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Given a Wigner distribution simultaneously characterizing quark transverse positions and mo-
menta in a proton, one can directly evaluate their cross-product, i.e., quark orbital angular mo-
mentum. The aforementioned distribution can be obtained by generalizing the proton matrix ele-
ments of quark bilocal operators which define transverse momentum-dependent parton distributions
(TMDs); the transverse momentum information is supplemented with transverse position informa-
tion by introducing an additional nonzero momentum transfer. A gauge connection between the
quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used
in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a
straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion
mass mπ = 518 MeV, is presented which quasi-continuously interpolates between the two definitions
and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular
momentum is confronted with traditional evaluations based on Ji’s sum rule. Jaffe-Manohar orbital
angular momentum is enhanced in magnitude compared to its Ji counterpart.

I. INTRODUCTION

Decomposing the proton spin into the spin and orbital angular momentum contributions of its quark and gluon
constituents has been a prominent endeavor of hadronic physics since the groundbreaking EMC experiments [1, 2]
revealed that quark spin, by itself, does not account for the entirety of proton spin. In particular, quantifying the
parton orbital dynamics already meets challenges at the conceptual level. In a gauge theory, one cannot consider
the quark degrees of freedom in isolation; instead, quarks are intrinsically linked to gluonic fields to conform to the
strictures of gauge invariance. As a consequence, there is no unique answer to the question of partitioning orbital
angular momentum [3, 4] into a quark and a gluonic contribution. Quark orbital angular momentum will include
gluonic effects to a varying degree, depending on the chosen decomposition scheme.

Two definitions of quark orbital angular momentum have stood out in particular. One is the Ji decomposition
[5], which is singled out by quark orbital angular momentum being defined in terms of a quasi-local gauge-invariant
operator. The other is the Jaffe-Manohar decomposition [6], which has the attribute of admitting a partonic interpre-
tation in the infinite momentum frame in the light-cone gauge. Only fairly recently has a (non-local) gauge-invariant
extension been formulated for the Jaffe-Manohar definition of quark orbital angular momentum [7], which opens the
perspective of calculating not only Ji, but also Jaffe-Manohar quark orbital angular momentum in Lattice QCD. As
will be discussed in detail below, the difference between the two definitions can be encoded in differently shaped gauge
links in a nonlocal quark bilinear operator. In fact, by deforming the gauge link in small steps between the two limits,
it will be possible to construct a gauge-invariant, quasi-continuous interpolation between Ji and Jaffe-Manohar quark
orbital angular momentum.

Hitherto, no direct evaluation of quark orbital angular momentum has been available in Lattice QCD. Specifically
Ji quark orbital angular momentum has been calculated indirectly [8–17] as the difference between total angular
momentum and spin, L = J − S, taking advantage of Ji’s sum rule [5] relating J to generalized parton distributions
(GPDs). Here, a first exploration of a direct approach to calculating quark orbital angular momentum in Lattice
QCD is presented, based on a construction of a Wigner distribution of quark positions and momenta in the proton.
Utilizing this Wigner distribution, average partonic orbital angular momentum can be evaluated directly from the
cross-product of position and momentum. Ideas complementing the approach followed here have also been laid out
in [18, 19]. The aforementioned Wigner distribution is derived from the nonlocal quark bilinear operator mentioned
further above, and thus allows one to access a continuum of quark orbital angular momentum definitions, including
the Ji and Jaffe-Manohar ones, by varying the gauge link between the quark operators.

Such Wigner distributions are related, through Fourier transformation, to generalized transverse momentum-
dependent parton distributions (GTMDs) [20], which differ from standard TMDs only by the relevant proton matrix
elements being evaluated at non-zero momentum transfer. Thus, many of the concepts and techniques employed in
the following are derived from those used in lattice TMD studies [21–24].
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II. QUARK ORBITAL ANGULAR MOMENTUM

In a longitudinally polarized proton propagating with large momentum in the 3-direction, the 3-component of the
orbital angular momentum of quark partons can be evaluated directly in terms of their impact parameter bT and
transverse momentum kT given an appropriate Wigner distribution of those quark characteristics [25],

LU3 =

∫
dx

∫
d2bT

∫
d2kT (bT × kT )3WU (x, bT , kT ) (1)

where x denotes the longitudinal quark momentum fraction. Note that, since mutually orthogonal components of
quark position and momentum are being evaluated, no conflict with the uncertainty principle arises. An appropriate
Wigner distribution WU (x, bT , kT ) is given by the following Fourier transform with respect to the conjugate pair of
transverse vectors bT and ∆T ,

WU (x, bT , kT ) =

∫
d2∆T

(2π)2
e−i∆T ·bT 1

2

(
WU

++(x,∆T , kT )−WU
−−(x,∆T , kT )

)
(2)

in terms of the helicity-non-flip components of the correlator WU
Λ′Λ(x,∆T , kT ), which is of the type that defines

generalized transverse momentum-dependent parton distributions (GTMDs) [20],

WU
Λ′Λ(x,∆T , kT ) =

1

2

∫
dz−d2zT

(2π)3
ei(xP

+z−−kT ·zT ) 〈p′,Λ′|ψ(−z/2)γ+Uψ(z/2)|p,Λ〉
S[U ]

∣∣∣∣
z+=0

. (3)

Several comments are in order regarding this expression. In (2) and (3), ∆T denotes the (transverse1) momentum
transfer to the proton, which carries momenta p = P −∆T /2, p′ = P + ∆T /2 and helicities Λ, Λ′ in the initial and
final states, respectively; P is in the 3-direction. This is a generalization of the correlator used to define transverse
momentum-dependent parton distributions (TMDs) [26, 27] to non-zero momentum transfer; it thus includes infor-
mation on the parton impact parameter bT , resolved via the Fourier transformation (2), in addition to the parton
momentum information encoded via the quark operator separation z.

The correlator (3) furthermore depends on the form of the gauge link U connecting the quark operator positions
−z/2 and z/2, along with a soft factor S[U ] required to regulate the divergences associated with U . This soft factor is
identical to the one used for TMDs, since (3) only differs from the standard TMD correlator by the choice of external
states, while retaining the same bilocal operator. The divergences regulated by S[U ] are associated with the latter,
not the former. This has been explored more concretely in [28]. In the development further below, appropriate ratios
of correlators will be considered in which the soft factors cancel, in analogy to previous lattice TMD studies [23, 24];
as a result, it is not necessary to specify S[U ] in detail here, beyond a simple symmetry to be noted below.

Two important concrete choices for the gauge link are a staple-shaped gauge link path, as employed in the definition
of TMDs, and a straight gauge link path. A staple-shaped gauge link path is used, e.g., to encode final state interactions
of the struck quark in a deep-inelastic scattering process, and yields Jaffe-Manohar quark orbital angular momentum
[7, 29]; a straight gauge link path omits these final state interactions, and yields Ji quark orbital angular momentum
[29–31]. The difference between the two definitions of orbital angular momentum can thus be interpreted as the torque
accumulated owing to final state interactions experienced by a quark exiting the proton after having been struck by a
hard probe [29]. In the lattice calculations pursued in the present work, staple-shaped gauge link paths with varying
staple lengths will be treated,

U ≡ U [−z/2, ηv − z/2, ηv + z/2, z/2] (4)

where the gauge link connects the points given as the arguments of U in (4) with straight Wilson lines, cf. also Fig. 1.
The vector v encodes the direction of the staple, the length of which is scaled by the parameter η. For η = 0, the
gauge link degenerates to a straight link connecting the points −z/2 and z/2 directly. In the notation adopted below,
also negative values of η will be used, to denote a staple extending in the direction opposite to v. By allowing for
continuous variation of η, the results obtained in the present work will interpolate continuously and gauge-invariantly
between the η = 0 Ji limit and the large |η| Jaffe-Manohar limit; note that quark orbital angular momentum is an
even function of η. In the convention adopted below, the η ≥ 0 branch will correspond to a struck quark gradually
gathering up torque as it is leaving the proton, owing to final state interactions.

1 Throughout this paper, the momentum transfer to the proton will be taken to be purely transverse, i.e., the skewness vanishes.
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FIG. 1: Path of the gauge connection U , cf. (4), in the correlator (3).

The direction v of the staple is associated with the path of the struck quark in, e.g., a deep-inelastic scattering
process; in such a process, the Wilson lines forming the legs of the staple-shaped gauge link represent eikonal ap-
proximations of gluon exchanges in the final state. Here, the standard TMD specification [27, 32, 33] vT = 0 will be
followed. Since such a hard process is characterized by a large rapidity difference between the struck quark and the
initial hadron, a straightforward choice of v which suggests itself would be a light-cone vector. However, this choice
leads to severe rapidity divergences [34], which in the factorization framework developed in [27, 33] are regulated
by taking the staple direction v off the light cone into the spacelike region. The correlator (3) can consequently be
characterized in Lorentz-invariant fashion by the additional Collins-Soper type parameter

ζ̂ =
v · P√
|v2|
√
P 2

(5)

in terms of which the light-cone limit is recovered for ζ̂ →∞. Note that the specification vT = 0 implies that the soft
factor S[U ] does not depend on the direction of zT , the transverse part of the quark operator separation z; one can
freely rotate zT in the transverse plane while keeping all other geometric characteristics of the gauge link fixed. In the
following, the notation S[U ] ≡ S(z2

T ) will be adopted to emphasize this form of the dependence on zT , suppressing
dependences on other aspects of the geometry of the gauge link U .

An important point to note is that adopting a scheme in which v is chosen to be spacelike is crucial to enable a
Lattice QCD evaluation of the proton matrix element in (3). Since Lattice QCD employs a Euclidean time dimension
to project out the hadronic ground state, no physical temporal extent can be accomodated in the quark bilocal
operator of which one is taking the matrix element. All separations must be purely spatial. Only if v is generically
spacelike can one boost the problem to a Lorentz frame in which v becomes purely spatial, and perform the calculation

in that frame. Note that, in such a frame, large ζ̂ are realized by large spatial proton momenta P, cf. (5). Specifically,

in the calculations to follow, v will point purely in longitudinal direction, v ≡ −~e3, and, consequently, ζ̂ = P3/m, with
m denoting the proton mass. Note furthermore that, in the η = 0 limit, the vector v ceases to play an independent

physical role as the direction of propagation of the struck quark, and thus ζ̂ ceases to encode a rapidity difference
between the proton and the struck quark. Nevertheless, in the specific frame employed for the lattice calculation,

one can still use v ≡ −~e3 to construct the parameter ζ̂, which then merely continues to characterize the proton

momentum in that frame. Throughout the developments below, ζ̂ will consistently serve to parametrize the approach
to the physical limit. Of course, the set of proton momenta which will be accessible in practice in the concrete lattice

calculation will be limited; as in lattice TMD calculations [23, 24], extracting information about the large ζ̂ regime
presents a challenge in the present calculational framework.

Inserting (2) into (1), one obtains quark orbital angular momentum in terms of the GTMD correlator (3),

LU3 = −i
∫
dx

∫
d2kT εijkT,j

∂

∂∆T,i

1

2

(
WU

++(x,∆T , kT )−WU
−−(x,∆T , kT )

)∣∣∣∣
∆T =0

(6)

Note that the GTMD correlator (3) is parametrized by the GTMDs F1i, cf. [20],

WU
Λ′Λ =

1

2m
ū(p′,Λ′)

[
F11 +

iσi+kiT
P+

F12 +
iσi+∆i

T

P+
F13 +

iσijkiT∆j
T

m2
F14

]
u(p,Λ) (7)

Inserted into the particular structure (6), only the F14 contribution survives, and one obtains an expression for quark
orbital momentum in terms of this GTMD [25],

LU3 = −
∫
dx

∫
d2kT

k2
T

m2
F14

∣∣∣∣
∆T =0

(8)
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Since it is cast purely in terms of momenta, this formulation is best suited for phenomenological applications. The
natural setting for a lattice calculation, on the other hand, is not k-space, but instead z-space, i.e., one calculates
directly the proton matrix element in (3). Inserting (3) into (6), quark orbital angular momentum takes the form

LU3 =
1

2P+
εij

∂

∂zT,i

∂

∂∆T,j

1

2

〈p′,+|ψ(−z/2)γ+Uψ(z/2)|p,+〉 − 〈p′,−|ψ(−z/2)γ+Uψ(z/2)|p,−〉
S(z2

T )

∣∣∣∣
z+=z−=0 , ∆T =0 , zT→0

(9)
Thus, in terms of the z and ∆ variables preferred for a Lattice QCD calculation, no Fourier integrals over the generated
data are necessary to extract quark orbital angular momentum; this significantly facilitates the numerical analysis.
The expression (9) can still be brought into a more compact form. Owing to the symmetric treatment of both the
momentum transfer ∆T and the spin, replacing the proton helicities in (9) by proton spins pointing into the fixed
positive and negative 3-directions, respectively, only generates correction terms in (9) which vanish as ∆T → 0.
Secondly, the two terms in (9) then yield identical contributions to quark orbital angular momentum, and one can
therefore confine oneself to evaluating either one of the two terms. Thus, quark orbital angular momentum can be
evaluated more simply as

LU3 =
1

2P+
εij

∂

∂zT,i

∂

∂∆T,j

〈p′, S′ = ~e3|ψ(−z/2)γ+Uψ(z/2)|p, S = ~e3〉
S(z2

T )

∣∣∣∣
z+=z−=0 , ∆T =0 , zT→0

(10)

Note that, formally, one might consider taking the soft factor outside the zT -derivative in the limit zT → 0, since the
soft factor depends only on the magnitude of zT , not its direction. However, in the presence of a lattice cutoff, the
derivative with respect to zT will be realized as a finite difference, and the limit zT → 0 has to be taken with care.
For this reason, the soft factor is left inside the derivative at this stage, deferring a more precise treatment to the
practical implementation of (10) in the presence of a lattice cutoff.

III. REGULARIZATION AND RENORMALIZATION

The form (10) for quark orbital angular momentum is not directly amenable to lattice evaluation, because the
soft factor in the Collins factorization scheme [27, 33, 35] is not accessible in Lattice QCD; it contains Wilson line
structures of varying rapidities, not all of which can be simultaneously boosted to a single instant, a prerequisite for
lattice evaluation2. As in previous lattice TMD studies [23, 24], this is addressed by forming an appropriate ratio
with an additional quantity, such that the soft factors cancel. A convenient choice of such a second quantity can be
constructed via the unpolarized TMD f1(x, kT ). This TMD is obtained from the GTMD F11 in the limit of vanishing
momentum transfer [20], and thus from the correlator (3) as, cf. the parametrization (7),

f1 = F11|∆T =0 = WU
++

∣∣
∆T =0

(11)

(WU
−− could likewise be used). On the other hand, integrating f1 over all momenta yields the number of valence

quarks,

n =

∫
dx

∫
d2kT f1 =

1

2P+

〈p′, S′ = ~e3|ψ(−z/2)γ+Uψ(z/2)|p, S = ~e3〉
S(z2

T )

∣∣∣∣
z+=z−=0,∆T =0,zT→0

(12)

having inserted the explicit form of WU
++, cf. (3), and also having used that, for ∆T = 0, positive helicity corresponds

to spin in the 3-direction. Now, comparing (12) with (10), the two matrix elements contain the same operator,
associated accordingly with the same soft factor; one can therefore envisage canceling the soft factors by taking an
appropriate ratio. Care has to be taken, however, in defining the zT → 0 limit. At a finite lattice spacing a, distances
smaller than a cannot be resolved, and the zT -derivative in (10) is realized as a finite difference. It therefore necessarily
involves values of the correlator (10) at finite zT for any given finite lattice spacing a. Denoting

Φ(zT ) = 〈p′, S′ = ~e3|ψ(−z/2)γ+Uψ(z/2)|p, S = ~e3〉 , (13)

2 An exception is the η = 0 limit, in which the staple direction vector v ceases to play a physical role; this case was discussed in detail in
[22].
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(where, for conciseness of notation, all other dependences are being omitted in the argument of Φ), one can specify

LU3 =
1

2P+
εij

∂

∂∆T,j

1

2da

1

S((da)2)
(Φ(da~ei)− Φ(−da~ei))

∣∣∣∣
z+=z−=0,∆T =0

(14)

with a fixed number of lattice spacings d, which approximates the derivative as a → 0. One may contemplate using
d > 1 in order to mitigate lattice artefacts; this will be revisited in the discussion of numerical results below. Note
that, since the soft factor does not depend on the direction of zT , but only its magnitude, the two terms in the finite
difference are associated with an identical soft factor, which can therefore be factored out.

In order to use (12) to form a ratio in which the soft factor cancels, one has to accordingly specify the limit zT → 0
as

n =
1

2P+

1

S((da)2)

1

2
(Φ(da~ei) + Φ(−da~ei))

∣∣∣∣
z+=z−=0,∆T =0

(15)

which is independent of the transverse direction ~ei used and approximates (12) as a → 0 in a way which matches
the manner in which (14) approximates (10), i.e., using values of Φ(zT ) at finite |zT | = da for any given finite lattice
spacing a. Combining (14) and (15), one obtains the renormalized ratio

LU3
n

=
1

da
εij

∂
∂∆T,j

(Φ(da~ei)− Φ(−da~ei))
Φ(da~ei) + Φ(−da~ei)

∣∣∣∣∣
z+=z−=0,∆T =0

(16)

(where sums over i, j are still implied), in which the soft factors, and also any multiplicative renormalization constants
attached to the quark operators in Φ(zT ) have canceled. The ratio (16) is the expression evaluated in practice in the
Lattice QCD calculation to be discussed below. Note that also the derivative with respect to ∆T in practice will have
to be approximated by a finite difference. However, contrary to the treatment of the zT → 0 limit, the ∆T → 0 limit is
not associated with ultraviolet divergences and is conceptually straightforward, even if it poses numerical challenges,
to be discussed further below.

Besides considering the ratio (16) for fixed d, such that |zT | = da→ 0 for a→ 0, one can also consider the regime
of fixed finite physical distance |zT | = da and define a generalized, |zT |-dependent quark orbital angular momentum

LU3
n

(|zT |) =
1

|zT |
εij

∂
∂∆T,j

(Φ(|zT |~ei)− Φ(−|zT |~ei))
Φ(|zT |~ei) + Φ(−|zT |~ei)

∣∣∣∣∣
z+=z−=0,∆T =0

(17)

in analogy to, e.g., the generalized tensor charge defined in [23]. Keeping |zT | finite effectively acts as a regulator on
kT -integrations such as the ones in (1) and (8).

As the quark operators in Φ(zT ), eq. (13), approach each other, i.e., in the limit zT → 0 once one has set z+ =
z− = 0, the correlator becomes singular. In particular, even if one has properly renormalized Φ, at face value, its
derivative ∂Φ/∂zT,i in general will formally still be divergent at zT = 0; in kT -space, this translates to the observation
that, even if one has properly defined the GTMD F14, cf. (7),(8), its kT -moment (8) still exhibits an ultraviolet
divergence. However, at any given resolution scale, differences in zT smaller than that scale are not resolvable, and
thus a consistent interpretation of the zT -derivative is in terms of a finite difference taken over a distance commensurate
with the resolution scale; the aforementioned singularity occurring at arbitrarily small distances is not resolved. As
one increases the resolution, probing the ultraviolet behavior more fully, one not only evaluates the zT -derivative
using smaller distances; one concomitantly evolves Φ to the higher resolution scale. The combined effect of these
adjustments ultimately produces the proper evolution of the orbital angular momentum LU3 . An explicit observation
of this evolution will not be possible in the present work, since calculations were performed only at one fixed lattice
spacing a; it would be interesting to pursue an evolution study in future work employing data at a sequence of lattice
spacings a.

In this context, also further remarks regarding the multiplicative nature of the soft factors and the quark field
renormalizations, and their consequent cancellation in the ratio (16), are in order. The absorption of divergences
into these multiplicative factors is, to begin with, a construction motivated by the continuum theory [27, 33, 35].
That it carries over analogously into the lattice formulation is a working assumption which has been discussed in
some detail in [22], and was further explored empirically in [36] by investigating whether TMD ratios vary under
changes of the lattice discretization scheme. Absence of such variations strengthens the hypothesis that the data
provide a good representation of the universal continuum behavior within statistical accuracy; conversely, violations
of the multiplicative nature of renormalization would presumably manifest themselves in deviations from a universal
continuum limit. On the one hand, at finite physical separations zT , one would expect that the lattice operators



6

L3 × T a(fm) amu,d ams m
DWF
π (MeV) mDWF

N (GeV) #conf. #meas.

203 × 64 0.11849(14)(99) 0.02 0.05 518.4(07)(49) 1.348(09)(13) 486 3888

TABLE I: Details of the lattice ensemble. The lattice spacing a was determined using a different scheme, cf. [23], than was
employed in [15, 16]; as a result, it and the listed hadron masses deviate slightly from the values quoted in the latter references.
The uncertainties given for the hadron masses are, in that order, statistical, and stemming from the conversion to physical units
via a. The values mu,d,s are the bare asqtad quark masses. On each gauge configuration, eight measurements were performed.

approximate the continuum operators well and inherit their divergence structure; indeed, in [36], results for TMD
ratios obtained using differing discretization schemes were consistently found to coincide once zT extends over several
lattice spacings. On the other hand, the limit of small zT deserves further scrutiny. As already noted above, the
zT → 0 limit, in particular the zT -derivative ∂Φ/∂zT,i in that limit, in general contains additional divergences; using
different lattice discretization schemes will have an effect analogous to using different combinations of data obtained
at varying d to construct the zT -derivative, cf. (14). Moreover, mixing between the various composite local operators
arising in the zT → 0 limit can occur, potentially modifying the simple multiplicative renormalization pattern. In
the empirical study [36], the stability of TMD ratios under changes of the lattice discretization scheme was generally
seen to persist into the small zT regime, indicating that the data continue to represent the universal continuum limit
well, with the notable exception of the worm-gear shift 〈kx〉g1T , for which significant deviations between different
discretization schemes were observed. The Sivers shift 〈ky〉Sivers, which is the TMD ratio most directly related to the
ratio (16) considered here, exhibited no such deviations. Performing an analogous study also directly for the ratio
(16) would constitute a useful cross-check.

Finally, it would be desirable to specify the connection between the resolution scale given by the lattice spacing at
which (16) is evaluated, and the corresponding scale in, for example, the MS scheme. The systematic uncertainty
associated with not yet having established the matching of scales is presumably minor in comparison with other
uncertainties of the calculation, given that the scales in question are in a regime in which evolution is slow. A possible
avenue to determine the scale is, e.g., to anchor the calculation in the η = 0 Ji limit to the result obtained using
Ji’s sum rule on the same lattice ensemble, for which the matching to the MS scheme and perturbative evolution
are available. However, such a quantitative connection cannot be contemplated until another, much more significant
source of systematic bias affecting the numerical data generated in the present study has been removed; this source
of bias, associated with the evaluation of the ∆T -derivative in (16), will be discussed in detail further below.

IV. LATTICE CALCULATION

Numerical data for the present study were generated employing a mixed action scheme in which the valence quarks
are realized as domain wall fermions, propagating on a Nf = 2 + 1 dynamical asqtad quark gauge background. The
corresponding gauge ensemble was provided by the MILC Collaboration [37]. A fairly high pion mass, mπ = 518 MeV,
was used for this exploration in order to reduce statistical fluctuations. Table I lists the details of the ensemble. The
mixed action scheme employed here has been the basis for detailed investigations into hadron structure carried out by
the LHP Collaboration [15, 16], including the particular ensemble described in Table I. It was also used in previous
lattice TMD studies [23, 24].

Evaluation of the correlator (13), needed to obtain quark orbital angular momentum through (16), proceeds via the

calculation of appropriate three-point functions C3pt[Ô] as well as two-point functions C2pt, projected onto a definite

proton momentum at the proton sink, as well as a definite momentum transfer at the operator insertion in C3pt[Ô],

C3pt[Ô](t, tf , p
′, p) =

∑
xf ,y

e−ixf ·p′+iy·(p′−p)tr[Γpol〈n(tf ,xf )Ô(t,y)n̄(0, 0)〉] (18)

C2pt(tf , p
′) =

∑
xf

e−ixf ·p′tr[Γpol〈n(tf ,xf )n̄(0, 0)〉] , (19)

constructed using Wuppertal-smeared proton interpolating fields n(t,x), with the projector Γpol = 1
2 (1+γ4) 1

2 (1−iγ3γ5)
selecting states polarized in the 3-direction. The Euclidean temporal separation between proton sources and sinks
was tf = 9a. The operator Ô is taken to be the operator in (13); as already discussed following eq. (5) further above,

the lattice calculation is carried out in a Lorentz frame in which Ô exists at a single time t, i.e., the quark operator

separation z and the staple direction v are purely spatial. In this frame, v = −~e3 and, consequently, ζ̂ = P3/m,

cf. (5), in terms of which the physical limit is approached as ζ̂ becomes large. In the present study, only connected
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P · aL/(2π) ∆ · aL/(4π) z/a ηv/a

(0, 0, nP ) (n∆, 0, 0) (0, nz, 0) (0, 0, nv)

(0, 0, nP ) (0, n∆, 0) (nz, 0, 0) (0, 0, nv)

TABLE II: Combinations of momenta and gauge link geometries used. The longitudinal momentum index nP took the values
nP = 0, 1, 2; the transverse momentum transfer index n∆ took the values n∆ = −1, 0, 1. Note that the symmetric treatment of
the momentum transfer in the initial and final states, p = P −∆T /2, p′ = P + ∆T /2, implies that, for the standard periodic
spatial boundary conditions used in the present study, the smallest nonzero momentum transfer available is 4π/(aL). The quark
separation index nz, corresponding to the width of the staple-shaped gauge link, extended over the integers nz = −5 . . . 5; the
range of the index nv determining the staple length of the gauge link covered all values for which a numerical signal is discernible
(in both the positive and negative directions).

diagrams entering C3pt[Ô] were calculated. Computationally significantly more expensive disconnected contractions,
the magnitudes of which are expected to be minor at the heavy pion mass employed here, are excluded from all
numerical results quoted below (they cancel in the isovector u− d quark channel).

To obtain the correlator (13), one forms the three-point to two-point function ratio

2E(p′)
C3pt[Ô](t, tf , p

′, p)

C2pt(tf , p′)
−→ Φ(zT ) (20)

which exhibits plateaus in t yielding Φ(zT ) for 0 � t � tf . In (20), E(p′) = E(p) is the energy of the final and
of the initial proton state; note that the symmetric treatment of the initial and final momenta p = P − ∆T /2,
p′ = P + ∆T /2 simplifies the ratio required to extract Φ(zT ) in (20) compared to the case of general p, p′ [15, 16]. In
the present exploration, possible excited state contaminations affecting the plateau values determined from (20) at
the source-sink separation tf = 9a = 1.07 fm were not quantified. They are expected to be small at the heavy pion
mass mπ = 518 MeV considered here; however, it will be necessary to account for them in more quantitative studies
at lower pion masses.

In the mixed action calculational scheme employed in the present investigation, HYP-smearing is applied to the
gauge configurations before computing the domain wall valence quark propagators. This suppresses dislocations in
the fields that could potentially produce spurious mixing between the right-handed and left-handed fermion modes
localized on their respective domain walls. These same HYP-smeared gauge fields were also used to assemble the
gauge link U in (13). As a consequence, even before cancellation in the ratio (16), renormalization constants and soft
factors correspond more closely to their tree-level values.

The combinations of gauge link geometries and momenta considered in the calculation are given in Table II. As
far as the gauge link geometries are concerned, the focus of the present investigation is on small values of the quark
separation zT , and therefore only the restricted range of nz = −5 . . . 5 in Table II was treated; it is possible to obtain
a numerical signal at larger zT , cf. the TMD investigations [23, 24]. On the other hand, the staple length index nv
covered all values for which a numerical signal is discernible. In particular, for nv = 0, one accesses Ji quark orbital
angular momentum, whereas for asymptotically large nv, Jaffe-Manohar quark orbital angular momentum is probed.
The correlators are time-reversal even, i.e., invariant under reflection of nv.

On the other hand, the set of proton momenta accessed in this exploratory investigation is rather limited, both
in terms of the longitudinal momentum P as well as the transverse momentum transfer ∆T . This is the source
of the most significant systematic uncertainties affecting the results extracted, and thus represents the most severe
shortcoming of the data set collected for this study. To extract quark orbital angular momentum, the longitudinal
momentum P must be extrapolated to large values. The spatial momenta employed in practice, cf. Table II, have
magnitudes |P| = 0, 0.52, 1.04 GeV and thus remain far from the asymptotic regime. Simultaneously, in terms of

the Collins-Soper parameter ζ̂, characterizing the rapidity difference between the vectors P and v, these momenta

correspond to ζ̂ = 0, 0.39, 0.78, respectively; these values likewise are still far from the region in which one would

expect to be able to connect to perturbative evolution in ζ̂. To give a tentative indication of the results for quark
orbital angular momentum one might expect to obtain at large proton momenta, below, an ad hoc extrapolation will
be entertained using the available two nonvanishing values of |P|. This extrapolation will be guided by the behavior
that was observed in a study [24] of the Boer-Mulders effect in a pion, in which it proved possible to extract the

large-ζ̂ limit. However, in order to obtain stringent quantitative results for quark orbital momentum in the proton, it

will be necessary to generate data at larger |P|, and, concomitantly, larger ζ̂ in future work.
Additionally, to extract quark orbital angular momentum, cf. (16), one has to evaluate a derivative of the correlator

data with respect to the momentum transfer ∆T in the forward limit. To obtain an accurate estimate of this derivative,
one needs to employ data at small ∆T . However, the nonzero values of the momentum transfer available for this study,
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FIG. 2: Quark orbital angular momentum in units of the number of valence quarks, as a function of the number of lattice
spacings d used to construct the derivative with respect to zT in (14),(16). Data are shown at a fixed ζ̂ = 0.39 and for
three different staple length parameters η; the isovector u− d quark combination was evaluated. The shown uncertainties are
statistical jackknife errors.

cf. Table II, are quite substantial, |∆T | = 1.04 GeV; note that the symmetric treatment of the momentum transfer in
the initial and final states, p = P −∆T /2, p′ = P + ∆T /2, implies that, for the standard periodic spatial boundary
conditions used in the present study, the smallest nonzero momentum transfer available is 4π/(aL). In practice,
the numerical results presented in the following were extracted by averaging over the finite differences obtained in
opposite directions, i.e., using directly the difference between the n∆ = ±1 data; the n∆ = 0 data served to evaluate
the denominator in (16). Using such a finite difference of correlator data at the aforementioned large values of the
momentum transfer will lead to a substantial underestimate of the derivative. To obtain a rough idea of the magnitude
of the underestimate, note that the combination F = (Φ(da~ei) − Φ(−da~ei)) appearing in the numerator of (16), of
which one requires the ∆T -derivative, is an odd function of ∆T . Absent more detailed information on the form of
its ∆T -dependence, consider modeling it as F (∆T ) = ∆TF1(|∆T |), using the isovector electromagnetic Dirac form
factor F1 as a proxy for the typical variation of distribution functions with ∆T . The fall-off of F1 with ∆T then
gives an indication of the extent to which the numerator of (16) may be underestimated. On the ensemble used in
the present study, F1 falls off [16] by (slightly more than) a factor 2 between ∆T = 0 and |∆T | = 1 GeV. Thus, a
substantial upward correction by a factor of this magnitude must be expected for the extracted values of the quark
orbital angular momentum, once this source of systematic bias is eliminated. This is the top priority for future more
quantitative studies, and a calculation is currently in preparation which will incorporate a direct method to evaluate
the ∆T -derivative exactly [38–40].

V. NUMERICAL RESULTS

A critical element in the evaluation of quark orbital angular momentum is a stable extraction of the zT -derivative in
(10), as realized by the finite difference in (16); a priori, one might expect strongly varying behavior of the correlator
Φ(zT ), reflecting the singular nature of the zT → 0 limit. Such behavior could potentially render the evaluation
of quark orbital angular momentum via (16) infeasible. Fig. 2 displays results for the ratio (16) as a function of
the distance d used to construct the finite difference approximation to the zT -derivative, for a fixed Collins-Soper

parameter ζ̂ and several fixed staple lengths η|v|; the derivative with respect to ∆T was evaluated as a finite difference
as discussed in the previous section. The data shown correspond to the isovector u − d quark channel, in which
disconnected contributions cancel and the renormalized number of valence quarks is n = 1, i.e., the ratio (16) is
directly a measure of quark orbital angular momentum.

The ratio is fairly stable as d is varied, implying an approximately linear behavior of (the ∆T -odd part of) Φ(zT )
at small zT . In particular, the variation of the ratio data with d tends to decrease as one goes to smaller d and one
can assign an approximate value to the zT -derivative in (10), as defined by the numerator of (16), employing the data
at small values of d. It should be noted that, at the finite lattice spacing a employed in the present work, there is no
clear separation between, on the one hand, the regime of finite d, such that |zT | = da → 0 as a → 0, in which the
numerator of (16) defines the zT -derivative in (10); and, on the other hand, the regime of finite physical |zT | = da,
in which (16) can be viewed as defining a generalized quark orbital angular momentum, cf. (17). The behavior of
the data represents a mixture of the characteristics of the two regimes. As a → 0, a separation of the regimes will
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FIG. 3: Ji quark orbital angular momentum, i.e., the η = 0 limit, as a function of ζ̂, with an ad hoc extrapolation to infinite ζ̂
(open square). The filled diamond represents the value extracted on the same ensemble via Ji’s sum rule. The isovector u− d
quark combination was evaluated. The shown uncertainties are statistical jackknife errors.

be achieved; the behavior of the data in Fig. 2 suggests that it may be plausible to expect that the ratio (16) will
indeed become sharply defined in the finite d regime, i.e., the different discretizations of the zT -derivative given by the
different values of d converge. On the other hand, in view of Fig. 2 it appears reasonable to suppose that, in the finite
|zT | = da regime, the generalized quark orbital angular momentum (L3/n)(|zT |) will exhibit a smooth limit towards
the actual quark orbital angular momentum as zT → 0. It will be useful to explore and test these expectations in
future work employing a variety of lattice spacings.

In the discussion to follow, the results obtained at d = 1 will be used as the best available realization of the zT -
derivative in (10). Having thus settled on a definite scheme of evaluating both of the derivatives in (10), the remaining
parameters on which the results for the quark orbital momentum depend are the staple length η and the Collins-Soper

parameter ζ̂, where an extrapolation to large ζ̂ must be performed. Note that Fig. 2 provides a first glimpse of the
fact that data at different η can be clearly distinguished, and that their magnitude is enhanced at nonvanishing η.
This will be studied in detail further below. Before exploring the dependence on the staple length η, it is useful to
examine the η = 0 case, corresponding to Ji quark orbital angular momentum.

Fig. 3 displays the isovector Ji quark orbital angular momentum for all available values of ζ̂, together with an

extrapolation to infinite ζ̂ using the fit ansatz A + B/ζ̂. It should be emphasized that this ad hoc ansatz, which
will be used repeatedly in the following, is not motivated by any theoretical argument at this point, but has merely
been observed to provide a good fit of data in a previous investigation of the Boer-Mulders TMD ratio [24], for which

an analogous extrapolation in ζ̂ is performed. When perturbative evolution equations in ζ̂ for the specific quantities

investigated here become available, a better-founded treatment of the large-ζ̂ behavior will become possible. At

present, the extrapolation given here is simply intended to give a heuristic idea of where the ζ̂ limit may plausibly be
located. The extrapolated value is confronted with the one obtained on this same lattice ensemble from the standard
evaluation of quark orbital angular momentum via Ji’s sum rule [16]. While the sum rule value lies within two
statistical standard deviations of the extrapolated value, a genuine discrepancy between the two is in fact expected, as
discussed at the end of the previous section. The replacement of the ∆T -derivative in (16) by a finite difference using
a rather large value of |∆T | represents a substantial underestimate, possibly by up to a factor of two. The discrepancy
seen in Fig. 3 is compatible with this expectation. Indeed, if the extrapolated value in Fig. 3 were to be enhanced by
a factor of two, it would overshoot the sum rule value, but still be consistent with it within statistical uncertainty.
It thus does not seem implausible to expect that an accurate estimate of the ∆T -derivative in future numerical work
will lead to consistent results for Ji quark orbital angular momentum from the present direct evaluation method and
the standard sum rule evaluation. In order to roughly cancel the systematic bias stemming from the underestimate
of the ∆T -derivative in the discussion of the η 6= 0 results below, data will be presented relative to the η = 0 Ji value.

The dependence of quark orbital angular momentum on the staple length η represents the most interesting feature
of the present investigation. As discussed in section II, while the η = 0 case corresponds to Ji quark orbital angular
momentum, the η →∞ limit yields Jaffe-Manohar quark orbital angular momentum, which, contrary to the former,
has hitherto not been accessible within Lattice QCD. The difference between the two can be interpreted [29] as the
integrated torque, due to the final state interactions encoded in the staple-shaped gauge link, accumulated by the
struck quark in a deep inelastic scattering process as it is leaving the proton. Since, in the present calculation,
the staple length can be varied in small steps, one in fact obtains a quasi-continuous, gauge-invariant interpolation



10

à
à

à
à

à à à à à à à à à

à

à
à

à
àààààààà

á á

-10 -5 0 5 10
-2.0

-1.5

-1.0

-0.5

0.0

ΗÈvÈ � a
HL

3�
nL

�È
L

3HΗ
=

0L
�n

HΗ
=

0L
È u-d quarks

mΠ = 518 MeV

Ζ
`

= 0

-¥ ¥

à
à

à

à
à

à à à à à à à à

à

à

à
à

à
àààààààá á

-10 -5 0 5 10
-2.0

-1.5

-1.0

-0.5

0.0

ΗÈvÈ � a

HL
3�

nL
�È

L
3HΗ

=
0L

�n
HΗ

=
0L

È u-d quarks

mΠ = 518 MeV

Ζ
`

= 0.39

-¥ ¥

à

à

à

à

à

à
à

à
à à à à

à

à

à
à

à

à
à

àààà
à

àá á

-10 -5 0 5 10
-2.0

-1.5

-1.0

-0.5

0.0

ΗÈvÈ � a

HL
3�

nL
�È

L
3HΗ

=
0L

�n
HΗ

=
0L

È u-d quarks

mΠ = 518 MeV

Ζ
`

= 0.78

-¥ ¥

FIG. 4: Quark orbital angular momentum as a function of staple length parameter η, normalized to the magnitude of the η = 0 Ji
value. The quark orbital angular momentum is a time-reversal even quantity, i.e., even under η → −η. The extrapolated values
are obtained by averaging over the η > 0 and η < 0 plateau values, which are each extracted by a fit to the |η||v|/a = 7, . . . , 9
range. The isovector u− d quark combination was evaluated; the three panels display the data for the three available values of
ζ̂. The shown uncertainties are statistical jackknife errors.

between the Ji and Jaffe-Manohar limits. This is exhibited in Fig. 4, which shows the variation of isovector orbital
angular momentum with the staple length parameter η; the three panels correspond to the three available values of

the Collins-Soper parameter ζ̂. In each of the panels, following the change of orbital angular momentum as η grows
corresponds to observing the struck quark gather up torque on its trajectory leaving the proton, until it reaches
the Jaffe-Manohar limit. Note that the data are displayed in units of (the magnitude of) Ji quark orbital angular
momentum, obtained at η = 0.

The effect of the final state interactions seen in the data is substantial. It can be clearly resolved even within the
limited statistics employed in the present exploratory calculation, and it enhances quark orbital angular momentum

compared with the initial Ji value. As seen in Fig. 4, the effect increases with rising Collins-Soper parameter ζ̂,
approaching magnitudes such that the integrated torque accumulated in reaching the Jaffe-Manohar limit amounts to
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as much as roughly half of the initial Ji orbital angular momentum carried by the quark. The increasing behavior with

ζ̂ also implies that the effect is likely to survive extrapolation to the ζ̂ → ∞ limit. A corresponding extrapolation,

again employing the fit ansatz A+B/ζ̂, is exhibited in Fig. 5. Shown are data for the integrated torque

τ3 =
L

(η=∞)
3

n(η=∞)
− L

(η=0)
3

n(η=0)
, (21)

i.e., the difference between Jaffe-Manohar and Ji quark orbital momentum, in units of the magnitude of Ji quark

orbital momentum. A signal is indeed obtained in the ζ̂ →∞ limit. Note that the integrated torque τ3 corresponds
to a Qiu-Sterman type correlator [29, 31]. The calculation of τ3 presented here amounts to an evaluation of that
genuine twist-three term.

All data presented above concern the isovector u − d quark combination, in which disconnected diagrams cancel.
Of interest is also the decomposition by flavor, shown in Figs. 6 and 7. In these flavor-decomposed data, disconnected
contributions are omitted; they are, however, expected to be minor at the heavy pion mass used for the present
calculation. Fig. 6 exhibits quark orbital angular momentum as a function of staple length parameter η, for a fixed

value of the Collins-Soper parameter ζ̂, analogous to Fig. 4. Displayed are data for the d quark and for the two u quarks,
i.e., LU3 /n for u quarks has been multiplied by 2 to compensate for n = 2 in the u quark case. Displayed furthermore is
the total (isoscalar) quark orbital angular momentum, which was obtained here simply by adding the aforementioned
“d” and “2u” contributions (at finite statistics, this may differ slightly from evaluating instead 3L3,u+d/nu+d). The
data are again given in units of the magnitude of the isovector Ji quark orbital angular momentum, i.e., in Fig. 6 at
η = 0, the difference between the “2u” and “d” data is unity.

The flavor-separated data in Fig. 6 reproduce the well-known cancellation between the d- and u-quark orbital
angular momenta in the proton [15, 16], which combine to yield only a small negative residual contribution to the
spin of the proton at the pion mass used in the present study. This property persists as one departs from Ji quark
orbital momentum and adds torque to arrive at Jaffe-Manohar quark orbital momentum. Fig. 7 displays results for
the integrated torque, cf. (21), in analogy to Fig. 5, including extrapolations of the data at different Collins-Soper

parameters ζ̂ to the ζ̂ → ∞ limit. The results at ζ̂ = 0.78 exhibit fairly large statistical fluctuations, which may
be the source of the seemingly uncharacteristic behavior of the d-quark data point. It would be natural to expect

monotonous behavior as a function of ζ̂, and the aforementioned data point may thus well represent a downward
fluctuation; it leads to an extrapolated d-quark torque compatible with zero, driving the isoscalar combination to
negative values (albeit with a large statistical uncertainty). Another, more physical, reason to suspect a spurious
downward fluctuation in this case is that final state interaction effects on quark transverse momenta in the proton
generally tend to be stronger for a d-quark than a (single) u-quark, as embodied, e.g., in the Sivers shift or the
Boer-Mulders shift [23, 24] This suggests that a subtle interplay between transverse positions and momenta of the
quarks would be needed to generate a deviating pattern for the integrated torque. Indeed, the substantial statistical

uncertainties at ζ̂ = 0.78 do in fact still render the data compatible with a d-quark integrated torque that is stronger
than a (single) u-quark integrated torque. A higher statistics calculation is needed to draw definite conclusions on
this point. At present, in view of the sizeable uncertainties, the extrapolated results are nevertheless compatible with
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FIG. 6: Flavor-separated orbital angular momentum as a function of staple length parameter η, analogous to Fig. 4, at fixed
ζ̂ = 0.39. Shown are data for d quarks, for two u quarks (i.e., the u-quark data for LU3 /n have been multiplied by 2 to
compensate for n = 2 in the u-quark case), and the isoscalar total quark orbital angular momentum. The latter was obtained
by adding the “d” and “2u” data. All data are still normalized by the magnitude of u− d Ji orbital angular momentum, i.e.,
at η = 0, the “2u” and “d” data differ by unity. The shown uncertainties are statistical jackknife errors.
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the conclusions drawn above from Fig. 6 at the fixed value ζ̂ = 0.39.

VI. CONCLUSIONS AND OUTLOOK

The present exploration demonstrates the feasibility of calculating the quark orbital angular momentum in a proton
in Lattice QCD directly, using a Wigner distribution-based approach. Given a Wigner distribution of quark parton
positions and momenta in the transverse plane with respect to proton motion, one can directly evaluate their average
cross product, i.e., longitudinal orbital angular momentum. The Wigner distribution in question can be derived from
appropriate proton matrix elements [25]. As is familiar from the definition of transverse momentum-dependent parton
distributions (TMDs), transverse momentum information can be extracted by employing a quark bilocal operator;
the transverse quark separation in this operator is Fourier conjugate to the quark transverse momentum. On the
other hand, by generalizing the TMD matrix element to non-zero momentum transfer, the TMD information is
supplemented with impact parameter information. One thus arrives at generalized transverse momentum-dependent
parton distributions (GTMDs) [20], which, appropriately Fourier-transformed, yield the desired Wigner distribution.
In view of this construction, many of the concepts and techniques employed in lattice TMD studies [23, 24] can be
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brought to bear on the direct evaluation of quark orbital angular momentum in a proton.
In order to define a gauge-invariant observable, the bilocal TMD operator must contain a gauge connection between

the quarks. Different choices of the path along which the connection is evaluated encode different definitions of quark
orbital angular momentum [7, 29, 30], including the Ji and Jaffe-Manohar definitions. The approach developed here
has thus opened the possibility of going beyond the lattice studies of quark orbital angular momentum carried out
to date, which were limited to calculating specifically Ji orbital angular momentum via Ji’s sum rule. Indeed, the
present investigation has provided a quasi-continuous, gauge-invariant interpolation between Ji and Jaffe-Manohar
orbital angular momentum, by deforming the gauge connection path in small steps. The difference between the two
definitions is given by Burkardt’s torque [29], i.e., the integrated torque accumulated by the struck quark in a deep
inelastic scattering process as it is leaving the proton; it corresponds to a genuine twist-three, Qiu-Sterman type
correlator. The aforementioned interpolation allows one to directly follow the gradual accumulation of this torque
along the quark’s path.

The gauge connection contained in the bilocal TMD operator is associated with ultraviolet divergences which, in the
continuum Collins factorization scheme [27, 33, 35], are absorbed into multiplicative soft factors appearing alongside
the renormalization factors associated with the quark fields. As in lattice TMD studies, also in the present context an
appropriate ratio can be formed in which these factors cancel; it is assumed that their multiplicative nature carries
over into the lattice formulation. The renormalized quantity evaluated in effect is L3/n, the longitudinal quark orbital
angular momentum component in units of the number of valence quarks, for the quark flavor under consideration.
Accessing this quantity entails, in particular, evaluating the derivative of the relevant proton matrix element with
respect to the quark separation zT in the employed quark bilocal operator, in the limit of vanishing zT . This limit
must be taken with care owing to the associated ultraviolet singularities. The behavior of the gathered data with
varying zT was considered in particular, revealing a fairly stable behavior that suggests that the aforementioned
zT -derivative can be extracted unambiguously in the continuum limit. This is a prerequisite for the application of the
method.

The principal new physical insight gleaned from the present exploration concerns the behavior of Jaffe-Manohar
quark orbital angular momentum relative to its Ji counterpart. Their difference, Burkardt’s torque, is clearly resolvable
in the data and is sizeable, amounting to roughly one half of Ji quark orbital angular momentum. The torque enhances
Jaffe-Manohar quark orbital angular momentum relative to Ji quark orbital angular momentum. As already noted
above, the data gathered within this investigation provide a quasi-continuous, gauge-invariant interpolation between
the two limits.

The most significant shortcoming of the data set obtained in the present exploration is the limited set of proton
momenta, both in the longitudinal and the transverse directions. In particular, only one fairly large value of the
momentum transfer ∆T in the transverse plane is available, and the ∆T -derivative necessary to extract orbital
angular momentum is substantially underestimated by the finite difference obtained using the aforementioned ∆T

value. Thus, while the above conclusions concerning the relative comparison between Jaffe-Manohar and Ji quark
orbital angular momentum are presumably robust with respect to this systematic bias, in absolute terms, the results
extracted systematically underestimate the quark orbital angular momentum present in the proton. This, indeed,
is manifested clearly in the case of Ji orbital angular momentum, through the comparison with the corresponding
indirect Ji sum rule lattice evaluation on the same ensemble. Removing this systematic bias is foremost on the agenda
for future work. A calculation is in preparation which will incorporate a direct method to evaluate the ∆T -derivative
exactly [38–40], related to twisted boundary conditions on the quark fields. The aforementioned comparison with
the standard evaluation of Ji orbital angular momentum via Ji’s sum rule will provide a valuable benchmark for the
removal of systematic bias.

Moreover, the data are to be extrapolated to large Collins-Soper parameter ζ̂, realized in the employed Lorentz
frame via large proton momenta. Although the availability of several longitudinal proton momenta in the gathered

data set allowed for an ad hoc estimation of the large-ζ̂ limit, calculations at larger proton momenta are clearly
desirable. In this respect, the improved proton sources explored in [41, 42] provide a perspective for generating data

that permit a more quantitative treatment of the large-ζ̂ limit.
Further topics for future exploration include the investigation of varying lattice spacing a, with a view towards

studying, in particular, the a→ 0 behavior of the zT -derivative discussed above, as well as observing the evolution of
the extracted quark orbital angular momentum. Also, efforts to approach the physical pion mass in these calculations
must be undertaken. On a more theoretical level, a decomposition of the proton matrix element under consideration
into Lorentz-invariant amplitudes, analogous to the one employed in lattice TMD studies [23] ought to provide valuable

further insight into the systematics of the data and aid in the extrapolation to large ζ̂, cf. the study of the Boer-Mulders
TMD ratio [24].
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