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We consider a class of baryogenesis models where the Lagrangian in the visible sector is Charge-
Parity (CP ) invariant and a baryon asymmetry is produced only when quantum statistics is taken
into account. The CP symmetry is broken by matter effects, namely the assumption that the
primordial plasma contains another asymmetric species, such as dark matter. Out-of-equilibrium
baryon number violating decays can then generate an asymmetry through Bose enhancement and/or
Pauli blocking of certain decay channels.
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I. INTRODUCTION

The origin of the observed excess of matter over anti-matter in the universe is one of the fundamental questions
in particle physics [1]. A dynamical explanation must satisfy Sakharov’s three criteria: violation of baryon number
(B), violation of charge (C) and charge-parity (CP ) invariance, and a departure from thermal equilibrium [2]. In
many proposed scenarios CP violation is intrinsically tied to the departure from thermal equilibrium. For example, in
electroweak baryogenesis CP -violating interactions with the advancing bubble wall (which drives plasma just outside
out of equilibrium) are responsible for the generation of a chiral asymmetry that is then reprocessed into baryons [3, 4].
In the standard out-of-equilibrium decay scenarios like GUT baryogenesis and leptogenesis, the couplings of the
decaying particle violate CP , allowing for an asymmetry to be created (see Refs. [5, 6] and the reviews [7–9]). In this
paper, we explore a class of models where CP violation and the departure from thermal equilibrium are disentangled.
We consider scenarios where an existing asymmetric particle density biases an otherwise CP -conserving process
through the effects of quantum statistics, i.e. Pauli blocking and Bose enhancement, resulting in baryon number
production.

Charge-Parity violation can occur in ways that are not seen in the visible sector Lagrangian. After all, the
prevalence of baryons over anti-baryons is itself a violation of CP . Thus, it is clear that aside from a fundamental
parameter in the Lagrangian, CP can also be violated by matter effects, i.e. by any pre-existing charge densities.
This matter-induced CP violation has the distinct advantage of typically being testable if the charge corresponding
to the asymmetry is conserved until late times. For example, this is the case for asymmetric dark matter (DM).
The asymmetry and stability on cosmological time scales guarantee that there is a particle currently present in the
universe that has a CP -violating number abundance. Note that we make a distinction between the CP breaking
number abundances and the CP breaking Lagrangian parameters that they often come from (for some exceptions
see Ref. [10–13]). We will consider the case where physics in the visible sector is CP -preserving (up to the Standard
Model (SM) Cabibbo-Kobayashi-Maskawa phase) and CP violation in the early universe results from the presence of
an asymmetric particle population rather than CP violation that might have caused their production.

There are several observed particles that can break CP with their number densities and therefore can be used
to implement baryogenesis. Photons and gravitons can be chiral and thus break CP . For example, chiral magnetic
fields in the early universe can generate a B +L asymmetry via the weak anomaly [14–17], while chiral gravitational
waves can source a B − L asymmetry through the gravitational anomaly [18].

A dark matter asymmetry can also source the creation of baryon number. There are many ways to achieve
this. The asymmetric dark matter (ADM) paradigm postulates that dark matter carries baryon number. Thus
an asymmetry in DM entails an asymmetry in baryons; it is communicated to the SM via a transfer operator [19].
However, in this case, dark matter is not the source of CP violation, but rather a hidden reservoir of baryons (or
anti-baryons [20]). The alternative we consider in this work utilizes the fact that the DM number density J0

D 6= 0
breaks CP , which can be used to generate baryon number from an otherwise CP preserving decay. The existence
of a chemical potential splits the energy levels of particles and anti-particles. As a result, the CPT symmetry is
broken in this non-vacuum background. This can also be seen from the fact that J0

D is CPT odd and non-zero
in the presence of a dark asymmetry. Thus, CPT breaking allows for baryon asymmetry production at tree level
without any interference effects. The use of a CPT -violating background is similar in spirit to models of spontaneous
baryogenesis [21, 22] 1. Another example of this effect is the use of J0

D to generate a CP violating coupling in the
Lagrangian much in the same way that the Higgs vacuum expectation value allows for one to write a SU(2)W breaking
Lagrangian coupling [23].

In this paper, we use quantum statistics to transmit the CP violation from the dark sector to the SM. As a simple
example of this mechanism in action, consider the out-of-equilibrium decays of a real scalar ϕ with the interaction

L ⊃ 1

Λ
ϕψBψDφ

†
D + h.c. (1)

where ψB is a fermion that carries baryon number and ψD (φD) is a fermion (scalar) that carries a U(1)D dark
quantum number. This interaction gives rise to two decay channels for ϕ,

ϕ→ ψBψDφ
†
D (2)

ϕ→ ψ†Bψ
†
DφD. (3)

The decays of ϕ violate baryon number but preserve dark matter number. In the absence of any CP violation,
Lagrangian or otherwise, these two decays have equal probabilities so that no baryon number asymmetry is generated.

1 In the model given in Eq. 1, one can explicitly see the difference between spontaneous baryogenesis and the models we consider in this
paper. If the interactions were in thermal equilibrium, then there would be no baryon number generated.
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Now suppose that the existing DM density is asymmetric: the plasma contains more ψ†D (φ†D) than ψD (φD). Given
the simple set-up above, this is the only source of CP violation. At finite density and temperature, the ϕ decay
rate includes the effects of Pauli blocking and Bose enhancement due to the existence the final state particles in the
plasma. As a result the channel 2 is preferred over 3, so the decays produce a baryon number asymmetry. In the limit
of a large dark matter asymmetry, the anti-baryon channel 3 can be completely forbidden. We see that both boson
and fermion statistics generate an asymmetry with the same sign at tree level. As we will show in Sec. II, the effect
of Bose enhancement is significantly larger than Pauli exclusion for this model.

In the scenarios we consider the baryon asymmetry is roughly bounded from above by the dark sector asymmetry.
If this asymmetry persists to late times, the dark sector particle must be lighter than baryons since Ωcdm/Ωb ∼ 5.
However, if these states eventually decay, their mass is not constrained. In what follows, we refer to the asymmetric
dark sector states as DM, even if they are unstable on cosmological timescales and do not comprise the entire DM
density of the universe today.

Standard baryogenesis via out-of-equilibrium decay is an “infra-red dominated” process, in which the decays of
the particle and the desired asymmetry are generated at the same time t ∼ H−1 ∼ Γ−1

ϕ , where Γϕ is the ϕ decay
rate. The small fraction of decays that occur when Γϕt � 1 is irrelevant for the production of the asymmetry. This
intuition rests on the assumption that the decay asymmetry does not depend on temperature. In contrast, in the
models where quantum statistics is responsible for the generation of the asymmetry, we find important temperature
dependence. As we describe in the following sections, this causes the majority of the asymmetry to be produced at
early times, well before t ∼ Γ−1

ϕ .
This paper is organized as follows. In Section II, we consider the model of Eq. 1 in detail. We show numerically and

analytically that Bose enhancement of individual decay channels can result in a baryon asymmetry parametrically of
the same size as the dark matter asymmetry. Surprisingly, we find that for certain parameters the baryon asymmetry
can be larger by O(1) factors. In Section III, we present a second model where Pauli exclusion rather than Bose
enhancement is the dominant effect responsible for generating a large asymmetry in the visible sector. We discuss our
results and conclude in Section IV.

II. ASYMMETRIES THROUGH BOSE ENHANCEMENT

In this section, we examine the model presented in the introduction. We consider the Lagrangian

L ⊃
(

1

Λ
ϕψBψDφ

†
D −mψD

ψDψ
c
D −mψB

ψBψ
c
B + h.c.

)
−m2

φD
|φD|2. (4)

The fermion ψB carries baryon number B and its interactions with ϕ break B. We assume that an asymmetry in ψB
can be converted into a SM baryon asymmetry through, e.g., the neutron portal

L ⊃ 1

Λ2
ψBu

c
Rd

c
Rd

c
R + h.c. (5)

We neglected the allowed interaction ϕψBψ
c
DφD/Λ

′. If included, it would not qualitatively change the results as long
as Λ′ 6= Λ.

Chemical equilibrium among the dark sector states ψD and φD can be maintained with the inclusion of additional
states that can mediate the reaction ψDψD ↔ φDφD. This process can occur through an s-channel exchange of a
U(1)D-charged scalar Φ with interactions

Φ†φDφD + Φ†ψDψD + ΦψcDψ
c
D + h.c., (6)

or through a t-channel fermion mediator χ coupling to DM via

φ†DψDχ+ φDψ
c
Dχ+ h.c. (7)

In what follows we remain agnostic to the origin of the chemical equilibriation of DM with itself. The first term in
Eq. 4 combined with one of the equilibriation mechanisms above generates a Majorana mass for ψB , which is small
for parameters of interest (where ϕ decays out of equilibrium) and will be ignored.

We imagine that the scalar ϕ decays far out of equilibrium when the universe is already populated by asymmetric
dark matter. At finite temperature the rate for a single decay channel is

Γ(ϕ→ ψBψDϕ
†
D) =

1

2Mϕ

∫
dΦ3|M|2(1 + fφD

)(1− fψD
)(1− fψB

), (8)
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whereM is the decay matrix element, dΦ3 is the three-body phase space volume element. The distribution functions
fi have their equilibrium Bose-Einstein or Fermi-Dirac forms

fBE,FD =

[
exp

(
E − µ
T

)
∓ 1

]−1

, (9)

for bosons and fermions, respectively. The sign of the chemical potentials is reversed for anti-particle distributions.
Chemical potentials are related to particle density asymmetries via

∆ni = ni − nī = gi

∫
d3p

(2π)3
[f(E,µ)− f(E,−µ)] , (10)

where gi is the number of internal degrees of freedom of species i. We require that |µφD
| < mφD

in order to avoid φD
getting a vacuum expectation value.

The product of statistical factors in Eq. 8 encodes stimulated emission (Bose enhancement) and Pauli blocking by
the particles already present in the bath. Note that their effects are large in the region of phase space where the final
state particles are produced with energy less than T . As we will be taking Mϕ � T , when one particle has energy
. T , the other two will have large energies of order Mϕ.

The total width of ϕ at leading order in T/Mϕ is given by

Γϕ = Γ(ϕ→ ψBψDφ
†
D) + Γ(ϕ→ ψ̄Bψ̄DφD) =

1

768π3

M3
ϕ

Λ2
. (11)

The dependence on chemical potentials of final state particles and the effects of the statistical factors enter at higher
order in T/Mϕ. In the right panel of Fig. 1, we show the numerical and analytic results for the total width. As long
as Mϕ & 3T , the analytic estimate provides a good approximation for the total width. The decay width determines
the number density of ϕ through the Boltzmann equation

ṅϕ + 3Hnϕ = −Γϕnϕ. (12)

The out-of-equilibrium assumption ensures that inverse decays are not important.
As ϕ decays, an asymmetry ∆nψB

6= 0 can be generated because the rates for the two decay channels of ϕ are not
equal when the DM is asymmetric, i.e. when there are non-zero chemical potentials for φD and ψD. The resulting
production of baryon number is governed by

∆ṅψB
+ 3H∆nψB

= ∆Γnϕ, (13)

where the decay asymmetry

∆Γ = Γ(ϕ→ ψBψDφ
†
D)− Γ(ϕ→ ψ̄Bψ̄DφD) (14)

depends implicitly on the abundances of ψD, φD and ψB through their chemical potentials - see Eq. 10. Since the
observed baryon asymmetry nψB

/s ∼ 10−10, we can restrict our attention to small chemical potentials µ/T � 1, such
that ∆Γ is linear in ∆ni to a good approximation. An analytic expression for ∆Γ can be obtained in the interesting
limit µ/T � mφD

/T � T/Mϕ � 12

∆Γ = Γϕ

[
12 ln

[
m2
φD

2T 2

]
µφD

T

M2
ϕ

− 4π2 (µψD
+ µψB

− 4µφD
)T 2

M3
ϕ

]
, (15)

where we have assumed that the visible and dark sectors are in thermal equilibrium. We have kept µφD
6= µψD

to
differentiate between the contributions coming from final state bosons and fermions. The logarithm of mφD

/T is a
remnant of Bose enhancement encoded by the stimulated emission factor (1 + fφD

) in Eq. 8. It arises because the
phase space density diverges as EφD

→ µφD
indicating that φD is condensing; the divergence is regulated by the mass

mφD
. In the left panel of Fig. 1 we compare the analytic expression in Eq. 15 to the numerical evaluation in the limit

of small chemical potentials, finding excellent agreement in the relevant range of parameters.
As expected, we see that the leading order corrections from Bose enhancement and Pauli exclusion are of the same

sign. This sign is readily understood: for µψD
, µφD

> 0 (corresponding to more DM than anti-DM), Pauli exclusion

2 In the other limit where final state masses are larger than the temperature, the resulting asymmetries are Boltzmann suppressed.
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FIG. 1: Decay widths as function of Mϕ/T . The left plot compares numerical computations (solid lines) to the
analytic approximations (dashed lines) of the decay asymmetry discussed in the text for fixed value of mφD

/T .
Contributions from Bose enhancement due to φD and Pauli blocking due to ψD are isolated by choosing µφD

6= 0
and µψD

6= 0 one at a time. The chemical potentials are assumed to be small, such that the resulting ∆Γ is linear in
µi/T . The right plot compares the various physical rates to Hubble for fixed masses

mφD
= mψD

= mψB
= 300 GeV, Mϕ = 100 TeV and ∆nφD

/s = 10−5. As before, the solid lines are numerical
calculations while the dashed lines correspond to analytic approximations. The dips in ∆Γ show where these

approximations break down, namely where Mϕ/T ∼ 1 and mφD
/T ∼ 1.

blocks the channel with ψD in the final state, while Bose enhancement favors the channel involving φD. Comparing
this with the definition of the asymmetry, Eq. 14, means that ∆Γ < 0 for µi > 0, in agreement with Eq. 15. Note that
the sub-leading correction for Bose enhancement is in fact larger than the leading order effect from Pauli exclusion
for µψD

= µφD
. Therefore, for the rest of the section we will focus on the dominant Bose enhancement effect.

The final important feature of Eq. 15 is that the decay asymmetry is largest at early times and higher T . As we
show below, this causes the bulk of the visible sector asymmetry to be generated well before the majority of ϕ decays
at t ∼ Γ−1

ϕ .
The system of Boltzmann equations for ϕ, nψB

(Eqs. 12 and 13, respectively) and the DM is closed once we
include the Friedmann equation

H2 =
8π

3M2
Pl

(ρR + ρϕ) , (16)

and radiation (or entropy) production due to ϕ decays

ρ̇R + 4HρR = +Γϕρϕ, (17)

where ρϕ = Mϕnϕ. The size of the radiation density at the time of the ϕ decay determines two distinct possibilities.
When ρϕ � ρR, the universe is initially ϕ-dominated and a large asymmetry produced by the decays is diluted by
the significant entropy dump. In the opposite regime ρϕ � ρR, the universe is radiation dominated. The above
system is easily solved numerically for any choice of parameters. Sample solutions are shown in Fig. 2 for the ϕ- and
radiation-dominated cases. Below we use approximate analytic solutions to better understand these results.

Using the same approximations as before, µ/T � mφD
/T � T/Mϕ � 1, we can easily estimate the baryon

asymmetry yield. This limit allows us to neglect washout reactions generated by the first term in Eq. 4, e.g.

ψBψDφ
†
D ↔ ψ†Bψ

†
DφD, since these are suppressed by (T/Mϕ)4 � 1. For the analytic results below we make the

additional assumption that µφD
= µψD

, i.e. that the transfer reactions φDφD ↔ ψDψD are in equilibrium. This en-
sures that ∆nφD

a3 and ∆nψD
a3 are constant. Note that these comoving number densities are insensitive to dilution

from entropy release.
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FIG. 2: Evolution of the baryon and dark matter asymmetries during ϕ decay for radiation-dominated (left plot)
and matter-dominated (right plot) initial conditions. We chose ρϕ,i/ρR,i = 10−3 in the former case, and

ρϕ,i/ρR,i = 103 in the latter. The solid lines show the numerical solution of the Boltzmann equations, while the
dashed lines show the analytic approximations for the final abundances discussed in the text. Note that the bulk of
the visible asymmetry YψB

is produced before ϕ decays. We used Mϕ = 100 TeV, TRH = 2.5 TeV, YφD,i = 10−5 and
Ti = 3TRH in these examples.

We first consider the radiation-dominated (RD) scenario where ρϕ � ρR ∼ T 4 prior to the decay. In this limit,
the entropy produced by ϕ is negligible, which means that YφD

≡ ∆nφD
/s is constant. As alluded to above, one can

see that the standard intuition of the asymmetry being generated by the decay occurring when Γ ∼ H is incorrect.
Comparing ∆Γ to the Hubble rate during radiation domination H ∼ T 2/MPl ∼ 1/t:

∆Γ ∼ ΓϕYφD

T 2

M2
ϕ

ln(mφD
/T ) ∼ ln t

t
, (18)

we find that ∆Γ/H is only logarithmically dependent on time and in fact favors earlier times! This means that roughly
an equal amount of asymmetry is being generated every single e-folding, suggesting that the naive instantaneous decay
estimate must be corrected by the number of e-foldings. This is logarithmically sensitive to the initial time, which
depends on when the out-of-equilibrium ϕ density and the dark matter asymmetry were generated.

Using these limits, we can solve the Boltzmann equations analytically. A simple closed form can be obtained
when Γϕ/Hi � 1, where Hi is the initial Hubble rate that determines the initial time ti ∼ H−1

i . We find the final
baryon number abundance to be

RD:
YψB

YφD

= kg∗ ln

[
m2
φD

2T 2
i

]
Yϕ

(
TRH

Mϕ

)2

exp

(
Γϕ
2Hi

) ∣∣∣∣Ei

(
− Γϕ

2Hi

)∣∣∣∣
≈ kg∗ ln

[
m2
φD

2T 2
i

]
Yϕ

(
TRH

Mϕ

)2

log

(
Γϕ
2Hi

)
, (19)

where k = 4π2/5 ≈ 7.9, Ti is the initial temperature, Ei(−z) is the exponential integral with Ei(−z) ∼ γE + ln z for
z � 1 and in the second line we used the approximation that Γϕ � Hi. The temperature TRH is defined in Eq. 20
and in the radiation-dominated regime it is used as a proxy for Γϕ rather than an actual reheat temperature. The
correct baryon number asymmetry can be obtained for reasonable values such as YφD

∼ Yϕ ∼ 10−4 and Mϕ ∼ 102 T .
This analytical result is compared with the full numerical solution in the left panel of Fig. 2.

Next we consider the matter-dominated (MD) case, that is ρϕ � ρR ∼ T 4 just before the decay. In this case, ϕ
decays generate a large amount of entropy, reheating the universe. The reheat temperature defined by Γϕ = H(TRH)
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is [24]

TRH =

(
90

π2g∗(TRH)

)1/4√
ΓϕMPl. (20)

As before, we can see that the asymmetry is produced at early times by comparing ∆Γ to Hubble H ∼ 1/t:

∆Γ ∼ ΓϕYφD

T 2

M2
ϕ

ln(mφD
/T ) ∼ ln t√

t
, (21)

where we have used T ∼ 1/t1/4 [25]. From this, we see that ∆Γ/H is largest for t < Γ−1
ϕ , so most of the asymmetry

is in fact generated before ϕ decay. The later decays are a subdominant contribution to the asymmetry.
The Boltzmann equations can be solved for t � Γ−1

ϕ for ∆nψB
[25, 26]. The final baryon yield YψB

= ∆nψB
/sf

can then be evaluated as

MD:
YψB

YφD

≈ kg∗ ln

[
m2
φD

2T 2
i

](
TRH

Mϕ

)3(
Hi

Γϕ

)3/4

, (22)

where we assumed that the logarithmic part of ∆Γ is constant. The left hand side contains quantities evaluated at
late times; in particular YφD

includes dilution due to ϕ decays. The constant k is given by

k ≈ 4
45

2

(
π2

30

)(
2

5

)3/4 2Γ
(

9
20

)
Γ
(

3
4

)
Γ
(

1
5

) ≈ 15.6. (23)

Equation 22 contains the initial Hubble, indicating that it is a UV dominated process. Parametrically YψB
. YφD

because the last two factors on the right hand side of Eq. 22 can be written as (Tmax/Mϕ)3, where Tmax is the
maximum temperature achieved during reheating [25]. We require that Tmax < Mϕ to avoid washout and to ensure
that our approximations for ∆Γ are valid. However, the baryon asymmetry can be larger than the DM asymmetry
even if Tmax .Mϕ since kg∗ ∼ O(103) is large for TRH high enough. This is demonstrated by the numerical solution
of the Boltzmann equations shown in the right panel of Fig. 2. For the benchmark point shown, Tmax/Mϕ . 10−1

and wash-out is expected to be unimportant.
This result should be compared with the standard out-of-equilibrium decay scenario where ∆Γ does not depend

on temperature and the yield YψB
≈ ∆ΓTRH/(ΓϕMϕ) is independent of initial conditions [27]. In the case considered

in this section, a larger initial ϕ density (larger Hi) results in the production of a larger asymmetry. Thus we find
that when Bose enhancement is responsible for communicating the asymmetry between the dark and visible sectors,
initial conditions become important. In the following section we reach a similar conclusion for the class of models
where Pauli blocking rather than Bose enhancement is responsible for asymmetry production.

III. ASYMMETRIES THROUGH PAULI BLOCKING

In the previous section we presented a model where a particle asymmetry was generated dominantly by Bose
enhancement. In this section we consider the complementary case where the leading effect is due to Pauli exclusion.
This is easily implemented in the toy theory

L =
1

2
ϕψ̄B(a+ ibγ5)ψCB + λψCBψDΦDB + h.c. (24)

where ψB (and its charge conjugate ψCB) and ψD are now Dirac fermions with masses mψB
, mψD

, charged under
baryon and dark matter number, respectively; ΦDB is a complex scalar with mass mΦDB

, carrying opposite charge
under both symmetries. Thus, the second term preserves both U(1)B and U(1)D. We will show that decays of the ϕ
will violate CP in the presence of a ψD asymmetry, even if they are CP -symmetric at zero temperature. As in the
previous section, we assume that a ψB asymmetry can be converted into visible baryons, via, e.g. the neutron portal,
Eq. 5.

The decays of ϕ tend to wash out any existing ψB asymmetry. For example, if there are more ψB than ψ̄B then
Pauli blocking biases ϕ decays to generate more ψ̄B , eventually destroying any baryon number present. We first
consider what happens when there is an non-zero dark matter asymmetry and zero initial baryon number asymmetry.
Conservation of U(1)B charge ensures that

(nψB
− nψ̄B

)− (nΦDB
− nΦ†

DB
) = 0, (25)
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FIG. 3: Ratio of baryon to DM asymmetry yield at late times as a function of the initial ϕ density. The left (right)
dashed lines show the approximate analytic solutions in the radiation-dominated (matter-dominated) universe as

discussed in the text. We see that these analytic solutions very quickly become good approximations in their
respective regions of validity.

which implies µψB
= µΦDB

at temperatures above ψB and ΦDB masses. The second interaction in Eq. 24 enforces
chemical equilibrium

µψB
+ µψD

+ µΦDB
= 0. (26)

It is easy to solve for chemical potentials in the limit of small asymmetries, see e.g. [28]; the result is

YΦDB
= YψB

= −YψD

2
, (27)

where Yi = (ni − nī)/s. Despite the absence of any initial baryon number, ψB has a non-zero asymmetry.
Next we consider what happens when ϕ decays. As discussed above Pauli exclusion pushes the system towards a

configuration where YψB
= 0. As long as there is a large enough number density of ϕ, YψB

will be driven to zero. We
can now calculate the baryon number generated by the decays to find that

YB ≡ YψB
− YΦDB

=
YψD

− YΦDB

2
=
YD
2

(28)

Chemical equilibrium “hides” baryon number in the scalar states ΦDB , protecting it from wash-out via ϕ decays. For
mΦDB

> mψB
+ mψD

, after ΦDB freezes out and decays, its asymmetry will be transferred back into ψB and ψD.
Thus we see that the Pauli exclusion principle can make an otherwise CP preserving decay generate baryon number.

Note that this setup is closely related to models where baryon number is generated in thermal equilibrium [29, 30].
In particular, in Ref. [30] an existing DM asymmetry is used to bias electroweak sphalerons (which are in equilibrium
prior to the electroweak phase transition) to generate a baryon asymmetry. A similar scenario is realized in the present
model if Mϕ . T and the relevant couplings are large enough, such that B-violating scattering like ψBψB ↔ ψ̄Bψ̄B
is in equilibrium. In this limit one can solve for the chemical potentials to find the same result of a non-zero baryon
number existing in thermal equilibrium with the value shown in Eq. 28. If B-violating ϕ-mediated scattering continues
after ΦDB freeze-out and decay, any existing baryon number would be washed out, so such processes must go out
of equilibrium. In Ref. [30] baryon number violating sphalerons are turned off by a first order electroweak phase
transition. In our model, such a rapid shut off is not possible. Thus, we focus on the out-of-equilibrium decay
scenario, where baryon number violation turns off once ϕ decays.

An important restriction on this model arises from the fact that the rate at which baryon number is generated is
Boltzmann suppressed in the limit Mϕ � T . This is because in the two-body decay ϕ → ψBψB , the ψB final state
energy is fixed to be Mϕ/2, while Pauli exclusion is most effective at energies below the temperature. However, in the
limit where Mϕ � T , the inverse decays ψBψB → ϕ become important and wash out the asymmetry. Thus there is
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only a finite range of parameters with Mϕ & TRH where Pauli blocked decays generate a significant asymmetry. Due
to the lack of parametric control, we explore this situation numerically and provide a useful analytic estimate of the
final asymmetry. In the following two subsections, we first write down the coupled set of Boltzmann equations and
then discuss their solutions.

A. Boltzmann Equations

The Boltzmann equations for the particle asymmetries ∆ni = ni − nī have the form

d∆ni
dt

+ 3H∆ni = Ci[∆nj ], (29)

where Ci are the collision terms which include the effects of number-changing interactions that enforce chemical
equilibrium. In writing this system of equations we approximated the phase space distributions by their Maxwell-
Boltzmann limits. For simplicity we make the additional assumption of kinetic equilibrium and small asymmetries,
i.e. µi/T � 1, such that ni + nī ≈ 2neq

i . Note that this requires the existence of efficient interactions of the ψD, ψB
and ΦDB states with the thermal bath, which we leave unspecified.

Given the interactions in Eq. 24, the ψD and ΦDB collision terms at leading order in the coupling λ include only
1↔ 2 processes:

CψD
= −〈ΓD〉

(
∆nψD

+
neq
ψD

neq
ψB

∆nψB
+

neq
ψD

neq
ΦDB

∆nΦDB

)
+ perms., (30)

CΦDB
= −〈ΓDB〉

(
∆nΦDB

+
neq

ΦDB

neq
ψB

∆nψB
+
neq

ΦDB

neq
ψD

∆nψD

)
+ perms., (31)

where the 〈ΓD〉 = ΓDK1(mψD
/T )/K2(mψD

/T ) is the thermally-averaged decay rate for ψD → ΦDBψ
†
B and similarly

for ΓDB ; “perms.” stands for terms with identical structure but with D, B and DB permuted. These rates are
given in Appendix A. For a given choice of masses, only one of ΓD,B,DB is non-zero. Note that with the above
assumptions ∆ni/(2n

eq
i ) ≈ µi/T , such that the collision terms above vanish when µψD

+ µψB
+ µΦDB

= 0, i.e. in
chemical equilibrium.

The ψB collision term includes additional contributions from B-violating ϕ decays and ϕ mediated scattering.
The decay contribution is given by

CψB
⊃
∫
dΦ3|M(ϕ→ ψBψB)|2

[
fϕ(1− fψB ,1)(1− fψB ,2)− fψB ,1fψB ,2(1 + fϕ)− (ψB → ψ̄B)

]
≈ − 1

2Mϕ

∫
dΦ2|M(ϕ→ ψBψB)|2

2nϕ
∆nψB

neq
ψB

e−Mϕ/2T + neq
ϕ

(
n2
ψB
− n2

ψ̄B

)
(neq
ψB

)2


= −2Γϕ

(
∆nψB

neq
ψB

)[
nϕe

−Mϕ/2T + neq
ϕ

]
, (32)

where in the first step we approximated Eϕ ≈Mϕ, used detailed balance to replace fψB ,1fψB ,2 by exp(−Eϕ/T )n2
ψB
/(neq

ψB
)2

and performed the integral over pϕ. The former approximation (along with the Maxwell-Boltzmann limit used through-
out this section) breaks down when T ∼ Mϕ. This is also the regime where the DM-induced decay asymmetry is
largest. Note that in the last line Γϕ is the total decay rate (both to ψBψB and ψ̄Bψ̄B), including a symmetry factor
for identical final state particles. The full collision term can now be written as

CψB
=− 〈ΓB〉

(
∆nψB

+
neq
ψB

neq
ψD

∆nψD
+

neq
ψB

neq
ΦDB

∆nΦDB

)
+ perms.

− 2Γϕ

(
∆nψB

neq
ψB

)(
nϕe

−Mϕ/2T + neq
ϕ

)
− 4〈σv〉RISSn

eq
ψB

∆nψB
, (33)

where 〈σv〉RISS is the Real Intermediate State-subtracted (RISS) wash out cross-section for the ϕ-mediated process
ψBψB ↔ ψ̄Bψ̄B discussed in Appendix A 2. Using the same approximations we can write the ϕ collision term as:

Cϕ = −Γϕ

(
nϕ

[
1− 2e−Mϕ/(2T )

]
− neq

ϕ

)
. (34)
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The remaining Boltzmann equation governs the radiation density

ρ̇R + 4HρR = −MϕCϕ, (35)

where the minus on the right-hand side simply cancels the one in Eq. 34. In the following section we study this system
of Boltzmann equations analytically and numerically.

B. Solutions and Numerical Examples

Simple approximations to the Boltzmann equations discussed in the previous section allow us to determine the
final baryon asymmetry analytically. For concreteness we assume that the universe is radiation dominated with an
out-of-equilibrium ϕ density.3 The ϕ equation can be integrated neglecting inverse processes and statistical factors in
the collision term of Eq. 34.4 Inserting the resulting solution into the Eq. 33, assuming chemical potentials are small
and integrating this equation we find the baryon asymmetry

YψB
=

∆nψB

s
≈ −4

(
µψB ,i

Ti

)(
Γϕ
Hi

)[
Yϕ,if1(Mϕ/Ti,Γϕ/Hi) + Y eq

ϕ,if2(Mϕ/Ti)
]

(36)

where quantities with the subscript i are evaluated at the initial time and temperature. In particular µψB ,i/Ti can be
determined from the DM asymmetry using the charge neutrality and chemical equilibrium conditions, Eqs. 25 and 26,
respectively:

µψB ,i

Ti
= −µψD,i

Ti

{
1/2 Ti � m

(1 + neq
ψB
/neq

ΦDB
)−1 Ti < m.

(37)

Finally, the functions f1 and f2 have the following form in the limit z = Mϕ/Ti � 1 and γ = Γϕ/Hi � 1:

f1(z, γ) ∼ 2z−4
(
2z2 + z3 − γ

[
24 + 12z + 2z2

]
+O(zγ2)

)
e−z/2, (38)

f2(z) ∼ z−1 +
5

2
z−2 +

15

4
z−3 +O(z−4). (39)

Note that Y eq
ϕ,i ∼ z3/2 exp(−z) so that both terms in Eq. 36 are Boltzmann suppressed in the non-relativistic limit.

As in the Bose case considered in Sec. II, we see that the asymmetry production favors early times and higher
temperatures. In fact, the bulk of the asymmetry is produced before t ∼ Γϕ. Note that this only holds up to Ti ∼Mϕ

where the asymmetry would be damped by the (neglected) wash-out terms.
The sensitivity of the final asymmetry to early times emphasizes the importance of initial conditions in this

scenario. In particular, a physical set of initial conditions depends on the origins of the ϕ density and DM asymmetry.
There are several ways to obtain an out-of-equilibrium density of ϕ. The simplest mechanism for this is freeze-
out, which would occur at T ∼ Mϕ/20. Thus the decay and asymmetry production would happen at even lower
temperatures. From the analytical solution, Eq. 36, it is clear that the final asymmetry would be exponentially
suppressed.

Another possibility for generating an out-of-equilibrium density of ϕ is the misalignment mechanism. If ϕ was
displaced from the minimum of its potential during inflation, then its field value would remain Hubble damped until
H ∼ Mϕ (corresponding to a temperature Tosc ∼

√
MϕMPl). At this point ϕ begins coherent oscillations, with the

energy density in these fluctuations red-shifting as matter. The asymmetry generation cannot begin until the DM
develops a chemical potential, since it is required to bias ϕ decays. Thus, in principle, the ψB asymmetry can be
created any time between Tosc and TRH ∼

√
ΓϕMPl. However, as discussed above, we are working in the Maxwell-

Boltzmann limit, so our Boltzmann equations are valid only for T < Mϕ. Thus we confine our attention to the region
of parameters where TRH < Mϕ � Tosc. We emphasize that this is not a fundamental requirement, but merely a
computational aid. The condition TRH < Mϕ has the additional benefit of making the rates for wash out processes,
i.e., inverse decays and B-violating 2→ 2 scattering, very slow.

We show the numerical solutions to the system of Boltzmann equations in Fig. 4 for Mϕ = 1 TeV, TRH = 100 GeV,
Ti = Mϕ/3 and ρϕ(Ti) = 10−2ρR(Ti). The initial DM asymmetry is chosen to be YψD

/s = 2×10−8 in order to obtain

3 In a ϕ dominated universe ϕ decays deposit a large amount of entropy, diluting the newly-created baryon asymmetry. Such an entropy
release can be compensated for with a higher initial DM asymmetry.

4 The omission of the small chemical potentials in this step corresponds to dropping sub-leading O(µ/T ) terms in the final asymmetry.
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FIG. 4: Numerical solutions to the Boltzmann equations describing asymmetry production through Pauli-blocked
decays of ϕ. The left panel shows the evolution of the various number densities as a function of the scale factor. The

dotted line is the analytic approximation of Eq. 36. The dashed line line shows that the net baryon number,
YB = YψB

− YΦDB
is produced at early times, before ϕ decays. The right panel shows the dependence of the final

baryon yield on the decay temperature of ϕ, TRH. The red dashed line is the analytic solution for YψB
, while the

purple dashed line is the initial DM asymmetry. This initial asymmetry is diluted by the ϕ entropy injection at low
TRH. The initial conditions and parameter values used are described in the text.

YB = 10−10 at late times; the other asymmetries are determined from the initial U(1)B charge neutrality and chemical
equilibrium requirements in Eqs. 25 and 26, respectively. The remaining masses are chosen to satisfy Mϕ > 2mψB

and
mΦDB

> mψD
+mψB

: mψB
= 100 GeV, mψD

= 150 GeV and mΦDB
= 300 GeV. Note, however, that the mechanism

is not sensitive to a particular choice of masses, as long as the relevant processes are kinematically allowed. These
initial conditions are chosen to produce the correct order of magnitude for the baryon asymmetry.

In the left panel of Fig. 4 we show the evolution of various number densities as a function of the scale factor a,
normalized to ai, its value at the initial time. At early times, chemical equilibrium with the asymmetric DM results
in non-zero asymmetries for ψB and ΦDB , while YΦDB

= YψB
is guaranteed due to vanishing initial U(1)B charge.

However, ϕ decays quickly drive the YψB
asymmetry to 0, such that the only remaining B number is stored in ΦDB .

When ΦDB decays, its asymmetry flows into ψB and ψD, resulting in a final non-zero B number. The dashed line
in this figure shows the net B number density, i.e. YψB

− YΦDB
, which explicitly shows that the B asymmetry is

generated well before ϕ fully decays. The dotted line shows the analytic solution of Eq. 36.
In the right panel of Fig. 4 we show the final DM and baryon asymmetries as a function of TRH. The light red

dashed line shows the analytic solution, while the dashed purple line shows the initial DM asymmetry. Increasing
TRH corresponds to higher decay rates Γϕ, which in turn, leads to more ϕ decaying at early times, thereby enhancing
the effect of Pauli blocking and asymmetry generation. Note that this cannot continue indefinitely, because at a high
enough temperature wash out due to inverse decays and 2 ↔ 2 reactions becomes important. We do not extend the
calculation to TRH/Mϕ > 1 because the Maxwell-Boltzmann approximation used throughout this section breaks down,
but as emphasized before, this is not a fundamental limitation of this scenario. Note that at low TRH the entropy
injection due to ϕ decays is large enough to partially dilute the initial DM asymmetry, resulting in a decreased YD
yield.

IV. DISCUSSION AND CONCLUSION

In this paper we have investigated CP violation through matter effects at finite temperature in the early universe.
We have shown that quantum statistical effects play a crucial role in this class of baryogenesis models. We considered
models where the visible sector Lagrangian is CP invariant and CP violation arises from an asymmetric background
density of particles. Such a background is expected to exist, if, e.g., dark matter is asymmetric or if there another
other quasi-stable asymmetric species during this epoch. Out-of-equilibrium baryon number violating decays of a
scalar ϕ were shown to generate baryon number in this background, despite the absence of CP violation in the
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interactions of ϕ. This is distinct from the standard out-of-equilibrium decay scenario employed in, e.g., leptogenesis
or GUT baryogenesis, where CP is violated through the interference of tree and loop contributions to the decay rate.
Instead, the dark matter asymmetry biases ϕ decay to prefer some channels over others through Pauli blocking or
Bose enhancement of the corresponding final states. We considered two toy models where only one of these effects is
dominant. Thus, we provide the first example of a baryogenesis scenario where statistical factors play a critical role
– no asymmetry is produced when Pauli blocking and Bose enhancement are neglected.

Finally, we note that the models considered in this paper are far from complete. While they illustrate the general
“CP violation through matter effects” mechanism, we have not attempted to embed them in realistic scenarios, which,
e.g., describe the ϕ production mechanism in the early universe, the origin of baryon number violation, or the nature
of the dark sector asymmetry. These details are important for setting the initial conditions which play a crucial role
in determining the baryon yield when the B-violating decay asymmetry is generated by quantum statistical effects.
Moreover, these directions may identify concrete experimental probes for this class of models. A complete model of
baryon number violation in our scenarios (i.e. a UV completion of the non-renormalizable operators in Eqs. 4 and 5)
may be testable at nucleon decay or neutron oscillation experiments. Similarly, different mechanisms of generating
the dark matter asymmetry can give rise to observable signatures. For example, if the dark asymmetry is created
in a strongly first order phase transition à la electroweak baryogenesis, a detectable gravitational wave background
may be generated. The necessity for interactions between the dark and visible sectors in our scenarios suggests the
possibility of complementary probes. We leave a detailed investigation of these issues to future work.
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Appendix A: Wash-out and Decay Rates in the Pauli Scenario

In this Appendix we collect the decay rates and wash-out cross-section relevant for the scenario in discussed in
Sec. III.

1. Decays

The first term in Eq. 24 gives rise to B-violating ϕ decays with the rate

Γ(ϕ→ ψBψB) = Γ(ϕ→ ψ̄Bψ̄B) =
Mϕ

32π

[
|a|2 + |b|2 − 4y2|a|2

] [
1− 4y2

]1/2
, (A1)

where y = mψB
/Mϕ. Assuming these are the only two channels the total ϕ decay rate is

Γϕ =
Mϕ

16π

[
|a|2 + |b|2 − 4y2|a|2

] [
1− 4y2

]1/2
. (A2)

The second term in Eq. 24 is responsible for sharing the U(1)B and U(1)D numbers, such that ϕ decays generate
a baryon asymmetry. The leading physical processes that enforce this are the following decays and inverse decays

ΓDB = Γ(ΦDB → ψ̄Dψ̄B) = Γ(Φ†DB → ψDψB) =
|λ|2
8π

mΦDB
β(mΦDB

,mψD
,mψB

), (A3)

ΓB = Γ(ψB → ψ̄DΦ†DB) = Γ(ψ̄B → ψDΦDB) =
|λ|2
16π

mψB
β(mψB

,mψD
,mΦDB

), (A4)

ΓD = Γ(ψD → Φ†DBψ̄B) = Γ(ψ̄D → ΦDBψB) =
|λ|2
16π

mψD
β(mψD

,mΦDB
,mψB

), (A5)

where

β(x, y, z) =
|m2

ΦDB
− (mψB

+mψD
)2|

x2

[
1− (y + z)2

x2

]1/2 [
1− (y − z)2

x2

]1/2

θ(x− y − z). (A6)

Note that for a given mass ordering only one of these rates is non-zero.
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2. Scattering and Real Intermediate States

In addition to ϕ decays, the B-violating interaction in Eq. 24 induces the wash-out reaction ψBψB ↔ ψ̄Bψ̄B with
an intermediate s-channel ϕ. If this process is active it will drive any existing baryon asymmetry to zero. Fortunately,
the rate for this wash out process is small when ϕ decays out-of-equilibrium, as required in the scenario of Sec. III.
However, this rate can be enhanced when the intermediate ϕ goes on-shell, so we evaluate it below. The corresponding
cross-section is

σvlab =
1

128πs

(
1− 4m2

ψB
/s
)1/2

(
1− 2m2

ψB
/s
) (

1−M2
ϕ/s
)2
(
|a|2 + |b|2 −

4m2
ψB

s
|a|2
)2

(A7)

≈
|b|4m2

ψB

16πM4
ϕ

(
1− 4m2

ψB
/M2

ϕ

)2

√
ε+O(ε3/2), (A8)

where ε = (s − 4m2
ψB

)/4m2
ψB

is the kinetic energy per unit mass in the lab frame [31, 32]. Note that the leading

contribution from the scalar interaction ∝ a is velocity suppressed. This is because the bilinear ψ̄Bψ
C
B can only create

states with orbital angular momentum L = 1 [33]. The thermal average can be performed analytically in the large
x = mψB

/T limit or numerically, keeping all ε and x dependence in the cross-section. The analytical result is

〈σv〉(ψBψB ↔ ψ̄Bψ̄B) =
1√
πx

 |b|4m2
ψB

16πM4
ϕ

(
1− 4m2

ψB
/M2

ϕ

)2

 , (A9)

where the quantity in the braces is the cross-section at threshold. We are interested in this rate while ψB and ψ̄B
are still in chemical equilibrium, which means x is not large. Moreover, for long-lived ϕ the cross-section is strongly
peaked around the resonance, away from ε = 0. This means that the ε expansion is not valid. The full rate (without
making these approximations) is then determined by numerically performing the integral5

〈σv〉(ψBψB ↔ ψ̄Bψ̄B) =
x

K2(x)2

∫
dε
√
ε(1 + 2ε)K1(2x

√
1 + ε)σvlab, (A10)

where we included a factor of 1/2 for identical initial states in the definition of the thermal average. This rate includes
processes occurring through on-shell ϕ exchange when s = M2

ϕ. However, the on-shell decays and inverse decays

ϕ ↔ ψBψB , ψ̄Bψ̄B are already present in the Boltzmann equations – see Eq. 33. To avoid double counting the
resonant contribution to 〈σv〉(ψBψB ↔ ψ̄Bψ̄B) must be subtracted [34–36]. One simple approach to implement this
Real Intermediate State (RIS) subtraction is to modify the squared s channel propagator as

1

(s−M2
ϕ)2 + Γ2

ϕM
2
ϕ

→ 1

(s−M2
ϕ)2 + Γ2

ϕM
2
ϕ

− π

MϕΓϕ
δ(s−M2

ϕ), (A11)

where Γϕ is the total decay rate. The RIS contribution corresponding to the Dirac delta function is easily computed:

〈σv〉RIS =
1

2M2
ϕ

π2xK1(x/y)

y5K2(x)2
Br(ϕ→ ψBψB)Br(ϕ→ ψ̄Bψ̄B)

Γϕ
Mϕ

(A12)

=
neq
ϕ

(neq
ψB

)2
Br(ϕ→ ψBψB)Br(ϕ→ ψ̄Bψ̄B)

K1(x/y)

K2(x/y)
Γϕ. (A13)

In the last line we wrote the RIS rate in terms of the equilibrium distributions for ψB and ϕ. The proper RIS-
subtracted (RISS) rate that enters the Boltzmann equation 33 is obtained by taking the difference of Eqs. A10 and
A13. We compare the RIS-subtracted cross-section with other approximations in Fig. 5. Note that the RISS cross-
section becomes negative in the resonance region near x ∼ 1. Numerically this happens because the RIS rate in

5 This thermal average procedure is valid only in the non-relativistic limit, so the results for x . 1 should be considered to be rough
estimates.
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FIG. 5: Thermally averaged cross-section for ψBψB ↔ ψ̄Bψ̄B as a function of x = mψB
/T for a = 0, b = 1 and

mψB
/Mϕ = 0.1. The solid blue line is the standard thermal average computed from the numerical integral in

Eq. A10, which includes the resonant enhancement for s ≈M2
ϕ. The solid orange line shows same cross-section with

the real intermediate state contribution subtracted to avoid double counting in solving the Boltzmann equations.
The dashed line is the analytical large x approximation from Eq. A9.

Eq. A13 is slightly larger than the standard rate in Eq. A10; this, in turn, is because of the finite width of the
resonance peak. This was also observed in Ref. [37].
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