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Abstract

Familiar factorized descriptions of classic QCD processes such as deeply-inelastic scattering (DIS)

apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other

nonperturbative physical properties like intrinsic transverse momentum. Since many interesting

DIS studies occur at kinematic regions where the hard scale, Q ∼ 1 – 2 GeV, is not very much

greater than the hadron masses involved, and the Bjorken scaling variable xbj is large, xbj & 0.5,

it is important to examine the boundaries of the most basic factorization assumptions and assess

whether improved starting points are needed. Using an idealized field-theoretic model that contains

most of the essential elements that a factorization derivation must confront, we retrace the steps

of factorization approximations and compare with calculations that keep all kinematics exact. We

examine the relative importance of such quantities as the target mass, light quark masses, and

intrinsic parton transverse momentum, and argue that a careful accounting of parton virtuality

is essential for treating power corrections to collinear factorization. We use our observations to

motivate searches for new or enhanced factorization theorems specifically designed to deal with

moderately low-Q and large-xbj physics.
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I. INTRODUCTION

Factorization theorems deal with the way interactions at different spacetime scales disen-

tangle, for certain classes of scattering processes, in the asymptotically large limit of some

physical energy [1]. They are especially important in QCD where asymptotic freedom en-

ables calculations of short-distance partonic amplitudes using small-coupling perturbation

theory. Many interesting applications of QCD factorization in hadronic physics are in re-

gions where small-coupling techniques are likely to be useful, but where familiar kinematical

approximations are perhaps questionable, and where the interplay between perturbative and

nonperturbative physics becomes more intricate than at the very highest available energies.

Deeply-inelastic scattering (DIS) of leptons from hadrons at moderately low momentum

transfers Q is a prototypical example of this. Scales of Q ∼ 1 – 2 GeV correspond to

αs/π . 0.1, where αs is the QCD running coupling, so it is reasonable to expect small-

coupling methods to be applicable. Nevertheless, the success of those methods may require

a careful account of effects beyond what is incorporated into the most straightforward and

familiar applications of collinear QCD factorization.

Over the past three decades there has been significant progress in extracting quantitative

information about the partonic structure of the nucleon from high-energy cross sections

within the framework of collinear factorization. Indeed, a wealth of data from a wide range

of high-energy processes, covering many orders of magnitude of the momentum transfer Q

and the Bjorken scaling variable xbj, can be described in terms of universal sets of parton

distribution functions (PDFs), both spin-averaged and spin-dependent — see Refs. [2–4]

for recent reviews. The essential elements of the collinear factorization framework can be

summarized as follows:

1. Factorized formula. An observable, such as a structure function, F , is a convolu-

tion integral over a longitudinal parton momentum fraction, ξ, of a (hard) partonic

coefficient function, Ĥ, and a (soft) PDF, f ,

F (xbj, Q) =

∫ 1

xbj

dξ

ξ
Ĥ

(
xbj
ξ
,
µ

Q

)
f(ξ, µ) + O

(
m

Q

)
, (1)

where Q is the hard scale and µ is a renormalization scale. Here, and throughout this

paper, m will represent a generic mass scale on the order of a hadron mass. When

different flavors of partons are present, the convolution in addition involves matrix
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multiplication.

2. Longitudinal momentum. For collinear factorization, the convolution should only be

over a longitudinal momentum fraction. The collinear approximations apply to the

limit that quantities such as intrinsic transverse momentum or parton virtuality are

O (m) and appear only in the power suppressed error term typically as O (m2/Q2).

3. Universal parton densities. The PDF f(ξ, µ) has a well-defined operator definition that

appears in a diverse class of collinear factorizable processes, and so can be said to be

universal. The universality property is especially central to global PDF analyses [2, 3].

While the collinear factorization paradigm has been extremely useful in applications at

high energies, it is important to examine the extent to which it can be practically utilized at

the lower range of energies of interest to studies of hadron structure in QCD, where αs may be

small, but where effects from beyond the usual kinematical collinear approximations become

important. Such effects include target mass corrections (TMC), higher twist contributions,

or intrinsic kT and parton virtuality. Strictly speaking, collinear factorization derivations

only apply to the limit of small m/Q. Nevertheless, αs(Q)/π remains reasonably small

even for values of Q comparable to the nucleon mass. For example, τ -lepton decays with

Q = 1.78 GeV are used in global extractions of the strong coupling, and find αs/π ≈ 0.1. [5].

In the case of DIS, processes at scales of a few GeV involve an interesting mixture of

perturbative and nonperturbative behavior. For example, some consequences of a small

coupling associated with asymptotic freedom, such as approximate Q2-scaling, persist even

at scales low enough for nonperturbative features like resonances to be clearly observable

(this is sometimes referred to as “precocious scaling”) [6, 7]. The observation of scaling-like

behavior in certain observables in kinematic regions where hadronic (resonance) degrees of

freedom are still prominent is related to the phenomenon of “quark-hadron duality”, which

characterizes the similarity between low-energy cross sections, averaged over appropriate

energy intervals, and those computed from quarks and gluon in perturbative QCD [8–11].

Unraveling the dynamical origin of this behavior remains a challenge for strong interaction

physics, and has motivated studies of the nature of the transition from the perturbative to

nonperturbative regimes of QCD (for a review see Ref. [12]). Structure functions in the

large-xbj region have also been used to explore the behavior of αs(Q) in the nonperturbative

limit [13].
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Many techniques have been put forward for extending the basic collinear factorization

framework to accommodate quantitative analyses of data at lower energy or larger xbj.

Most aim to accommodate small corrections from beyond strict collinearity. One strategy

has been to include certain classes of the O (m/Q) corrections in Eq. (1) by arguing that

some types of power-suppressed corrections are more important than others. Another has

been to perform all orders resummations of terms that involve factors of ln(1− xbj) [14–17].

In some approaches, higher-twist operators in an operator product expansion (OPE) have

been able to be kept explicitly [18, 19].

Of the various types of 1/Q power corrections, TMCs receive particular attention in

moderate- to low-Q applications, where M/Q-suppressed effects that are ordinarily neglected

in standard collinear factorization become important [20]. The most common approach to

quantifying TMCs is based on the pioneering work of Georgi and Politzer [21] and Nacht-

mann [22]. It re-examines the OPE [23–25] and includes some terms that would usually be

marked as power-suppressed, but neglects others such as those associated with quark off-

shellness. This framework has been used to evaluate the TMCs for both the spin-averaged

[21] and spin-dependent [26] structure functions, at twist-two and twist-three levels [27].

Corrections obtained in this way are often called “kinematical higher twists”, to distinguish

them from 1/Q-suppressed “dynamical higher twists” that are associated with multi-parton

operators in the OPE.

Strictly speaking, it is of course not possible to uniquely decouple all TMCs from dy-

namical power corrections. This was appreciated already in the early TMC work within

the OPE [21, 28, 29], in the context of the so-called “threshold problem”, whereby the

target mass corrected structure functions remain nonzero at x = 1 [20, 30–32]. Later

work [18] within a diagrammatic, momentum-space approach extended the collinear fac-

torization framework to lower Q by accounting for multi-parton correlations and TMCs up

to O (1/Q2), including the effects of the parton transverse momentum, kT. That analysis

elucidated the relationship between the parton kT and the parton virtuality, and established

a correspondence with the earlier OPE formulation.

Most methods for dealing with target masses are rooted in a fundamentally collinear

picture, in that all nonperturbative correlation functions depend only on collinear momen-

tum fractions, with an implicit assumption that corrections to purely collinear kinematics

are expressible as a series of powers in m/Q or αs(Q), or both. For moderately low Q,
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an alternative possibility is that a hard factor can indeed be identified and expanded in

small αs(Q), but that the associated nonperturbative factors become fundamentally non-

collinear. In that case, multiple components of intrinsic nonperturbative parton momentum

might need to be included from the outset, not merely in the form of small corrections to

collinearity. Parton correlation functions that go beyond the standard inclusive collinear

PDFs have a long history, and include objects like transverse momentum dependent (TMD)

parton distributions, which include sensitivity to intrinsic transverse components of parton

momentum in addition to the usual longitudinal ones. TMD PDFs are usually used for

describing observables, such as in semi-inclusive DIS, that have direct sensitivity to intrinsic

parton kT. However, the particular kinematical scenarios at moderate Q or larger xbj might

require similar shifts in the underlying partonic picture, even at the totally inclusive level.

A complication with questions about the limitations of any one approach, or about the

advantages of one approach over another, is that it is difficult to precisely estimate the

sizes of errors without greater knowledge of nonperturbative QCD than is currently avail-

able. Nevertheless, improved methods for estimating the sizes of corrections to factorization

theorems are becoming more urgently needed for addressing fundamental theoretical QCD

questions in the relatively complicated environment of moderate- to low-Q physics. A hope

is that new efforts to understand PDFs from the lattice QCD perspective may help.

The strategy of this paper is based on the observation that most methods for deriving

collinear factorization, such as the OPE [23–25], Libby-Sterman style analyses of mass sin-

gularities [33], or soft-collinear effective theories [34], apply generally to most simple renor-

malizable quantum field theories. If a factorization formula is well-behaved in the context of

QCD, with all its complications from non-Abelian gauge invariance and confinement, then

it should certainly be well-behaved in a much simpler renormalizable field theory without

gauge degrees of freedom. We will exploit this by exploring the limitations of factorization

derivations in a simple field theory of a quark coupling to a scalar “diquark” to form a

“nucleon”. We will use this to stress-test the standard collinear parton model kinematical

approximations.

We will argue, on the basis of the scalar diquark theory, that target masses, quark masses,

quark transverse momentum, and quark virtuality are all likely to have similar quantitative

importance at momentum scales of order a few GeV. Moreover, the analysis will allow us

to propose a factorization-based notion of purely kinematical TMCs. For the lowest Q and
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largest xbj that typically define the boundary of the DIS region, we find that corrections to

a collinear picture are not negligible, and new factorization theorems, with correlation func-

tions that depend on multiple components of parton momentum, may be necessary. Finally,

we will illustrate the general usefulness of the scalar diquark theory (or similar models)

as a testing ground for the approximations in a factorization derivation. A factorization

derivation deals, in essence, directly with a power series expansion of the cross section in

m/Q; a factorization theorem is a characterization of the leading power. Factorization is

therefore the appropriate context for characterizing the size and general behavior of power

corrections.

This paper is organized as follows. In Sec. II we define the scalar diquark theory and

discuss its analogy with the pertinent features of QCD. After providing the standard def-

inition of inclusive DIS, the full calculation with exact kinematics is presented in Sec. III.

The computation includes all diagrams, to lowest order in the coupling, that are neces-

sary to maintain electromagnetic gauge invariance. We derive non-factorized expressions for

the contributions to the F1 and F2 structure functions from the “handbag” topology and

1/Q-suppressed “cat’s ears” diagrams. The standard collinear factorization algorithm is

presented in Sec. IV, and the basic steps in the derivation of the collinear PDF are outlined.

The results are found to be identical to those of the exact calculation in the m/Q → ∞

limit, but as Q is lowered one is able to study effects from non-vanishing m/Q directly. In

Sec. V we study these differences numerically, with the goal of analyzing the relative impor-

tance of different types of power corrections at moderate Q, and identifying the regions of

kinematics where the collinearly factorized results may provide good approximations to the

exact structure functions. Finally, in Sec. VI we summarize our findings and discuss their

implications for future analyses.

II. DIS IN A SIMPLE MODEL

A. Definition

We begin by describing the field theory we will use as a proxy for QCD to highlight the

salient aspects of factorization approximations at moderate values of Q. Our results mainly

concern the kinematics of the process, and complications from the non-Abelian nature of the
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full QCD theory do not directly affect the general conclusions. The simplified theory is still

sufficiently nontrivial that the usual hurdles to deriving factorization in a renormalizable

quantum field theory are present.

The theory describes the interaction between a spin-1/2 “nucleon” with mass M repre-

sented by the field ΨN , a spin-1/2 “quark” field ψq with mass mq, and a scalar “diquark”

state φ with mass ms that does not couple to the photon but remains a spectator to the hard

scattering from the quark. The interaction Lagrangian density for this theory is given by a

Yukawa-like interaction,

Lint = −λΨN ψq φ + h.c., (2)

where the coupling λ gives the strength of the nucleon–quark–diquark interaction. In this

theory, the electron couples to quarks via electroweak gauge bosons as in the standard model.

Furthermore, the theory is renormalizable, and the basic derivation of factorization theorems

apply equally well to scattering processes here as to processes in QCD, where non-Abelian

gauge invariance leads to complications that make factorization derivations more involved. In

practice, factorization means that O (Q) physics factorizes from effects sensitive to intrinsic

mass scales. The simplified theory is ideal for stress-testing factorization techniques generally

before applying them to the more challenging environment of a non-Abelian gauge theory

such as QCD.

B. Analogy with QCD

The model described above is useful only to the extent that it highlights important

aspects of actual QCD interactions. This is not a trivial point, since the handbag topology,

while a useful starting point, does not strictly capture the true nature of QCD in DIS; a

more accurate picture is probably closer to Monte Carlo event generators. Namely, partons

generate showers of radiation both before and after the collision, and an arrangement of final

state partons undergoes nonperturbative interactions to form a complex array of observable

hadrons. This is illustrated in Fig. 1(a). This diagram emphasizes the physical picture

of DIS: a sea of parton fluctuations involving quarks, antiquarks and gluons populates the

rapidity interval between the incoming hadron and struck quark rapidities, with the partons

interacting nonperturbatively to produce the final state hadrons. (Final state gluons are not
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FIG. 1: The sequence of approximations leading to the canonical parton model picture: (a) A phys-

ical picture of the complete QCD event. The symbols ⊂ represent the final state hadronization pro-

cess. (b) The leading-power topological region contributing to the inclusive cross section. (c) The

kinematical approximation (represented by the green dotted horizontal line) that produces the

parton model cross section. The line is an instruction to replace the parton momentum by its

approximated values (see Sec. IV). The momentum labels are discussed in the text.

shown explicitly in Fig. 1(a).)

The factorization theorem for inclusive scattering states, in part, that the sum of such

diagrams may be approximated by the handbag topology of Fig. 1(b) in the limit of large Q.

The diagram in Fig. 1(b) belongs to the leading region for inclusive DIS. Finally, a factor-

ization formula emerges once approximations are applied to the active parton momentum,

above and below the horizontal line in Fig. 1(c) separating the hard and soft parts of the

diagram (see Ref. [35] for more details).

The replacements in Fig. 1, from (a) to (b) and then (b) to (c), are only valid after

integration over final states that results in a cascade of cancellations of non-factorizing

effects. The approximations therefore rely on the cross section being fully inclusive. Any

map from exact underlying quark and gluon degrees of freedom to the handbag picture is

unavoidably indirect. Nevertheless, for the factorization theorem to hold, it is a necessary

condition that the approximations on parton momentum represented by the horizontal line

in Fig. 1(c) be at least roughly accurate. Thus, the transition from (b) to (c) will be the focus

of this paper. The main effect of that approximation is simply to alter the kinematics of the

handbag diagram. We stress that such approximations are at the core of QCD factorization
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theorems which can also be studied in the context of the quark-diquark field theory. We

will review those approximations in Sec. IV.

In our simple toy field theory, the magnitude of the factorization error is fixed by the sizes

of mq and ms relative to Q. The same will be true in QCD, for the analogous quantities.

These parameters determine the size of the small components of parton four-momentum

related to k2 and kT. Other aspects of the quark-diquark theory, such as the dominant kT

power-law of correlation functions at large kT, are also the same in QCD. The main difference

between QCD and the toy theory is that, while the values of mq and ms are exactly fixed

by the Lagrangian (and by our restriction to the lowest-order graph) in the diquark theory,

in QCD the effective parton and spectator masses generally have a spectrum of values that

depend on xbj, kT and Q and intrinsic properties of the nucleon wave function. The kine-

matically allowed phase space grows with decreasing xbj and increasing Q, accommodating

more of the soft radiation sketched in Fig. 1(a). Thus, the scales analogous to mq and ms

will generally acquire nontrivial xbj and Q dependence in QCD.

In both theories, however, |k2| and k2T need to be small relative to Q2 to give the m/Q

suppression of neglected terms that is necessary for the factorization theorem in Eq. (1) to

hold. If mq and ms are fixed to reasonable values for a given range of kinematics, and if the

integration over kT is dominated by kT � Q, then we may verify directly that the parton

model approximations are good for the quark-diquark theory. Showing this directly lends

some support to the same approximations in QCD. Conversely, if the approximations fail

dramatically in the toy theory, then it is unlikely that they are safe in QCD for the same

kinematical region, particularly given the additional complications with non-Abelian gauge

invariance, strong coupling, and nonperturbative hadronization.

Carrying this out requires a reasonable set of estimates for ms and mq for a specified

ranges of kinematics. For Q ∼ several GeV, the requirement that m/Q is small implies that

mq should be no larger than several hundred MeV and ms should be such that |k2| is also no

larger than several hundred MeV for small kT. Unfortunately, there are, to our knowledge,

no systematic methods for precisely estimating values for the small components of parton

momentum like mq and |k2|. On the other hand, phenomenological studies of transverse

momentum dependence in semi-inclusive DIS suggest typical ranges for these parameters.

Extractions of TMD functions find typical magnitudes for the intrinsic transverse momentum

width between ≈ 500 MeV and 800 MeV [36–38]. Since mq and ms determine the widths
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and shapes of the kT distribution, these estimates provide reasonable lower bounds on mq

and ms. Earlier estimates gave smaller values. For example, a value of 〈kT〉 ∼ 300 MeV is

roughly consistent with both the zero point energy of bag models as well as non-relativistic

constituent quark models [39], and this is the value quoted in Ref. [21]. It is interesting to ask

why phenomenological extractions tend to produce broader nonperturbative distributions

than these expectations. (See also the discussion in Ref. [36].) For now we leave this to be

addressed in future work.

In this analysis we will use a range of values for mq and ms motivated by the above

estimates, and examine the sensitivity to their variation for Q ∼ 1 – 2 GeV and moderate

xbj. Sensitivity to the exact values of these parameters will be interpreted as a sign that

extra care may be needed when estimating their effects on power corrections. We will return

to the question of exact values for mq and ms in Sec. V A, after examining DIS kinematics

in more detail.

C. Structure tensors

Let us review the standard notation of the inclusive DIS process e(`) + N(P )→ e(`′) +

X(pX) in Fig. 1, where ` and `′ are the initial and final lepton four-momenta, P is the

four-momentum of the nucleon, and pX = pq + ps is the four-momentum of the inclusive

hadronic state X. It will be convenient for our analysis to work in the Breit frame, where the

nucleon moves along the +z direction and the virtual photon moves along the −z axis with

zero energy. We will use light-front coordinates, in which a four-vector vµ = (v+, v−,vT)

has “±” components v± = (v0 ± vz)/
√

2 and transverse component vT. The four-momenta

of the nucleon and the exchanged photon (q = `− `′) can then be written as

P µ =

(
Q

xn
√

2
,
xnM

2

Q
√

2
,0T

)
, (3)

qµ =

(
− Q√

2
,
Q√

2
,0T

)
, (4)

where Q ≡
√
−q2 is the magnitude of the four-momentum transfer, and

xbj ≡
Q2

2P · q
, (5)

xn ≡ −
q+

P+
=

2xbj

1 +
√

1 + 4x2bjM
2/Q2

(6)
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are the Bjorken and Nachtmann scaling variables, respectively. The Bjorken variable xbj

can also be written in terms of the Nachtmann variable,

xbj =
xn

(1− x2nM2/Q2)
. (7)

Considering the leading region, Fig. 1(b), the final state quark (or “jet”) momentum is pq,

and the momentum of the spectator system is ps, with

p2q = m2
q , p2s = m2

s . (8)

We also define a momentum transfer variable,

k ≡ pq − q = P − ps . (9)

In a handbag diagram (see Fig. 2(a) below), k would be the momentum of the incoming

struck quark. The invariant mass squared of the photon–nucleon system is

W 2 = (P + q)2 = (pq + ps)
2 = M2 +

Q2(1− xbj)
xbj

. (10)

The cross section for the inclusive DIS process is

dσ

dxndQ2
=

4α

ΦQ4
LµνW

µν , (11)

where α is the electromagnetic fine structure constant, Φ is a flux factor, and Lµν = 2(lµl
′
ν +

l′µlν − gµνl · l′) is the leptonic tensor. For the scattering of an unpolarized lepton from an

unpolarized nucleon, the hadronic tensor W µν is usually expressed in terms of the spin-

averaged structure functions F1 and F2,

W µν(P, q) =

(
−gµν +

qµqν

q2

)
F1

(
xn, Q

2
)

+

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
F2 (xn, Q

2)

P · q
. (12)

The structure functions are obtained from the hadronic tensor by applying projection oper-

ators,

Fi
(
xn, Q

2
)

= Pµν
i Wµν(P, q), i = 1, 2, (13)

where

Pµν
1 = −1

2
Pµν
g +

2Q2x2n
(M2x2n +Q2)2

Pµν
PP , (14a)

Pµν
2 =

12Q4x3n (Q2 −M2x2n)

(Q2 +M2x2n)4

(
Pµν
PP −

(M2x2n +Q2)
2

12Q2x2n
Pµν
g

)
, (14b)
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with the components

Pµν
g = gµν , Pµν

PP = P µP ν . (15)

In Eq. (12) we have written the structure functions in terms of the Nachtmann xn variable

instead of Bjorken xbj, as is more commonly presented in the literature. The reason is that

xn is the natural scaling variable in the parton model approximation k+ ≈ −q+ when M is

not set to zero. In the limit that power suppressed terms can be dropped, the two scaling

variables are equal,

xn = xbj +O

(
x2bjM

2

Q2

)
, (16)

although we stress that the xn ≈ xbj approximation is not generally necessary and is separate

from the approximations needed to factorize short and long distance physics in a theory

with interactions. Both {xn, Q} and {xbj, Q} are equally valid as independent kinematic

variables; since xn is the natural variable when hadron masses are not neglected, we will use

it everywhere unless specified otherwise.

III. EXACT KINEMATICS

Having defined the model and the quantities of interest, in this section we calculate the

DIS structure functions from the Lagrangian Lint in Eq. (2) at the lowest nontrivial order,

O (αλ2). The corresponding graphs derived from Lint are shown in Fig. 2. Graph (A) has

the familiar handbag diagram topology, while graphs (B) and (C) are power-suppressed at

large Q but are needed for exact electromagnetic gauge invariance — see Appendix A. We

exclude the elastic limit of xbj = 1 and require strictly W > M , so that diagrams with an

on-shell nucleon in the final state are forbidden.

Graphs (B) and (C) represent the direct coupling of the photon to the nucleon, with

production of a far off-shell nucleon in the intermediate state. In the quark-diquark field

theory the coupling is point-like, while in QCD it corresponds to a higher-twist interaction

internal to the nucleon wave function, with the final state quark interacting with the nucleon

remnant to form a highly virtual intermediate state.

We begin by presenting the organization of the calculation of the graphs in Fig. 2, with

no approximations whatsoever on kinematics. Of course, the result will not be factorized.
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k

q

P

(A)

k + qq

P

(B)

k

q

P
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FIG. 2: Contributions to the hadronic tensor from diagrams allowed by the interaction La-

grangian (2) to O
(
αλ2

)
in the couplings. Graph (A) is a manifestation of the familiar handbag

diagram and represents the topology of the leading region. Graphs (B) and (C) are suppressed by

powers of 1/Q when kT is small, but are needed for gauge invariance. The Hermitian conjugate

for (C) is not shown. The momenta on the various legs are as indicated.

Later, we will compare with the canonical parton model approximations that factorize the

graphs into a hard collision and a PDF contribution.

The exact calculation is organized by separating the integrand of the hadronic tensor into

factors representing different parts of the amplitude,

W µν(P, q) =
∑

j∈ graphs

∫
dk+dk−d2kT

(2π)4
[Jac] Tµν

j [Prop]j δ(k
− − k−sol) δ(k

+ − k+sol), (17)

where k is the four-momentum of the interacting parton, and the sum over j runs over

the graphs labeled by j ∈ {A,B,C}. The propagator denominators in Eq. (17) have been

gathered into the factor [Prop]j, and the traces over the γ-matrices are denoted by Tµν
j . The

resulting Jacobian factor associated with the integration over k± is denoted as [Jac]. The

δ-functions stem from the on-shell conditions for the final state quark and scalar diquark,

(q + k)2 −m2
q = 0 , (18a)

(P − k)2 −m2
s = 0 . (18b)

Solving this system of equations for k+ ≡ ξP+ and k− gives two solutions for k−. In the

limit of Q → ∞ with xn and kT fixed, the two solutions behave as k− ∼ ∞ and k− ∼ 0,

respectively. Selecting the latter as the physically relevant solution for DIS, we obtain the

values of the light-cone parton momenta k±sol with on-shell final state quark and diquark,

k− = k−sol ≡
√

∆−Q2(1− xn)− xn
(
m2
s −m2

q −M2(1− xn)
)

2
√

2 Q (1− xn)
, (19a)

k+ = k+sol ≡
k2T +m2

q +Q(Q+
√

2k−)
√

2(Q+
√

2k−)
, (19b)

13



where the discriminant ∆ is

∆ =
[
Q2(1− xn)− xn

(
M2(1− xn) +m2

q −m2
s

) ]2
− 4xn(1− xn)

[
k2T(Q2 + xnM

2)−Q2M2(1− xn) +Q2m2
s + xnM

2m2
q

]
. (20)

The parton virtuality is obtained by substituting Eqs. (19a)–(19b) into

k2 = 2k+k− − k2T . (21)

The Jacobian factor in Eq. (17) is

[Jac] =
xnQ (2k− +

√
2Q)

4(1− xn)k−Q2(
√

2k− + 2Q) + 2
√

2
[
Q4(1− xn)− (k2T +m2

q)xn(Q2 + xnM2)
] .
(22)

The exact propagator factors for each of the contributions in Fig. 2 are

[Prop]A =
1

(k2 −m2
q)

2
, (23a)

[Prop]B =
1(

(P + q)2 −M2
)2 =

x2n(
Q2(1− xn)−M2x2n

)2 , (23b)

[Prop]C =
1

(k2 −m2
q)

xn(
Q2(1− xn)−M2x2n

) . (23c)

The numerator factors Tµν
j = Tµν

j (P, k,mq,ms) are obtained from the Dirac traces in each

graph in Fig. 2,

Tµν
A = Tr

[
(/P +M)(/k +mq)γ

µ(/k + /q +mq)γ
ν(/k +mq)

]
, (24a)

Tµν
B = Tr

[
(/P +M)γµ(/P + /q +M)(/k + /q +mq)(/P + /q +M)γν

]
, (24b)

Tµν
C = 2 Tr

[
(/P +M)(/k +mq)γ

µ(/k + /q +mq)(/P + /q +M)γν
]
, (24c)

where the factor of 2 in Tµν
C accounts for the Hermitian conjugate of Fig. 2(C). In evaluating

the traces Eq. (24), it will be convenient to define the projected quantities

Tg
j = Pµν

g Tj µν , TPP
j = Pµν

PP Tj µν . (25)
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Evaluating the projections explicitly,

Tg
A =− 8

[
2(P · k +mqM) k · q + (k2 − 3m2

q)P · k − 2Mm3
q + (m2

q − k2)P · q
]
, (26a)

Tg
B = 8

[
2M3mq + P · k (2M2 −Q2)− 2(M2 +Mmq)Q

2

+2k · q (M2 − P · q) + [2(M2 +Mmq) +Q2]P · q
]
, (26b)

Tg
C =− 16

[
−2(P · k)2 + k2M2 + (M2 −mqM) k · q −M2m2

q + 2MmqQ
2

+(m2
q −Mmq)P · q − 2P · k (k · q +Mmq −Q2 + P · q)

]
, (26c)

TPP
A = 4

[
4(P · k)3 + 4(P · k)2(Mmq + P · q)

−M P · k (3k2M + 2M k · q − 3Mm2
q − 4mq P · q)

−M3mq(k
2 + 2k · q −m2

q)−M2(k2 −m2
q)P · q

]
, (26d)

TPP
B = 4M2

[
P · k (4M2 +Q2) + 4M2(k · q +Mmq)−Q2(4M2 +Mmq)

+[2k · q + 4(M2 +Mmq)−Q2]P · q
]
, (26e)

TPP
C = 8M

[
4M(P · k)2 +M P · k (2k · q + 4Mmq −Q2)

−M2[2M(k2 + k · q −m2
q) +mqQ

2]

−[k2M − (2M +mq)(2P · k +Mmq)]P · q
]
. (26f)

Putting all the components together, the exact nucleon structure functions F1,2 can be

written in terms of the kT-unintegrated distributions,1

F1

(
xn, Q

2
)

=

∫
d2kT

(2π)2
F1(xn, Q

2, k2T), (27a)

F2

(
xn, Q

2
)

=

∫
d2kT

(2π)2
2xnF2(xn, Q

2, k2T), (27b)

1 Note that these are not PDFs, which are only defined after factorizing approximations are applied.
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where

F1

(
xn, Q

2, k2T
)

=
1

(2π)2
[Jac]

∑
j

(
−1

2
Tg
j +

2Q2x2n
(M2x2n +Q2)2

TPP
j

)
[Prop]j, (28a)

2xnF2

(
xn, Q

2, k2T
)

=
1

(2π)2
12Q4x3n(Q2 −M2x2n)

(Q2 +M2x2n)4

×[Jac]
∑
j

(
TPP
j −

(M2x2n +Q2)2

12Q2x2n
Tg
j

)
[Prop]j. (28b)

For later convenience, the function F2 in Eqs. (27b) and (28b) has been defined with a factor

2xn pulled out in order to more directly compare the behavior of the kT dependence of the

kT-unintegrated functions (see Sec. V below).

Note that exact kinematics impose a specific upper bound on kT. To determine its value,

write W in the center-of-mass (c.m.) system,

W = p0q + p0s

∣∣∣
c.m.

=
√
m2
q + k2T + k2z +

√
m2
s + k2T + k2z

∣∣∣
c.m.

. (29)

For fixed external kinematics, the maximum kT occurs when kz = 0. Setting√
m2
q + k2Tmax +

√
m2
s + k2Tmax = W (30)

and solving for kTmax gives

kTmax =

√[
xbj(M2 − (mq +ms)2) +Q2(1− xbj)

][
xbj (M2 − (mq −ms)2) +Q2(1− xbj)

]
4xbj

[
Q2(1− xbj) +M2xbj

] ,

(31)

where Eq. (10) has been used for W . Results for the exact structure functions will be shown

in Sec. V.

IV. FACTORIZATION

In this section, we review the minimal kinematic approximations needed for standard

factorization with low-order handbag graphs such as in Fig. 3. More details with extensive

discussion of the justification for the applicability of factorization may be found, for example,

in Sec. 6.1.1 of Ref. [35].

The first step in a collinear factorization derivation in DIS is to identify and restrict

attention to leading (in m/Q) region graphical topologies. One such configuration, and the
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only one contributing at zeroth order coupling in the hard part, is the handbag topology

of Fig. 3(a), with two final state jets: one with momentum k′ = k + q, and the other

with momentum P − k. The “cat’s ears” graph topologies, corresponding to Figs. 2(B)

and 2(C), are suppressed by powers of 1/Q2 and so do not contribute in the leading power

approximation.

The contribution to the hadronic tensor from the amplitude in Fig. 3(a) has the general

form

W µν(P, q) =

∫
d4k

(2π)4
Tr
[
Hµ(k, k′) J(k′)Hν†(k, k′)L(k, P )

]
. (32)

Here Hµ(k, k′) and Hν†(k, k′) represent the hard scattering blobs in Fig. 3(a), where all

internal lines off-shell by at least O (Q2). The target, L(k, P ), and jet, J(k′), blobs have

internal lines off-shell by O (m2), where the generic hadronic mass scale m ∈ {mq, ms, M}.

The parton lines that connect the various blobs have small off-shellness, with k2 and k′2 ∼

O (m2). In the Breit frame k+ ∼ O (Q). The low transverse momentum region is where

kT ∼ O (mT), where mT denotes the transverse momentum components of the parton

momentum, each of which is of O (m). The power counting for the struck parton momentum

is therefore

k ∼
(
O (Q) , O

(
m2

Q

)
, O (mT)

)
. (33)

We remind the reader that m symbolizes any typical hadronic mass scale. To factorize the

cross section, one exploits Eq. (33) to justify a standard set of kinematic approximations

that we now review.

In the hard subgraphs, terms proportional to k2 or k′2 are small relative to the O (Q2)

off-shellness of the propagators. Since k ·q = k+q−+O (m2), the replacement of k ·q → k+q−

in the hard blobs therefore introduces only O (m2/Q2) suppressed errors at small kT. Thus,

the momenta in the hard parts are replaced by partonic “hatted” variables k̂ and k̂′,

k → k̂ ≡
(
k̂+, 0,0T

)
; M2/Q2 → 0 , (34a)

k′ → k̂′ = k̂ + q, (34b)

with

k̂2 = k̂′2 = 0 . (34c)
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k
k′

q

P
L(k, P )

J(k′)H H†

(a)

k̂

k̃

q

P
L(k̃, P )

J(k̃′)H H†

t t
ttk̂′ k̃′

(b)

q

P

k̂

k̃

q

P

t t
(c)

FIG. 3: The steps in the usual factorization approximation applied to a handbag topology. (a) Un-

approximated handbag topology, with H denoting the hard scattering of a virtual photon from a

quark with momentum k to one with momentum k′ = k+ q, J(k′) is the jet function, and L(k, P )

is the soft target amplitude. (b) Handbag diagram with standard factorization, with the parton

momentum approximated by k̂ in the hard function H, and by k̃ in the jet and soft functions.

The hooks represent the point of application of kinematic approximations on parton momentum.

(c) Application of the O
(
λ2
)

contribution in the theory from Sec. II.

These equations give

k̂+ = xn P
+ xn→xbj

= xbjP
+, (35a)

k̂′ =
(
0, q−, 0T

)
. (35b)
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The replacement Hµ(k, k′)→ Hµ(k̂, k̂′) is therefore a good approximation up to O (m2/Q2)

corrections. (The replacement of xn by xbj is not necessary to obtain factorization, but it is

conventional to use xbj.)

Internal lines in the lower blob L(k, P ) are off-shell by O (m2). With the replacement of

k+ → xbjP
+ +O (m2/Q),

k2 = 2k+k− − k2T

= 2(xbjP
+)k− − k2T︸ ︷︷ ︸
O(m2)

+ O
(
m4/Q2

)
, (36)

(P + k)2 = M2 + 2P+k− + 2P−k+ + 2k+k− − k2T

= M2 + 2P+k− + 2P−(xbjP
+) + 2(xbjP

+)k− − k2T︸ ︷︷ ︸
O(m2)

+ O
(
m4/Q2

)
, (37)

where the underbraces collect terms that are O (m2), and the errors induced by approximat-

ing k+ are O (m4/Q2). Therefore, the small components k− and kT must be kept exact to

avoid introducing unsuppressed errors. Implementing this approximation requires another

momentum four-vector k̃µ, defined in the Breit frame as

k̃ ≡
(
xbjP

+, k−,kT

)
, (38)

so that the replacement L(k, P )→ L(k̃, P ) is a good approximation up to terms suppressed

by powers of O (m2/Q2).

Similarly, the internal lines of J(k′) are off-shell by O (m2), while the power counting for

k′ is

k′ ∼
(
O (Q) , O (Q) , O (mT)

)
. (39)

To find a suitable approximation, consider a frame labeled by “∗”, where the outgoing

transverse momentum vanishes, k′∗T = 0. In terms of the Breit frame variables, one has

k′∗ =

(
k+ + q+ − k2T

2(q− + k−)
, q− + k−,0T

)
, (40)

so that the outgoing parton’s virtuality is

k′∗ 2 = 2
(
k+ + q+

) (
k− + q−

)
− k2T

∼ 2
(
k+ + q+

)
q− − k2T +O

(
m3

Q

)
. (41)
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Therefore, the smallest component of k, namely k−, can be neglected in J(k′). To implement

this approximation we define the approximate outgoing momentum four-vector

k′ → k̃′ ≡
(
l+, q−,0T

)
, (42)

where l+ ≡ k+ − xbjP+ + k2T/(2q
−). Changing the integration variables from k+ to l+ in

Eq. (32) gives

W µν(P, q) =

∫
dl+dk−d2kT

(2π)4
Tr
[
Hµ(Q2)J(l+)H†ν(Q2)L(k̃, P )

]
+O

(
m2

Q2

)
W µν . (43)

The integrations can now be pushed into separate factors for the target and jet blobs,

W µν(P, q) = Tr

[
Hµ(Q2)

(∫
dl+

2π
J(l+)

)
Hν†(Q2)

(∫
dk−d2kT

(2π)3
L(k̃, P )

)]
+ O

(
m2

Q2

)
W µν .

(44)

To complete the factorization, the jet and target blobs are decomposed in a basis of Dirac

matrices,

J(l+) = γµ∆µ(l+) + ∆S(l+) + γ5∆P (l+) + γ5γµ∆µ
A(l+) + σµν∆

µν
T (l+), (45a)

L(k̃, P ) = γµΦµ(k̃, P ) + ΦS(k̃, P ) + γ5ΦP (k̃, P ) + γ5γµΦµ
A(k̃, P ) + σµνΦ

µν
T (k̃, P ), (45b)

in terms of vector, scalar, pseudoscalar, axial vector and tensor functions. If we focus only

on spin- and azimuthally-independent cross sections, only the first term in Eq. (45a) and

the first term in Eq. (45b) need be kept. To leading power, only the “−” component of ∆µ

and only the “+” component of Φµ contribute, so that the jet and target operators can be

expanded as

J(l+) = γ+∆−(l+) +O

(
m2

Q2

)
J + (spin dep.)

=
/̂k
′

4q−
Tr
[
γ−J(l+)

]
+O

(
m2

Q2

)
J + (spin dep.), (46a)

L(k̃, P ) = γ−Φ+(k̃, P ) +O

(
m2

Q2

)
L+ (spin dep.)

=
/̂k

4xnP+
Tr
[
γ+L(k̃, P )

]
+O

(
m2

Q2

)
L+ (spin dep.), (46b)

where the spin-dependent terms are not written explicitly. Using Eqs. (46), the spin-averaged

hadronic tensor is then

W µν(P, q) =
1

2Q2
Tr
[
Hµ(Q2)/̂k

′
H†ν(Q2)/̂k

](∫ dl+

4π
Tr

[
γ−

2
J(l+)

])
×
(∫

dk−d2kT

(2π)3
Tr

[
γ+

2
L(k̃, P )

])
+O

(
m2

Q2

)
W µν . (47)
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Finally, the integration contour for l+ is deformed away from the k′ pole until l+q− is O (Q2).

To lowest order in λ2, J can then be replaced by the massless, on-shell cut diagram, so the

hadronic tensor in Eq. (47) becomes

W µν(P, q) =
1

2Q2
Tr
[
Hµ(Q2)/̂k

′
H†ν(Q2)/̂k

]
︸ ︷︷ ︸

Hµν(Q2)

(∫
dk−d2kT

(2π)3
Tr

[
γ+

2
L(k̃, P )

])
︸ ︷︷ ︸

f(xbj)

+ O

(
m2

Q2

)
W µν . (48)

This is the standard factorized hadronic tensor. The hard scattering factorHµν(Q2) contains

the short distance [O (Q2)] physics, and the parton distribution f(xbj) contains large distance

[O (m2)] physics associated with the initial bound state. The transition from Eq. (32) to

Eq. (48) is represented graphically in Fig. 3(a)–(c).

From the hadronic tensor, one recovers the structure functions in the collinear (parton

model) approximation,

Fi(xbj, Q
2) = Hi(Q

2) f(xbj) +O

(
m2

Q2

)
, i = 1, 2, (49)

where

Hi(Q
2) ≡ Pµν

i

1

2Q2
Tr
[
Hµ(Q2) /̂k′H†ν(Q

2) /̂k
]
. (50)

The hard amplitude Hµ is Hµ(Q2) = γµ, so that the projected hard functions in Eq. (50)

become

H1(Q
2) = 1, (51a)

H2(Q
2) =

2Q2xbj
(
Q2 −M2x2bj

)(
Q2 +M2x2bj

)2
= 2xbj

(
1 +O

(
M2x2bj
Q2

))
. (51b)

In the limit of large Q and at fixed xbj, the graphs in Figs. 2(B)–(C) are suppressed by

powers of m/Q, and the structure function in the factorized approximation comes entirely

from the contribution in Fig. 2(A). The graphical topology is a specific instance of the

handbag diagram in Fig. 3(c).

The PDF f(xbj), which describes the lower blob in Fig. 3(a) in the factorized approxi-

21



mation, is

f(xbj) =

∫
dk−d2kT

(2π)3

(
1

k̃2 −m2
q

)2

Tr

[
γ+

2
(/̃k +mq)(/P +M)(/̃k +mq)

]
× (2π) δ+

(
(P − k̃)2 −m2

s

)
. (52)

The on-shell δ-function eliminates the integration over k−, giving

k− = −xbj [k2T +m2
s + (xbj − 1)M2]√

2Q(1− xbj)
, (53)

and the parton virtuality becomes

k̃2 = −k
2
T + xbj [m2

s + (xbj − 1)M2]

1− xbj
. (54)

Finally, the kT-unintegrated functions F1,2 defined in Eqs. (27) are given, in the collinear

factorization approximation, by

F1(xbj, Q
2, k2T) = F2(xbj, Q

2, k2T) =
1

(2π)2
(1− xbj)

[
k2T + (mq + xbjM)2

][
k2T + xbjm2

s + (1− xbj)m2
q + xbj(xbj − 1)M2

]2 .
(55)

These structure functions only depend on xbj and k2T and are independent of Q2, as would

be anticipated for the parton model approximation. The equality F1 = F2 is a version of

the Callan-Gross relation [40], but for the unintegrated structure functions. Note that the

parton virtuality k̃2 in Eq. (54) in the PDF is an approximation to the true parton virtuality.

To develop intuition about the approximations just made on the parton momentum, it

is useful to Taylor expand the exact k+, k− and k2 from Eqs. (19)–(20) through the first
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several powers of m2/Q2,

ξ = xbj

[
1 +

k2T +m2
q − x2bjM2

Q2

−
x3bjM

2
(
k2T +m2

q

)
+ xbj

(
k2T +m2

q

)
(k2T +m2

s −M2)− 2M4x4bj(xbj − 1)

Q4 (xbj − 1)

]

+O

(
m6

Q6

)
, (56)

k− = − xn

Q
√

2

[
k2T +m2

s + (xn − 1)M2

1− xn
−
xn
(
k2T +m2

q

)
(k2T +m2

s)

Q2(xn − 1)2

]

+O

(
m · m

5

Q5

)
, (57)

k2 = − k2T + xn [m2
s + (xn − 1)M2]

1− xn

−
xn
(
k2T +m2

q

) (
k2T + [ms + (xn − 1)M ] [ms − (xn − 1)M ]

)
Q2(xn − 1)2

+O

(
m2 · m

4

Q4

)
. (58)

Here we have expressed ξ in terms of xbj because the leading power contribution to ξ is

conventionally written as xbj. The lowest non-vanishing powers in Eqs. (57)–(58) match

Eqs. (53)–(54), respectively, confirming that the approximations leading up to Eq. (55) are

valid for sufficiently large Q. For k− and k2, it is more convenient to maintain expressions

in terms of xn. Of course, xn may be replaced everywhere here by xbj without changing the

validity of the expressions.

The formula for the O (λ2) PDF in Eq. (52) could also have been obtained directly from

the operator definition of the collinear PDF, calculated in the scalar diquark field theory.

The definition of the PDF emerges automatically from the constraints of factorization. This

is an important aspect of the steps above, and is a key of factorization derivations.

V. EXACT AND FACTORIZED STRUCTURE FUNCTIONS: A COMPARISON

In this section we compare DIS structure functions in the exact calculation of Sec. III with

the corresponding calculations in the factorization approximation of Sec. IV. We restrict
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consideration to unintegrated structure functions, differential in kT. This permits a direct

examination of the impact of the approximations from the previous section point-by-point

in transverse momentum. Exact kinematics involve sensitivity to all components of parton

momentum, including parton virtuality, so the notion of factorization with a collinear PDF

will not apply to the exact case. However, the terms in a direct m2/Q2 expansion of the

exact result can hint at ways to correct the collinear picture.

The power counting in Eq. (33), with m2 � Q2, must be reasonably well satisfied for the

steps of the previous section to constitute a good approximation. Namely, the magnitude of

the quark virtuality |k2| must be small relative to the hard scale Q2. While the distribution

of k2 in an isolated proton is an intrinsic property of the bound state, the range of k2 probed

in a DIS collision is sensitive to external kinematical parameters like xbj and M . Therefore,

the validity of the |k2| � Q2 assumption also depends on external kinematics.

To make this clear, one may directly examine the behavior of Eqs. (19)–(20) in various

limiting cases. For example, consider fixed Q2 and the limit of xn → 1. The ± components

of k are then

k+ → Q√
2

(
1 +

m2
q −m2

s

M2 +Q2

)
+O (|1− xn|) , (59a)

k− → − 1

2
√

2Q

(
Q2 −M2 +

(M2 +Q2)(2k2T +m2
s +m2

q)

m2
s −m2

q

)
+O (|1− xn|) . (59b)

Next taking the large-Q2 limit, the quark virtuality becomes

lim
m/Q→0

lim
xn→1

k2 = −Q
2

2

(
1 +

2k2T +m2
q +m2

s

m2
s −m2

q

)
. (60)

The typical value of −k2 is therefore of order Q2 in the simultaneous limits of large xn

and large Q. (From Eq. (58), this remains true if the order of the limits is reversed.)

The increasing size of |k2| with increasing xbj is a symptom of parton kinematics becoming

non-collinear. As xn becomes very large, it eventually becomes questionable whether an

interpretation in terms of universal collinear parton densities is possible. We will return to

this discussion in Sec. V D.

A. Values for mq and ms

To proceed with numerical calculations, we must return to the discussion in Sec. II B

regarding choices for mq and ms. In QCD, the mass of the target remnant will tend to grow
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with energy and Q2, so the choice of ms requires greater care. Lower bounds on ms can be

obtained from elementary kinematic considerations. Since the invariant mass of the final

state system cannot be less than that of the lowest baryon state, namely the nucleon, then

W 2(xbj, Q) = (ps + pq)
2 > M2 . (61)

Working in the rest frame of the quark–diquark system,

M −mq < ms ≤ W (xbj, Q)−mq . (62)

This constrains ms to lie in a band whose width depends on xbj and Q, with the range

decreasing as xbj → 1.

We are interested in the numerical effects of the factorization approximations for some

selected fixed values of k2. However, k2 is determined by external kinematics and the field

theory parameters mq and ms. Therefore, we will choose ms on a case-by-case basis to

ensure specific values of k2 designed to test power counting assumptions for reasonable k2.

The relationship between k2 and ms depends on other kinematic parameters, so we will need

to choose a new ms for each kinematical scenario in order to keep k2 fixed. To see this, note

that for fixed xbj and large Q2, the relationship between ms and k2 is

m2
s ≈ (1− xbj)

(
M2 +

|k2|
xbj

)
. (63)

For different xbj, ms must be modified if k2 is to remain fixed. In the next section we will

use the exact relationship between mq, ms, k
2 and kT to choose specific values for ms and

mq so that |k2| is no greater than several hundred MeV at small kT.

If the actual typical kT, k2, and mq are clustered around a range of very small values,

then collinear factorization might be satisfied with very high accuracy even for relatively

small Q. However, phenomenological studies of transverse momentum dependence in semi-

inclusive DIS restrict typical kT-widths to ≈ 500 – 800 MeV [36–38], while model-based

estimates suggest 〈kT〉 ≈ 300 MeV [21]. (See also Ref. [41] and references therein.) Thus,

the values we choose for mq and |k2| (or ms) cannot be simultaneously much less than about

300 MeV without creating tension with measurements of transverse momentum dependence

in semi-inclusive DIS. Also, Eq. (62) means that ms cannot be much less than M if mq

is small. Therefore, we will choose combinations of ms and mq such that |k2| is several

hundred MeV, mq is in the vicinity of mq ≈ 300 MeV, and the peak of the transverse
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momentum distribution is not greater than 300 MeV. (This peak location is somewhat small

relative to the above examples from phenomenology; this will ensure that we underestimate

O (k2T/Q
2) kinematical errors to the collinear factorization formula.) The details of the

resulting example calculations are discussed in the following.

B. Which power corrections are most important?

In the canonical factorization approximations of Sec. IV, there are four independent types

of neglected power-suppressed terms:

∼
m2
q

Q2
; Type− A (64a)

∼ k2

Q2
; Type− B (64b)

∼ k2T
Q2

; Type− C (64c)

∼ M2

Q2
. Type−D (64d)

For the purposes of power counting, we use k2 as the independent variable for Type–B cor-

rections in place of m2
s. Of course, beyond leading power-law corrections, these suppression

factors come in combinations. For example, the ∼ O (m6/Q6) power corrections include

terms proportional to

k2

Q2
× k2T
Q2
× M2

Q2
. (65)

Therefore, it is not generally meaningful to address Type–D suppressed corrections inde-

pendently of Type–B and Type–C suppressed corrections. Effects from M2/Q2 in higher

powers are sensitive to the range of k2.

Still, it is possible in principle that corrections suppressed by exactly one type of factor in

Eqs. (64a)–(64d) alone might be important. For example, it is reasonable to speculate that

terms with only a Type–D suppression may be large, whereas terms with any of Type–A

through Type–C suppressions are negligible. Now that the exact and factorized calculations

of the structure functions in the quark–diquark theory are available to us, we can test the

feasibility of such an approximation directly by examining the relative importance of Type–A

through Type–C corrections as compared with pure Type–D corrections. When corrections

from isolated M/Q terms are useful, the quality of the approximations from Sec. IV should
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FIG. 4: The unintegrated structure function kTF1 for xbj = 0.6 and Q = 2 GeV (top row) and

Q = 20 GeV (bottom row), for different values of mq and ms calculated using both the exact

expressions (solid red curves) and the canonical collinear factorization approximation (dashed blue

curves). The choices of ms are to fix k2 at the values discussed in Sec. V A. At the higher Q value

the collinear calculation is almost indistinguishable from the exact, while at the lower Q value the

exact calculation diverges as it approaches the kinematical upper limit of kT.

nonetheless be nearly independent of the exact values of kT, mq and k2, so long as they

lie within a reasonable range. If, however, small variations in kT, mq or k2 produce large

changes in the quality of the factorization approximation, then target mass corrections from

terms like Eq. (65) are too large to ignore, and it is unlikely that isolated M/Q corrections

alone can improve accuracy.

To illustrate the numerical dependence of the structure functions on the mass parameters

mq and ms, we show in Fig. 4 the unintegrated F1 (xn, Q
2, k2T) structure function, weighted

by kT, as a function of kT. (The results for the F2 structure function are qualitatively

similar, and do not alter our conclusions.) The kinematics are chosen to be representative

of typical values relevant to large-xbj studies at modern accelerator facilities, xbj = 0.6

for Q = 2 GeV, which corresponds to W ≈ 2 GeV, and a higher Q value, Q = 20 GeV,

characteristic of the deep scaling region. For the quark mass we take mq = 0.3 and 0.5 GeV,

while the values for the diquark mass ms are chosen to ensure that the quark virtuality
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v ≡
√
−k2 = 300 MeV or 500 MeV at kT = 0. These values are chosen to be consistent

with the kinematical constraints discussed in Sec. V A and, as seen in Fig. 4, they produce

distributions peaked at kT slightly less than ≈ 300 MeV. For the exact calculation, there

is an integrable kinematical square root divergence at kT = kTmax that is an artifact of our

simplification to a 2 → 2 process. All graphs from Fig. 2 are included now, as required for

an O (λ2) treatment without kinematical approximations. Note that with exact kinematics

it is now only the sum of the graphs in Fig. 2 that is gauge invariant.

At the higher Q value in Fig. 4 (bottom row), the factorized structure function is almost

indistinguishable from the exact result. This validates that the approximate and exact

calculations match in the large-Q limit, even for kT & 1 GeV. By contrast, for the lower Q

value in Fig. 4 (top row), the exact calculation shows a clear deviation from the factorization

approximation, both in size and shape. It is clear that if corrections of order ∼ 10% are

important, then the roles of Type-A through Type-C corrections need to be considered on

the same footing with Type-D corrections. The top row of Fig. 4 shows that the quality

of the collinear factorization approximations for Q ∼ few GeV is indeed sensitive to the

exact values of k2 and mq, whereas the applicability of the collinear factorization paradigm

assumes independence of these nonperturbative parameters.

Even for the large Q value in Fig. 4, the shape of the kT distribution is sensitive to the

precise values of mq and ms, with the unintegrated structure function diverging for small

values of kT as mq and ms → 0. This is to be expected because the kT dependence near

kT ≈ 0 is determined by the nonperturbative physics that regulates the infrared limit in

the hadron wave function. More relevant is that the approximation errors are vanishingly

small at kT < 1 GeV and large Q, independently of ms and mq, as long as they lie within a

reasonable range as discussed in Sec. V A.

Note also that the incoming quark virtuality k2 is forced by kinematics to decrease to

large negative values with increasing kT. This is illustrated in Fig. 5, which shows the quark

virtuality v as a function of kT for fixed xbj = 0.6 and Q = 2 and 20 GeV. The exact and

approximate results for v coincide at the high Q value but differ visibly small kT and large

kT for the lower Q. At large kT, the virtuality becomes linear with kT, in accordance with

Eq. (58) in the m/Q→ 0 limit. Even assuming v < 1 GeV for kT < 1 GeV, the exact value

of k2 (and its dependence on kT) impacts the shape of the kT distribution and the quality

of the usual factorization approximations.
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FIG. 5: The dependence of the parton virtuality v ≡
√
−k2 on kT evaluated at exact (solid

red curves) and approximate collinear (dashed blue curves) kinematics, for xbj = 0.6 at fixed

Q = 2 GeV (left panel) and Q = 20 GeV (right panel), for quark mass mq = 0.3 GeV and

spectator diquark mass ms corresponding to v(kT = 0) = 0.5 GeV (see Table I).

C. The role of transverse momentum

The factorization approximations discussed in Sec. IV apply to the limit in which kT/Q ∼

m/Q � 1. In QCD, however, there are ultraviolet divergences from the integrals over

transverse momentum in the PDF. The standard way to deal with this is to renormalize the

PDF.

When Q is large, vertex corrections involve O (Q2) off-shell propagators, so the appropri-

ate renormalization scale is µ ∼ Q. By comparison, the kinematics of real gluon emission

restrict “large” transverse momentum to be . O
(
Q
√

1− xbj)
)

[see Eq. (31)], so that the

corresponding scale is µ ∼ Q
√

1− xbj. (In our model calculation, the spectator plays the

role kinematically of a real gluon emission.) If xbj is not too large and Q� m, this mismatch

between real and virtual emissions is not a serious problem because kTmax is at least O (Q)

for all graphs. The collinear parton distribution Eq. (52) becomes, schematically,

f(xbj) ∝
∫ k2Tmax∼Q

2

M2
cut

dk2T
k2T

∝ ln
Q2

m2
, (66)

where the lower bound Mcut on the integration is to restrict attention to the large kT ∼ Q

component of the integration (namely, the contribution to f(xbj) from the large-kT region

varies logarithmically with Q2). As long as xbj is not too large, Eq. (66) is consistent with
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the corresponding logarithms from virtual loops. The resulting logQ2 dependence is the

familiar Q2 dependence that arises in the standard DGLAP-type evolution equations which

produce the logarithmic scaling violations of PDFs [42–44].

However, if xbj ≈ 1−m2/Q2, then kTmax is no greater than O (m) and the large logarithms

of Eq. (66) are no longer present. The ultraviolet divergences from loop integrals still need

to be renormalized at the scale of the virtual photon (µ ∼ Q), so lnQ2 behavior from loop

diagrams remain. This creates a mismatch between the renormalization of real and virtual

emissions. In QCD, the mismatch appears in high-order αs(Q) contributions in the form of

uncontrolled large finite parts, well-known as ln(1 − xbj) effects that, at a minimum, need

to be resummed to all orders [14–17].

The small-kTmax problem is evident in the scalar diquark theory in Fig. 4 for the xbj = 0.6

and Q = 2 GeV kinematics. The value of kT here approaches its kinematic upper bound

at kT . 1 GeV, so the kT � Q approximation begins to fail already for kT ∼ several

hundred MeV. By contrast, for the higher Q value in Fig. 4, the kinematical upper bound

on kT lies well above 1 GeV (off the scale of the graphs). In QCD, this large kT region is

generally describable by perturbative real gluon radiation.

To highlight the trends in kT dependence at larger xbj and moderate Q, it is useful to

consider the exact kTmax from Eq. (31) in various limits. For example, in the limit of small

m/Q with fixed xbj,

kTmax =
Q

2

[√
1− xbj
xbj

−
√

xbj
1− xbj

(
2m2

q + 2m2
s −M2

)
2Q2

+O

(
m4

Q4

(
xbj

1− xbj

)3/2
)]

. (67)

This is the fixed-xbj Bjorken limit applied to kTmax, but a truncation of the series is liable to

be a poor approximation to kTmax if xbj is close to one. In that limit, it is more meaningful

to Taylor expand first in powers of small (1− xbj) with fixed Q,

kTmax =
1

2M

√
(m2

q −M2)2 + (m2
s −m2

q)
2 + (m2

s −M2)2 −m4
s −m4

q −M4

+ O

(
(1− xbj)

Q3

m2

)
. (68)

There is thus a finite and generally nonzero upper bound on kT as xbj becomes large. Indeed,

if the collision is exactly elastic, xbj → 1, and Eq. (10) requires mq + ms = M , which from

Eq. (68) gives kTmax = 0.

To quantify errors in the integrations over kT, we define the integral over the exact

structure function F1, for a fixed xbj and Q, between kT = 0 and the kinematic maximum,
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TABLE I: Ratio of integrals I/Î of exact to collinear kTF1 structure functions, where I ≡ I(xbj, Q)

[Eq. (69)] and Î ≡ Î(xbj, Q, kcut) [Eq. (70)], for different values of mq and ms as in Fig. 4, for

xbj = 0.6 and Q = 2 and 20 GeV. The approximate collinear integral is evaluated for kcut = Q and

kcut = kTmax.

Q = 2 GeV Q = 20 GeV

mq (GeV) 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

ms (GeV) 0.67 0.65 0.75 0.73 0.64 0.64 0.72 0.72

I/Î(kTmax) 0.88 0.64 0.76 0.57 1.00 1.00 1.00 1.00

I/Î(Q) 0.67 0.45 0.49 0.35 0.90 0.88 0.86 0.85

kTmax,

I(xbj, Q) ≡
∫ kTmax

0

dkT kTF exact
1 (xbj, Q, kT) . (69)

For the analogous calculation in the factorization approximation, on the other hand, there

is no obvious upper bound on the kT integration. In standard treatments, the upper limit,

which we denote by kcut, need only be O (Q), with the exact value otherwise arbitrary.

Reasonable choices for kcut could be kTmax or Q, for example. We define the integral over

the structure function in the collinear approximation as

Î(xbj, Q, kcut) ≡
∫ kcut

0

dkT kTFapprox
1 (xbj, Q, kT) . (70)

In the limit of large Q, as long as O (m) � kcut < O (Q), the factorization approximation

should obey

Î(xbj, Q, kcut) ≈ I(xbj, Q) . (71)

In QCD, deviations from the equality of I and Î are attributed to higher orders in αs(Q). If,

however, the ratio I/Î deviates significantly from unity for a range of reasonable values for

kcut, the validity of the collinear factorization approximation begins to become questionable.

Also, kTmax needs to be & 1 GeV for gluon radiation effects to be perturbative. This is not

the case for the Q = 2 GeV results in Fig. 4.

In Table I we display the values for I/Î using kcut = kTmax and kcut = Q for the upper

limit on the kT integration in Î, for kinematics corresponding to Fig. 4, namely xbj = 0.6

with Q = 2 and 20 GeV. The values of mq and ms are also chosen to be as in Fig. 4,

31



with mq = 0.3 or 0.5 GeV, and ms computed by fixing the virtuality v = 0.3 GeV (smaller

ms values, ∼ 0.64 – 0.67 GeV) or v = 0.5 GeV (larger ms values, ∼ 0.72 – 0.75 GeV) at

kT = 0. For the larger Q value, the results confirm that I/Î is approximately unity for kcut

between kTmax and Q, independently of the exact values of mq and ms, so long as those

values give reasonable kT distributions that peak at ≈ few hundred MeV. In contrast, for

the smaller value of Q = 2 GeV, the ratio I/Î deviates significantly from unity, and has

stronger dependence on the exact value of kcut. Note that for Q = 2 GeV and xbj = 0.6, the

maximum transverse momentum kTmax < 1 GeV, so that the dependence on the kT cutoff

likely has its own nonperturbative contributions.

D. Purely kinematic target mass corrections

In the context of factorization derivations, the notion of purely kinematic target mass

corrections is unambiguous. To see this, first return to the factorization approximations

of Sec. IV, and assume that for a fixed xbj and Q the ratio m2/Q2 is small enough that

a power-law expansion exists and has reasonable convergence. The first few powers of the

Taylor expansion of momentum components were displayed in Eqs. (56)–(58). Now assume

that, beyond the lowest non-vanishing powers, the only non-negligible correction terms are

those with powers of M/Q alone, while terms suppressed by higher powers of kT/Q, mq/Q

or ms/Q are small. Upon dropping these, Eqs. (56)–(58) become

ξ → ξTMC ≡ xbj

[
1−

x2bjM
2

Q2
+

2M4x4bj
Q4

+ · · ·
]

= xn , (72)

k− → k−TMC ≡ −
xn
[
k2T +m2

s + (xn − 1)M2
]

√
2Q(1− xn)

, (73)

k2 → k2TMC ≡ −
k2T + xn

[
m2
s + (xn − 1)M2

]
1− xn

. (74)

Comparing with Eqs. (53) and (54) confirms that using Eqs. (72)–(74) is identical to simply

replacing xbj → xn in the standard collinear parton model approximation, Eq. (55). Indeed,

the replacement of xn by xbj in Eq. (34) was unnecessary for deriving the factorization

formula; the steps leading to the factorized hadronic tensor in Eq. (48) are equally valid if

xbj is replaced everywhere by xn.

There is, therefore, a natural meaning to purely kinematic TMCs: They are the terms that

are kept in the factorization derivation when all components of external, physical momenta,
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such as Eqs. (3)–(4), are left unapproximated. Specifically, purely kinematical TMCs are

those that arise from keeping the minus component of the target momentum P , which is

normally approximated to zero, exact in Eq. (3). This automatically results in xn-scaling

(often referred to in the literature as “ξ-scaling”, not to be confused with the ξ variable used

for the “+” component of k here), as opposed to xbj-scaling.

Power corrections beyond those accounted for in Eqs. (72)–(74) are associated with kT,

mq and k2 dependence, and hence are unavoidably coupled to bound state dynamics that

are both nonperturbative and non-collinear (for kT ∼ m). For xbj > 0.5, some of the higher

power corrections that only involve kT, mq and ms are enhanced by powers of xbj/(1− xbj)

relative to those that only contain M [see Eqs. (56)–(58) and Eq. (67)]. Moreover, the

integration over kT in QCD includes the full range of nonperturbative transverse momentum

between 0 and ∼ 1 GeV, and power corrections that depend on kT can become quite large.

By contrast, purely kinematical TMCs are suppressed at low xbj by powers of x2bjM
2/Q2.

This suggests that purely kinematical TMCs alone are not likely to be sufficient in most

interesting large-xbj cases, except perhaps for unusually heavy hadrons. In other words,

once Q is small enough (or xbj large enough) for there to be sensitivity to purely kinematic

TMCs, the effects of other types of power corrections, including non-collinear effects, already

come into play.

To numerically compare purely kinematical TMCs with other power correction effects,

we show the unintegrated structure F1 structure function for the exact calculation in Fig. 6,

with xbj = 0.6 and Q = 3 GeV, and with the standard collinear approximation and with the

collinear result corrected for target mass effects by rescaling xbj → xn. Perhaps surprisingly,

in this case the target mass corrected form deviates further from the exact result than

the uncorrected collinear approximation. The expectation that purely kinematic TMCs

dominate if M is especially large is borne out in Fig. 6, where we compare the various

calculations for the case when M → 2M . Here, powers of M/Q are large and the expansion

in powers of M/Q certainly fails. Thus, the xbj → xn replacement indeed improves the

approximation, though there are still significant errors from the remaining neglected m/Q

corrections that are not particularly small.

The phrase “purely kinematic TMCs” is sometimes used to characterize the O (M2/Q2)

correction terms first derived in the classic OPE analysis of Georgi and Politzer [21]. The

results for the mass corrected structure functions in Ref. [21] [see Eqs. (4.19)–(4.22)] differ
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FIG. 6: Unintegrated structure function kTF1 for xbj = 0.6 and Q = 3 GeV, with quark mass

mq = 0.3 GeV and virtuality v = 0.5 GeV for the exact result (solid red curves), approximate

collinear approximation (dashed blue curves), and collinear result with the replacement xbj → xn

(dot-dashed green curves). The right-hand panel shows the results when the nucleon mass increased

by a factor of 2.

from those in Eqs. (72)–(74), in the form of additional corrections involving integrals over

parton momentum fractions. These differences arise because [21] imposes the exact con-

straint k̃2 = 0 for quark momentum from the outset. As explained by Ellis et al. [18], the

additional corrections in Ref. [21] originate from the integration over kT when k̃2 is held

fixed at zero. In particular, Ref. [18] finds that the unintegrated structure function must

have the functional form [see Eq. (1.22)]

F1 ∼ Φ

(
xbj +

k2T
xbjM2

)
θ
(
xbj(1− xbj)M2 − k2T

)
. (75)

(A similar analysis is given for polarized PDFs in Ref. [45].) Here, the k̃2 = 0 condition

constrains the behavior of the PDF to all orders in xbjm
2
s/Q

2, m2
q/Q

2 and k2T/Q
2. Fur-

thermore, fixing k̃2 = 0 removes the ultraviolet divergences in the integral over kT that

ultimately gives rise to the logarithmic behavior characteristic of the DGLAP evolution

equations [42–44]. By contrast, factorization derivations impose no constraints on typical

sizes for k̃2 (recall Sec. IV) inside a PDF, instead leaving it to be determined by the intrinsic

properties of the hadron.

The constraint k̃2 = 0 in Eq. (75) is thus an extra dynamical assumption, and a rather
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restrictive one. This is illustrated, for example, by Fig. 5 and the discussions in Sec. V A. In

field theory calculations of a PDF, k2 tends to vary smoothly over a broad range between 0

and O (−Q2) (see Fig. 5), and indeed in an unregulated integration over kT, the virtuality

k̃2 diverges.

In practice, the k̃2 = 0 constraint is rather difficult to achieve in field theories and realistic

models, and it precludes order-by-order derivations of factorization. This can be understood

by inspecting Eq. (52) and noting the distortions to the O (λ2) parton distribution that

would be necessary to recover a form like Eq. (75).

Figures 4–6 emphasize that the structure functions are sensitive to the exact value of

k2, including k2 6= 0. At a minimum, the higher twist k2 6= 0 contributions in Ref. [18]

are needed for consistent power counting. For the above reasons, we will restrict our use of

the term “purely kinematical” TMCs to what is described in the context of Eqs. (72)–(74),

namely, only the replacement xbj → xn.

E. Help from large ln(1− xbj) resummation

Beyond leading power in Q2, the integration of the large transverse momentum in Eq. (66)

actually takes the form∫ k2Tmax

M2
cut

dk2T
k2T
∝ ln

[
Q2

M2
cut

(
1− xbj
xbj

+

(
M2 − 2m2

q − 2m2
s

)
Q2

+O

(
m4

Q4

xbj
1− xbj

))]

= ln
Q2

M2
cut

+ ln

(
1− xbj
xbj

)
+
xbj
(
M2 − 2m2

q − 2m2
s

)
(1− xbj)Q2

+O

(
m4

Q4

x2bj
(1− xbj)2

)
.

(76)

In the region of xbj where
xbjm

2

Q2
� 1− xbj � 1 , (77)

the only non-negligible contributions in Eq. (76) are the terms lnQ2 and ln (1− xbj). The

logarithms of (1− xbj) appear at all orders in perturbation theory in collinear factorization,

and much effort has been devoted to methods for resumming them in collinear perturbative

QCD. It is important to remember, however, that the usefulness of such methods relies on

the condition in Eq. (77) being fulfilled. If hadron mass corrections are large, for instance

when m2/Q2 ∼ αs, the expansion Eq. (76) may no longer be a useful approximation. In the

literal limit xbj → 1, it is impossible to fulfill Eq. (77).
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There is of course no obvious sharp boundary between regions where perturbative

ln(1− xbj) terms dominate and regions where xbj is so large that power corrections domi-

nate or the power expansion breaks down entirely and Eq. (77) fails. In principle, both the

logarithmic and power correction effects are intertwined because they stem from the same

underlying physical origin; the available phase space for final states becomes constricted as

xbj → 1, and the distinction between logarithmic effects and subleading power corrections

becomes less clear-cut. For example, it is equally valid to express the large logarithmic

effects in Eq. (76) as ln(1 − xbj) or ln(1 − xn) simply by reorganizing power corrections

accordingly. Thus, incorporating power corrections consistently in perturbative QCD may

entail new techniques in addition to a merging of old ones.

An ideal formalism would smoothly connect a treatment that includes purely nonpertur-

bative behavior at very large xbj with resummation in the limit that the condition in Eq. (77)

holds. This would be analogous to what occurs with TMD factorization, where a resum-

mation of ln (q2T/Q
2) holds when m � qT � Q, but nonperturbative intrinsic transverse

momentum dependence contributes when qT begins to approach m. It will be important to

explore such effects in future work.

VI. SUMMARY

Let us conclude by returning to the goals listed at the end of Sec. I. If it is accepted that

the range of values for mq and ms discussed in Secs. II B and V A is reasonable, then the

results in Sec. V B indeed imply that all types of power corrections in Eqs. (64a)–(64d) are

important in the range of Q ∼ 1 GeV and xbj & 0.5. For such kinematics, all components

of partonic momentum are potentially non-negligible, and a power series expansion around

the collinear limit may not be sufficient. Here parton transverse momentum and parton

virtuality are as important as the target mass in determining the size and behavior of power

corrections to collinear factorization. Moreover, k2 and kT are generally not fixed, but rather

are correlated with external kinematic variables such as xbj and Q, and in principle take a

spectrum of values in convolution integrals.

For slightly larger Q and smaller xbj, power corrections will be smaller but still possibly

important. In all cases, they should be calculated explicitly in terms of higher twist functions

as in Ref. [18], or with generalizations of factorization that take parton kinematics more fully
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into account.

In the present work, we have placed our analysis of power corrections in the context of

factorization derivations by first reviewing the canonical collinear factorization approxima-

tions for low-order graphs in Sec. IV. We view this as the appropriate approach to the

treatment of power corrections because collinear factorization is, fundamentally, the first

term in a 1/Q expansion, performed order-by-order in αs in QCD, or in λ2 in the scalar

theory of Eq. (2).

There are opportunities for extending analyses like the one in Sec. V and perhaps using

them directly for phenomenological modeling. In particular, it might be possible to improve

constraints on numerical values for mq and ms in a model theory like the scalar Yukawa the-

ory used here by determining if and how they can be connected to detailed considerations of

nonperturbative physics in QCD. The values used in this paper were chosen through a com-

bination of basic kinematical constraints, extractions of transverse momentum dependent

functions, and mass scales typical of nonperturbative quark models. In the future, we hope

to obtain tighter and more reliable estimates of the boundary to the factorization collinear

regime by appealing to more sophisticated descriptions of nonperturbative physics. Includ-

ing higher-order radiation to model the effects of parton showering may remove unrealistic

features associated with having a fixed target remnant mass. Some of these considerations

overlap with the discussions in Ref. [46] of the need to understand nonperturbative aspects

of parton momentum.

We stress that there is in principle a distinction between the boundary of the collinear

kinematics of collinear factorization and the boundary of the small-αs(Q) perturbative

regime more broadly. Thus, an exciting possibility is that there is a DIS regime at very

large xbj and large Q where collinear factorization kinematics break down entirely but an

alternative small-αs(Q) perturbative QCD method applies. An approach like that of Accardi

and Qiu [47], which takes into account the role of final states in constraining overall kinemat-

ics, is likely needed, but in a form that incorporates more general non-collinear correlation

functions. Generalizations of PDFs which smoothly map onto the elastic or exclusive limits

may perhaps be appropriate to describe DIS at very large xbj. Models such as the quark–

diquark theory used in this work can provide hints towards more optimal approaches. The

concept of a virtuality-dependent function, discussed recently by Radyushkin [48, 49], may

also play an important role in an improved treatment. If a particular approximation is valid
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or useful, it should be possible to demonstrate the validity of the collinear approximation in

the appropriate limits of Sec. IV. We plan to pursue this in future work.
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Appendix A: Electromagnetic gauge invariance

In this Appendix we explicitly demonstrate the electromagnetic gauge invariance of the

hadronic tensor W µν for both the exact and approximate cases. Gauge invariance requires

qµW
µν = 0, where qµ is the virtual photon momentum. In the case of the exact calculation

in Eq. (17), this means ∑
j∈Graphs

qµTµν
j [Prop]j = 0, (A1)

where j labels the diagrams in Fig. 2. To verify Eq. (A1), we first simplify the contraction

for each diagram individually.

For Fig. 2(A),

qµTµν
A [Prop]A =

Tr
[
(/P +M)(/k +mq)/q(/k + /q +mq)γ

ν(/k +mq)
]

(k2 −m2
q)

2

=
Tr
[
(/P +M)(/k +mq)(−(/k −mq) + /q + /k −mq)(/k + /q +mq)γ

ν(/k +mq)
]

(k2 −m2
q)

2

=
−Tr

[
(/P +M)(/k + /q +mq)γ

ν(/k +mq)
]

(k2 −m2
q)

. (A2a)
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For the 1/Q suppressed contribution from Fig. 2(B),

qµTµν
B [Prop]B =

Tr
[
(/P +M)/q(/P + /q +M)(/k + /q +mq)(/P + /q +M)γν

](
(P + q)2 −M2

)2
=

Tr
[
(/P +M)(−(/P −M) + /q + /P −M)(/P + /q +M)(/k + /q +mq)(/P + /q +M)γν

](
(P + q)2 −M2

)2
=

Tr
[
(/P +M)(/k + /q +mq)(/P + /q +M)γν

](
(P + q)2 −M2

) . (A2b)

The contribution to Eq. (A1) from the interference diagram Fig. 2(C) is

qµTµν
C [Prop]C =

Tr
[
(/P +M)(/k +mq)/q(/k + /q +mq)(/P + /q +M)γν

]
(k2 −m2

q)
(
(P + q)2 −M2

)
=

Tr
[
(/P +M)(/k +mq)(−(/k −mq) + /q + /k −mq)(/k + /q +mq)(/P + /q +M)γν

]
(k2 −m2

q)
(
(P + q)2 −M2

)
=
−Tr

[
(/P +M)(/k + /q +mq)γ

ν(/k +mq)
](

(P + q)2 −M2
) , (A2c)

while contribution of the hermitian conjugate of Fig. 2(C) is

qµTµν
D [Prop]D =

Tr
[
/q(/P + /q +M)(/k + /q +mq)γ

ν(/k +mq)(/P +M)
]

(k2 −m2
q)
(
(P + q)2 −M2

)
=

Tr
[
(−(/P −M) + /q + /P −M)(/P + /q +M)(/k + /q +mq)γ

ν(/k +mq)(/P +M)
]

(k2 −m2
q)
(
(P + q)2 −M2

)
=

Tr
[
(/k + /q +mq)γ

ν(/k +mq)(/P +M)
]

(k2 −m2
q)

. (A2d)

Thus,

qµTµν
A [Prop]A + qµTµν

B [Prop]B + qµTµν
C [Prop]C + qµTµν

D [Prop]D = 0 . (A3)

In the collinear approximation in Eq. (48), the hadronic tensor is gauge invariant if

qµTr
[
Hµ(Q2)/̂k

′
H†ν(Q2)/̂k

]
= 0 . (A4)

This is easily verified:

qµTr
[
Hµ(Q2)/̂k

′
H†ν(Q2)/̂k

]
= Tr

[
/q(/̂k + /q)γ

ν /̂k
]

= 4
((

2k̂ · q −Q2
)
k̂ν − k̂2qν

)
= 4

(
2k̂+q− −Q2

)
k̂+ = 4

(
2
Q2

√
2

Q2

√
2
−Q2

)
Q2

√
2

= 0. (A5)

Thus, electromagnetic gauge invariance is validated for both the exact and approximate,

collinear cases.
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