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By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an
Israel–Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made
of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an
additional continuity equation for the axial charge, as well as the leading-order quantum correc-
tions due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce
a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly
nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same
leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral
kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hy-
drodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion
relations of chiral vortical waves are analyzed.

I. INTRODUCTION

The concept of spin of elementary particles has been known for almost a century now. It has vast practical
applications in science and technology. For massive particles, the spin is defined as the intrinsic angular momentum of
the particle in its rest frame. For massless particles, such a frame is absent, and the spin can be defined indirectly via
the particle’s helicity as the spin projection on the particle’s momentum. In the case of massless fermions, one can also
use the concept of chirality instead of helicity. In fact, chirality and helicity are same for particles (positive-energy
states) and opposite of each other for antiparticles (negative-energy states). In a classical theory, the chirality of
massless fermions is a conserved charge (quantum number). However, the chiral charge conservation is anomalous
[1, 2] and, thus, cannot be enforced in a quantum theory.
In recent years, there was a surge of interest in chiral relativistic plasmas, in which chirality and/or chiral structure

play a fundamental role. Theoretical studies of such plasmas revealed a number of unusual phenomena, including the
chiral magnetic [3], chiral separation [4] and chiral vortical [5–7] effects among others. Their applications range from
a possible generation of primordial magnetic fields in cosmology [8–11] to observable correlations of charged particle
created in heavy-ion collisions [12–15], to unusual transport properties of Dirac/Weyl materials in condensed matter
physics [16]. For recent reviews, see Refs. [17–21].
In addition to the first-principles quantum-field theoretical methods in studies of chiral relativistic plasmas, several

quasiclassical approaches were proposed as well. They include the chiral kinetic theory [22–26] and chiral hydro-
dynamics [27–29]. In particular, in the kinetic theory, which has an intermediate status between the microscopic
approach and hydrodynamics, a chiral plasma is described in terms of a one-particle distribution function f(x, p)
in the phase-space spanned by spatial coordinates and momenta. The fact that such a description may be possible
for a plasma of massless fermions is interesting by itself. It is even more amazing, however, that the corresponding
framework reproduces exactly the quantum chiral anomaly.
The chiral anomaly is also taken into account in chiral hydrodynamics [27–29], which describes local properties of

plasma in terms of its conserved charge densities and the energy-momentum tensor. Among the three approaches
discussed above, hydrodynamics is the least detailed one. Also, its range of validity is limited to the states of matter
in the vicinity of equilibrium. Often, however, this is the most efficient and practical framework for the description
of physical properties of matter in the long-wavelength limit.
One of the most difficult tasks in a hydrodynamic description is the inclusion of dissipative effects. This is a

particularly sensitive issue in the case of relativistic hydrodynamics, where a näıve use of the gradient expansion is
in conflict with the causality of the theory [30–32]. The problem can be resolved by inclusion of higher moments
of the distribution function [33, 34] beyond the basic hydrodynamic variables (e.g., the density of matter, energy
density, and fluid velocity) [35]. The second-order theory by Israel and Stewart [36, 37], which employs additional
purely damped degrees of freedom, solves the acausality problem and is widely used in the analysis of relativistic
hydrodynamic systems. In principle, the dissipative form of hydrodynamics for chiral plasma can be derived from
the chiral kinetic theory. Several generic algorithms for building such a theory are well known [38]. They utilize
the definitions of conserved charges in the kinetic theory together with the gradient expansion for the distribution
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function in order to derive a consistent set of equations for hydrodynamic quantities. In order to obtain a closed set of
equations, however, certain approximations are usually required. For example, one can use the moment expansion [39]
or the Chapman-Enskog method [40] and truncate the expansion at a given finite number of moments and gradients.
In this paper, we will derive a closed set of dissipative hydrodynamic equations for a relativistic plasma by using

the Chapman-Enskog method and following a truncation method similar to that in Refs. [41–44], but paying a special
attention to the effects due to chiral asymmetry and fluid vorticity.1 In this approach, instead of the 14-moment
approximation of the original Israel–Stewart theory, an iterative solution of the Boltzmann equation is employed in
order to derive the dissipative evolution equations. In particular, one of the novel features of our analysis will be the
inclusion of the effects associated with a fluid vorticity in a chiral plasma.
The paper is organized as follows. The key details of the chiral kinetic theory in the relaxation-time approximation

are presented in Sec. II. The dissipative hydrodynamic equations are derived in Sec. III. In Sec. IV, we discuss several
types of solutions in the form of attenuated propagating waves that involve the oscillations of chirality. The summary
of the main results and general conclusions are given in Sec. V. Some technical details and derivations are presented
in Appendix A. In this paper we use units in which the speed of light is c = 1.

II. CHIRAL KINETIC THEORY FOR PLASMA WITH NON-UNIFORM FLOW

The starting point in our analysis is the chiral kinetic theory [22–26] in the relaxation-time approximation. The
governing equations of such a theory are generalized Boltzmann equations for the distribution functions of chiral
(Weyl) fermions. The corresponding particles can be of the left-hand (λ = −1) or right-hand chirality (λ = +1).
Also, in view of the relativistic nature of the system, the semi-classical framework at hand will not be complete
without introducing both particles (χ = +1) and antiparticles (χ = −1) as independent species. In general, therefore,
the chiral kinetic theory has four different distribution functions for the description of all four species of particles,
fλ,χ(x, p), where λ = ±1 is the chirality and χ = ±1 is the sign of energy. In order to simplify the notation, we will
suppress the indices λ and χ in most formulas below.
As already stated, we will use the chiral kinetic theory with a relaxation-time collision term as a starting point

in the derivation of the second-order dissipative chiral hydrodynamics. The relativistic form of the relaxation-time
approximation was developed in Ref. [46]. However, it should be noted that the chiral kinetic theory in the relaxation-
time approximation, while providing a great toy model, appears to be in conflict with the Lorentz covariance of the
theory. In fact, it is argued in Ref. [47] that a collision term consistent with the Lorentz covariance should necessarily
be nonlocal. For the purposes of this study, however, we will ignore this deficiency of the relaxation-time approximation
in order to explore the structure of the theory in the simplest possible framework.
For the purposes of this study, we require that the chiral kinetic equation be valid up to the linear order in ~ (or,

equivalently, in spin). While such a form was proposed in Ref. [47], it has to be recast in a format that allows one to
describe a plasma with a spatially inhomogeneous flow velocity. By implementing the relaxation-time approximation
as in Ref. [46], we write the kinetic equation in the following form:

pµ∂µf + (∂µS
µν)∂νf = −p · u

τ
(f − feq), (1)

where pµ is the four-momentum of the particle, uµ is the time-like four-velocity of the local plasma flow (by assumption,
uµuµ = 1), and τ is the relaxation time. The spin tensor Sµν [47] and the equilibrium distribution function feq(x, p)
are defined as follows:

Sµν = λ
~

2

εµναβpαuβ

p · u , (2)

feq =
1

1 + eβ(εp,eq−χµλ)
. (3)

As is easy to check, the only nonvanishing components of the spin tensor in the local rest frame of the fluid are
the spatial components: Sij = λ~εijkpk/2|p|. Note that, in a general frame determined by the four-velocity uµ, the
antisymmetric spin tensor satisfies the following relations: uµS

µν = pµS
µν = 0.

The equilibrium distribution function (3) is defined in terms of the local values of the temperature T ≡ 1/β and
the chiral chemical potentials µλ. (Instead of using the chemical potentials µλ = µ+ λµ5, it may be also convenient

1 A different approach to study the role of spin polarization in relativistic plasmas was presented in Ref. [45].
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to use the number-density and axial-charge density chemical potentials µ and µ5, respectively.) In this formalism, the
dispersion relation for a chiral fermion is given by

εp,eq = χpµuµ + λ
~

2

p · ω
p · u , (4)

where the last term accounts for the spin contribution to the particle’s energy connected with a nonzero vorticity
of the flow ωµ ≡ 1

2ε
µαβγuα∂βuγ . Here we use the conventional notation εµναβ for the four-dimensional Levi-Civita

symbol. In the fluid rest frame, the vorticity takes its usual non-relativistic form: ω = ∇× u/2.
In terms of the distribution function, the fermion-number and the axial-charge current densities are defined by the

following expressions [47]:

jµ =
∑

λ

∫

(pµf + Sµν∂νf) , (5)

jµ5 =
∑

λ

λ

∫

(pµf + Sµν∂νf) , (6)

where we introduced the shorthand notation for the Lorentz-invariant momentum integration and the particle-
antiparticle summation over χ

∫

F (p0,p) =
∑

χ

∫

d4p

(2π)3
2δ(pµpµ)θ(χp

0)F (p0,p) =
∑

χ

∫

d3p

(2π)3|p|F (χ|p|,p). (7)

It should be noted that, in addition to the usual orbital (or convective) part described by the first term in Eqs. (5)
and (6), the definition of currents also contains a magnetization contribution connected with the spin. In the fluid
rest frame, the latter for the fermion-number current takes the standard form of the curl of magnetization [24, 25],
i.e., ∇×M, where M ≡ ~

2

∑

λ λ
∫

p̂f and p̂ ≡ p/|p|.
In this study, we neglect the correction to the current densities associated with the so-called side jumps during the

collisions [47]. There are two reasons for this. Firstly, it is not clear whether such a correction is meaningful and how
to account it in the kinetic equation when the relaxation-time approximation is used. Secondly, we assume that the
relaxation time τ is rather large and, thus, the current corrections due to the side jumps are small.
In terms of the particle distribution function, the energy-momentum tensor is defined as follows:

T µν =
∑

λ

∫
(

pµpνf +
1

2
pµSνα∂αf +

1

2
pνSµα∂αf

)

. (8)

It is important to note that, unlike the case of the currents, there is no room for an “axial” counterpart of the
energy-momentum tensor. In the context of hydrodynamics, as we will see later, this is intimately connected with the
fact that the two chiral components of the plasma should have the same temperature, even if they are characterized
by different chemical potentials.
The definition in Eq. (8) is a straightforward generalization of the energy-momentum tensor introduced in Ref. [24]

to the case of a plasma with non-uniform flow. Just like the charge density, the energy-momentum tensor (8) contains
both orbital and spin contributions. By construction, this tensor is manifestly symmetric. Such a symmetric form
of the tensor appears natural because the kinetic theory can be viewed as a semiclassical approximation to the
microscopic quantum-field theoretical description, in which the corresponding tensor can be always symmetrized. A
symmetric form of the energy-momentum tensor is also the most “physical” from the viewpoint of general relativity,
see Ref. [48]. It is interesting to mention, however, that hydrodynamics may allow for a nonzero antisymmetric part
in the energy-momentum tensor (i.e., the torque tensor) which can be connected, for example, with the spin [49].
While we do not explore such a possibility here, it is intriguing to suggest that a spin-related torque tensor might be
induced in a chiral plasma made of Weyl fermions.

III. HYDRODYNAMIC EQUATIONS

In this section, we derive a closed set of hydrodynamic equations for an inhomogeneous chiral plasma slightly out
of local equilibrium. The corresponding local state is described in terms of the hydrodynamic variables T , µλ, and
uµ. Within the chiral kinetic theory, which is the starting point in our derivation, these variables are sufficient to
specify the local equilibrium distribution function (3).
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In essence, the hydrodynamic equations are the continuity equations for conserved quantities, such as the energy
and momentum, as well as various conserved charges. In order to close the corresponding system of equations, one
should also add a number of constitutive relations. One of such relations is the equation of state that relates the
energy density ǫ with the pressure P of the fluid. In a relativistic plasma at hand, the latter is given by P = ǫ/3.
[Note that the corresponding equation of state also follows from the definition of the energy-momentum tensor in
Eq. (8) combined with its representation in terms of the pressure and energy density, see Eq. (11) below.]
The hydrodynamic equations in a chiral plasma are governed by continuity equations for the current densities jµ

and jµ5 , as well as the energy-momentum tensor T µν . Before deriving the equations for jµ, jµ5 , and T µν , however,
let us first discuss their vector/tensor structure. As usual, we will decompose these quantities using projections
onto the Lorentz subspaces parallel and perpendicular to the four-velocity uµ. From a physics viewpoint, there are
several possibilities for the choice of the four-velocity uµ connected, e.g., with the energy flow (Landau frame) or the
particle flow (Eckart frame). While we will keep uµ arbitrary for now, later we will see that the consistency of our
hydrodynamic equations will single out a modified version of the Landau frame [46]. The latter for particles with spin
may differ from the usual Landau frame by corrections of order ~. In general, the current densities jµ and jµ5 , and
the energy-momentum tensor T µν have the following decompositions:

jµ = nuµ + νµ, (9)

jµ5 = n5u
µ + νµ5 , (10)

T µν = ǫuµuν −∆µνP + (hµuν + uµhν) + πµν , (11)

where n ≡ uµj
µ and n5 ≡ uµj

µ
5 are the fermion-number and axial-charge densities, νµ ≡ ∆µνjν and νµ5 ≡ ∆µνj5,ν

are the corresponding diffusion current densities perpendicular to the fluid four-velocity [39, 43, 44], ǫ ≡ uµuνT
µν is

the energy density, P ≡ −∆µνT
µν/3 is the thermodynamic pressure, hµ ≡ ∆µ

αuβT
αβ is the momentum density or

the energy-flow density, and πµν ≡ ∆µν
αβT

αβ is the shear stress tensor. By definition, the projector onto the subspace
perpendicular to the fluid four-velocity is ∆µν ≡ gµν − uµuν , and the traceless symmetric projector used in the
definition of the shear stress tensor is ∆µν

αβ ≡ (1/2)∆µ
α∆

ν
β + (1/2)∆µ

β∆
ν
α − (1/3)∆µν∆αβ .

It should be noted that, the viscous pressure Π, which would shift the thermodynamic pressure P → P + Π in
Eq. (11), is absent. From a physics viewpoint, such a correction would capture the effects of bulk viscosity. In the
case of a nearly scale-invariant chiral plasma of (massless) fermions, however, the approximation with Π = 0 is well
justified. Indeed, the bulk viscosity vanishes in scale-invariant theories. Of course, in realistic models such as high-
temperature QCD, the corresponding property is not exact because of subtle quantum effects. Nevertheless, as direct
calculations in Ref. [50] show, the bulk viscosity is negligible compared to shear viscosity. Therefore, in the following
we will completely ignore the effects due to the viscous pressure.
In order to derive a closed system of hydrodynamic equations from chiral kinetic theory, we use the approximation

similar to that used in Refs. [37, 39, 43, 44]. The relevant moments are ǫ, n, n5, P , νµ, νµ5 , h
µ, and πµν . (Because

of the spin contributions, strictly speaking, these quantities are not simple moments of the distribution function.) In
the kinetic theory, the corresponding quantities can be expressed in terms of the particle distribution function, using
the definitions for the current densities and the energy-momentum tensor in Eqs. (5) and (8).
By making use of the general decomposition of the current densities (9) and (10), and the energy-momentum tensor

(11) in terms of independent moments, the continuity equations ∂µj
µ = 0, ∂µj

µ
5 = 0, and ∂νT

µν = 0 take the following
form:

ṅ+ n∂µu
µ + ∂µν

µ = 0, (12)

ṅ5 + n5∂µu
µ + ∂µν

µ
5 = 0, (13)

ǫ̇ + (ǫ+ P )∂µu
µ + ∂µh

µ + uµḣ
µ − πµν∂µuν = 0, (14)

(ǫ+ P )u̇α −∇αP + hµ∂µu
α + hα(∂µu

µ) + ∆α
µḣ

µ +∆α
µ∂νπ

µν = 0, (15)

where we introduced the comoving and transverse derivatives as Ȧ ≡ uµ∂µA and ∇αP ≡ ∆αµ∂µP , respectively.
In dissipative regime, Eqs. (12)–(15) are not sufficient to describe unambiguously the hydrodynamic behavior of
plasma. These equations should be supplemented by the equations for functions νµ, νµ5 , h

µ, and πµν . As is clear,
their derivation would be impossible without additional information about the microscopic processes responsible
for dissipative effects. In this study, the corresponding details will be supplied by the chiral kinetic theory in the
relaxation-time approximation.
Before attempting to derive the equations that govern the dynamics of dissipative functions, we should first discuss

the generic constraints that the chiral kinetic theory imposes on the hydrodynamic variables T , µλ, and uµ. The
corresponding variables determine the equilibrium distribution function, see Eq. (3), and thus define the local state
of equilibrium in plasma. It remains to determine, however, the connection between these variables and the out-of-
equilibrium hydrodynamic functions that satisfy Eqs. (12)–(15). The needed relations can be established by analyzing
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the continuity equations, i.e., ∂µj
µ = 0, ∂µj

µ
5 = 0, and ∂νT

µν = 0, for jµ, jµ5 , and T µν given by Eqs. (5), (6), and (8),
respectively, in the framework of the chiral kinetic theory where the kinetic equation (1) plays the role of a microscopic
equation.
Let us first discuss the implication of the continuity equations for the current densities. By making use of the

definitions in Eqs. (5) and (6), it is straightforward to derive the following relation:

∂µj
µ = − 1

τ
(n− neq), (16)

∂µj
µ
5 = − 1

τ
(n5 − n5,eq), (17)

where we used the definitions for the densities n ≡ ∑

λ

∫

(p · u)f and n5 ≡ ∑

λ λ
∫

(p · u)f . The explicit expressions
for the corresponding quantities in equilibrium are obtained by making use of the equilibrium distribution function
in Eq. (3), i.e.,

neq ≡
∑

λ

(

µ3
λ

6π2
+

µλT
2

6

)

=
µ
(

µ2 + 3µ2
5 + π2T 2

)

3π2
, (18)

n5,eq ≡
∑

λ

λ

(

µ3
λ

6π2
+

µλT
2

6

)

=
µ5

(

µ2
5 + 3µ2 + π2T 2

)

3π2
. (19)

As follows from Eqs. (16) and (17), the requirements of the fermion-number and axial-charge conservation, ∂µj
µ = 0

and ∂µj
µ
5 = 0, give

n = neq, n5 = n5,eq. (20)

These equations can be interpreted as definitions of the out-of-equilibrium charge densities in terms of given local
values of the chemical potentials µλ, or vice versa, as the equations that define µλ in terms of the local charge densities
n and n5.
By applying the same method to the definition in Eq. (8), we can also calculate the divergence of the energy-

momentum tensor in the chiral kinetic theory. The corresponding details are presented in Appendix A1. The final
result reads

∂νT
µν = −uµ

τ

(

ǫ− ǫeq +
~

2
ωα(ν

α
5 − να5,eq)

)

− 1

τ

(

hµ − hµ
eq −

~

4
ǫµαβγuαu̇β(ν5,γ − ν5,eq,γ)

)

+O(~2), (21)

where we used Eq. (20). Due to the chiral vortical effect, the equilibrium axial-charge current density is nonzero in
the presence of a background vorticity, i.e., νµ5,eq ∝ ~ωµ. Considering that the corresponding result is already linear in

~, it contributes to the right-hand side of Eq. (21) only at the quadratic order in ~. Therefore, while we will formally
keep the equilibrium current density in similar expressions below, it would be consistent to set νµ5,eq ≃ 0 there.
By separating the two independent projections with respect to the four-velocity uµ and enforcing the continuity

equation ∂νT
µν = 0, we then arrive at the following constraints:

ǫ+
~

2
ωµν

µ
5 = ǫeq +

~

2
ωµν

µ
5,eq, (22)

hµ − ~

4
ǫµαβγuαu̇βν5,γ = hµ

eq −
~

4
ǫµαβγuαu̇βν5,eq,γ , (23)

where, by definition, the equilibrium quantities are given by

νµeq ≡ ~ωµ
∑

λ

λ

(

µ2
λ

4π2
+

T 2

12

)

=
µµ5

π2
~ωµ, (24)

νµ5,eq ≡ ~ωµ
∑

λ

(

µ2
λ

4π2
+

T 2

12

)

=
3(µ2 + µ2

5) + π2T 2

6π2
~ωµ, (25)

ǫeq ≡
∑

λ

(

µ4
λ

8π2
+

µ2
λT

2

4
+

7π2T 4

120

)

=
µ4 + 6µ2µ2

5 + µ4
5

4π2
+

T 2

2
(µ2 + µ2

5) +
7π2T 4

60
, (26)

hµ
eq ≡ ~ωµn5,eq =

µ5

(

µ2
5 + 3µ2 + π2T 2

)

3π2
~ωµ. (27)

The constraint in Eq. (22) for the energy density is analogous to the relations in Eq. (20). This is most evident in the
limit of vanishing vorticity or in the absence of axial current density, when the second term on each side of Eq. (22)
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is trivial. Then, the equation ǫ = ǫeq allows one to define the out-of-equilibrium energy density in terms of a given
local value of the temperature T or, alternatively, to determine the value of T in terms of the local energy density
ǫ. Because of the sum over λ, Eq. (22) gives a single relation that allows one to determine only one (common) local
temperature T for both chiral components of the plasma. This is a natural consequence of the definition for the
energy-momentum tensor in Eq. (8), which includes the contributions of both chiralities.
Now let us turn to the second constraint, given by Eq. (23). It can be viewed as the relation that defines the

four-velocity uµ of a generalized Landau frame, in which the hydrodynamic equations derived from the kinetic theory
are consistent with the momentum conservation. This agrees with a similar constraint (i.e., hµ = 0) obtained in
a model without chiral asymmetry in Refs. [43, 46]. Indeed, after taking into account that all ~-terms in Eq. (23)
vanish at n5 = 0 and νµ5 = 0, we obtain the standard relation that defines the Landau frame: hµ = 0. Because
of the ~-corrections, however, our definition of the generalized Landau frame in Eq. (23) is different. It would be
interesting to investigate whether the underlying reason for the difference is related to the subtleties of defining a
thermodynamically preferred frame in Ref. [51].
It is interesting that constraints (22) and (23) contain corrections of order ~ when there is a nonzero background

vorticity. In essence, the corresponding corrections to the energy and momentum densities are the consequences of
chirality, which locks the orbital motion of particles with their spin.
Even after taking into account Eqs. (20), (22), and (23), we still need to determine the equations that govern the

evolution of the dissipative functions νµ and πµν . Here we will follow the approach similar to that in Ref. [43] in
order to derive the missing equations. We start by rewriting the kinetic equation in the following form:

ḟ +
f

τ
=

feq
τ

− 1

p · up
ρ∇ρf − 1

p · u(∂σS
σρ)∂ρf. (28)

Using the definitions for the dissipative functions, νµ = ∆µ
ν j

ν , νµ5 = ∆µ
ν j

ν
5 , and πµν = ∆µν

αβT
αβ, we can express their

comoving derivatives in the following form:

ν̇〈µ〉 = −u̇µn+∆µ
ν

∑

λ

∫

(pν + Sνα∂α) ḟ −∆µ
ν

∑

λ

∫

Sνα(∂αu
β)∂βf +∆µ

ν

∑

λ

∫

Ṡνα∂αf, (29)

ν̇
〈µ〉
5 = −u̇µn5 +∆µ

ν

∑

λ

λ

∫

(pν + Sνα∂α) ḟ −∆µ
ν

∑

λ

λ

∫

Sνα(∂αu
β)∂βf +∆µ

ν

∑

λ

λ

∫

Ṡνα∂αf, (30)

π̇〈µν〉 = −2∆µν
αβh

αu̇β +∆µν
αβ

∑

λ

∫

(

pαpβ + pαSβγ∂γ
)

ḟ −∆µν
αβ

∑

λ

∫

pαSβγ(∂γu
δ)∂δf

+ ∆µν
αβ

∑

λ

∫

pαṠβγ∂γf, (31)

where, by definition, the quantities with the Lorentz indices in angle brackets are the projections of the corresponding
quantities onto the subspace orthogonal to the four-velocity, i.e., ν̇〈µ〉 ≡ ∆µ

αν̇
α and π̇〈µν〉 ≡ ∆µν

αβ π̇
αβ . The use of

projectors here is needed in order to force the dissipative current densities and the shear stress tensor to remain
consistent with their generic definitions. This can be also viewed as a necessary condition for a self-consistent
truncation of the evolution equations.
By making use of the kinetic equation (28), the relations for the comoving derivatives Eqs. (29)–(31) can be

equivalently rewritten as follows:

ν̇〈µ〉 +
νµ

τ
= −u̇µn+

∑

λ

∫

(∆µ
νp

ν + Sµν∂ν)

(

feq
τ

− 1

p · up
ρ∇ρf − 1

p · u(∂σS
σρ)∂ρf

)

− (∂νu
ρ)

∑

λ

∫

Sµν∂ρf +∆µ
ρ

∑

λ

∫

Ṡρν∂νf, (32)

ν̇
〈µ〉
5 +

νµ5
τ

= −u̇µn5 +
∑

λ

λ

∫

(∆µ
νp

ν + Sµν∂ν)

(

feq
τ

− 1

p · up
ρ∇ρf − 1

p · u (∂σS
σρ)∂ρf

)

− (∂νu
ρ)

∑

λ

λ

∫

Sµν∂ρf +∆µ
ρ

∑

λ

λ

∫

Ṡρν∂νf, (33)

π̇〈µν〉 +
πµν

τ
= −2∆µν

αβh
αu̇β +∆µν

αβ

∑

λ

∫

(

pαpβ + pαSβγ∂γ
)

(

feq
τ

− 1

p · up
ρ∇ρf − 1

p · u (∂σS
σρ)∂ρf

)

− (∂γu
ρ)

∑

λ

∆µν
αβ

∫

pαSβγ∂ρf +∆µν
αβ

∑

λ

∫

pαṠβγ∂γf. (34)
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These equations for dissipative functions contain the distribution function f . In order to obtain a closed set of
equations, the right-hand sides of the equations above should be reexpressed in terms of the hydrodynamic variables
and dissipative functions. To achieve this, we replace the distribution function with its iterative solution in the form

f ≃ feq −
τ

p · up · ∂feq (35)

and further approximate the equilibrium distribution function by its expansion to the linear order in ~,

feq ≃ f0 + λ
~

2

pµωµ

p · u f ′
0 + . . . , (36)

where f0 is the equilibrium function at a vanishing vorticity and f ′
0 ≡ ∂f0/∂εp. Now, by using the moments of the

equilibrium distribution function from Appendix A2, we rewrite the evolution equations for the dissipative functions
in the following form:

ν̇〈µ〉 +
νµ

τ
= −u̇µn+

∑

λ

[

1

3
∇µI3 + λ

~

τ
ωµI2

− 2τ

5
∇µ(∂ · u)I3 −

7τ

15
(∂ · u)∇µI3 + τu̇µ(∂ · u)I3 +

4τ

5
u̇ρ(∂ρu

µ)I3 −
τ

3
∇µİ3

− 7τ

15
(∇ρu

µ)∇ρI3 −
2τ

5
(∇µuρ)u̇

ρI3 −
2τ

15
(∇µuρ)∂ρI3 −

τ

5
∆µ

ν (∂ · ∂uν)I3 +
τ

5
∆µ

ν ü
νI3

− λ
14~

15
ωµ(∂ · u)I2 − λ

14~

15
ων(∂νu

µ)I2 + λ
~

15
ων(∇µuν)I2 − λ

2~

3
ωµİ2

+ λ
~

6
εµναβuαu̇β∂νI2 − λ

~

3
εµναβuβ(∂νu

ρ)(∂ρuα)I2

]

, (37)

ν̇
〈µ〉
5 +

νµ5
τ

= −u̇µn5 +
∑

λ

λ

[

1

3
∇µI3 + λ

~

τ
ωµI2

− 2τ

5
∇µ(∂ · u)I3 −

7τ

15
(∂ · u)∇µI3 + τu̇µ(∂ · u)I3 +

4τ

5
u̇ρ(∂ρu

µ)I3 −
τ

3
∇µİ3

− 7τ

15
(∇ρu

µ)∇ρI3 −
2τ

5
(∇µuρ)u̇

ρI3 −
2τ

15
(∇µuρ)∂ρI3 −

τ

5
∆µ

ν (∂ · ∂uν)I3 +
τ

5
∆µ

ν ü
νI3

− λ
14~

15
ωµ(∂ · u)I2 − λ

14~

15
ων(∂νu

µ)I2 + λ
~

15
ων(∇µuν)I2 − λ

2~

3
ωµİ2

+ λ
~

6
εµναβuαu̇β∂νI2 − λ

~

3
εµναβuβ(∂νu

ρ)(∂ρuα)I2

]

, (38)

π̇〈µν〉 +
πµν

τ
= −2∆µν

αβh
αu̇β +∆µν

αβ

∑

λ

[

8

15
(∂αuβ)I4

− 32τ

35
(∂αuβ)(∂ · u)I4 −

8τ

15
∂α(u̇βI4)−

16τ

35
(∇ρu

α)(∇ρuβ)I4 −
8τ

21
(∂αuρ)(∂ρuβ)I4

+
2τ

15
∂α∂βI4 −

2τ

3
(∂αuβ)İ4 +

8τ

105
(∂αuρ)(∂

βuρ)I4

+ λ
~

5
(∂αωβ)I3 + λ

7~

15
ωα∂βI3 + λ

~

5
u̇αωβI3 + λ

~

10
εβσρδuδ∂σ(I3∇αuρ)

+ λ
~

10
εβσρδuδ(∂σu

α)∂ρI3 + λ
~

5
u̇αεβσρδuρ(∂σuδ)I3 + λ

~

5
εβσρδuσu̇ρ(∂δu

α)I3

]

. (39)

As is easy to check, these equations for dissipative functions are finally sufficient to close the whole system of equations
of the second-order dissipative hydrodynamics. Indeed, we have Eqs. (12)–(15) and (23) for hydrodynamic variables n,
n5, ǫ, u

µ, and hµ. Note also that the thermodynamic pressure is defined by the corresponding constitutive equation,
P = ǫ/3. The corresponding equations are supplemented by Eqs. (37)–(39) for functions νµ, νµ5 , and πµν . According
to Eqs. (A15)–(A17) in Appendix A 2, quantities I2, I3, and I4 on the right-hand side of Eqs. (37)-(39) are expressed
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through the local equilibrium chemical potentials µ, µ5 and temperature T , which in turn could be expressed through
the local values of n, n5, and ǫ, respectively, see the constraints in Eqs. (20) and (22).
The right-hand side of the equations for dissipative functions can be further simplified by making use of the following

first-order relations:

νµ =
∑

λ

[

λ~ωµI2 +
τ

3
∇µI3 − τu̇µI3

]

+O(∂2), (40)

νµ5 =
∑

λ

λ
[

λ~ωµI2 +
τ

3
∇µI3 − τu̇µI3

]

+O(∂2), (41)

πµν =
∑

λ

8τ

15
∆µν

αβ(∂
αuβ)I4 +O(∂2), (42)

which follow from Eqs. (37) – (39). [Let us note in passing that the above first-order relations define the diffusion
constant and the shear viscosity in terms of the relaxation time: D = τ/3 and ζ = 8τǫ/15, respectively.] Indeed, by
making use of these equations as well as the continuity equations in the leading order in derivatives, we can re-express
most of the terms with an explicit dependence on the relaxation time in Eqs. (37)–(39) in terms of the hydrodynamic
functions themselves. After doing this, the final set of equations for dissipative functions takes a simpler form, i.e.,

ν̇〈µ〉 +
νµ − νµeq

τ
= −u̇µn+

1

3
∇µn− n

ǫ+ P
∆µν∂ρπρν − νρω

ρµ − (∂ · u)νµ − 9

5
(∂〈µuρ〉)νρ +

14

15
(∇〈µuρ〉)νρ,eq

− 2

9
(∂ · u)νµeq −

2~

3
ωµ

∑

λ

λİ2 +
∑

λ

λ
~

6
εµναβ [uαu̇β∂νI2 − 2uβ(∂νu

ρ)(∂ρuα)I2] , (43)

ν̇
〈µ〉
5 +

νµ5 − νµ5,eq
τ

= −u̇µn5 +
1

3
∇µn5 −

n5

ǫ+ P
∆µν∂ρπρν − ν5,ρω

ρµ − (∂ · u)νµ5 − 9

5
(∂〈µuρ〉)ν5,ρ +

14

15
(∇〈µuρ〉)ν5,eq,ρ

− 2

9
(∂ · u)νµ5,eq −

2~

3
ωµ

∑

λ

İ2 +
∑

λ

~

6
εµναβ [uαu̇β∂νI2 − 2uβ(∂νu

ρ)(∂ρuα)I2] , (44)

π̇〈µν〉 +
πµν

τ
= −2h〈µu̇ν〉 + 2π〈µ

ρ ων〉ρ − 10

7
π〈µ
ρ σν〉ρ − 4

3
πµν∂αu

α +
8

15
(∂〈µuν〉)ǫ

+
~

5

(

(∂〈µων〉)n5 +
7

3
ω〈µ∂ν〉n5 − u̇〈µων〉n5

)

+
~

5
∆µν

αβε
βσρδ

[

1

2
uδ∂σ(n5∇αuρ) +

1

2
uδ(∂σu

α)∂ρn5 + uσu̇ρ(∂δu
α)n5

]

, (45)

where σµν = ∂〈αuβ〉 = ∆µν
αβ(∂

αuβ), ωµν = (∇µuν −∇νuµ)/2, and A〈µν〉 ≡ ∆µν
αβA

αβ . In the derivation, we used the
following relation:

1

ǫ + P
∆µν∂ρπρν =

τ

5
∆µν(∂2uν)−

τ

5
∆µν üν +

τ

15
∇µ(∂ · u)− 3τ

5
u̇µ(∂ · u) + 3τ

5
u̇ρ(∂ρu

µ) +
4τ

5
u̇ρ(∇µuρ) +O(∂3), (46)

which follows from Eq. (42) as well as the first-order continuity equations.
The set of second-order equations (43), (44), and (45) for dissipative functions in a chiral plasma is our main result.

This is a generalization of the previous results of Refs. [41–44, 46], which were obtained for massless plasmas without
a chiral asymmetry (i.e., n5 = 0 and νµ5 = 0) and without ~ corrections due to the spin. In the current study, in
contrast, we treated the fermion chiralities as two components of a relativistic fluid. The (approximate) conservation
of the axial-charge in the chiral plasma gives rise to an additional continuity equation, see Eq. (44). Moreover, the
quantum effects of the chiral plasma are captured by the linear in ~ corrections in the second-order theory.

IV. CHIRAL VORTICAL WAVE

In order to illustrate how the hydrodynamic equations derived in the previous section could be used in practice, we
discuss in this section one of its simplest solutions describing a chiral vortical wave. As we will see, a proper account
of the fluid flow affects the properties of such a wave.
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We begin our analysis by recalling that the existence of the chiral vortical wave is a direct consequence of the
chiral vortical effect. In essence, the later states that a nonzero fluid vorticity in a chiral plasma induces the following
fermion-number and axial-charge currents [52–55]:

j =
µµ5

π2
ω, (47)

j5 =

(

T 2

6
+

µ2 + µ2
5

2π2

)

ω. (48)

Note that while the fermion-number current (47) exists only when both µ and µ5 are nonzero, the chiral current (48)
exists even if µ = µ5 = 0 due to the T 2 term. The latter is related to the gravitational anomaly [52, 53, 56]. As
suggested in Ref. [15], an interplay between the fermion-number and axial-charge fluctuations induced by the chiral
vortical effect results in a gapless collective excitation that was called the chiral vortical wave. As we will see below,
the inclusion of the hydrodynamic flow profoundly modifies this simple picture.

To start with, let us note that the dissipative equations derived in the previous section reproduce the correct
equilibrium expressions for the fermion-number and axial-charge currents given by Eqs. (47) and (48). Indeed, as the
system approaches equilibrium, all gradient terms in Eqs. (43) and (44) vanish and their solutions take a particularly
simple form: νµ = νµeq and νµ5 = νµ5,eq, where the equilibrium currents are defined by Eqs. (24) and (25). As is easy

to check, the latter coincide with the results in Eqs. (47) and (48) in the rest frame of the fluid uµ = (1, 0, 0, 0). In
this connection, it should be noted that the currents νµ and νµ5 are generically defined as dissipative quantities. At
the same time, the equilibrium chiral vortical effect currents νµeq and νµ5,eq are non-dissipative parts of jµ and jµ5 . For

simplicity of notations, however, we still include them in the dissipative functions νµ and νµ5 .

In order to analyze the chiral vortical wave by using the hydrodynamic equations obtained in the previous section,
we choose the local background velocity of the fluid in the following form:

uµ = uµ
0 + ǫµναβxνu0αω̄β , (49)

where the first term describes a uniform motion and the second one describes a rotation. We will assume that relation
(49) is valid for a sufficiently slow rotation and sufficiently small distances L ≪ |ω̄|−1. The above expression for the
four-velocity is normalized in the usual way, uµuµ = 1. Up to quadratic terms in vorticity, which are negligible in the
case of a slow rotation, the normalization condition for uµ is valid if the four-vectors uµ

0 and ω̄µ satisfy uµ
0 ω̄µ = 0 and

uµ
0u0,µ = 1. One should also note that, to leading order, the four-vector ω̄µ coincides with the definition of vorticity

given by ωµ ≡ 1
2ε

µαβγuα∂βuγ .

Let us search for a solution to hydrodynamic equations in the form of a propagating wave. In the most general
case, the chemical potentials, temperature, and fluid velocity will oscillate around their average values, i.e.,

δµ(x) = e−ikxδµ0, δµ5(x) = e−ikxδµ5,0, δT (x) = e−ikxδT0, δuµ(x) = e−ikxδuµ
0 , (50)

where kµ is the wavevector, and δµ0, δµ5,0, δT0, and δuµ
0 are the amplitudes of oscillations of the corresponding

quantities. The requirement of normalization constrains the oscillations of the fluid velocity to be orthogonal to the
background velocity, uµδu

µ = 0. This is automatically satisfied for the waves with the fluid velocity oscillations along
the direction of the vorticity, i.e., δuµ ‖ ω̄µ.

For the sake of simplicity, let us analyze the dissipative equations in the first-order theory. In this case, we find
from Eqs. (43)–(45) that

νµ = νµeq − τnu̇µ +
τ

3
∇µn, (51)

νµ5 = νµ5,eq − τn5u̇
µ +

τ

3
∇µn5, (52)

πµν =
8τ

15
ǫ(∂〈µuν〉), (53)

where we used the constraints (20), (22), and (23). By substituting these expressions into the continuity equations
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(12)–(15) and linearizing them in fluctuations, we derive the following system of coupled equations:

∑

zi

(

Ω
∂neq

∂zi
− i

τ

3
k2⊥

∂neq

∂zi
+ kµ

∂νµeq
∂zi

)

δzi + neq (1 + iτΩ) (k · δu)− 2Ω(νeq · δu) = 0, (54)

∑

zi

(

Ω
∂n5,eq

∂zi
− i

τ

3
k2⊥

∂n5,eq

∂zi
+ kµ

∂νµ5,eq
∂zi

)

δzi + n5,eq (1 + iτΩ) (k · δu)− 2Ω(ν5,eq · δu) = 0, (55)

∑

zi

(

Ω
∂ǫeq
∂zi

+ kµ
∂hµ

eq

∂zi

)

δzi +
4

3
ǫeq(k · δu)− 3Ω(heq · δu) = 0, (56)

∑

zi

(

Ω
∂hµ

eq

∂zi
− kµ⊥

1

3

∂ǫeq
∂zi

)

δzi +

(

4

3
ǫeqΩ +

3

4
(k · heq)

)

δuµ + hµ
eq(k · δu)

+
1

4
(heq · δu)kµ⊥ − i

2
~n5,eqΩε

µναβuνkαδuβ − iτ
8

15
∆µν

αβkνǫeqk
αδuβ = 0. (57)

Here we introduced the shorthand notations Ω = (k · u) and kµ⊥ = kµ − uµ(k · u), and used the summation index
zi = (µ, µ5, T ). The analysis of these equations is simplified in the rest frame with uµ

0 = (1, 0, 0, 0) and ω̄µ = (0, 0, 0, ω̄).
For a wave propagating along the direction of vorticity, the wave vector takes the form kµ = Ωuµ

0+kzω̂
µ = (Ω, 0, 0, kz).

The obtained system of homogeneous linear equations has nontrivial solutions only when the determinant of the
corresponding matrix of coefficients vanishes. Thus, by solving the characteristic equation, we obtain dispersion
relations for four different types of waves: two sound waves and two modes that resemble chiral vortical waves. As
we will see, the latter differ from the simplified solutions of the chiral vortical waves [15] because their propagation is
profoundly affected by the hydrodynamic flow of the fluid itself.
To the linear order in ω and τ , the resulting dispersion relations for the sound waves are given by

Ω = ± kz√
3
+

3

8
~ω̄

n5,eq

ǫeq
kz +

2

15
iτk2z , (58)

where the second term is a vorticity correction to the usual speed of sound and the third term describes the attenuation
of the sound wave. The dispersion relations of the chiral vortical waves read

Ω = ~ω̄v1kz −
1

3
iτk2z , Ω = ~ω̄v2kz −

1

3
iτk2z , (59)

where v1,2 are the roots of a quadratic equation av2 + bv + c = 0 with the following coefficients:

a = ǫ
[

45
(

µ2 − µ2
5

)2 (
µ2 + µ2

5

)

+ 7π6T 6 + 27π4T 4
(

µ2 + µ2
5

)

+ 3π2T 2
(

11µ4 + 18µ2µ2
5 + 11µ4

5

)

]

, (60)

b =
µ5

10π2

[

225(µ2 − µ2
5)
(

2µ6 + 5µ4µ2
5 + 8µ2µ4

5 + µ6
5

)

− 14π8T 8 − π6T 6
(

78µ2 + 127µ2
5

)

−45π4µ2
5T

4
(

11µ2 + 9µ2
5

)

+ 15π2T 2
(

30µ6 + 5µ4µ2
5 − 72µ2µ4

5 − 43µ6
5

)

]

, (61)

c =
3

20π2

[

75µ8
5 − 4

(

π3µT 3 + 5πµ3T
)2

+ 225µ6
5

(

3µ2 + π2T 2
)

− 3µ2
5

(

5µ2 + π2T 2
)2 (

5µ2 + 7π2T 2
)

+5µ4
5

(

−75µ4 + 13π4T 4 + 30π2µ2T 2
)

]

. (62)

It is worth noting that there are two different modes of the chiral vortical wave. This result seems to qualitatively
agree with the dispersion relations obtained in Refs. [60, 61]. From a physics point of view, they correspond to two
opposite directions of propagation with respect to the vorticity. In general, the speeds of such waves are different.
It is interesting to note that the corresponding waves have nonzero velocities ~ω̄v1,2 even at µ = 0, which appears
to contradict the prediction of Ref. [62], where similar waves were analyzed. We may suggest that this is the result
of using a more general scheme in this study, in which both the fermion-number and axial-charge conservations are
enforced (see also Refs. [60, 61]).
It is instructive to consider a special case of a plasma with the vanishing axial-charge chemical potential µ5 = 0.

In this case, the dispersion relation for the sound waves is similar to that in Eq. (58), but has no correction due to
vorticity. This should not be surprising for a plasma without a chiral asymmetry. As for the dispersion relations of
the chiral vortical waves, they are given by the following explicit expression:

Ω = ± ω̄~Tµ(π2T 2 + 5µ2)kz

2π
√

5ǫeq(5ǫeq − 2T 2µ2)(π2T 2 + 3µ2)
− 1

3
iτk2z . (63)
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As is easy to check from Eq. (54)–(57), the propagation of the chiral vortical waves is characterized by oscillations
of all thermodynamic parameters. In fact, in this case, the explicit relations between their oscillation amplitudes are
given by

δµ5,0 = ± 4π

(∂ǫeq/∂T )

√

ǫeq(5ǫeq − 2T 2µ2)

5(π2T 2 + 3µ2)
δµ0, (64)

δT0 = − 3neq

(∂ǫeq/∂T )
δµ0, (65)

δuµ
0 = ∓ ~ω̄µ

π(∂ǫeq/∂T )

√

(5ǫeq − 2T 2µ2)(π2T 2 + 3µ2)

5ǫeq
δµ0. (66)

As we see from the last equation, the chiral vortical wave is accompanied by oscillations of the fluid velocity along the
direction of the vorticity. This is in addition to the usual oscillations of the fermion-number and axial-charge densities.
With the model assumptions used here, we also see that the chiral vortical waves come with local oscillations of the
temperature. At the same time, as is easy to check, the chiral vortical waves do not drive the oscillations of the local
energy density, δǫ = 0.

V. CONCLUSION

In this study, we derived a closed system of second-order dissipative hydrodynamic equations that governs the
evolution of a chiral plasma made of neutral particles such as neutrinos. The corresponding results can be applied for
studies of the early states of protoneutron star evolution, where neutrinos are trapped in dense matter and achieve
a hydrodynamic regime. In such a plasma, the effects of chirality could play an important role in driving an inverse
cascade that may be relevant for the origin of the supernova explosion [63]. The system of hydrodynamic equations
obtained here can be used to numerically simulate the corresponding dynamics. While the corresponding detailed
study is beyond the scope of this paper, we see that the presence of a chiral asymmetry modifies the hydrodynamic
equations. It also appears that the leading-order quantum corrections due to spin of chiral particles can play profound
effects in hydrodynamics, especially when combined with a chiral asymmetry and vorticity of the fluid.

By making use of the hydrodynamic equations, in this paper we also briefly addressed the modification of the chiral
vortical waves associated with the fluid flow. In this part, for simplicity, we used the first-order theory. Of course,
such an approximation is sufficient for the problem of the propagating modes with long wavelengths when there is no
issue with the stability of solutions. We found that the propagation of the chiral vortical wave also induces oscillations
of the local fluid velocity. As a result, its dispersion relation differs from that predicted in a simplified model where
only the oscillations of fermion-number and axial-charge densities are taken into account. Interestingly, we find that
the local energy density does not oscillate during the propagation of the chiral vortical wave.

While the effects of electromagnetism were neglected in this study, there is no conceptual limitation to take them
into account. In fact, a generalization of the second-order hydrodynamic equations to the case of a chiral plasma
made of charged particles is of great interest. The corresponding plasmas play a profound role in cosmology, heavy-
ion collisions, and even Dirac/Weyl materials. Obviously, many interesting phenomena may be expected from a
nontrivial interplay of electromagnetic fields and vorticity. In principle, the derivation of the corresponding equations
is a straightforward although tedious task that we plan to address in the future.

Another interesting extension of the current study would be the derivation of the third-order dissipative hydro-
dynamics [43] and, perhaps, even the inclusion of the quantum corrections beyond the leading order in the Planck
constant. One should keep in mind, however, that additional corrections of quantum origin could be expected even in
the chirally symmetric matter at the second order in ~ [64]. Concerning the quantum corrections, it should be noted
that, in the framework proposed in this study, the conservations of the energy and momentum were enforced only
to the linear order in ~, or equivalently in spin. Of course, before attempting the inclusion of higher-order quantum
corrections, this limitation should be lifted first. One of the promising approaches that could help to advance the
problem is based on the use of the Wigner function [54, 57].

In view of the obvious importance of preserving the Lorentz covariance in relativistic models, it will be desirable
to generalize the current analysis to the case of models with nonlocal collision integrals consistent with the Lorentz
covariance. While the problem is expected to be much more challenging technically, it may not be hopeless [65].
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Appendix A: The energy-momentum conservation and other technical details

In this Appendix, we present selected technical details that support the results in the main text of the paper.

1. The energy-momentum conservation

The conservation of the energy and momentum to the leading order in the Planck constant plays a very important
role in our analysis. So, here we present the derivation of the general relation for the energy-momentum tensor, i.e.,
∂νT

µν = 0, in the chiral kinetic theory. As we show, this condition is not automatically satisfied in the relaxation-time
approximation. It can be enforced by choosing a special frame of reference.
From the definition of the energy-momentum tensor in Eq. (8), we obtain

∂νT
µν =

1

2

∫

(δµν δ
κ
λ − δµλδ

κ
ν ) p

λ(∂κS
να)∂αf − 1

τ

∫

pµ(p · u)(f − feq) +
1

2

∫

Sµα∂α(p · ∂f)

≃ 1

4

∫

εµκσρενλσρp
λ(∂κS

να)∂αf − 1

τ

∫

pµ(p · u)(f − feq)−
1

2τ

∫

Sµα∂α [(p · u)(f − feq)] , (A1)

where we temporarily omitted the sum over λ and dropped the terms of order ~2. (Note that Sµα is linear in ~.) It
is convenient to analyze the first integral on the right-hand side separately. By making use of the explicit form of the
spin tensor Sνα, we can rewrite the corresponding integrand as follows:

1

4

∫

εµκσρενλσρp
λ(∂κS

να)∂αf = λ
~

8

∫

εµκσρδαβγλσρ p
λpβ∂κ

(

uγ

p · u

)

∂αf, (A2)

where δαβγλσρ = ǫαβγδǫλσρδ is the generalized Kronecker symbol. Due to the Kronecker symbol, the contraction over

index λ will lead to one of the following three possibilities: (i) pλ → pα, (ii) pλ → pβ , or (iii) pλ → pγ . The latter

two cases give vanishing results either because pβpβ = 0 (massless particles), or because ∂κ

(

pγuγ

p·u

)

= 0. The only

nontrivial contribution comes from the contraction that turns pλ into pα, i.e.,

λ
~

4

∫

εµκβγpαpβ∂κ

(

uγ

p · u

)

∂αf ≃ − 1

2τ

∫

(∂κS
µκ) (p · u)(f − feq), (A3)

where we used the kinetic equation and dropped the terms of order ~
2 on the right-hand side. Now, by combining

the results in Eqs. (A1) and (A3), we finally obtain

∂νT
µν = − 1

τ

∫

pµ(p · u)(f − feq)− λ
~

4τ

∫

εµανβpν∂α [uβ(f − feq)] +O(~2)

= − 1

τ

[

uµ(ǫ − ǫeq) + (hµ − hµ
eq)− λ

~

2
ωµ(n− neq)− λ

~

4
ǫµαβγ(∂αuβ)(νγ − νeqγ )

]

+O(~2). (A4)

Here we used the chiral kinetic theory definitions for the energy density ǫ ≡ uµuνT
µν, momentum density hµ ≡

∆µ
αuβT

αβ, charge density n ≡ uµj
µ, and current density νµ ≡ ∆µνjν that follow directly from the definitions for the

number-density current (5) and the energy-momentum tensor (8).
After restoring the sum over λ, the result in Eq. (A4) can be rewritten in the following equivalent form:

∂νT
µν = −uµ

τ

(

ǫ− ǫeq +
~

2
ωµ(ν

µ
5 − νµ5,eq)

)

− 1

τ

(

hµ − hµ
eq −

~

4
ǫµαβγuαu̇β(ν5,γ − ν5,eq,γ)

)

+O(~2), (A5)
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where we used the constraint in Eq. (20) and separated the components along the four-vector uµ from the projection
perpendicular to uµ. Note the last term in the perpendicular component can be given in several alternative forms

~

4
ǫµαβγuαu̇β(ν5,γ − ν5,eq,γ) = ∆µ

ν

~

4
ǫναβγ(∂αuβ)(ν5,γ − ν5,eq,γ) =

~

4
ǫµαβγ(∂αuβ)(ν5,γ − ν5,eq,γ)+

~

2
uµωγ(ν5,γ − ν5,eq,γ).

(A6)

2. Useful integrals

In the calculation of moments of the distribution function, the following integrals are useful:
∫

(p · u)nf0 = −
∑

χ=±1

Γ(n+ 2)

2π2
χnT n+2Lin+2

(

−e
χµλ
T

)

≡ In+2, (A7)

∫

(p · u)npαf0 = uαIn+3, (A8)

∫

(p · u)npαpβf0 =

(

−1

3
gαβ +

4

3
uαuβ

)

In+4, (A9)

∫

(p · u)npαpβpγf0 =
(

−g(αβuγ) + 2uαuβuγ
)

In+5, (A10)

∫

(p · u)npαpβpγpδf0 =

(

1

5
g(αβgγδ) − 12

5
g(αβuγuδ) +

16

5
uαuβuγuδ

)

In+6, (A11)

∫

(p · u)npµ1 ...pµ5f0 =

(

g(µ1guµ5) − 16

3
g(µ1u..uµ5) +

16

3
uµ1 ..uµ5

)

In+7, (A12)

∫

(p · u)npµ1 ...pµ6f0 =

(

−1

7
g(µ1ggµ6) +

24

7
g(µ1guuµ6) − 80

7
g(µ1u..uµ6) +

64

7
uµ1 ..uµ6

)

In+8, (A13)

where f0 is the equilibrium function at a vanishing vorticity and the round brackets denote a symmetrization over all
possible permutations, e.g., A(αBβCγ) ≡ (AαBβCγ +AαBγCβ +AβBαCγ +AβBγCα +AγBβCα +AγBαCβ)/3!.
It is easy to check that lower moments can be obtained from the higher ones multiplying the latter by the four-

velocity uµ. Similar integral chains can be obtained also for derivatives of the distribution function f ′
0 = ∂f0/∂εp if

one makes a substitution In → −(n− 1)In−1. For f ′′
0 , the substitution is In → (n − 1)(n− 2)In−2 and so on. As is

easy to check, the explicit results for several lowest-order moments read

I1 =
µλ

2π2
, (A14)

I2 =
µ2
λ

4π2
+

T 2

12
, (A15)

I3 =
µ3
λ

6π2
+

µλT
2

6
, (A16)

I4 =
µ4
λ

8π2
+

µ2
λT

2

4
+

7π2T 4

120
. (A17)

Note that these moments satisfy the following recurrent relation: ∂In+1/∂µλ = nIn.

[1] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[2] J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).
[3] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).
[4] M. A. Metlitski and A. R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005).
[5] A. Vilenkin, Phys. Rev. D 20, 1807 (1979).
[6] J. Erdmenger, M. Haack, M. Kaminski, and A. Yarom, J. High Energy Phys. 0901, 055 (2009).
[7] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, and P. Surowka, J. High Energy Phys. 1101,

094 (2011).
[8] A. Boyarsky, J. Frohlich, and O. Ruchayskiy, Phys. Rev. Lett. 108, 031301 (2012).
[9] H. Tashiro, T. Vachaspati, and A. Vilenkin, Phys. Rev. D 86, 105033 (2012).



14

[10] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 92, 074018 (2015).
[11] Y. Hirono, D. E. Kharzeev, and Y. Yin, Phys. Rev. D 92, 125031 (2015).
[12] D. E. Kharzeev and H. U. Yee, Phys. Rev. D 83, 085007 (2011).
[13] Y. Burnier, D. E. Kharzeev, J. Liao, and H. U. Yee, Phys. Rev. Lett. 107, 052303 (2011).
[14] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. D 83, 085003 (2011).
[15] Y. Jiang, X. G. Huang, and J. Liao, Phys. Rev. D 92, 071501 (2015).
[16] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu,

T. Valla, Nature Phys. 12, 550 (2016).
[17] D. E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014).
[18] O. Vafek and A. Vishwanath, Ann. Rev. Condensed Matter Phys. 5, 83 (2014).
[19] V. A. Miransky and I. A. Shovkovy, Phys. Rept. 576, 1 (2015).
[20] A. A. Burkov, J. Phys.: Condens. Matter 27, 113201 (2015).
[21] K. Landsteiner, Acta Phys. Polon. B 47, 2617 (2016).
[22] D. T. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602 (2012).
[23] M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001 (2012).
[24] D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016 (2013).
[25] J. Y. Chen, D. T. Son, M. A. Stephanov, H. U. Yee, and Y. Yin, Phys. Rev. Lett. 113, 182302 (2014).
[26] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 90, 076007 (2014).
[27] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009).
[28] A. V. Sadofyev and M. V. Isachenkov, Phys. Lett. B 697, 404 (2011).
[29] Y. Neiman and Y. Oz, J. High Energy Phys. 1103, 023 (2011).
[30] W. A. Hiscock and L. Lindblom, Annals Phys. 151, 466 (1983); Phys. Rev. D 31, 725 (1985).
[31] G. S. Denicol, T. Kodama, T. Koide, and P. Mota, J. Phys. G 35, 115102 (2008).
[32] S. Pu, T. Koide, and D. H. Rischke, Phys. Rev. D 81, 114039 (2010).
[33] H. Grad, Commun. Pure Appl. Math. Phys. 2, 331 (1949).
[34] S. R. de Groot, W. A. van Leeuven, and Ch. G. van Weert, Relativistic kinetic theory – Principles and Applications

(North-Holland, 1980).
[35] I. Müller, Z. Phys. 198, 329 (1967).
[36] W. Israel, Annals Phys. 100, 310 (1976).
[37] W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979).
[38] C. Cercignani and G. M. Kremer, The relativistic Boltzmann equation: theory and application (Boston, Birkhäuser, 2002).
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