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In twin Higgs models, a discrete Z2 symmetry between the standard model Higgs and the twin
Higgs is introduced to address the hierarchy problem. In this work, we propose another discrete
symmetry in twin Higgs: the T parity, which maps the twin Higgs quadruplet into its mirror copy.
The T parity brings us a whole group of T-odd particles, and leads to a promising dark matter
candidate. We present one realization of the T-parity twin Higgs scenario by implementing the
SU(2)L × SU(2)R × U(1)1 × U(1)2 gauge symmetry in the left-right twin Higgs model. In this
specific setup, the T-odd U(1) gauge boson could be the dark matter candidate, and the T-odd
particles have very distinct and interesting phenomenology.

I. INTRODUCTION

In the standard model (SM), the large, quadratically
divergent radiative corrections to the Higgs mass param-
eter destabilize the electroweak scale, which is known
as hierarchy problem. The typical dynamical solution
to this problem is to introduce a new symmetry which
protects the Higgs mass against large radiative correc-
tions. Under this direction are weak scale supersymme-
try, composite Higgs and twin Higgs, etc. Recently the
twin Higgs scenario [1, 2] attracts lots of attentions. And
there have been studies on possible ultraviolet comple-
tion of the model [3–13] and on the twin particle phe-
nomenology [14–17]. In these twin Higgs models, a twin
Higgs doublet is introduced, and is mapped to the SM
Higgs doublet through a discrete Z2 symmetry. The Z2

symmetry induces an accidental U(4) global symmetry in
the Higgs sector, which ensures that the SM Higgs boson
becomes pseudo-Goldstone boson of the global symme-
try breaking. Therefore, the Z2 symmetry in twin Higgs
protects the Higgs mass against large radiative correc-
tions. The twin Higgs scenario could be further classified
by the gauge group in the models. Two kinds of gauge
groups have been introduced: the mirror gauge group in
the so-called mirror twin Higgs model [1, 6, 15], in which
a mirror SU(3)′c × SU(2)′L × U(1)′ symmetry is gauged,
and the left-right gauge group in the left-right twin Higgs
model [2], in which the SM gauge symmetry is extended
to SU(3)c × SU(2)L × SU(2)R × U(1).

Twin Higgs scenario not only addresses the hierar-
chy problem, but also provides rich cosmological implica-
tions [18–24], such as dark matter candidate, dark radia-
tion, etc. To incorporate the dark matter candidate it is
necessary to introduce a hidden sector in twin Higgs sce-
narios. In the mirror twin Higgs model [1, 6, 15], there is
a hidden dark sector which is inherent in the model. The
twin sector is only charged under new mirror SM gauge
group and is connected to the SM sector via the Z2 sym-
metry. Thus the twin particles are completely neutral
under the SM gauge symmetry, and could only talk to
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the SM sector through the Higgs boson. The twin parti-
cles in the mirror sector belong to a hidden dark sector,
and it is the twin gauge symmetry that stabilizes the
dark matter candidate. Similar dark matter candidate
appears in the composite twin Higgs models, in which
a twin QCD symmetry is introduced [8, 9]. Typically
the dark matter candidate could be twin-neutrino, twin-
onium, etc [18, 21, 23, 24]. It provides us very interesting
cosmological consequence.

On the other hand, in the left-right twin Higgs
model [2], there is no hidden dark sector contained in the
model. In this model, both the SM color group and the
U(1) group are not doubled by the Z2 symmetry. Thus
the twin particles in the twin sector could carry the SM
color charge and the B − L charge. To incorporate hid-
den dark sector, the left-right twin Higgs model needs
to be extended. Typical UV extensions of the left-right
twin Higgs model are the composite twin Higgs with left-
right symmetry and the supersymmetric twin Higgs with
the left-right symmetry [3]. In the composite twin Higgs
with left-right symmetry, such as Ref. [25], the hidden
dark sector might or might not exist depending on the
UV composite dynamics and the color and electroweak
charge assignments of the twin particles. On the other
hand, the supersymmetric twin Higgs with the left-right
symmetry [3] contains the hidden sector: the sparticles
in the mass spectra, which provide the dark matter can-
didate, the supersymmetric lightest sparticle. Thus its
cosmological implications are quite similar to the typical
supersymmetric dark matter.

In this work, we focus on the twin Higgs models with
the left-right gauge symmetry. We propose a new way
to introduce hidden dark sector and dark matter can-
didate in the left-right twin Higgs model, without the
need of supersymmetric UV extension. In our setup, a
discrete T parity is introduced to obtain a hidden dark
sector and thus the dark matter candidate. The T parity
has been introduced and investigated in the little Higgs
model [26, 27], to avoid the tight constraints from elec-
troweak precision tests and to introduce dark matter can-
didate in little Higgs. To be specific, we extend the left-
right twin Higgs model in this work and impose the T
parity in this model. In our setup, two U(4) twin Higgs
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quadruplets H1 and H2 are introduced, and an exchange
symmetry in the Higgs sector is imposed:

T parity : H1 =

(
H1SM

H1twin

)
↔ H2 =

(
H2SM

H2twin

)
, (1)

The exchange symmetry between H1 and H2 is identified
as the T-parity. Under the T-parity, one combination
of the Higgs quadruplet is T-odd, while another is T-
even. Not only the Higgs sector is doubled, the gauge
and fermion structure could also be doubled through the
T-parity. Thus the T-parity introduces a whole group of
hidden particles, such as T-odd Higgs, T-odd top partner,
T-odd gauge boson, etc. Unlike the twin top partner is
SM color neutral in mirror twin Higgs models, the T-
odd top partner carries the SM color. This leads to a
different cosmological implications than the ones in the
mirror twin Higgs. We present a realization of the T
parity left-right twin Higgs scenario by implementing the
SU(2)L×SU(2)R×U(1)1×U(1)2 gauge symmetry in twin
Higgs model. In this setup, the T-odd particles are the
top partner T ′, the T-odd Higgs H ′, and the T-odd U(1)
gauge boson B′, which is identified as the dark matter
candidate. This T-parity realization could be extended
to other left-right twin Higgs models, such as composite
twin Higgs with the left-right gauge symmetry.

The paper is organized as follows. In Section II we
introduce the twin Higgs model with T-parity, and then
write down the Lagrangian for T-even and -odd particles
in Section III. Section IV discusses the twin Higgs mecha-
nism. In Section V and VI we investigate the model con-
straints on the T-even and -odd particles, respectively.
Finally we conclude in Section VII.

II. TWIN HIGGS MODEL WITH T-PARITY

We consider a two twin Higgs scenario, in which two
U(4) invariant Higgs quadruplets are introduced:

H1 ≡
(
H1L

H1R

)
, H2 ≡

(
H2L

H2R

)
. (2)

The tree-level Higgs potential preserves an approximate
global symmetry U(4)1 × U(4)2:

V (H1, H2) = −µ2(|H1|2 + |H2|2) + λ
[
|H1|4 + |H2|4

]
.(3)

There are two discrete symmetries in the scalar potential:

• the Z2 symmetry between HL and HR: it maps the

twin Higgses into the SM Higgses: H1R
Z2−→ H1L,

H2R
Z2−→ H2L;

• the T-parity between H1 and H2: it maps the two

Higgs quadruplets into each other: H1
T−→ H2.

The tree-level potential in Eq. 3 is invariant under both
the Z2 symmetry and the T-parity. Because of the neg-
ative mass squared of the H1 and H2 in the tree-level

FIG. 1. The ”Moose notation” [28] diagram of this model:
the gauged symmetry SU(2)L × SU(2)R × U(1)1 × U(1)2 is
represented by the solid circles, and the Higgs quadruplets
H1 and H2 are represented by the links in between. The Z2

symmetry acts as: H1L ↔ H1R, H2L ↔ H2R, SU(2)L ↔
SU(2)R. And the T-parity acts as: H1L ↔ H2L, H1R ↔ H2R

and U(1)1 ↔ U(1)2.

potential, both the H1 and H2 develop vacuum expecta-
tion values (VEVs):

〈h1L〉2 + 〈h1R〉2 = f2/2, 〈h2L〉2 + 〈h2R〉2 = f2/2, (4)

where f = µ/
√
λ, and the hiL and hiR (i = 1, 2) are the

neutral components of theHiL andHiR in the quadruplet
Hi, respectively. From Eq. 4, the VEVs (〈hiL〉, 〈hiR〉) in
the quadruplet Hi cannot be uniquely determined due
to a residue U(1)i symmetry in the tree-level potential.
However, the tree-level potential receives additional cor-
rections from the soft breaking term and radiative cor-
rections, which will be discussed in detail in Sec. IV.
Similar to the original twin Higgs [2], to obtain the cor-
rect Higgs boson mass, we introduce the soft Z2 breaking
but T-parity invariant term

Vsoft = m2(H†1LH1L +H†2LH2L), (5)

As additional benefit, this soft Z2 breaking term breaks
the residue U(1)1 × U(1)2 symmetry in the Higgs VEVs
and thus uniquely determines the VEVs of (〈hiL〉, 〈hiR〉):

〈h1L〉 = 〈h2L〉 = 0, 〈h1R〉 = 〈h2R〉 = f/
√

2. (6)

Thus after the Higgses develop their VEVs, the T-parity
is still exact 1.

1 Because the gauge and fermion assignments shown in Tab. I re-
spect the T-parity, the radiatively corrections on the H1 terms
and the H2 terms in the one-loop potential are the same, as dis-
cussed in Sec. IV. Thus including both soft breaking term and
radiative corrections in the Higgs potential will only change the
VEVs of the Higgses to obtain vacuum misalignment

〈h1L〉 = 〈h2L〉 = v/
√

2, 〈h1R〉 = 〈h2R〉 = f/
√

2, (7)

and the T-parity is still exact.
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According to the potential in Eq. 3 and 5, the deepest
minimum is developed at the VEVs:

〈H1〉 = 〈H2〉 =


0
0
0

µ/
√

2λ

 =


0
0
0

f/
√

2

 , (8)

which break U(4)V → U(3)V and leave U(4)A unbroken.
Here U(4)V is the diagonal subgroup of U(4)1 × U(4)2,
and U(4)A is the coset group. Therefore, the T-parity is
still exact after the global symmetry breaking U(4)V →
U(3)V . The U(4)V is explicitly broken by gauging an
SU(2)L × SU(2)R × U(1)1 × U(1)2 subgroup. Here H1L

and H2L are doublets under the SU(2)L gauge symmetry,
while H1R and H2R are doublets under the SU(2)R gauge
symmetry. The H1 is only charged under U(1)1 gauge
group, while the H2 is charged under U(1)2. In terms
of the ”Moose notation” [28], we exhibit the Moose and
linked fields in Fig. 1. Thus the two U(4) invariant Higgs
fields have the following gauged Lagrangian:

L = (DµH1)†DµH1 + (DµH2)†DµH2 − V (H1, H2).(9)

The covariant derivatives are

DµH1 = ∂µH1 + igWµH1 + ig′B1µH1,

DµH2 = ∂µH2 + igWµH2 + ig′B2µH2, (10)

where

Wµ =
1

2

(
W a
Lµτ

a 0
0 W a

Rµτ
a

)
, Biµ =

1

2

(
Biµ 0
0 Biµ

)
.(11)

The gauged Lagrangian is invariant under the Z2 map-
ping SU(2)L ↔ SU(2)R, and the T-parity mapping:
U(1)1 ↔ U(1)2.

SU(2)L U(1)1 U(1)2 SU(2)R

H1L 2 1
2

0 1

H1R 1 1
2

0 2

H2L 2 0 1
2

1

H2R 1 0 1
2

2

qL 2 1
6

1
6

1

qR 1 1
6

1
6

2

`L 2 −1 −1 1

`R 1 −1 −1 2

T1L,R 1 + 2
3

0 1

T2L,R 1 0 + 2
3

1

TABLE I. The particle contents and their quantum numbers
in the model. Here T1 and T2 are new vector-like top singlets.

To generate the light Higgs boson mass without
quadratic divergence, we introduce two vector-like top
singlets: T1 and T2. They are mapped into each other

under T-parity: T1 ↔ T2. Adapting the matter contents
in the left-right twin Higgs [2], we have the SM fermion
contents (for simplicity, we only write down the third
generation fermions) and the new fermions as follows:

qL =

 tL

bL

 , `L =

 νL

τL

 , T1L, T2L,

qR =

 tR

bR

 `R =

 νR

τR

 , T1R, T2R. (12)

Their quantum number assignments are listed in Table I.
The kinetic terms of the fermion Lagrangian are

Lferm = qL,Rγ
µDµqL,R + `L,Rγ

µDµ`L,R

+ T1L,Rγ
µDµT1L,R + T2L,Rγ

µDµT2L,R, (13)

where

DµT1,2 = ∂µTi + ig′Y Bµ1,2T1,2, (14)

DµqL,R = ∂µqL,R +
ig

2
Wµa
L,Rτ

aqL,R (15)

+ig′Y (Bµ1 +Bµ2 )qL,R,

Dµ`L,R = ∂µ`L,R +
ig

2
Wµa
L,Rτ

a`L,R (16)

+ig′Y (Bµ1 +Bµ2 )`L,R.

The top quark sector contains the SM top quark and new
vectorlike tops. The top Yukawa Lagrangian is

−Ltop = y1LQLH1LT1R + y1RQRH1RT1R +MT1LT1R (17)

+ y2LQLH2LT2R + y2RQRH2RT2R +MT2LT2R + h.c..

Due to the Z2 symmetry and the T-parity, we have
y1L = y2L = y1R = y2R = y. We obtain the top Yukawa
coupling and top quark mass from the top Yukawa La-
grangian. Without introducing any more extra matter
fields, all other SM quarks and leptons can get their
masses from the non-renormalizable terms

−LYuk = yd
qLH1LH

†
1RqR + qLH2LH

†
2RqR

Λ

+ y`
`LH1LH

†
1R`R + `LH2LH

†
2R`R

Λ

+ yu
qRH

†
1RH1LqL + qRH

†
2RH2LqL

Λ
+ h.c.(18)

Once the field HiR acquires a VEV of order f , the non-
renormalizable Lagrangian generates effective Yukawa
couplings for the light quarks and leptons with the order
of f/Λ, which is the typical size of the familiar Yukawa
couplings in the SM [2]. In addition, we can write down
the term

`CRH1RH
C
1R`R + `CRH2RH

C
2R`R

Λ
(19)

which generates large Majorana masses for the νR: f2/Λ.
Thus the small neutrino masses could be obtained via the
seesaw mechanism.



4

III. T-EVEN/ODD LAGRANGIAN

The T-parity is an exact symmetry of the Lagrangian.
We could redefine the fields in the Lagrangian to have all
the fields in the Lagrangian to be either T-parity even
or odd. We note that the fields Wµ

L,R, qL,R are T even,

but H1,2, B
µ
1,2, T1,2 are undetermined. Thus we define the

following combinations:

H =
1√
2

(H1 +H2) , Bµ =
1√
2

(Bµ1 +Bµ2 ) ,

H ′ =
1√
2

(H1 −H2) , B′µ =
1√
2

(Bµ1 −B
µ
2 ) ,

TL,R =
1√
2

(T1L,R + T2L,R) ,

T ′L,R =
1√
2

(T1L,R − T2L,R) . (20)

Under these redefinition, we have

• T-parity even fields: H,Bµ, TL,R, and Wµ
L,R, qL,R;

• T-parity odd fields: H ′, B′µ, T ′ with H ′ ↔
−H ′, B′ ↔ −B′, T ′ ↔ −T ′.

Since the T-parity is exact, it could be viewed as the ori-
gin of the dark matter symmetry, which could stabilize
the dark matter candidate. Therefore, this model natu-
rally explains the origin of the dark matter.

After field redefinitions, the two U(4) invariant
quadruplets become

H ≡

 HL

HR

 , H ′ ≡

 H ′L

H ′2

 . (21)

According to Eq. 8 and the T-parity, the VEVs of the H
and H ′ are

〈H〉 =
1√
2

(〈H1〉+ 〈H2〉) =


0

0

0

f

 ,

〈H ′〉 =
1√
2

(〈H1〉 − 〈H2〉) = 0. (22)

The T-odd field H ′ has no VEV. Therefore, the global
symmetry breaking is U(4)→ U(3) while U(4)′ is unbro-
ken. This can also be seen from the scalar potential for
H and H ′:

V (H,H ′) = −µ2(|H|2 + |H ′|2) (23)

+ λ
[
(|H|2 + |H ′|2)2 + (H†H ′ +H ′†H)2

]
.

The deepest minima of the potential exist at either
(〈H〉, 〈H ′〉) = (f, 0) or (〈H〉, 〈H ′〉) = (0, f).

The symmetry breaking pattern is

global symmetry: U(4)→ U(3),

gauge symmetry: SU(2)L × SU(2)R × U(1)× U(1)′

→ SU(2)L × U(1)Y × U(1)′.

Let us parametrize the fields H nonlinearly in terms of
the nonlinear sigma field

H = exp

 if


02×2 01×2 h

02×1 0 C

h∗ C∗ N





01×2

0

f

 , (24)

where the field h denotes the SM Higgs doublet h = h+

h0

, and C± and N are Goldstone bosons, which are

absorbed by the SU(2)R × U(1) gauge bosons. Taking
the expansion, the field H takes the form

H =


f ih√

h†h
sin
(√

h†h
f

)
0

f cos
(√

h†h
f

)
 '


ih

0

f − 1
2fh

†h

 .(25)

Here the field H plays the role of the twin Higgs as the
original twin Higgs model. Another field H ′ does not
obtain VEV, and thus it is just another scalar quadruplet
in this model.

Using the redefined fields in Eq. 20, the kinetic La-
grangian in the scalar sector becomes

L = (DµH
† − ig′Y B′µH ′†)(DµH + ig′Y B′µH

′)

+(DµH
′† − ig′Y B′µH†)(DµH ′ + ig′Y B′µH),(26)

where the covariant derivative is defined as

DµH = ∂µH + igWµH + ig′BµH,

DµH ′ = ∂µH ′ + igWµH ′ + ig′BµH ′. (27)

Note the Higgs mechanism for the T-odd field B′µ is quite
different from the typical case:

• In typical case, for example, the T-even field Bµ

absorbs the CP odd component of the T-even H
and obtains its mass from its VEV 〈H〉;

• In this model, the terms ∂µH ′B′µH and

B′µB′µH
†H in above Lagrangian indicate that the

T-odd field B′µ absorbs the CP odd component of
the T-odd H ′ but obtains its mass from VEV of
the H.

The kinetic Lagrangian in the fermion sector becomes

L = Tiγµ(∂µ + ig′Y Bµ)T + T ′iγµ(∂µ + ig′Y Bµ)T ′

−g′TγµB′µT ′ − g′T ′γµB′µT. (28)
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And the Yukawa Lagrangian in the top quark sector be-
comes

LYuk = qLHLTR + qRHRTL +MTLTR

+ qLH
′
LT
′
R + qRH

′
RT
′
L +MT ′LT

′
R + h.c. (29)

We also obtain the Yukawa Lagrangian for the SM quarks
and leptons:

−LYuk =
ydqLHLH

†
RqR + y``LHLH

†
R`R

Λ

+ yu
qRH

†
RHLqL
Λ

+ h.c. (30)

IV. TWIN HIGGS MECHANISM

The gauge and Yukawa interactions break the global
symmetry U(4) explicitly, generate masses for the Higgs
boson, and trigger the electroweak symmetry breaking.
We ultilize the Coleman-Weinberg (CW) potential to
quantify the radiative corrections of the Higgs potential.
The one-loop CW potential in Landau gauge [29] is

VCW(H) =
1

64π2
STr

[
Λ4

(
ln Λ2 − 3

2

)
+ 2M2(H)Λ2

+M4(H)

(
ln
M2(H)

Λ2
− 3

2

)]
, (31)

where the super-trace STr is taken among all the dynami-
cal fields that have the Higgs dependent masses. The first
term is the cosmological constant term, while the second
term is responsible for the quadratic divergence of the
Higgs boson masses. It is the third term that gives the
scalar potential of the Higgs boson.

The Higgs-dependent charged gauge boson masses are

m2
W =

1

2
g2
L|HL|2,m2

W ′ =
1

2
g2
R|HR|2, (32)

where gL = gR = g according to the Z2 symmetry. The
Higgs-dependent neutral gauge boson masses are

m2
Z '

1

2
(g2 + g2

Y )|HL|2 −
1

2f2

g4
Y

g2
|HL|4,

m2
Z′ '

1

2
(g2 + g′2)f2 − 1

2
(g2 + g2

Y )|HL|2

+
1

2f2

g4
Y

g2
|HL|4. (33)

The Higgs-dependent top quark masses are

m2
t =

y4|HL|2|HR|2

(M2 + y2f2)
,

m2
T = M2 + y2f2 − y4|HL|2|HR|2

(M2 + y2f2)
. (34)

For the T-odd particles, we have

m2
B′ =

1

2
g′2(|HL|2 + |HR|2) =

1

2
g′2Y 2f2,

m2
T ′ = M2, (35)

which have no dependence on the Higgs boson field, and
thus are not relevant to the Higgs boson mass and po-
tential.

Let us first discuss the quadratic dependence of the
Higgs boson in the CW potential in Eq. 31. Consider-
ing the contributions from the charged gauge bosons in
Eq. 32, we have

VCW ⊃
9Λ2

64π2
(g2
L|HL|2 + g2

R|HR|2) (36)

Only if the Z2 symmetry is imposed (gL = gR = g),
there is no quadratic divergence on the Higgs boson mass
from the charged gauge boson radiative corrections. Sim-
ilarly, we obtain the CW potential from the neutral gauge
bosons and the top quark sector

VCW ⊃
9Λ2

64π2
(m2

Z +m2
Z′) ' Λ2f2, (37)

VCW ⊃ −
3Λ2

8π2
(m2

t +m2
T ) ' Λ2f2. (38)

In summary, the quadratic parts of the CW potential ac-
cidentally respect the original U(4) symmetry due to the
Z2 symmetry, which is the twin Higgs mechanism. Thus
the Higgs mass does not receive any quadratic divergent
contributions due to the twin Higgs mechanism.

Now let us analyse the radiatively generated Higgs po-
tential. The leading Higgs potential is parametrized as

V (h†h) = a sin2

(√
h†h

f

)
+ b sin4

(√
h†h

f

)
, (39)

where a and b are coefficients calculated from the one-
loop CW potential. The gauge boson contributions are

a =
3

64π2
g4f4

(
log

Λ2

g2f2/2
+ 1

)
+

3g2(g2 + 2g′2)f4

128π2

(
log

Λ2

(g2 + g′2)f2/2
+ 1

)
, (40)

b = −a+
3

256π2
(g2 + g2

Y )f4

[
log

(g2 + g′2)f2/2

m2
Z

− 1

2

]
,

where m2
Z = 1

2 (g2+g2
Y )f2 sin2 x with x = v/f . Since a in

above equation is positive, the gauge boson contributions
could not trigger electroweak symmetry breaking. The
top quark contributions are

a = − 3

8π2
y4f4

(
log

Λ2

M2 + y2f2
+ 1

)
,

b = −a+
3y4
t f

4

16π2

[
log

M2 + y2f2

m2
t

− 1

2

]
, (41)

where the top-Yukawa coupling is defined as yt =
y yf√

M2+y2f2
, and m2

t = y2
t f

2 sin2 x. Therefore, the elec-

troweak symmetry breaking is triggered by the top quark
contributions. The Higgs boson mass is calculated via

m2
Higgs ' −

a

b
f2, (42)
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But here we have a ∼ b, and thus we obtain the Higgs
mass is around f2, which is too heavy. We need to add
soft mass term, which only break the Z2 symmetry softly
but the T-parity is still exact. The soft Z2 breaking term
in Eq. 5 reads

Vsoft = m2(H†1LH1L +H†2LH2L). (43)

The Higgs mass is then

m2
Higgs '

a−m2f2

b
f2. (44)

Since the Higgs mass is measured to be 125 GeV, we
could determine the soft mass parameter m2 once we
know the new physics scale f . Furthermore, given various
radiative corrections, we could estimate the fine-tuning
by considering the following mass ratio

∆m =

∣∣∣∣2δmm2
h

∣∣∣∣−1

' m2
h

2|a|
. (45)

Once we know the scale f , we could estimate the level of
tuning in this model.

The T-odd Higgs quadruplet H ′ also receives radiative
corrections. Let us denote component fields in the H ′ as

H ′ =


H ′

+
L

H ′
0
L + iA′

0
L

H ′
+
R

H ′
0
R + iA′

0
R

 . (46)

Due to the exact T-parity, although the H ′ does not mix
with the H, they share the same potential, as shown in
Eq. 24. Therefore, at tree-level, after the H obtains its
VEV 〈HL〉 = f sin v

f , 〈HR〉 = f cos vf , we obtain the tree-

level masses

m2
H′0L

= 2λf2 sin2 v

f
, (47)

m2
H′0R

= 2λf2 cos2 v

f
, (48)

while other components are massless. On the other hand,
since H ′ has no VEV at all 2, all the components re-
ceive radiative corrections in additional to the tree-level
masses:

m2
all H′ components '

1

16π2
g4f2 log

Λ

f
. (49)

Similar to radiative corrections, adding soft mass terms
will also lift the masses of the H ′ component fields. Given
the soft mass terms in Eq. 43, all H ′L component fields
obtain additional mass corrections:

m2
all H′L components ' m2. (50)

2 It is different from the case that H′ obtains its VEV [2, 30]. If
the H′ has VEV 〈H′R〉 = f ′, the CP-odd scalar in H′R will be
massless due to a global residue U(1)R symmetry.

If we add soft mass terms for the H ′R, all the H ′R compo-
nent fields will also receive corrections from the soft term.
Therefore, the masses of the H ′ components will be the
sum of all kinds of mass corrections. Since the soft mass
terms origin from the ultraviolet physics, the masses of
the H ′ component fields should be quite sensitive to the
UV completion of this model.

V. MODEL CONSTRAINTS

The strongest experimental constraints on the model
come from direct searches at the LHC on the new T-
even particles: the new gauge bosons W ′, Z ′ and the
colored heavy top T . Both ATLAS and CMS investigated
the exotic W ′, Z ′, T ′ resonances. The latest experimental
bounds on masses of these resonances are summarized as
follow:

• If the right-handed W ′ decays to right-handed neu-
trino and lepton, the high mass resonance searches
in the lepton plus transverse missing energy final
states put strong constraint on the W ′ mass. In
our setup, the right-handed neutrino masses are
around the scale f , which is the see-saw mecha-
nism to generate the neutrino mass. Therefore,
the right-handed W ′ will dominantly decay to di-
jet and single top final states. Due to huge QCD
backgrounds in di-jet channel, we expect that the
single top final states provide us the tightest con-
straint on the W ′ mass. Based on the 13 TeV CMS
data with 12.9 fb−1 luminosity [32], the observed
limits on the right-handed W ′ at 95% confidence
level (CL) is mW ′ > 2.6 TeV 3. But this is for the
right-handed W ′ with 100% decay branching ratio
to single top. Recasting the updated exclusion limit
with branching ratios, we obtain mW ′ > 1.67 TeV.

• The dileptonic final states at the LHC put the
strongest limit on the Z ′ gauge boson. Based on
the 13 TeV ATLAS (13.9 fb−1) [35] and CMS (2.9
fb−1) [34] data, the observed limits on the sequen-
tial Z ′ is mZ′ > 4.05 TeV at 95% CL. Taking into
account branching ratio of the dilepton final state
(around 2.5% in this model), we obtain the exclu-
sion limit mZ′ > 2.56 TeV in our setup.

• The heavy top quark partner T has been investi-
gated at both the ATLAS [36] and CMS [37]. The
tightest constraint on T come from combining the
exclusion limits in the decay channels T → tZ,
T → bW and T → th. Based on the ATLAS data

3 The exclusion limit from ATLAS [33] are slightly weaker be-
cause 8 TeV data was used in their analysis. Furthermore, flavor
physics, such as the KS−KL mixing, etc, also put constraint on
the W ′ mass, but it is weaker than the latest LHC constraints.
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with 11.5 fb−1 luminosity at 13 TeV [36], the up-
dated exclusion limit is around 850 GeV after tak-
ing the branching ratios into account.

From above, we find that the tightest constraint comes
from the Z ′ dileptonic searches. Converting to con-
straints on the scale f , we obtain that the scale f > 4.8
TeV. This introduces a tuning between the scale f and
the electroweak scale, which is the so-called little hier-
archy problem. Note that mass bounds on T is not so
tight, because both the parameter M and the scale f
contribute to the T mass. The vectorlike mass M lifts
the T mass and could keep the scale f below 700 GeV.
We could ultilize similar setup to lift the masses of the
new gauge bosons while keep the scale f below 1 TeV.
Furthermore, lifting the new gauge boson masses will also
help escape the indirect limits from electroweak precision
tests. If the masses of the W ′ and Z ′ are not so heavy, the
electroweak precision data put strong constraints on the
model parameters [38]. However, when the gauge boson
masses are heavier than 2 TeV, the electroweak precision
constraints could be much weaeker 4

There are ways to lift the new gauge boson masses.
Typically we introduce new scalar fields which are
charged under the gauge group of the model. To keep
other sectors in this model unaffected, we need to assign
such new scalar fields only play the role of giving the
new gauge boson masses without interacting with other
fermions or scalars. Here we suggest two ways to lift the
gauge boson masses:

• way I: introduce additional complex scalar S, which
is only charged under U(1)1 and U(1)2. The same
U(1) charges are needed to keep the T-parity exact.
After this new scalar S obtains its VEV f ′, the
T-even gauge boson Z ′ obtains its mass of order√
f2 + f ′2. In this way, the bound on the scale f

could be relaxed and thus the tight constraints from
the dileptonic Z ′ searches can be avoid. We could
lower the scale f to be around 2 TeV in which the
W ′ mass bound plays the significant role.

• way II: introduce additional Higgs quadruplet H̃,
which is charged under SU(2)L × SU(2)R and
U(1)1×U(1)2. Similarly, the same SU(2) and U(1)
charges are needed to keep the T-parity exact. Af-
ter the Higgs quadruplet H̃ obtains its VEV f ′,
both the W ′ and Z ′ obtains their masses of order√
f2 + f ′2. In this way, we could lift the masses of

the W ′ and Z ′ while keeping the f to be around 1
TeV.

Therefore, although the current limits on the W ′ and Z ′

are tight, the scale f could still be around TeV scale. Fur-
thermore, if we assume the new scalar masses are heavier

4 Although the electroweak precision test might provide con-
straints on the mixing angle sL and sR between t and T for
a sub-TeV T [39], the T-parity between T and T ′ could weaken
the electroweak precision constraints.

than TeV scale by introducing soft mass terms, adding
these new scalars will not affect the phenomenology be-
low TeV scale. We will simply assume these new scalars
are very heavy and only affect the W ′ and Z ′ masses.

h

g

g

t, T

(a)

h

γ

γ

t, T

(b)

h

γ

γ

W,W ′

(c)

FIG. 2. The Feynman diagrams on the Higgs gluon gluon
process (a) and Higgs to diphoton process (b,c).
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68% CL
Allowed Region

95% CL

99% CL

Excluded Region by

Higgs Coupling Data

FIG. 3. The allowed contours on (f,M) at 68%, 95%, 99%
CLs, according to the global fitting of the Higgs coupling data.

Although adding new scalars could lower the scale f ,
the Higgs coupling measurements will constrain the scale
f whatever the new scalars exist or not. Independent of
the new scalar sector, the Higgs coupling measurements
put strong limit on the model parameters (f,M). It is
known that the Goldstone boson nature of the Higgs bo-
son modifies the Higgs couplings to the SM gauge boson

and SM fermions by a factor
(

1− v2

f2

)
. Furthermore,

due to the mixing between t and T , the htt and hTT
couplings are further modified by the mixing angle. This
will affect the Higgs couplings to the gluon fields via the
loop effects, as shown in Fig. 2(a). Finally, due to the
existence of the charged gauge bosons and charged inert
scalars, the Higgs diphoton couplings are also modified,
as shown in Fig. 2(b,c). In principle, all the charged par-
ticles should be involved in the diphoton loop. Given that
the masses of the H ′

∓
L,R depend on the soft mass terms,

here for simplicity, we assume the H ′
∓
L,R are heavy, and

thus the scalar contribution is negligible, compared to
other contributions.
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The relevant Higgs couplings are

hWW :
1

2
g2v

(
1− v2

f2

)
, hW ′W ′ : −1

2
g2v

(
1− v2

f2

)
,

htt : − yt√
2
cLcR, hTT : − y√

2
(sLsR − cLcR

v

f
), (51)

where sL and sR are mixing angle between t and T ,
defined in Eq. 72 in Appendix. Using these couplings,
we calculate various Higgs signal strengths µpp→h1→ii =
σ(pp → h1)Brh1→ii/σSMBrSM. Based on Higgs signal
strengths at the 8 TeV LHC with 20.7 fb−1 data [40, 41],
we perform a global fit on the model parameters. Fig. 3
shows the allowed contours on (f,M) at 68%, 95%, 99%
CLs. Depending on values of the mass parameter M , the
scale f could be as low as 750 GeV at 95% CL. As shown
in the next section, the mass parameter M determines
the mass scale of the T-odd top partner T ′. Given the
current limit on the T ′ mass mT ′ > 0.9 TeV, we deter-
mine the scale f should be around 1.4 TeV at 95% CL.

VI. T-ODD PARTICLE PHENOMENOLOGY

Unlike the T-even particles, the signatures of the T-odd
particles provide very distinct features from the original
twin Higgs model. Due to the exact T parity, the T-odd
particles do not mix with the T-even particles. Similar to
the little Higgs models with T parity [26, 27], we assign
the T-odd particles belong to dark sector, and the lightest
T-odd particle (LTP) is the dark matter candidate.

In this T-parity twin Higgs setup, the T-odd particles
are the dark gauge boson B′, the dark top T ′ and all
the component fields in H ′. The T-odd particle masses
are mT ′ = M , and mB′ = 1

2g
′f . As discussed above,

the masses of the H ′ strongly depend on the soft mass
terms, and typically m2

H′0L,R
∼ λf2, mH′±L,R

∼ mA′0L,R
∼

msoft. Depending on the soft mass term, the dark matter

candidate could be either A′
0
L,R or the dark gauge boson

B′. Here for simplicity, we assume the soft mass term,
which is typically order of yf , is larger than gf , and take
the dark gauge boson B′ as the dark matter candidate. In
this case, the dark matter signatures are quite different
from the ones in the left-right twin Higgs model [31],
which suggested the dark matter candidate is the neutral
components of the inert Higgs.

Although the kinetic term of the dark gauge boson
involves in H, there is no coupling between B′ and the
Higgs boson, such as B′B′hh and B′B′h terms. The
B′ typically interacts with the T-odd T ′ via the T-even

top quarks, and couples to the H ′
±
L,R and H ′

0
L,R and

electroweak gauge bosons. Therefore, the dominant dark
matter annihilation processes are

• B′B′ → W+W−/ZZ via t-channel exchange of
H±L (H0

L);

• B′B′ → tt̄ via t-channel exchange of T ′.

Since we have assumed the H±L (H0
L) are heavy, the

B′B′ → W+W−/ZZ process is suppressed compared to
the B′B′ → tt̄ process. Thus it is very similar to the top
flavored dark matter [42] with dark matter being vector
boson. Unlike the fermionic top flavored dark matter,
the t-channel process B′B′ → tt̄ provides us the s-wave
component of the dark matter annihilation without chi-
rality suppressed. Approximately, the s-wave B′B′ → tt̄
annihilation cross section is written as

(σv)B′B′→tt̄ '
2Ncg

′4Y 2

9π

m2
B′

(m2
B′ +m2

T ′)
2
, (52)

where Nc is the color factor and Y is the top quark charge
under B′. Having known the value of g′, we could de-
termine the relation between between mB′ = 1

2g
′f and

mT ′ = M from the dark matter relic abundance measure-
ments. If only the B′B′ → tt̄ channel is dominant, the
thermal relic abundance Ωdmh

2 ' 0.12 puts constraint
on the parameters (mB′ ,mT ′), as shown in Fig. 5.

T ′T ′

t, T

γ, Z

B′
µ B′

ν

(a)

t, Tt, T

T ′

γ, Z

B′
µ B′

µ

(b)

T ′

t, T

t, Tt, T

B′
ν

B′
µ

gg
(c)

t, T

T ′

T ′T ′

B′
ν

B′
µ

gg
(d)

T ′

t, T

T ′t, T

gB′
µ

B′
ν

g
(e)

FIG. 4. The triangle (a,b) and box (c,d,e) Feynman diagrams
which contribute to the dark matter direct detection.

We expect that the dark matter direct detection exper-
iments will put further constraints on the model param-
eters. Because the B′ does not couple to the Higgs bo-
son, the dominant contributions to direct detection come
from the one-loop triangle and box diagrams, similar to
the studies in Ref. [43]. Let us calculate the low energy
effective Lagrangian. According to Feynman diagrams
shown in Fig. 4(a,b), the resulting effective Lagrangian
is

L = Ctriεµνρσ (B′µ∂νB
′
ρ) qγσγ5q , (53)

where the Wilson coefficient Ctri is

Ctri' Nc
eQg′2

π2

1

6

∫ 1

0

dz
z3

m2
t + (m2

T ′ −m2
t )z +m2

B′z(z − 1)

+(mt ↔ mT ′). (54)

The box diagrams shown in Fig. 4(c,d,e) generate the
following effective Lagrangian

L = αsCboxB
′ρB′ρG

aµνGaµν , (55)
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XENON1T Projection

LUX Exclusion

LHC tt
-
+MET Exclusion

Relic Abundance
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FIG. 5. The exclusion contours on the model parame-
ters (mT ′ = M,mB′ = 1

2
g′f) by the LUX experiments,

XENON1T projection, and the top pair plus transverse miss-
ing energy searches at the LHC. The blue line shows the
prediction of the dark matter relic abundance if only the t-
channel B′B′ → tt̄ is dominant.

where the Wilson coefficient Cbox is approximately

Cbox =
g′2

48π

3m2
T ′ − 2m2

B′

(m2
T ′ −m2

B′)
2
. (56)

The triangle loop diagrams only contribute to the spin-
dependent (SD) cross section, while the box loop dia-
grams contribute to the spin-independent (SI) cross sec-
tion:

σSI
N =

µ2
N

π

(
4

9
f

(N)
TG

mN

mB′
Ctri
)2

,

σSD
N =

16µ2
N

π

(
e
∑
q

∆N
q Cbox

)2

, (57)

where f
(N)
TG and ∆N

q are defined in the Appendix of
Ref. [43]. Then we utilize the complete explosure of the
LUX 2016 data [44] to constrain the dark matter spin-
independent (SI) cross section. We found that the ex-
clusion limit is quite weak, as shown in Fig. 5. Then we
also use the projected exclusion reach of the XENON1T
experiment with an exposure of 2.2 ton years [45] to see
whether the parameter region could be excluded by fu-
ture experiments. Fig. 5 shows that the dark matter
direct detection could not impose strong constraints on
the model parameters.

On the other hand, the collider searches put stronger
limits on these T-odd particles. The T-odd T ′ should
have large production cross section because of the QCD
production mechanism, and then subsequently decay to
the top quark and the dark matter B′:

pp→ T ′T ′ → tB′t̄B′, (58)

which appears as the top quark pair plus transverse miss-
ing energy final states. This final states have been inves-
tigated at the LHC by both ATLAS [46] and CMS [47].
Although the LHC searches on this final states focus on
the exclusion limit on the stop quark, it shares the same
event topology as the T-odd T ′ searches. Thus we could
ultilize the LHC exclusion limits on the stop quark, and
recast the results of the exclusion limits into the exclu-
sion limit of the T-odd T ′ mass. To recast the exclusion
limit, we assume the same cut efficience in these processes
and perform a simple scaling of the NNLO cross section
of the stop quark to the NNLO cross section of the vec-
torlike top quark [48, 49]. We use the ATLAS analysis
on stop quark searches with 20.3 fb−1 integrated lumi-
nosity at 8 TeV [46], and obtain the exclusion limit on
(mT ′ ,mB′), as shown in Fig. 5. From Fig. 5, we note
that exclusion limit from the collider searches put much
tighter constraints on the model parameters than the di-
rect detection constraints. Combined all the constraints
from Fig. 5 and Fig. 3 together, we find that the mass
parameter M needs to be greater 900 GeV by the col-
lider searches and at the same time the scale f needs to
be greater than 1.4 TeV via the Higgs coupling measure-
ments. According to Eq. 45, this corresponds to around
10% tuning.

Finally, the collider searches should also provide con-
straints on the T-odd H ′. Since mH′ > mB′ ∼ 400 GeV,
we expect that mass of the H ′ should be heavier than 400
GeV. We know that typically the electroweak production
limit is around 400 GeV. So compared to the limits from
the T ′ searches and the Higgs coupling measurements,
the current exclusion limit on the mH′ searches will not
provide additional constraints. But we expect that the
future searches on H ′ might be able to put constraints
on the model parameters.

VII. SUMMARY AND DISCUSSION

We have investigated implementing the T-parity in the
twin Higgs scenarios. This provides us a whole new sec-
tor, the T-odd hidden sector and a promising dark mat-
ter candidate. We focused on one specific realization of
this new scenario: the T-parity extension of the left-right
twin Higgs model. In this model, we discussed collider
constraints on the T-even particles, and dark matter phe-
nomenology of the T-odd sector. We found that the
tightest constraints come from the combination of the
Higgs coupling measurements and the T-odd top partner
searches at the LHC.

This T parity twin Higgs model could be generalized
to construct new kinds of twin Higgs models. And the in-
terplay between the T parity and the Z2 symmetry might
generate new ideas on the twin Higgs models. For exam-
ple, we might be able to construct a theory in which the
Z2 symmetry only effects in the Higgs sector, but the T-
parity doubles the mass spectra. The further studies of
this T parity in twin Higgs model are under way. Over-
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all, the implementation of the T parity in the twin Higgs
model might provide a new approach to understand the
twin Higgs scenarios.
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APPENDIX: MASS MATRIX DIAGONALIZATION

Let us calculate the gauge boson masses. The T-even charged gauge boson masses are

m2
W =

1

2
g2f2 sin2 x,m2

W ′ =
1

2
g2f2 cos2 x, (59)

where x = v/f . The T-even neutral gauge bosons are mixed togther. Their mass matrix is written as
W 3
L W 3

R B

W 3
L

1
2g

2f2 sin2 x 0 − 1
2gg
′f2 sin2 x

W 3
R 0 1

2g
2f2 cos2 x − 1

2gg
′f2 cos2 x

B − 1
2gg
′f2 sin2 x − 1

2gg
′f2 cos2 x 1

2g
′2f2

 . (60)

Let us define the coupling constants

g =
e

sw
, g′ =

e√
c2w − s2

w

=
e

c2w
, gY =

e

cw
, (61)

with the weak mixing angle defined as sw = sin θw and cw = cos θw. It is more convenient to work in the basis
(A,ZL, ZR), where 

A

ZL

ZR

 =


sw sw

√
c2w

−cw swtw tw
√
c2w

0 −
√
c2w
cw

tw



W 3
L

W 3
R

B

 . (62)

In this basis, the mass eigenvalue of the gauge boson A is identically zero. We identify this gauge boson A is the
photon that should remain massless after symmetry breaking. In this basis, the mass matrix reduces to

A ZL ZR

A 0 0 0

ZL 0 M2
LL M2

LR

ZR 0 M2
LR M2

RR

 , with

M2
LL =

g2+g2Y
2 f2 sin2 x,

M2
LR =

gY
√

2g′2−g2Y
2 f2 sin2 x,

M2
RR = g2+g′2

2 f2 − g2+g2Y
2 f2 sin2 x.

(63)

The exact eigenstates Z,Z ′ are obtained via the rotation Z

Z ′

 =

 cosϑ sinϑ

− sinϑ cosϑ

 ZL

ZR

 , tan 2ϑ =
2M2

LR

M2
LL −M2

RR

. (64)

The eigenvalues M2
Z and M2

Z′ are given by

M2
Z,Z′ =

1

2

(
M2
LL +M2

RR ∓
(
M2
RR −M2

LL

)√
1 + tan2 2ϑ

)
. (65)
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and approximately we have

M2
Z = M2

LL −
M4
LR

M2
RR −M2

LL

, M2
Z′ = M2

RR +
M4
LR

M2
RR −M2

LL

. (66)

For the top quark sector, the Yukawa terms can be rewritten as

−Ltop =

 tL

TL

 0 yHR

yHL M

 tR

TR

 . (67)

This gives rise to the following mass matrix squared

M2
top =

 y2H†LHL yMHL

yMHL M2 + y2H†RHR

 . (68)

Defining the mass eigenstates tmass
L,R

Tmass
L,R

 =

 cosαL,R sinαL,R

− sinαL,R cosαL,R

 tL,R

TL,R

 , tan 2αL,R =
4yMHR,L

M2 + y2H2
L,R − y2H2

R,L

, (69)

we could diagonalize the mass matrix squared, and obtain the mass eigenstates

m2
t,T =

1

2
(M2 + y2f2 ∓

√
(M2 + y2f2)2 − y4f4 sin2 2x). (70)

The mixing angles are

sinαL =

√
1− (y2f2 cos 2x+M2)/

√
(M2 + y2f2)2 − y4f4 sin2 2x, (71)

sinαR =

√
1− (y2f2 cos 2x−M2)/

√
(M2 + y2f2)2 − y4f4 sin2 2x. (72)
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