 5 arcminutes, corresponding to k ∼ 0.45 Mpc−1, which is much

smaller than ks = 65 Mpc−1. Therefore, only adiabatic modes contribute at this scale;

the density contrast is shown in Fig. 8. We see that at k ∼ 0.45 Mpc−1 the density con-

trast is ∼ 10%, consistent with the calculations in [7] and for similar reasons, consistent

with the observational anisotropic data. (Note that although there is a difference between

two-dimensional and three-dimensional power spectra, the difference should be order 1.)
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FIG. 7. fHalo (M, z), the mass fraction of the universe inside the collapsed halos of mass M ,

evaluated for M = 106M� (solid lines) and 108M� (dashed lines), as a function of redshift z.

Red lines represent the scenario with only adiabatic perturbations, while blue, yellow, and green

lines represent the scenario which includes isocurvature perturbations for k ≥ ks = 30, 65, and

100 Mpc−1, respectively. The vertical dotted black line emphasizes z = 10; early stars at this

redshift can potential explain the CIB excess. The horizontal dot-dashed black line indicated

fHalo = 0.16; as discussed in the text, a model explains the CIB observations for reasonable ε and

f∗ values only if fHalo takes this value for star-forming halos. (R and δB, 0 take the same values as

in Fig. 6.)

Therefore, the isocurvature perturbations considered here explain the inferred contribution

of the early stars to the isotropic CIB excess without overproducing an anisotropic contri-

bution.

To summarize, in our model, structure is generated by adiabatic perturbations at the

large scale and the isocurvature perturbations at smaller scales. The isocurvature perturba-

tions are responsible for causing more halos (106M�) to evolve non-linearly, and hence, we

make a sufficient number of stars to explain the isotropic CIB radiation inferred from the

anisotropic measurements without a large stellar formation efficiency. However, these halos

are distributed in accordance with the larger-scale adiabatic perturbations, and the scale of

the CIB anisotropy is accounted for by this larger-scale structure. This provides an elegant

solution as to the source of the observed CIB radiation fluctuations.

We also remark that in general, the early creation of population III stars is constrained

by the optical depth measurements of the CMB. We note that recent analyses of the Planck

2015 optical depth data in fact prefers early star formation, particularly if one includes self-
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adiabatic perturbations contribute. The lines show the baryonic, dark matter, and total matter

perturbations. k ∼ 0.45 Mpc−1 corresponds to the 5 arcminute scale probed observationally.

regulated population III stars [40]. If star formation occurred much earlier than z = 10,

as for ks <∼ 30 Mpc−1, then this scenario would conflict with optical depth measurements.

However, as noted, for ks = 65 Mpc−1 the star formation occurs around z = 10.

VI. AVAILABLE PARAMETER SPACE

In this section, we present plots of the parameter space in which Higgs relaxation lep-

togenesis can both explain the observed matter-antimatter asymmetry of the universe and

the observations of the cosmic infrared background radiation. We note that Higgs relax-

ation leptogenesis is only one potential source of baryonic isocurvature perturbations; other

sources include curvaton models (proposed in [41–43]; see also [44–47]) and warm inflation

(e.g., [48, 49]). In general, any model which produces baryonic isocurvature perturbations

similar to those discussed above can account for the observed CIB excess.

In these plots, we choose Nlast, ΛI , and ΓI such that ks = 65 Mpc−1; then we determine

the initial vacuum expectation value of the Higgs field using equation (6), which includes the

curvature of the Higgs potential. As discussed in section III, and shown explicitly in Fig. 2,

this leads to δB(k/ks = 1.4) ≈ 0.025 throughout parameter space, sufficient to explain the

CIB observations. (Regions where the requisite initial VEV probes the second vacuum in the
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FIG. 9. The lepton-number-to-entropy ratio, Y , from Higgs relaxation leptogenesis, with Nlast

set in order to explain the CIB excess and with the effective operator (1) generator by thermal

loops, so that Λn ∼ T . In the upper left corner, the Nlast required to explain the CIB excess is

such that the Higgs VEV probes the second minimum in the Higgs potential. In the lower right,

ΓI > 3HI and inflation is not successful. In the gray region, washout is sufficiently large to cause

the lepton asymmetry to oscillate around zero at the end of our numerical analysis; the final value

will be quite small. As in Ref. [16, 18], the neutrino Yukawa coupling is chosen to suppress thermal

leptogenesis; in the upper right of the plot, this condition leads into the non-perturbative regime.

We see that there is no parameter space in which a sufficiently large asymmetry is generated.

Higgs potential are denoted on the plots.) We note that we include one-loop corrections to

the Higgs potential and two-loop corrections to the running couplings; for details regarding

the potential (including the specific values for the Higgs mass and top quark mass used),

please see the Higgs relaxation leptogenesis analysis in [16].

As discussed in [14–16], there are several different mechanisms of generating the O6

operator; one can use thermal loops, leading the scale Λn ∼ T , or one can introduce heavy

fermions, leading to a scale Λn ∼Mn, a constant. The parameter space for these two options

was explored extensively in Ref. [16], with the result that when the initial Higgs vacuum

expectation value was set by quantum fluctuations, the largest lepton-asymmetry-to-entropy

ratio that was possible with Λn ∼ T was Y ∼ 10−12 (Fig. 12 of Ref. [16]), while for Λn ∼Mn,

parameter space was available, but in the regime in which the use of effective field theory
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to describe the O6 operator was questionable.

We mentioned above that in Ref. [14, 16, 18], we took Nlast = 8 out of an abundance

of caution to avoid baryonic isocurvature constraints, but the actual limit is much weaker.

Here, Nlast is set by (18), which is generally larger (Nlast ∼ 40 typically). As explained in

Appendix A, the final asymmetry is proportional to φ2
0, which grows as Nlast in the limit of

a flat potential. (However, in our numerical analysis, we use equation (6) which accounts

for the curvature of the potential.) Therefore, we expect the asymmetry to be enhanced as

compared to our previous analysis, although not significantly.

This is illustrated for the Λn = T case in Fig. 9. This figure shows contours of the

lepton asymmetry to entropy ratio Y ; regions with Y >∼ 10−9 can account for the observed

baryonic matter-antimatter asymmetry of the universe. (We note that the original lepton

asymmetry is redistributed between leptons and baryons by sphalerons.) As compared to

Fig. 12 of Ref. [16], the asymmetry is enhanced by about a little less than an order of

magnitude; however, this is not sufficient to ensure a region of parameter space in which

both a sufficiently large asymmetry is generated and the CIB excess is explained.

Therefore, we turn our attention to Fig. 10, which instead has Λn = Mn, a constant. We

see that a sufficiently large asymmetry is generated for a wide range of inflaton couplings

ΓI provided that the scale Mn is small enough; the upper bound on Mn becomes stronger

as the inflation scale ΛI decreases. Decreasing ΛI decreases the asymmetry, if Mn and ΓI

are held constant.

The red and gray lines illustrate where Mn, the scale in the O(6) effective operator,

becomes less than φ0 and Tmax respectively. Below these lines, the use of effective field theory

for O(6) is somewhat questionable. This is not surprising as the same remark applied to the

parameter space plots presented in [16, 18]. As discussed in [16], although the effective field

theory description is questionable, we use it as an approximation as what would be found if

an exact calculation in some UV-complete theory were done. It was also shown in Ref. [18]

that this can be avoided in models with an extended scalar sector.

Subject to this caveat regarding the effective theory, we conclude that Higgs relaxation

leptogenesis can successfully generate the observed matter-antimatter asymmetry while also

generating isocurvature perturbations which enhance early star formation, explaining the

observed CIB excess. Thus, Higgs relaxation leptogenesis is a promising source for the

desired baryonic isocurvature perturbations.
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FIG. 10. The lepton-number-to-entropy ratio, Y , from Higgs relaxation leptogenesis, with Nlast

set in order to explain the CIB observations and with the effective operator (1) generator by new

massive particles, so that Λn ∼Mn. For these plots, ΛI = 5× 1016 GeV (left) and ΛI = 1015 GeV

(right). As in Ref. [16, 18], the neutrino Yukawa coupling is chosen to suppress thermal leptogenesis;

for sufficiently large ΓI , this condition leads into the non-perturbative regime. We see that as

sufficiently large asymmetry is generated, but in the regime in which the use of effective field

theory with the operator (1) is questionable.

VII. CONCLUSION

In this work, we have demonstrated that baryonic isocurvature perturbations at very

small scales can cause halos of mass 106M� to collapse earlier than they would in the typical

model of structure formation, which includes only adiabatic perturbations from inflation.

Since these halos can support the formation of population III stars, this leads to enhanced

star formation in the early universe. Therefore, the power in the fluctuations of the cosmic

infrared background radiation measured by the Spitzer and AKARI space telescopes can

be explained without invoking unreasonably large stellar formation efficiency or radiation

efficiency.

As a source for these perturbations, we have used the Higgs relaxation leptogenesis model,

in which the matter-antimatter asymmetry is produced via lepton-number-violating inter-

actions in a plasma influenced by a time-dependent chemical potential produced by the
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relaxing Higgs vacuum expectation value. If the initial vacuum expectation value of the

Higgs field is set by quantum fluctuations, it will vary in different Hubble volumes, giving

rise to slightly different baryon asymmetries. These are the desired isocurvature perturba-

tions. The scale of these perturbations is set by number of e-folds the Higgs VEV grows

through; we determined that we can explain the CIB observations if isocurvature perturba-

tions exist for k >∼ 65 Mpc−1. Finally, we illustrated the parameter space in which the Higgs

relaxation model gives both successful leptogenesis and explains the CIB observations.
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Appendix A: Relationship Between Lepton Number Density And Initial Higgs VEV

Within the Higgs relaxation leptogenesis paradigm, the generation of the asymmetry can

occur through several mechanisms, even when the lepton-number-violating operator appears

in the neutrino sector due to heavy right-handed Majorana states. The asymmetry can be

generated through particle production from the condensate as described by the Bogoliubov

transformations [15], or via lepton-number-violating scatterings occurring in the plasma,

e.g., [14, 16]. In this work, we are interested in the latter scenario, which requires a rapid

production of plasma, perhaps even via some preheating mechanism. This in turn entails

that the thermal corrections to the Higgs potential, ∼ T 2φ2, tend to be large.

In this case, the Higgs VEV relaxes rather rapidly, and throughout all of the parameter

space shown in Figures 9 and 10, the relaxation time scale is faster than the reheat time

scale, determined by the decay rate of the inflaton. This raises the concern that relaxation

may proceed faster than the thermalization of the plasma, and therefore, that the finite

temperature corrections to the Higgs potential are unreliable during relaxation.
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According to Ref. [50], the thermalization time scale is

tth ≈ α−16/5 m
4/5
I

M
3/5
Pl Γ

6/5
I

, (A1)

where mI is the mass of the inflaton field, which is thus far undetermined in the Higgs

relaxation scenario. We note that for successful reheating, the inflaton must have available

decay channels, despite the relatively large Higgs VEV φ0. However, even at values mI ∼

10−5φ0 the inflaton is able to efficiently decay into electrons. We have verified that in this

limit, the thermalization time scale is faster than the relaxation time scale (using α ≈ 1/40

for the coupling, which accounts for its running at high scales). Thus, it is consistent to

consider the regime in which the relaxation time scale is less than the reheat time scale,

trlx < tRH , and also that the Higgs potential during relaxation is dominated by the T 2φ2

thermal correction.2

Therefore, we here consider only the case that the effective potential of the scalar field is

dominated by the thermal mass term

V (φ, T ) =
1

2
α2
TT

2φ2. (A2)

For the Standard Model Higgs field, the coefficient is αT ≈
√(

λ+ 9
4
g2 + 3

4
g′2 + 3h2

)
/12 ≈

0.33 at the energy scale µ ≈ 1013 GeV. During the epoch of coherent oscillations of the

inflaton, the energy density of the radiation as a function of time can be described by

ρr (t) =
m2
plΓI

10π (t+ tosc)

[
1−

(
tosc

t+ tosc

)5/3
]
, (A3)

where tosc = 2
3

√
3

8π
mpl/Λ

2
I and ΓI is the decay rate of the inflaton. At all times we use an

effective temperature for the plasma given by ρr = π2g∗T
4/30; as discussed, this is valid for

t > tth.

For tosc < t < tRH , we approximate the temperature of the plasma by

T (t) ' TRH

(
tRH
t

)1/4

, (A4)

2 We note that for φ0 � mI , the Higgs bosons that participate in the scattering h0ν ↔ h0ν̄ are produced

via the thermalization of the plasma. We also emphasize that we ensure that throughout the relaxation

period, the energy density in the inflaton and produced radiation is greater than the energy density in

the Higgs condensate.
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where the reheat temperature is TRH ≈ (3/π3)
1/4
g
−1/4
∗S (TRH)

√
mplΓI and tRH = 1/ΓI is the

time when reheating is complete. For times between tosc and tRH , the equation of motion

for the scalar field is then

φ̈ (t) +
2

t
φ̇ (t) + α2

T

T 2
RH

√
tRH√
t

φ (t) = 0 (A5)

if the thermal corrections dominate the effective potential, and we have taken H (t) ≈ 2/3t

since during the epoch in which the inflaton undergoes coherent oscillation the universe

evolves as if it were matter dominated. We can rescale φ (t = xtRH) = φ0y (x) and t = xtRH

to rewrite Eq. (A5) as

y′′ (x) +
2

x
y′ (x) +

α2
Tβ

2

√
x
y (x) = 0, (A6)

where β = TRHtRH = 6.06× 104
(

108GeV
ΓI

)1/2

. The independent solutions for Eq. (A6) are

y1 (x) =

(
3

2

)2/3

Γ

(
5

3

)
J2/3

(
4αTβ

3
x3/4

)
1

(αTβ)2/3√x
, (A7)

y2 (x) =

(
3

2

)2/3

Γ

(
1

3

)
J−2/3

(
4αTβ

3
x3/4

)
1

(αTβ)2/3√x
, (A8)

where Jn (z) is the Bessel function of the first kind. Since y2 (0) diverges, and y1 (0) = 1

and y′1 (0) = 0, we should take only y1 as the physical solution, subject to the boundary

condition that φ(t = 0) = φ0 (where we shift our zero of time by tosc). Both the analytical

solution given by Eq. (A7) with this boundary condition and the actual numerical solution

are shown in Fig. 11.

As discussed in [16], one must be concerned with washout due to the subsequent oscilla-

tions of the Higgs VEV. This is avoided when the scattering processes are not too efficient

in the early universe (which gives the result that a large chemical potential is needed to

generate the asymmetry). Washout can be avoided either by having these interactions turn

off rapidly, or by considering parameters such that there is significant damping of the Higgs

oscillations, such as those in Fig. 11. Regardless of the balance of factors, the end of the

asymmetry production, trlx, occurs around the time when the Higgs VEV passes zero. This

can be approximated analytically by noting that the Bessel function with n = 2/3 has a

first zero at z0 = 3.376. The relaxation time of the scalar field can then be approximated

using the first crossing at

z0 =
4αTβ

3
x

3/4
rlx , (A9)
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FIG. 11. Higgs evolution with ΛI = 1.5× 1016 GeV, ΓI = 108 GeV, and φ0 = 6× 1013 GeV. First

crossing time are 6.28× 10−14 GeV−1 (numerical) and 6.39× 10−14 GeV−1 (analytical approxima-

tion).

which gives

trlx = tRHxrlx ≈ tRH

(
3z0

4αTTRHtRH

)4/3

. (A10)

Note that since Eq. (A5) is linear in φ, the relaxation time is independent of the initial φ0.

Hence fluctuations in φ0 does not affect the relaxation time, in the regime considered here:

where the potential of the scalar field is dominated by the thermal mass and trlx < tRH . In

fact, as long as the potential is dominated by the thermal mass term (quadratic in φ), the

relaxation time is always independent of φ0.

The final lepton-to-entropy ratio can be estimated by

Y ≈ 45

2π2g∗S

2φ2
0

π2Λ2
n

T 2
rlxtrlxΓ2

I

T 3
R

min

[
1,

2

π2
σRT

3
rlxtrlx

]
exp

(
−8 +

√
15

π2

σRT
3
RH

ΓI

)
, (A11)

which can be found in [18] and improves on the estimates in [14, 16] by O(1) factors. In

this expression, σR is the thermally averaged cross section for the lepton-number-violating

interaction, h0ν̄ ↔ h0ν, and a thermal distribution has been assumed for participating

particles. Using the above expressions, we have

Y ≈ 90σR
π6g∗S

(
φ0

Λn

)2
3z0TRH
4αT tRH

exp

(
−8 +

√
15

π2
σRT

3
RHtRH

)
. (A12)

Since TRH and tRH are independent of φ0, Eq. (A12) entails that Y ∝ φ2
0. Note that since

trlx and therefore Trlx are independent of φ0, this is true whether the scale Λn in the O(6)

operator (1) is a constant or whether it is the temperature of the plasma.
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Appendix B: Power Spectrum of the Lepton Asymmetry

In the case that a scalar field φ (x) has a non-zero homogeneous part, 〈φ (x)〉 6= 0, the

fluctuation in any quantity that scales as X ∝ φ2 is simply δX ∝ 2 |〈φ (x)〉| δφ for small δφ,

which gives
δX

〈X〉
≈ 2

δφ

|〈φ (x)〉|
. (B1)

However, this is not applicable to the baryonic asymmetry in the relaxation leptogenesis

model because the homogeneous part of φ is zero, 〈φ (x)〉 = 0, due to the symmetry of the

potential. We note that it is φ0 ≡
√
〈φ2 (x)〉 which is nonzero, and as we have explained

in the Appendix A, the lepton asymmetry depends on the initial value of φ via Y ∝ φ2
0.

In this appendix, we now proceed to calculate the primordial power spectrum of the lepton

asymmetry taking into account the fact that it is
√
〈φ2 (x)〉, not 〈φ(x)〉, which is nonzero.

In the following analysis, we adopt the following conventions for the Fourier transform:

φ (x) =

∫
d3k

(2π)3 e
i~k·~xφ~k, (B2)

φ~k =

∫
d3xe−i

~k·~xφ (x) . (B3)

The power spectrum of φ, Pφ (k), is defined through the two-point correlation function of

φ~k 〈
φ~kφ~k′

〉
= (2π)3 δ3

(
~k + ~k′

) 2π2

k3
Pφ (k) . (B4)

As we mentioned in Eq. (8), we approximate the power spectrum of φ by

Pφ (k) =

(
HI

2π

)2

θ (k − ks) θ
(
kse

Nlast − k
)
. (B5)

We remind the reader that ks is the comoving scale which leaves the horizon when the Higgs

VEV begins growing, Nlast e-folds before the end of inflation. Our results are insensitive

to very large values of k; however, for completeness, we have included a high-scale cutoff

imposed by the fact that φ grows until the end of inflation. The comoving scale k that

leaves the scale at the end of inflation is the highest scale on which isocurvature modes are

produced; this scale is kse
Nlast . Again, though, such high k values are not relevant to our

results, which means that we are insensitive to the end of inflation.

We now look at the fluctuation of f (x) ≡ φ2 (x) with respect to its expectation value,

δf (x) = φ2 (x)−
〈
φ2 (x)

〉
=

∫
d3k

(2π)3 e
i~k·~xf~k. (B6)
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The power spectrum of δf (x) can be computed from the two-point function of the Fourier

transform of δf 〈
f~kf~k′

〉
= (2π)3 δ3

(
~k + ~k′

) 2π2

k3
Pδf (k) , (B7)

which is 〈
f~kf~k′

〉
=

∫
d3xd3ye−i

~k·~x−i~k′·~y 〈δf (x) δf (y)〉 (B8)

=

∫
d3xd3ye−i

~k·~x−i~k′·~y [〈φ2 (x)φ2 (y)
〉
−
〈
φ2 (x)

〉 〈
φ2 (y)

〉]
(B9)

=

∫
d3xd3ye−i

~k·~x−i~k′·~y
∫
d3k1d

3k2d
3k3d

3k4

(2π)12 ei(
~k1+~k2)·~xei(

~k3+~k4)·~y

×
(〈
φ~k1φ~k2φ~k3φ~k4

〉
−
〈
φ~k1φ~k2

〉 〈
φ~k3φ~k4

〉)
. (B10)

Using Wick’s theorem, one can express the 4-point function in terms of 2-point functions as〈
φ~k1φ~k2φ~k3φ~k4

〉
=
〈
φ~k1φ~k2

〉 〈
φ~k3φ~k4

〉
+
〈
φ~k1φ~k3

〉 〈
φ~k2φ~k4

〉
+
〈
φ~k1φ~k4

〉 〈
φ~k2φ~k3

〉
. (B11)

Integrating over ~x and ~y, and making use of Eq. (B4), we have〈
f~kf~k′

〉
= 2

∫
d3k1d

3k2d
3k3d

3k4δ
3
(
~k − ~k1 − ~k2

)
δ3
(
~k′ − ~k3 − ~k4

)
× δ3

(
~k1 + ~k3

)
δ3
(
~k2 + ~k4

) 2π2

k3
1

2π2

k3
2

Pφ (k1)Pφ (k2) (B12)

= 2

∫
d3k1d

3k2δ
3
(
~k − ~k1 − ~k2

)
δ3
(
~k′ + ~k1 + ~k2

) 4π4

k3
1k

3
2

Pφ (k1)Pφ (k2) . (B13)

= 2δ3
(
~k + ~k′

)∫
d3k1

4π4

k3
1

∣∣∣~k1 − ~k
∣∣∣3Pφ (k1)Pφ

(∣∣∣~k1 − ~k
∣∣∣) . (B14)

Thus, the power spectrum of δf is

Pδf (k) =
k3

2π

∫
d3k1

1

k3
1

∣∣∣~k1 − ~k
∣∣∣3Pφ (k1)Pφ

(∣∣∣~k1 − ~k
∣∣∣) . (B15)

For the power spectrum of φ given by Eq. (B5), this gives

Pδf (k) =
k3

2π

(
HI

2π

)4 ∫
d3k1

1

k3
1

∣∣∣~k1 − ~k
∣∣∣3 θ (k1 − ks) θ

(
kse

Nlast − k1

)
θ
(∣∣∣~k1 − ~k

∣∣∣− ks) θ (kseNlast −
∣∣∣~k1 − ~k

∣∣∣) . (B16)

For k � ks, the power spectrum is suppressed as

Pδf (k) ≈ k3

2π

(
HI

2π

)4 ∫ ∞
ks

4πdk1

k4
1

=
2

3

(
HI

2π

)4(
k

ks

)3

. (B17)
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FIG. 12. Power spectrum of the fluctuation of f = φ2 with respect to its expectation value,〈
φ2
〉
. The yellow solid line denotes the numerical integration result of Eq. (B16). The blue dashed

curve shows the approximation (B19) for k > ks. The green dash-dotted line shows the (k/ks)
3

suppression as described by Eq. (B17), for k < ks.

For ks < k < kse
Nlast , integral is dominated by ~k1 ∼ ~ks and ~k1 ∼ ~k − ~ks, so one can

approximate (see also Appendix A of [51])

Pδf (k) ≈ k3

2π

(
HI

2π

)4

2

∫ k

ks

4πk2
1dk1

k3
1k

3
(B18)

= 4

(
HI

2π

)4

ln

(
k

ks

)
. (B19)

The power spectrum reaches a maximum ∼ 4Nlast (HI/2π)4 before being suppressed severely

beyond k = kse
Nlast . However, as mentioned, this large scale cutoff does not affect our CIB

signal, which is dominated by k ≈ 1.4ks. The behavior of Eqs. (B16), (B17), and (B19) are

shown in Figs. 12 and 13.

Since the fluctuation of δf is suppressed for k < ks, we take

Pδf (k) ≈ 4

(
HI

2π

)4

ln

(
k

ks

)
θ (k − ks) (B20)

for k � kse
Nlast . The average fluctuation of f per ln k interval is then given by δfk =√

Pδf (k). Therefore, the spectrum of the fluctuation of YB is

δYB
YB

∣∣∣∣
k

=
δfk
〈f〉
≈ 2 ln1/2 (k/ks)

Nlast

θ (k − ks) , (B21)
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FIG. 13. Same plot as Fig. 12 with Nlast = 5 as an example; this enables us to see the large

scale cutoff. The yellow solid line denotes the numerical result. The blue dashed curve shows

the approximation (B19). The deviation between them appears at the scale k ∼ kse
Nlast . The

power spectrum reaches an upper limit around 4Nlast (HI/2π)4. Since our calculation of the CIB

is dominated by k ≈ 1.4ks, the large scale cutoff is irrelevant to our signal.
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