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Various theories beyond the Standard Model predict new particles with masses in the sub-eV
range with very weak couplings to ordinary matter which can possess spin-dependent couplings
to electrons and nucleons. Present laboratory constraints on exotic spin-dependent interactions
with pseudoscalar and axial couplings for exchange boson masses between meV and eV are very
poor compared to constraints on spin-independent interactions in the same mass range arising from
spin-0 and spin-1 boson exchange. It is therefore interesting to analyze in a general way how one
can use the strong experimental bounds on spin-independent interactions to also constrain spin-
dependent interactions by considering higher-order exchange processes. The exchange of a pair
of bosons between two fermions with spin-dependent couplings will possess contributions which
flip spins twice and thereby generate a polarization-independent interaction energy which can add
coherently between two unpolarized objects. In this paper we derive the dominant long-range
contributions to the interaction energy between two nonrelativistic spin-1/2 Dirac fermions from
double exchange of spin-0 and spin-1 bosons proportional to couplings of the form g4P , g2Sg

2
P , and

g2V g
2
A. Our results for g4P are in agreement with previous calculations that have appeared in the

literature. We demonstrate the usefulness of this analysis to constrain spin-dependent couplings
by presenting the results of a reanalysis of data from a short-range gravity experiment to derive
an improved constraint on (gNP )2, the pseudoscalar coupling for nucleons, in the range between 40
and 200 µm of about a factor of 5 compared to previous limits. We hope that the expressions
derived in this work will be employed by other researchers in the future to evaluate whether or not
they can constrain exotic spin-dependent interactions from spin-independent measurements. The
spin-independent contribution from 2-boson exchange with axial-vector couplings requires special
treatment and will be explored in another paper.

I. INTRODUCTION

The possible existence of new interactions in nature
with ranges of mesoscopic scale (millimeters to microns),
corresponding to exchange boson masses in the 1 meV
to 1 eV range and with very weak couplings to matter
has been discussed for some time [1, 2] and has recently
begun to attract renewed scientific attention. Particles
which might mediate such interactions are sometimes re-
ferred to generically as WISPs (Weakly-Interacting sub-
eV Particles) [3] in recent theoretical literature. Many
theories beyond the Standard Model, including string
theories, possess extended symmetries which, when bro-
ken at a high energy scale, lead to weakly-coupled light
particles with relatively long-range interactions such as
axions, arions, familons, and Majorons [4, 5]. The well-
known Goldstone theorem in quantum field theory guar-
antees that the spontaneous breaking down of a continu-
ous symmetry at scaleM leads to a massless pseudoscalar
mode with weak couplings to massive fermions m of or-
der g = m/M . The mode can then acquire a light mass
(thereby becoming a pseudo-Goldstone boson) of order
mboson = Λ2/M if there is also an explicit breaking of
the symmetry at scale Λ [6]. New axial-vector bosons
such as paraphotons [7] and extra Z bosons [8] appear
in certain gauge theories beyond the Standard Model.
Several theoretical attempts to explain dark matter and

dark energy also produce new weakly-coupled long-range
interactions. The fact that the dark energy density of
order (1 meV)4 corresponds to a length scale of 100
µm also encourages searches for new phenomena on this
scale [9].

A general classification of interactions between non-
relativistic fermions assuming only rotational invari-
ance [10] reveals 16 operator structures involving the
spins, momenta, interaction range, and various possible
couplings of the particles. Of these sixteen interactions,
one is spin-independent, six involve the spin of one of the
particles, and the remaining nine involve both particle
spins. Ten of these 16 possible interactions depend on
the relative momenta of the particles. The addition of
the spin degree of freedom opens up a large variety of
possible new interactions to search for which might have
escaped detection to date. Powerful astrophysical con-
straints on exotic spin-dependent couplings [11–13] ex-
ist from stellar energy-loss arguments, either alone or in
combination with the very stringent laboratory limits on
spin-independent interactions from gravitational experi-
ments [14]. However, a chameleon mechanism could in
principle invalidate some of these astrophysical bounds
while having a negligible effect in cooler, less dense lab
environments [15], and the astrophysical bounds do not
apply to axial-vector interactions [10]. These potential
loopholes in the astrophysical constraints, coupled with
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the intrinsic value of controlled laboratory experiments
and the large range of theoretical ideas which can gener-
ate exotic spin-dependent interactions, has led to a grow-
ing experimental activity to search for such interactions
in laboratory experiments.

Many experiments search for a monopole-dipole inter-
action [16] involving an exchange of spin-zero bosons with
scalar and pseudoscalar couplings. This interaction vio-
lates P and T symmetry and in the nonrelativistic limit
is proportional to gSgP~σ · r̂ where gS and gP are the
scalar and pseudoscalar couplings, ~σ is the spin of one
of the particles, and ~r is the separation between the par-
ticles. Contrary to some expectations, experimental up-
per bounds on electric dipole moments, which are also
P -odd and T -odd, do not in general rule out the ex-
istence of such bosons with masses in the meV to eV
range [17]. Many of the experiments which have been
performed to search for such interactions using polar-
ized gases [18] and paramagnetic salts [19–21] are sen-
sitive to ranges λ ≥ 1 cm. Constraints on monopole-
dipole interactions involving nucleons at smaller range
have come from experiments using slow neutrons [22–27]
and polarized helium and xenon gas [28–35]. Many ex-
periments have also sought exotic spin-spin interactions
proportional to g2

P~σ1 · ~σ2, where gP is the pseudoscalar
coupling and ~σ1 and ~σ2 are the spins of the two par-
ticles. Such a spin-dependent potential with a dipole-
dipole form is one of the three velocity-independent spin-
spin interactions which can come from 1-boson exchange
between two nonrelativistic spin-1/2 fermions [10]. Sepa-
rated ensembles of polarized atoms [36–39] have set lim-
its on long-range spin-dependent nucleon interactions,
and analysis of high precision spectroscopy in molec-
ular hydrogen [40, 41] has set limits on atomic-range
spin-dependent nucleon interactions. Torsion balance
measurements have recently set new stringent limits on
both monopole-dipole interactions and dipole-dipole in-
teractions involving polarized electrons with macroscopic
ranges [42–47]. Comparison of precision QED calcula-
tions with atomic physics data [48] has set strong lim-
its on exotic spin-dependent electron interactions with
ranges at the atomic scale. Ion traps [49] have recently
constrained exotic spin-spin interactions between polar-
ized electrons of the form g2

A~σ1 · ~σ2 from spin-1 boson
exchange at micron distance scales. New experimental
methods to search for polarized electron couplings using
rare earth-based ferrimagnetic test masses [50], param-
agnetic insulators [51], and spin-exchange relaxation-free
(SERF) magnetometers [52] have been proposed.

Laboratory constraints on possible new interactions of
mesoscopic range which depend on both the spin and the
relative momentum are less common, since the polar-
ized electrons or nucleons in most experiments employing
macroscopic amounts of polarized matter typically pos-
sess 〈~p〉 = 0 in the lab frame. Some limits exist for spin-0
boson exchange. Kimball et al. [53] used measurements
and calculations of cross sections for spin exchange colli-
sions between polarized 3He and Na atoms to constrain

possible new spin-dependent interactions between neu-
trons and protons. Hunter [54] exploited the existence
of a small but nonzero polarization of the electrons in
the Earth combined with atomic magnetometry to place
very stringent constraints on a large number of spin and
velocity-dependent interactions involving polarized elec-
trons for macroscopic force ranges.

Spin and velocity-dependent interactions from spin-1
boson exchange can be generated by a light vector bo-
son Xµ coupling to a fermion ψ with an interaction of
the form LI = ψ̄(gV γ

µ + gAγ
µγ5)ψXµ, where gV and gA

are the vector and axial couplings. In the nonrelativistic
limit, this interaction gives rise to two interaction poten-
tials of interest depending on both the spin and the rela-
tive momentum [55]: one proportional to g2

A~σ ·(~v× r̂) and
another proportional to gV gA~σ ·~v. As noted above, many
theories beyond the Standard Model can give rise to such
interactions. For example, spontaneous symmetry break-
ing in the Standard Model with two or more Higgs dou-
blets with one doublet responsible for generating the up
quark masses and the other generating the down quark
masses can possess an extra U(1) symmetry generator
distinct from those which generate B, L, and weak hyper-
charge Y . The most general U(1) generator in this case
is some linear combination F = aB + bL+ cY + dFax of
B, L, Y , and an extra axial U(1) generator Fax acting on
quark and lepton fields, with the values of the constants
a, b, c, d depending on the details of the theory. The new
vector boson associated with this axial generator can give
rise to LI above [56].

Neutrons have recently been used with success to
tightly constrain possible weakly coupled spin-dependent
interactions of mesoscopic range [57]. A polarized beam
of slow neutrons can have a long mean free path in matter
and is a good choice for such an experimental search [58].
Piegsa and Pignol [59] recently reported improved con-
straints on the product of axial vector couplings g2

A in
this interaction. Polarized slow neutrons which pass near
the surface of a plane of unpolarized bulk material in
the presence of such an interaction experience a phase
shift which can be sought using Ramsey’s well-known
technique of separated oscillating fields [60]. Other ex-
periments have constrained gV g

n
A. Yan and Snow re-

ported constraints on gV g
n
A using data from a search for

parity-odd neutron spin rotation in liquid helium [61].
Adelberger and Wagner [14] combined experimental con-
straints on g2

V from searches for violations of the equiv-
alence principles and g2

A from other sources to set much
stronger constraints on gV g

n
A for interactions with ranges

beyond 1 cm. Yan [62] analyzed the dynamics of ensem-
bles of polarized 3He gas coupled to the Earth to con-
strain gV g

n
A for interactions with ranges beyond 1 cm

with laboratory measurements.

The strength of nearly all of these constraints is very
weak compared to spin-independent interactions. Very
stringent constraints exist on spin-independent Yukawa
interactions arising from light scalar or vector boson ex-
change. The present constraints on the dimensionless
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coupling constants are g2
S,V ≤ 10−40 for an exchange

boson with a mass between 10 meV and 100 µeV [63],
which corresponds to a length scale between 10 µm and
1 mm. Experimental constraints on possible new inter-
actions of mesoscopic range which depend on the spin of
one or both of the particles are much less stringent than
those for spin-independent interactions [50, 64]. Several
facts contribute to this situation. First of all such ex-
periments require one or both of the particles under in-
vestigation to be polarized. Even if one can achieve per-
fect polarization, only the valence fermions in the ground
states of bound electrons and nucleons are accessible. Ex-
perimental polarization techniques are often specific to
particular atoms or nuclei and vary widely in their effi-
ciency. Macroscopic objects with large nuclear or elec-
tron polarization are not easy to arrange without an en-
vironment that includes large external magnetic fields.
Even if one succeeds to polarize ensembles of particles
in low ambient magnetic fields, the magnetic moments
of the spin-aligned particles themselves generate mag-
netic fields which eventually interact with and depolarize
other members of the ensemble. Both internal and exter-
nal magnetic fields can produce large systematic effects
in delicate experiments. Another reason for the differing
sensitivities follows from the fact that, for the small mo-
mentum transfers accessed in interactions between two
nonrelativistic massive Dirac fermions, the amplitude for
a helicity flip associated with a spin-dependent interac-
tion at the fermion-boson vertex can be suppressed by
a factor (µ/m)n, where µ is the mass of the exchanged
boson, m is the fermion mass and n = 1, 2, or 3 depend-
ing on the type of interaction. This suppression arises
at parity-odd vertices such as igP γ5, gV γ, and igAγ0γ5

where in order for parity to be conserved the boson must
be emitted with nonzero angular momentum relative to
the initial and final nonrelativistic fermions, thus giv-
ing rise to an angular momentum suppression of order
(µ/m)n. The only case of a spin-dependent interaction
with no mass suppressions arises in the “dipole-dipole”
interaction mediated by an axial boson with even-parity
coupling igAγγ5. This is one of the reasons why, for ex-
ample the constraint on an electron axial vector coupling
(geA)2 ∼ 10−40 for µ ≥ 1 µeV [46] is orders of magni-
tude stronger than the constraint on (gNA )2 ∼ 10−13 for
µ ∼ 100 µeV [59], where the latter was obtained from
a “monopole-dipole” interaction arising from parity-odd
vertices.
The huge difference in the strength of these constraints on
spin-dependent and spin-independent interactions moti-
vated us to investigate whether or not limits on spin-
dependent couplings can be improved using the con-
straints from existing spin-independent data. Exchange
of two bosons can flip the helicity of the fermions twice
and generate a spin-independent contribution to the in-
teraction energy between two fermions. Although two
boson exchange between fermions generates an interac-
tion energy of order g4 and direct spin-dependent experi-
ments look for effects from single boson exchange of order

g2, the strong constraints from spin-independent experi-
ments can still be better than direct experiments in cer-
tain situations. Since searches for new spin-independent
interactions span a broader range of exchange boson
masses than the spin-dependent searches, such an analy-
sis can extend constraints on spin-dependent interactions
to new length scales where experimental coverage is ei-
ther poor or nonexistent. Many experiments to search
for spin-independent interactions are probing the smaller
distance scales where limits on spin-dependent interac-
tions are poor [65, 66].

Similar analyses motivated by the same considerations
have been conducted in the past. The functional form for
2-boson exchange with pseudoscalar couplings has been
derived before and applied in different contexts [67–70]
such as tests of the inverse square law of gravity (ISL) and
the weak equivalence principle [71] to derive the first di-
rect limits on gNP . The most recent constraints on spin-0
boson exchange with pseudoscalar couplings gNP to nucle-
ons [72] span bosons masses between 0.01 µeV and 1 eV.

To the best of our knowledge, no similar analysis has
been performed for other spin-dependent couplings and
no functional forms for the spin-independent component
of the interaction energy arising from other types of 2-
boson exchange have been exhibited in the nonrelativistic
limit of interest to us. The aim of this paper is to calcu-
late the dominant long-range contribution to the inter-
action energy between two nonrelativistic spin-1/2 Dirac
fermions from double boson exchange of spin-0 and spin-1
bosons with spin-dependent couplings of the form g2

Sg
2
P ,

and g2
V g

2
A. The case of two axial vector exchange requires

a special treatment and will be explored in another pa-
per. In addition, we use the existing 2-boson calculation
for pseudoscalar exchange in a reanalysis of data from
a short-range gravity experiment to derive an improved
constraint on (gNP )2, the pseudoscalar coupling for nu-
cleons, in the range between 40 and 200 µm of about
a factor of 5 compared to previous limits. This analysis
constitutes an existence proof that sensitive experimental
searches for spin-independent interactions can also yield
the most stringent constraints on spin-dependent inter-
actions at certain distance scales.

The rest of this paper is organized as follows. In sec-
tion II we define the problem and specify the method of
calculation. The calculation itself along with the results
are outlined in section III. In section IV, we present our
derivation of a new limit on nucleon pseudoscalar cou-
plings from analysis of an experiment to probe violations
of the inverse square law in short-range gravity. Natural
units with ~ = c = 1 are used throughout the paper.

II. DEFINITION OF THE PROBLEM AND
METHOD

Some groups have undertaken exact calculations of the
amplitudes for double boson exchange valid in the rel-
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ativistic limit [73]. It is not our purpose here to at-
tempt a complete calculation of this type. We are in-
terested in determining the leading long-range contribu-
tions to the spin-independent component of the interac-
tion energy associated with the exchange of two massive
spin-0 and spin-1 bosons between two massive spin-1/2
Dirac fermions with various types of spin-dependent cou-
plings. The distance scale regime we are interested in is
r > 1

µ �
1
m , where r = |r1 − r2| is the separation be-

tween the two fermions, µ is the exchange boson mass,
and m is the fermion mass.

Many authors have performed similar calculations for
various purposes using different approaches. Iwasaki
studied this problem using noncovariant perturbation
theory [74]. Feinberg and Sucher used dispersion
methods in covariant perturbation theory [75] to extract
long-range effects from loop corrections. Holstein
examined this problem using effective field theory
(EFT) [76]. In this paper we shall use a nonrelativistic
approach based on “old fashioned” perturbation theory
(OFPT) using time-ordered diagrams. The reason we
are pursuing this approach is that it suffices for the
direct identification of spin-independent long-range
terms in the nonrelativistic limit that we are interested
in. In dispersion methods obtaining long-range effects
from loop corrections amounts to calculating t-channel
discontinuities in Feynman diagrams and performing
a Laplace transformation which, although doable in
principle, is not necessary for our purposes. A similar
procedure could be realized in EFT by recognizing that
long-range components are associated with pieces in the
scattering amplitude that are non-analytic in momenta
transfer [76].

We first consider the elastic scattering of two spin-
1/2 Dirac fermions of masses m1 and m2. We denote the
incoming momenta by p1 and p2 and the outgoing mo-
menta by p′1 and p′2. The on-shell transition amplitude
is given by

Tfi(Q) = (2π)3δ(p′1 + p′2 − p1 − p2)NfMfi(Q)Ni. (1)

whereQ is the momentum transfer to the fermion of mass
m. Here Mfi is the Feynman scattering amplitude and
Nf and Ni are normalization factors associated with the
incoming and outgoing particles in the initial and final
states which in the nonrelativistic limit are taken to be
unity [77]. We define the interaction energy correspond-
ing to the long-range contribution from M (2)(Q) by [78].

V (2)(r) =

∫
d3Q

(2π)3
e−iQ·r M

(2)
fi (Q). (2)

III. CALCULATION OF THE INTERACTION
ENERGY

We start with the Hamiltonian density

H = ψ(γ · p+m)ψ +Hint, (3)

where ψ is the 4-component fermion field. The first term
is the free fermion Hamiltonian density and Hint is the
interaction Hamiltonian density given by

Hint = ψ[(gS + igP γ5)φ+ (gV γ
µ + igAγ

µγ5)Aµ]ψ, (4)

where φ and Aµ are the massive spin-0 and spin-1 bo-
son fields, respectively. The nonrelativistic limit of the
Hamiltonians in Eqs. (3) and (4) are derived by perform-
ing a Foldy-Wouthuysen unitary transformation [79] to
eliminate all pair production diagrams associated with
higher energies which are subdominant in our limit. For
our purposes we need only expand the effective Hamilto-
nian to order p/m:

Heff
S = gSψ

+ψφ, (5a)

Heff
P = ψ+[−i gP

2m
σ · kφ+

g2
P

2m
φ2]ψ, (5b)

Heff
V = ψ+[gVA0 −

gV
2m

(ppp+ ppp′) ·AAA− i gV
2m

σσσ · k ×AAA

+
g2
V

2m
AAA2]ψ, (5c)

Heff
A = ψ+[−igAσσσ ·AAA+

igA
2m

σσσ · (ppp+ ppp′)A0 −
g2
A

2m
A2

0]ψ,

(5d)

where ψ is now a 2-component fermion field associated
with a positive energy spinor. Here p and p′ are the
incoming and outgoing momenta of the fermion in each
vertex, k is the boson momentum, and A and A0 are the
space and time components of the massive spin-1 field,
respectively.

In OFPT momentum (but not energy) is conserved at
the vertices. The propagator for internal lines 1

Ei − En
,

where Ei is the energy of the initial state and En is the
energy of the intermediate state, is multiplied by a sum

over the transverse and longitudinal modes, δij − kikj
µ2 or

−1 + ω2

µ2 , for each massive spin-1 exchange boson present

in the diagram. The internal momenta are summed over
in the usual way.

We will only derive the spin-independent long-range
contributions to the interaction energy arising from the
following three cases: exchanges with two pseudoscalar
couplings, exchanges with one scalar and one pseu-
doscalar coupling, and exchanges with one vector cou-
pling and one axial vector coupling. The case of two
axial vector exchange requires insertions from higher or-
der corrections in the small momentum expansion of the
Hamiltonian and will be explored in detail in another pa-
per. Although exotic spin-0 and spin-1 boson exchange
could appear together in box and cross box diagrams we
are not interested in this case for our purposes.
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FIG. 1. The relevant 2-boson exchange time-ordered diagrams. Solid lines represent the fermions while wavy lines represent
massive spin-0 or spin-1 bosons.

For exchanges with two pseudoscalar couplings the
leading effect comes from the double seagull diagrams (a)
and (b) in Fig. 1. Effects arising from diagrams (c)–(h)
are suppressed by a factor of (µ/m)3 as can be inferred
from the form of Heff

P in Eq. (5b). The transition ampli-
tude is

T
(2)
P−P = −

g2
P,1g

2
P,2

4m1m2

∫
d3kd3q

(2π)6

[
1

ωkωq(ωk + ωq)

δ(p′1 − k − q − p1)δ(p′2 + k + q − p2)] . (6)

From Eqs. (1) and (2), the interaction energy is related

to T
(2)
P−P via

V
(2)
P−P (r) = −

g2
P,1g

2
P,2

4m1m2

∫
d3Q

(2π)3
e−iQ·r

×
∫
d3kd3q

(2π)3

δ(p′1 − k − q − p1)δ(p′2 + k + q − p2)

ωkωq(ωk + ωq)
.

(7)

Now by carrying out the integral over Q first we obtain

V
(2)
P−P (r) = −

g2
P,1g

2
P,2

4m1m2

∫
d3kd3q

(2π)6

e−i(k+q)·r

ωkωq(ωk + ωq)

= −
g2
P,1g

2
P,2

4m1m2

µK1(2µr)

8π3r2
, (8)

where K1(x) is the modified Bessel function of the second
kind. This agrees with the result previously derived by
Drell and Huang [68] and Ferrer and Nowakowski [67].
This result, however, is not correct for the exchange of
two pseudoscalar bosons which have a derivative cou-
pling of the form i gPm ψγµγ5ψ∂

µφ. Derivative and non-
derivative pseudoscalar couplings give the same interac-
tion energy in first order perturbation theory but not
on second order. The long-range behavior arising from
two massless boson exchange with pseudoscalar deriva-
tive couplings to matter have been calculated in the limit
as the exchange boson mass goes to zero and shown to
be highly suppressed relative to the analogous case with
non-derivative pseudoscalar couplings[70]. This is also
expected to follow for non-massless bosons, but we have
not calculated this case in this paper. Since the case
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of pseudoscalar boson exchange is especially interesting
from a physics point of view we plan to calculate this
case and present the results in a later paper.

For interactions with one scalar coupling and one pseu-

doscalar coupling, the leading spin-independent contri-
bution arises from diagrams (c)–(h) of Fig. 1 with two
orders of gSφ and one order of (g2

P /2m)φ2. The transi-
tion amplitude is

T
(2)
S−P =

g2
S,1g

2
P,2

2m2

∫
d3kd3qd3l1

(2π)6

{
1

4ωkωq

[
δ(p′2 + k + q − p2)δ(p′1 − q − l1)δ(l1 − k − p1)

(ωq +X1)(ωk + ωq)
+

δ(p′2 − k − q − p2)δ(p′1 + q − l1)δ(l1 + k − p1)

(ωk +X1)(ωk + ωq)
+
δ(p′2 + q − k − p2)δ(p′1 − q − l1)δ(l1 + k − p1)

(ωk +X1)(ωq +X1)

]
+ 1↔ 2,k↔ −k, q ↔ −q}. (9)

Expanding in the limit X � ωk and taking advantage of
symmetry under k and q gives

T
(2)
S−P =

g2
S,1g

2
P,2

2m2

∫
d3kd3qd3l1

(2π)6

{
1

4ωkωq

δ(p′2 + k + q − p2)δ(p′1 − q − l1)δ(l1 − k − p1)[
1

ωq(ωk + ωq)
+

1

ωk(ωk + ωq)
+

1

ωkωq

]
+ 1↔ 2,k↔ −k, q ↔ −q}. (10)

The interaction energy is then given by

V
(2)
S−P (r) =

(
g2
S,1g

2
P,2

2m2
+
g2
S,2g

2
P,1

2m1

)
e−2µr

32π2r2
. (11)

The leading spin-independent contribution for the case
of one vector coupling and one axial vector coupling also
follows from diagrams (c)–(h) of Fig. 1. Two different
processes give rise to this interaction at this order: one
from two factors of −igAσ ·A with one factor of (g2

V /2m)
A2 and the other from two factors of gVA0 with one
factor of −(g2

A/2m)A2
0. In the limit X � ωk, the vector-

axial interaction energy is given by

V
(2)
V−A(r) = −

∫
d3kd3q

(2π)6

[(
g2
V,1g

2
A,2

2m1
+
g2
V,2g

2
A,1

2m2

)
k2q2

µ4
+(

g2
V,2g

2
A,1

2m1
+
g2
V,1g

2
A,2

2m2

)(
3− q

2

µ2
− k

2

µ2
+

(k · q)2

µ4

)]
e−i(k+q)·r

2ωkωq

[
1

ωq(ωk + ωq)
+

1

ωk(ωk + ωq)
+

1

ωkωq

]
.

(12)

Integration over k and q gives

V
(2)
V−A(r) = −

[
g2
V,1g

2
A,2

2m1
+
g2
V,2g

2
A,1

2m2

+ 2

(
g2
V,2g

2
A,1

2m1
+
g2
V,1g

2
A,2

2m2

)
(13)

(
3 +

2

µr
+

5

(µr)2
+

6

(µr)3
+

3

(µr)4

)]

× e−2µr

16π2r2
, (14)

which is the same as Eq. (11) except for extra terms due
to the sum over polarization states. These terms possess
singularities in the µ→ 0 limit due to the inclusion of the
longitudinal component of the massive spin-1 field in the
absence of a conserved current [48, 80–82]. As we never
let µ → 0 by assumption this infrared singularity is not
realized in our case. The range of validity of Eq. (14) is
r � 1/µ � 1/m1, 1/m2 with µ finite, in which case it
simplifies to

V
(2)
V−A(r) ' −

[
g2
V,1g

2
A,2

2m1
+
g2
V,2g

2
A,1

2m2

+ 6

(
g2
V,2g

2
A,1

2m1
+
g2
V,1g

2
A,2

2m2

)]
e−2µr

16π2r2
. (15)

IV. CONSTRAINTS FROM THE INDIANA
SHORT-RANGE GRAVITY EXPERIMENT

To illustrate the potential power of these results, we
have used existing data from a previous short-range grav-
ity experiment to constrain the couplings in the interac-
tion energies in Eqs. (8), (11), and (15). This experi-
ment is optimized for sensitivity to macroscopic, spin-
independent forces beyond gravity at short range, which
in turn could arise from exotic elementary particles or
even extra spacetime dimensions. It is described in detail
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elsewhere [83, 84]; here we concentrate on the essential
features.

The experiment is illustrated in Fig. 1 of Ref. [85].
The test masses consist of 250 µm thick planar tung-
sten oscillators, separated by a gap of 100 µm, with
a stiff conducting shield in between them to suppress
electrostatic and acoustic backgrounds. Planar geome-
try concentrates as much mass as possible at the scale
of interest, and is nominally null with respect to 1/r2

forces. This is effective in suppressing the Newtonian
background relative to exotic short-range effects, and is
well-suited for testing interactions of the form e−µr, and
K1(µr). The force-sensitive “detector” mass is driven by
the force-generating “source” mass at a resonance near
1 kHz, placing a heavy burden on vibration isolation.
The 1 kHz operation is chosen since at this frequency it
is possible to construct a simple vibration isolation sys-
tem. This design has proven effective for suppressing all
background forces to the level of the thermal noise due to
dissipation in the detector mass [84]. After a run in 2002,
the experiment set the strongest limits on forces beyond
gravity between 10 and 100 µm [83]. The experiment has
since been optimized to explore gaps below 50 µm, and
new force data were acquired in 2012. These data have
been used to set limits on Lorentz invariance violation in
gravity [85, 86].

Analysis of the 2012 data for evidence of double boson
exchange follows that in Ref. [83] for Yukawa-type mass-
coupled forces. Eqs. (8), (11), and (15) are converted to
forces and integrated numerically by Monte Carlo tech-
niques over the 2012 experimental geometry, using the
parameters in Refs. [83] and [85] and their errors. Sys-
tematic errors from the dimensions and positions of the
test masses are determined at this stage, by computing
a population of force values generated from a spread of
geometries based on the metrology errors. Gaussian like-
lihood functions for the experiment are constructed us-
ing the difference between the measured force and the
numerical expressions for the double exchange forces as
the means.

Limits on the double boson exchange interactions are
determined by integration of the likelihood functions over
the spin-dependent couplings (which are free parame-
ters in the likelihood functions), for several values of the
range λ = 1/µ. Results for the 2σ limits on the coupling
(gNP )2 in Eq. (8) are shown in Fig. 2. The constraints are
more sensitive than previously published limits [71, 72]
by about a factor of 5 in the range near 100 µm. Anal-
ysis of Eqs. (11), and (15) is still in progress with the
understanding that (15) is only applicable for µr � 1.

V. CONCLUSION

We have derived the leading-order spin-independent
contribution to the interaction energy arising from the
exchange of two light massive bosons between two spin-
1/2 Dirac fermions in the nonrelativistic limit. Our ex-

FIG. 2. Limits on the pseudoscalar coupling for nucleons.
Red dashed curve is from this work. Black solid and black
dashed curves follow from Ref. [71] and [72], respectively.

pressions agree with previous calculations in the litera-
ture where they exist. The functional forms derived in
this paper open up an opportunity to constrain, using ex-
isting spin-independent data, spin-dependent couplings
over new length scales that are outside the sensitivity of
current spin-dependent experiments. We also used our
expressions to reanalyze data from a short-range gravity
experiment. From this analysis we derive a new limit on
pseudoscalar couplings for nucleons which is more sen-
sitive than direct constraints from other existing spin-
dependent experiments. These limits can be further im-
proved by reconfiguring existing experiments to make
them more sensitive to the 2-BEP functional forms.
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