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Abstract

In this paper the dynamical spin effects of the light-front holographic wavefunctions for

light pseudoscalar mesons are studied. These improved wavefunctions are then confronted

with a number of hadronic observables: the decay constants of π and K mesons, their

ξ-moments, the pion-to-photon transition form factor, and the pure annihilation B̄s →

π+π− and B̄d → K+K− decays. Taking fπ, fK and their ratio fK/fπ as constraints, we

perform a χ2 analysis for the holographic parameters, including the mass scale parameter
√
λ and the effective quark masses, and find that the fitted results are in good consistence

with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we

also show that the end-point divergence appeared in the pure annihilation B̄s → π+π−

and B̄d → K+K− decays can be well controlled by using these improved light-front

holographic distribution amplitudes.
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1 Introduction

Light-front (LF) quantization is the natural frame-independent framework for the description

of non-perturbative relativistic bound-state structure in quantum field theory. In principle, one

can solve QCD by diagonalizing the LF QCD Hamiltonian HLF , by using, for example, the

discretized light-cone quantization method [1]. Both the spectrum and the LF wavefunctions

(LFWFs), which encode all the hadronic information, are then obtained from the eigenvalues

and eigenfunctions of the Heisenberg equation HLF |ψ〉 = M2|ψ〉. The result is an infinite set

of coupled integral equations for the LF components in a Fock expansion [1]. Unfortunately,

solving these equations is a formidable computational task for the case of a non-abelian quantum

field theory such as QCD in four-dimensional spacetime. Consequently, we have to resort to

the alternative methods; recent comprehensive reviews of which could be found in Refs. [1, 2].

In recent years, a semiclassical first approximation to strongly coupled QCD — light-front

holographic AdS/QCD — has been developed [3–7]. This approach to hadron dynamics in

physical four-dimensional spacetime at fixed LF time τ = x+ = x0 + x3 is holographically dual

to the dynamics of a gravitational theory in five-dimensional anti-de Sitter (AdS) space. The LF

eigenvalue equation can be reduced in this theoretical framework to an effective single-variable

quantum-mechanical wave equation for φ(ζ) which is given by [7](
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φ(ζ) = M2φ(ζ) . (1)

The function U(ζ) is the effective potential acting on the valence states [8]; it is holographically

related to a unique dilation profile in AdS space. As a result, one arrives at a concise form of a

color-confining harmonic oscillator in impact space after the holographical mapping, U(ζ, J) =

λ2ζ2 + 2λ(J − 1). The emergence of the mass scale λ is consistent with the procedure of de

Alfaro, Fubini, and Furlan [9] in which a mass scale can appear in a Hamiltonian without

affecting the conformal invariance of the action [2]. With only one mass scale in addition to the

quark masses, this color-confining approach predicts successfully the spectroscopy and some

dynamical observables (like form factors and structure functions) of light-quark hadrons [3–6],

as well as the behavior of the running coupling in the non-perturbative domain [10–12].

The eigenvalues of the light-front Schrödinger equation, Eq. (1), are the squares of the

meson masses. The remarkably simple features of the empirical Regge trajectories for both
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meson and baryon families are correctly reproduced by LF holographic QCD with only one

parameter, the mass scale λ [13–17]. The eigensolutions of Eq. (1) provide the qq̄ light-front

wavefunctions which control the dynamics of the mesons. After factoring out the longitudinal

and orbital dependence, the LFWF can be written as

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√

2πζ
, (2)

where ζ2 = x(1− x)b2
⊥ is the Poincare’ invariant radial variable of LF Hamiltonian, and b⊥ is

the invariant transverse impact variable. The hadronic LFWF φ(ζ) in the soft-wall holographic

model encodes the dynamical properties of the mesons. If one also includes the light-quark

masses, it is given by [5, 18]

ψ(x, ζ) =

√
λ

π

√
x(1− x) e−

λζ2

2 e−
1

2λ
(
m2
q
x

+
m2
q̄

1−x ) (3)

in impact space. Note that the LF kinetic energy
∑

i(
k2
⊥+m2

x
)i is also the invariant mass squared

M2 = (
∑

i k
µ
i )2 of the hadronic constituents.

The holographic LFWF given by Eq. (3) has been successfully used to describe diffractive ρ

meson electroproduction at HERA [19] as well as the spectroscopy and distribution amplitudes

of light and heavy mesons [20–24]. After introducing the LF spinor structure of the wavefunc-

tions for light vector mesons in analogy with that of the photon, the authors of Refs [25, 26]

have predicted the light-front distribution amplitudes (LFDAs) of the ρ and K∗ vector mesons,

which were then used to evaluate the branching fractions of B → ργ and B → K∗γ decays.

In addition, the B → ρ ,K∗ form factors are computed and applied to rare B → K∗µ+µ− and

B → ρ`ν̄` decays [27–31]. Traditionally, the helicity dependence of the holographic LFWF is

assumed to decouple from the dynamics, which leads to simple factorizable formulae for physi-

cal quantities, such as the decay constants [22,23]. In Refs. [19,25–31], the helicity dependence

of the LFWFs for the vector mesons is introduced in order to predict specific helicity dependent

observables.

In this paper, we will explore helicity-improved LFWFs for light pseudoscalar mesons, and

then test their predictions for hadronic observables including the decay constants of π and K

mesons, their ξ-moments and the pion-to-photon transition form factor. We will also explore

their applications to two-body nonleptonic B-meson decays, focusing especially on the measured

pure annihilation B̄s → π+π− and B̄d → K+K− decay channels.
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In the past few years, several QCD-inspired approaches, such as QCD factorization (QCDF)

[32–34], perturbative QCD (pQCD) [35,36] and soft-collinear effective theory (SCET) [37–40],

have been developed in order to evaluate the hadronic matrix elements of local operators which

control two-body nonleptonic B-meson decays. However, the convolution integrals of the hard

kernels with the asymptotic forms of distribution amplitudes of light final states suffer from an

end-point divergence, such as
∫ 1

0
du/u or

∫ 1

0
du/(1 − u). This divergence limits the prediction

power of the theoretical approaches and introduces large theoretical uncertainties.

Several schemes for regulating the end-point divergences have been previously proposed.

In the SCET approach, a zero-bin subtraction [41] is assumed, and the annihilation dia-

grams are found to be factorizable and bring no any strong phase in the leading order of

O(αs(mb)ΛQCD/mb) [42]. In the pQCD approach, the end-point singularity is avoided by intro-

ducing parton transverse momentum kT , but at the expense of having to model the additional

kT dependence of the meson distributions; this predicts a large complex annihilation correc-

tion [35,36,43]. In the QCDF approach, the end-point divergent integrals are treated as signals

of infrared-sensitive contributions which are parameterized by introducing a complex quantity

XA [44,45]. Alternatively, one can also introduce an infrared-finite dynamical gluon propagator

which moves the end-point singularity into an integral over the time-like gluon momentum; the

divergence then vanishes, and a large strong phase is predicted [46, 47]. In contrast, in the

LF holographic QCD, it can be seen from Eq. (3) that the end-point behavior is naturally

suppressed by the exponential factor in LFWF due to non-vanishing effective quark masses,

mq and mq̄. Therefore, it is expected that the problem of end-point divergences can possibly

be mitigated by the improved behavior of the LFWF near the end-points. In this paper we

will test if the effective quark mass regulation of the end-point divergences can provide viable

predictions for the pure annihilation heavy hadron decays.

Our paper is organized as follows. In section 2, the connections between holographic LFWFs

and LFDAs for light pseudoscalar mesons are explored within the framework of LF quantization.

Sections 3 and 4 are devoted to numerical results and discussions in which the decay constants,

the ξ-moments and the pion-to-photon transition form factor are evaluated using the helicity-

improved LFWFs and LFDAs. In section 5, the pure annihilation B̄s → π+π− and B̄d → K+K−

decays are studied in detail using the LFDAs. Finally, we give our summary in section 6.
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2 The holographic light-front wavefunctions and distri-

bution amplitudes

Our starting point is the definition of the distribution amplitudes (DAs) of light pseudoscalar

meson [1, 48]. The DAs parameterize the operator product expansion of meson-to-vacuum

matrix elements [49],

〈0|q̄(0)γµγ5q(x)|P (p)〉 = ifPpµ

∫ 1

0

du e−iup·xΦ(u) , (4)

〈0|q̄(0)iγ5q(x)|P (p)〉 = fPµP

∫ 1

0

du e−iup·xφ(u) , (5)

where µP = m2
P/(m̄q + m̄q̄), fP is the decay constant of a pseudoscalar (P ) meson, and Φ(u)

and φ(u) are the twist-2 and twist-3 DAs, respectively.

In the following derivation, we will adopt the Lepage-Brodsky (LB) convention [1, 48] and

assume the light-front gauge, A+ = 0. At equal LF time, the DAs can be expressed using

Eqs. (4) and (5) as

fPΦ(z, µ) = − i
2

∫
dx−eizp

+x−/2〈0|q̄(0)γ+γ5q(x
−)|P (p)〉 , (6)

µPfPφ(z, µ) =
i

2
p+

∫
dx−eizp

+x−/2〈0|q̄(0)γ5q(x
−)|P (p)〉 , (7)

by performing the Fourier transformation with respect to x− = x0 − x3. The remaining main

task is to cope with the hadronic matrix elements involved in Eqs. (6) and (7).

In the framework of LF quantization [1, 48], a hadronic eigenstate |P 〉 can be expanded on

a complete Fock-state basis of noninteracting 2-particle states as

|P 〉 =
∑
h,h̄

∫
dk+d2k⊥

(2π)32
√
k+(p+ − k+)

ΨP
h,h̄

(
k+/p+,k⊥

)
|k+, k⊥, h; p+ − k+,−k⊥, h̄〉 , (8)

in which ΨP
h,h̄

is the LFWF of pseudoscalar meson with the helicity-dependence included, and

h and h̄ denote the helicities of quark and anti-quark, respectively. The one-particle state is

defined, for instance, by |k+〉 =
√

2k+b†|0〉. The Dirac (quark) field is expanded in terms of

particle creation and annihilation operators as

ψ+(x) =

∫
dk+

√
2k+

d2k⊥
(2π)3

∑
h

[bh(k)uh(k)e−ik·x + d†h(k)vh(k)eik·x] , (9)
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with uh and vh being the LF helicity spinors. The equal LF-time anti-commutation relations

are given by

{b†h(k), bh′(k
′)} = {d†h(k), dh′(k

′)} = (2π)3δ(k+ − k′+)δ2(k⊥ − k′⊥)δhh′ . (10)

Equipped with the above formulae, the hadronic matrix element in Eqs. (6) and (7) is then

expressed as

〈0|q̄(0)Γq(x−)|P (p)〉 =
√
Nc

∑
h,h̄

∫
dk+d2k⊥Θ(|k⊥| < µ)

(2π)32
√
k+(p+ − k+)

ΨP
h,h̄(k

+/p+,k⊥)

×v̄h̄(p+ − k+,−k⊥)Γuh(k
+,k⊥)e−ik

+x−/2 , (11)

in which Γ = γ+γ5 and γ5, and the scale µ is introduced as an ultraviolet cut-off on transverse

momenta. Using Eq. (11) and integrating over x− and k+, we can further obtain a general

expression for the RHS of Eqs. (6) and (7),∫
dx−eizp

+x−/2〈0|q̄(0)Γq(x−)|P (p)〉 =

√
Nc

p+

∑
h,h̄

∫ |k⊥|<µ d2k⊥
(2π)3

ΨP
h,h̄(z,k⊥) (12)

×

{
v̄h̄((1− z)p+,−k⊥)√

(1− z)
Γ
uh(zp

+,k⊥)√
z

}
.

To proceed with the derivation, we will need the explicit form of the holographic LFWF,

ΨP
h,h̄

. As mentioned in the introduction, the helicity dependence of the holographic LFWF

has been assumed in previous works to decouple from the dynamics, and hence ΨP
h,h̄

(z,k⊥) =

ψ(z,k⊥) . This assumption leads to a universal formula for different kinds of mesons; however,

it is obviously disfavored by experiment. In order to restore the proper helicity dependence,

the holographic LFWF in the k⊥ space needs to be modified as

Ψh,h̄(z,k⊥) = NSh,h̄(z,k⊥)ψ(z,k⊥) , (13)

where Sh,h̄(z,k⊥) is the helicity-dependent wavefunction, N the normalization factor deter-

mined by the normalization condition∑
h,h̄

∫
dz

d2k⊥
2(2π)3

|Ψh,h̄(z,k⊥)|2 = 1 , (14)

and ψ(z,k⊥) the radial wavefunction obtained by performing the Fourier transformation of

Eq. (3),

ψ(z,k⊥) =
4π√
λ

1√
z(1− z)

e−
k2
⊥

2λ z(1−z) e−
1

2λ
(
m2
q
z

+
m2
q̄

1−z ) . (15)
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In the case of a vector meson, one can work in analogy with the lowest-order helicity

structure of the photon LFWF in QED; the following structure of SV
h,h̄

is thus assumed [19]

SV,λ
h,h̄

(z,k⊥) = ūh(zp
+,k⊥) 6ελvh̄((1− z)p+,−k⊥) . (16)

This form has been successfully used to study the production of ρ and K∗ mesons and the

decays involving the B → ρ,K∗ transitions [27,28].

In the case of a pseudoscalar meson, following such a strategy, 6 ελ in Eq. (16) would be

replaced simply by γ5 [50–52]. Very recently, this spin structure has been used to evaluate the

pion holographic DA in Ref. [24]. The helicity-dependent wavefunction is written explicitly as

SPh,h̄(z,k⊥) = ūh(zp
+,k⊥)(iγ5)vh̄(z̄p

+,−k⊥) , Scenario 1 (17)

where the factor “i” is now added to be consistent with the convention used in Eqs. (4) and (5),

and the abbreviation z̄ = 1− z is introduced for convenience. An additional multiplying factor

“MP” kept in Ref. [24] has now been absorbed into the normalization constant in Eq. (13). It

should be noted, however, that this spin structure requires the light quark and anti-quark of

the pseudoscalar meson to have parallel spin projections, and thus Lz = ±1. This state has

twist= 2 +L = 3, and is thus not the meson eigenstate of the AdS/QCD theory. Instead of γ5,

the Dirac structure like 6pγ5 is also allowed. We therefore consider an alternative form of SP
h,h̄

:

SPh,h̄(z,k⊥) = ūh(zp
+,k⊥)(i

m̃P

2p+
γ+γ5 + iγ5)vh̄(z̄p

+,−k⊥) , Scenario 2 (18)

in which, the structure γ+γ5 implies that the light quark and anti-quark have only opposite

helicities. This is the helicity assignment that couples the pion to the axial-vector current and

thus the pion decay constant fπ in π− → W ∗− → `−ν̄. It is thus the leading-twist LFWF, and

is the solution from AdS/QCD for light quarks. Since m̃P is the invariant mass of qq̄ pair in

the P meson, the dimensions of the two terms in SP
h,h̄

, Eq. (18), are also consistent.

In the following, for convenience of discussion, the two helicity-dependent wavefunctions

defined by Eqs. (17) and (18) will be referred to as Scenario 1 (S1) and Scenario 2 (S2),

respectively. They are related by the Gell-Mann-Oakes-Renner relation and are thus not in-

dependent [53]. Using LB convention [48], the two helicity-dependent wavefunctions SP
h,h̄

are
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given explicitly as

SPh,h̄(z,k⊥) =


i√
zz̄

[
−|k⊥|e∓iθkδh±,h̄± ± (zmq̄ + z̄mq) δh±,h̄∓

]
, S1

i√
zz̄

[
−|k⊥|e∓iθkδh±,h̄± ± (zmq̄ + z̄mq + zz̄m̃P ) δh±,h̄∓

]
, S2

(19)

and the spinor currents in Eq. (12) can be written as

v̄h̄√
z̄
γ+γ5

uh√
z

= ± 2p+δh±,h̄∓ , (20)

v̄h̄√
z̄
γ5
uh√
z

=
1

zz̄

[
|k⊥|e±iθkδh±,h̄± ∓ (zmq̄ + z̄mq) δh±,h̄∓

]
, (21)

in which k⊥ = |k⊥|e±iθk is specified.

Finally, in the k⊥ space, using the building blocks given above, the holographic DAs of P

meson can be written as

Φ(z, µ)[S1] =

√
Nc

πfP

∫ |k|<µ d2k⊥
(2π)2

N1

(zz̄)1/2
(z̄mq + zmq̄)ψ(z,k⊥) , (22)

φ(z, µ)[S1] =

√
Nc

2πµPfP

∫ |k|<µ d2k⊥
(2π)2

N1

(zz̄)3/2

{
k2
⊥ + (zmq̄ + z̄mq)

2
}
ψ(z,k⊥) , (23)

for S1 1, and

Φ(z, µ)[S2] =

√
Nc

πfP

∫ |k|<µ d2k⊥
(2π)2

N2

(zz̄)1/2
(z̄mq + zmq̄ + zz̄m̃P )ψ(z,k⊥) , (24)

φ(z, µ)[S2] =

√
Nc

2πµPfP

∫ |k|<µ d2k⊥
(2π)2

N2

(zz̄)3/2

{
k2
⊥ + (zmq̄ + z̄mq)(zmq̄ + z̄mq + zz̄m̃P )

}
ψ(z,k⊥) ,

(25)

for S2, where N1 and N2 are the corresponding normalization factors determined by Eq. (14).

The expression in the impact space can be obtained through Fourier transformation. These for-

mulae exhibit the connections between holographic LFDAs and LFWFs. Using the theoretical

framework given above, we will present numerical results and applications of these holographic

LFDAs and LFWFs in the following sections.

1Very recently, in Ref. [24], the pion twist-2 holographic LFDA is also evaluated with a SP
h,h̄

similar to S1.
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3 Input parameters and decay constants

3.1 Inputs

Before presenting our numerical results, we now clarify the values of input parameters used in

our evaluation. One of the most important inputs is the mass scale parameter
√
λ 2, which

could be extracted from many observables. For example, to fit the light-quark mass spectrum,

the values
√
λ = 0.59 GeV and 0.54 GeV are suggested in Ref. [2] for light pseudoscalar and

vector mesons, respectively. A mean value,
√
λ = 0.523 GeV, is obtained in Ref. [16] by

fitting all of the slopes of the different Regge trajectories for mesons and baryons including

all excitations. This result is also favored by the recent high accuracy computation of the

perturbative QCD scale parameter ΛMS [10]. The fit to the Bjorken sum-rule data at low Q2

yields
√
λ = 0.496 ± 0.007 GeV [54]. In Ref. [12], the value

√
λ = 0.51 ± 0.04 GeV is used

for determining the freezing value of αs(Q
2) and the interface between perturbative and non-

perturbative QCD. In addition, in order to describe the HERA data on diffractive ρ and φ

electroproduction, the values
√
λ = 0.55 GeV and 0.56 GeV are suggested [19,55]. Besides

√
λ,

the light-quark masses appearing in the holographic LFWFs are the other important inputs,

which will be specified below.

In this paper, for S1, we follow entirely the inputs suggested by the recent study of the pion

twist-2 holographic DA with a similar LFWF of S1 [24]. Explicitly, the following input values

are used [24]:

√
λ = 523 MeV , ms = 450 MeV , mu,d = 330 MeV , S1 (26)

where the constituent quark masses are adopted, and are also used for studying the ρ and K∗

mesons [27, 28]. It should be noted that, as pointed out in Ref. [2], the light-quark masses

introduced in the holographic LFWF are not the traditional constituent masses in the non-

relativistic theories, but the effective quark masses from the reduction of higher Fock states as

functionals of the valence states. Such effective quark masses, in principle, should be universal

in a specific theoretical framework of holographic QCD.

2In some references, the parameter κ =
√
λ is used.
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Table 1: Numerical results of the π− and K− decay constants in unit of MeV.

Exp. S1 S2 ETM HPQCD FL/MILC LQCD Ave.

[56] [57] [58] [59] [56,60]

fπ 130.28± 0.26 132.84 130.10+3.23
−3.77 — 130.39± 0.20 — 130.2± 1.7

fK 156.09± 0.49 136.04 156.04+5.09
−4.45 154.1± 2.1 155.37± 0.34 155.92+0.43

−0.36 155.6± 0.4

fK
fπ

1.198± 0.004 1.024 1.199+0.032
−0.030 1.184± 0.016 1.1916± 0.0022 1.1956+0.0028

−0.0021 1.1928± 0.0026

For S2, on the other hand, we take

√
λ = 590± 15 MeV , ms = 272+69

−37 MeV , mu,d = 79+7
−5 MeV , S2 (27)

which are obtained by fitting to the π− and K− decay constants (see the next subsection for

detail). It is noted that such input values are very similar to the results,

√
λ = 590 MeV , ms = 357 MeV , mu,d = 46 MeV , (28)

obtained by fitting the masses of ground states in the framework of LF holographic QCD [2].

3.2 Decay constants

The values of holographic parameters can be well determined by the meson decay constants.

So, firstly, we present our predictions for the decay constant of pseudoscalar meson, which is

defined as

〈0|q̄γµγ5q|P (p)〉 = ifPp
µ . (29)

Expanding the hadronic state in the same manner as in section 2, we can finally arrive at

fP =

√
Nc

π

∫ 1

0

dz

∫
d2k⊥
(2π)2

z̄mq + zmq̄√
zz̄

N1ψ(z,k⊥) , S1 (30)

fP =

√
Nc

π

∫ 1

0

dz

∫
d2k⊥
(2π)2

z̄mq + zmq̄ + z̄zm̃P√
zz̄

N2ψ(z,k⊥) . S2 (31)

With the inputs mentioned above, our numerical results for fπ, fK and their ratio fK/fπ

are summarized in Table 1, in which the theoretical errors in S2 are obtained by evaluating
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Figure 1: The fitted spaces for the holographic parameters in S2 under the constraints from the

decay constants fπ and fK and their ratio fK/fπ. Fig. (a): the allowed spaces of
√
λ, ms and

mu,d at 95% C.L.; Fig. (b): the allowed spaces of ms and mu,d with
√
λ = 0.590± 0.015 GeV.

separately the uncertainties induced by each input parameter in Eq. (27) and then adding them

in quadrature. For comparison, the latest experimental data [56] 3, the recent results based on

lattice QCD (LQCD) with Nf = 2+1+1 obtained by ETM [57], HPQCD [58], Fermilab Lattice

and MILC (FL/MILC) [59] Collaborations, and the world averaged results of LQCD [56, 60]

are also listed in Table 1.

In S1, our result fπ = 132.84 MeV is comparable with the data and, as found in Ref. [24],

achieves a much better agreement than that obtained without helicity improvement. However,

S1 results in very small results for kaon, fK = 136.04 MeV and fK/fπ = 1.024, which deviate far

from the data. In fact, no matter what values of the light-quark masses are used, the predicted

fK/fπ in S1 is always much smaller than the data and the LQCD results. This implies that S1

cannot provide sufficient flavor-asymmetry resources. It is, however, very interesting to note

that this deficiency in S1 can be remarkably improved in S2. From Table 1, it can be seen that

all the results in S2 are in good agreement with the data and the LQCD results.

The decay constants fπ and fK are very sensitive to the holographic parameters,
√
λ, ms

and mu,d, and we can, therefore, perform a χ2-fit for these parameters using the experimental

3The values |Vud| = 0.9758 ± 0.0016 and |Vus| = 0.2248 ± 0.0006 [56] are used to obtain the experimental

data on fπ and fK .
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data on fπ, fK and fK/fπ listed in Table 1. Our fitting results for
√
λ, ms and mu,d at 95% C.L.

are shown in Fig. 1 (a). Even though the parameter spaces could not be seriously constrained

due to the limited constraining conditions, we do obtain some useful bounds, ms & 100 MeV,

mu,d . 100 MeV and
√
λ > 550 MeV. The bound

√
λ > 550 MeV confirms the finding in Ref. [2]

that a relatively larger
√
λ ∼ 590 MeV for pseudoscalar mesons is required compared with

√
λ ∼ 540 MeV for vector mesons. Thus, in our evaluation, we take the value

√
λ = 590 MeV

and assign a conservative uncertainty ±15 MeV.

With
√
λ fixed at

√
λ = 590 ± 15 MeV, our fitted results for ms and mu,d are shown in

Fig. 1 (b), and the corresponding numerical results are given by Eq. (27); another solution with

unacceptably large ms ∼ 700 MeV, which is allowed in principle (see Fig. 1 (a)), is discarded.

It can be seen from Fig. 1 (b) that the allowed spaces are strongly constrained. Comparing

Eqs. (27) with (28), we note that the fitted results for the holographic parameters match those

obtained by fitting the Regge trajectories of hadrons and the ground-state masses [2].

4 Holographic DAs and pion-to-photon form-factor

4.1 Results of holographic DAs

Using the decay constants obtained above and the formulae given in section 2, we now present

in Fig. 2 our predictions for the LF holographic DAs of π and K mesons at µ = 1 GeV and

0.5 GeV in both S1 and S2. For comparison, the asymptotic forms, Φ(z) = 6zz̄ and φ(z) = 1 ,

and the DAs predicted by QCD sum rule (QCDSR) approach [61] are also plotted in Fig. 2.

Using the normalization factor N determined by the normalization condition for LFWF,

Eq. (14), and the decay constant given by Eqs. (30) and (31), we find that our extracted twist-2

holographic DAs, Φ(z, µ), for both S1 and S2 satisfy automatically the normalization condition∫ 1

0
dzΦ(z, µ) = 1. However, the extracted twist-3 holographic DAs satisfy the condition only

approximately. One of the main reasons is that, in contrast to the case of twist-2 DAs, the

normalization of twist-3 holographic DAs is affected by the scale-dependent running masses

of light quarks, m̄q,q̄(µ), appearing in µP , which have large uncertainties and are not well

determined at low scales. In our evaluation, the values m̄s(1GeV) = 128 MeV and m̄s/m̄u,d = 24

are used. It should be noted that, in the evaluation of hadronic matrix elements using the

12
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Figure 2: The holographic DAs of π and K mesons in S1 (blue) and S2 (red) at 0.5 GeV (dashed)

and 1 GeV (solid), compared with the asymptotic forms (black dashed) and the DAs at 1 GeV

in QCDSR approach (black solid).

holographic DAs, the effect of m̄q(µ) vanishes because the factor µP is cancelled, which can be

clearly seen from, for instance, Eqs. (5) and (23). It also can be clearly seen from our following

discussions of pure annihilation B̄s → π+π− and B̄d → K+K− decays.

Comparing the curves of holographic DAs at µ = 0.5 GeV and 1 GeV with each other, we

can see that the effect of evolution is significant only at low scale. The evolution at large scale

is, however, not obvious, as found also in the previous works [25, 26], and the perturbative

evolution could be in principle recovered through the Efremov-Radyushkin-Brodsky-Lepage

equation [62–64] as has been done in Ref. [65].
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Table 2: The (inverse) moments of π− meson at 1 GeV while for Refs. [66,67] at 2 GeV.

S1 S2 Asym. LFQM QCDSR QCDSR LQCD NLCQM DES RM

[52] [61] [66] [67] [68] [69] [70]

〈ξ2〉 0.172 0.238 0.2 0.24 0.286 0.343 0.269 0.21 0.28 0.28

〈ξ4〉 0.062 0.116 0.086 0.11 0.143 0.181 — 0.09 0.15 0.13

〈z−1〉 2.61 3.50 3 — 3.75 4.25 — — 5.5 —

We can also see from Fig. 2 that the twist-2 holographic DA in S2 is considerably broader

than the asymptotic form, which is also expected in the other theories like QCDSR, while the

one in S1 is much narrower than in S2. For the twist-3 holographic DA, its behavior in S2 at

low scale is similar to the QCDSR result, while at large scale to the asymptotic form except

at the regions near end-point. In contrast to the asymptotic form and the QCDSR results, the

essential feature of LF holographic DAs is that they all fall rapidly to zero when z → 0 and 1,

which is due to the exponential term, e−
1

2λ
(
m2
q
x

+
m2
q̄

1−x ), in the LFWF given by Eq. (15).

4.2 Moments and inverse moment

In order to further compare the predictions based on the holographic DAs with the ones from

other non-perturbative methods, we compute the expectation values of the longitudinal mo-

mentum fraction, the ξ-moments and the inverse moment, which are defined, respectively, by

〈ξn〉 =

∫ 1

0

dz (2z − 1)nΦ(z, µ) , 〈z−1〉 =

∫ 1

0

dz z−1Φ(z, µ) . (32)

Using the central values of input parameters, our numerical results are listed in Tables 2 (for

π−) and 3 (for K−). The theoretical predictions based on the LF quark model (LFQM) [52],

the QCDSR [61, 66], the LQCD [67], the nonlocal chiral quark model (NLCQM) [68], the

Dyson-Schwinger equations (DSE) [69], as well as the renormalon method (RM) [70] are also

summarized in Tables 2 and 3 for comparison.

Comparing with the predictions for moments in the other theoretical models listed in Ta-

bles 2 and 3, we can see that, although the results based on the holographic DA in S1 result in
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Table 3: The (inverse) moments of K− meson at 1 GeV while for Ref. [67] at 2 GeV.

S1 S2 Asym. LFQM [52] QCDSR [61] LQCD [67] NLCQM [68]

〈ξ1〉 0.060 0.010 0 0.06 0.036 — 0.057

〈ξ2〉 0.155 0.212 0.2 0.21 0.286 0.260 0.182

〈ξ3〉 0.025 0.014 0 0.03 0.015 — 0.023

〈ξ4〉 0.052 0.093 0.086 0.09 0.143 — 0.070

〈z−1〉 2.28 2.79 3 — 3.57 — —

a better agreement than the ones without helicity-improvement as found in Ref. [24], they are

still very small (even much smaller than the results obtained by using the asymptotic DA). As

argued in Ref. [24], such discrepancies might be attributed to the fact that the dynamical spin

effects are not fully captured by S1. Fortunately, as exhibited in Tables 2 and 3, we find that

such discrepancies are eliminated in S2.

4.3 Pion-to-photon transition form factor

The pion-to-photon transition form factor can be extracted from the process γ∗(q1)γ∗(q2)→ π.

In the case of only one photon being off-shell the transition form factor is denoted as Fπγ(Q
2)

and, to the leading order in αs, is given as [48,65]

Fπγ(Q
2) =

√
2

3
fπ

∫ 1

0

dz
Φπ(z, z̄Q)

z̄ Q2
. (33)

With both the asymptotic DA and the holographic DAs of S1 and S2, the dependence of

the rescaled form factor, Q2 Fπγ(Q
2), on the photon virtuality, Q2, are plotted in Fig. 3, in

which the data from CELLO [71], CLEO [72], BaBar [73] and Belle [74] Collaborations are

also shown for comparison. Even though the holographic DA of S1 does a better job than the

traditional one [24], its prediction for Q2 Fπγ(Q
2) is always smaller than the one obtained with

asymptotic DA and is, therefore, disfavored by the BaBar [73] and Belle [74] data at large Q2

domain. Such an inconsistency could be significantly improved by the holographic DA of S2.

As shown clearly in Fig. 3, the holographic DA of S2 can explain the current data in the whole
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Figure 3: Theoretical predictions for Q2 Fπγ(Q
2) with asymptotic DA (black dashed), holo-

graphic DAs of S1 (blue) and S2 (red), together with the comparison to the experimental data

from CELLO (green) [71], CLEO (cyan) [72], BaBar (purple) [73] and Belle (orange) [74].

Q2 domain, except for the BaBar result 4.

5 Pure annihilation B̄s → π+π− and B̄d → K+K− decays

The two-body pure annihilation B-meson decays have attracted much theoretical attention

during the past years, for instance, in Refs. [47, 75–86]. The experimental evidence for pure

annihilation B̄s → π+π− and B̄d → K+K− decays was reported first by the CDF Collabora-

tion [87], and was soon confirmed and updated by both Belle [88] and LHCb [89, 90] Collabo-

rations. The Heavy Flavor Averaging Group (HFAG) presents the following averaged results

for the branching ratios [91]:

B(B̄s→π+π−) = (6.71±0.83)×10−7 , (34)

B(B̄d→K+K−) = (0.84± 0.24)×10−7, (35)

4It should be noted that the BaBar and Belle measurements for Q2 Fπγ(Q2) at large Q2 domain are not

consistent with each other.
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Figure 4: The leading-order Feynman diagrams for pure annihilation B-meson decays.

with the corresponding significance at the levels of about 5σ and 3σ, respectively. These

measurements motivate accurate theoretical evaluations in different frameworks. However,

due to the appearance of end-point singularities, the annihilation amplitudes are hardly to

be reliably calculated. Motivated by the end-point behavior of the LF holographic DAs, we

now try to evaluate the annihilation amplitudes and check if the end-point divergence can be

properly controlled by LF holographic DAs.

Following the prescription proposed in Ref. [48], the hadronic matrix elements of annihilation

topologies can be written as the convolution integrals of the scattering kernel with the DAs of

the participating mesons [32],

〈P1P2|Oi|B̄〉 = fBfP1fP2

∫
dxdydξ Ti(x, y, ξ)ϕP1(x)ϕP2(y)ϕB(ξ) , (36)

where Oi is the local four-quark operator, x , y and ξ are (anti-)quark momentum fractions, and

the kernel Ti(x, y, ξ) is obtained by calculating the leading-order Feynman diagrams shown in

Fig. 4. In the heavy quark limit and using the collinear factorization scheme, the non-zero basic

building blocks relevant to B̄s → π+π− and B̄d → K+K− decays have been fully evaluated and

can be written as [44]

A1 = παs

∫ 1

0

dxdy

{
ΦP2(x)ΦP1(y)

[ 1

y(1− xȳ)
+

1

x̄2y

]
+

4

m̄2
b(µ)

2φ̃P2(x)φ̃P1(y)

x̄y

}
, (37)

A2 = παs

∫ 1

0

dxdy

{
ΦP2(x)ΦP1(y)

[ 1

x̄(1− xȳ)
+

1

x̄y2

]
+

4

m̄2
b(µ)

2φ̃P2(x)φ̃P1(y)

x̄y

}
, (38)

in which,

φ̃P (z) ≡ µPφP (z) , (39)

and the subscripts 1 and 2 correspond to the Dirac current structures of Oi, (V −A)⊗ (V −A)

and (V − A) ⊗ (V + A), respectively. As mentioned already, using the LF holographic DAs,
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Eq. (23) in S1 or Eq. (25) in S2, one can see that the chiral factor µP in Eq. (39) is cancelled

out. This implies that the hadronic matrix elements, A1,2, do not depend on the running masses

of light-quarks when one uses the extracted LF holographic DAs.

The full amplitudes of B̄s → π−π+ and B̄d → K−K+ decays are given as

A(B̄ → P1P2) =
∑
p=u,c

Bp
P1P2

[ (
δpub

p
1 + bp4 + bp4,EW

)
P1P2

+

(
bp4 −

1

2
bp4,EW

)
P2P1

]
, (40)

with P = π ,K, and

Bp
ππ = i

GF√
2
VpbV

∗
psfBsfP1fP2 , Bp

KK = i
GF√

2
VpbV

∗
pdfBdfP1fP2 , (41)

bp1 =
CF
N2
c

C1A1 , bp4 =
CF
N2
c

[
C4A1 + C6A2

]
, bp4,EW =

CF
N2
c

[
C10A1 + C8A2

]
, (42)

in which VpbV
∗
ps and VpbV

∗
pd (p = u, c) are the product of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix elements [92, 93], and Ci the scale-dependent Wilson coefficients. We use the

subscripts P1P2 and P2P1 in Eq. (40) to indicate that the first meson contains the anti-quark

emitted from the weak vertex and having momentum fraction ȳ, while another quark emitted

from the weak vertex has momentum fraction x.

From Eqs. (37) and (38), one finds that the end-point divergence appears when the asymp-

totic DA, φ(z) = 1, or any other forms of DA having non-vanishing end-point behavior are

adopted, i.e.,

lim
x̄ or y→0

φP2(x)φP1(y)

x̄y
∼ lim

x̄ or y→0

1

x̄y
→ ∞ . (43)

Traditionally, these integrals are usually parameterized by a complex parameter XA, according

to
∫ 1

0
dx/x → XA = (1 + ρAe

iφA) ln(mB/Λh) [44]. As mentioned already, in the framework of

LF holographic QCD, the end-point divergence can be well controlled because it is regulated

naturally by the exponential factor involving the effective quark masses in the LFWF.

In the numerical evaluations, we will use the values of CKM parameters fitted by the

CKMfitter group [94],

A = 0.8227+0.0066
−0.0136, λ = 0.22543+0.00042

−0.00031, ρ̄ = 0.1504+0.0121
−0.0062, η̄ = 0.3540+0.0069

−0.0076, (44)

the averaged values of the B-meson decay constants [56],

fBs = 227.2± 3.4 MeV , fBd = 190.9± 4.1MeV , (45)
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Table 4: The CP-averaged branching ratios of B̄s → π+π− and B̄d → K+K− decays in

unit of 10−7. For the results of S2, the first, second and third theoretical errors are caused by

uncertainties of the CKM parameters and B-meson decay constants, the holographic parameters

in Eq. (27), and the renormalization scale µ, respectively.

Decay Mode Exp. [91] S1 S2 QCDF [44] pQCD [76]

B̄s → π+π− 6.71±0.83 0.220 6.81+0.54+1.33+18.41
−0.46−1.29− 3.44 0.24+0.03+0.25+1.63

−0.03−0.12−0.21 5.10+1.96+0.25+1.05+0.29
−1.68−0.19−0.83−0.20

B̄d → K+K− 0.84± 0.24 0.023 0.23+0.03+0.06+0.42
−0.02−0.06−0.09 0.13+0.05+0.08+0.87

−0.05−0.05−0.11 1.56+0.44+0.23+0.22+0.13
−0.42−0.22−0.19−0.09

and the central values of the other inputs, such as the well-determined masses and lifetimes of

B mesons, and the Fermi constant etc., given by PDG [56]. Using these inputs, our numerical

results for the CP-averaged branching ratios of B̄s → π+π− and B̄d → K+K− decays are listed

in Table 4, in which the experimental data and the previous theoretical results based on the

QCDF with parameterization scheme [44] and the pQCD [76] approaches are also given for

comparison. Our results are evaluated at the renormalization scale µ ∼ m̄b/2 = 2.09 GeV with

an assigned uncertainty ±1 GeV. The theoretical errors caused by the CKM parameters and

B-meson decay constants, the holographic inputs given by Eq. (27), and the renormalization

scale µ are obtained by evaluating separately the uncertainties induced by each input parameter

and then adding them in quadrature.

From Table 4, we find that the results in S1 are similar to the ones obtained by using tradi-

tional parameterization scheme with ρA = 1 [44], but are about one order of magnitude smaller

than the data, which is mainly due to the fact that the holographic DAs in S1 are relatively

narrow as shown in Fig. 2, and the contributions with z, z̄ . 0.2 are strongly suppressed. In

contrast, our prediction for B(B̄s → π+π−) in S2 is in good agreement with the data; within

the experimental and theoretical uncertainties our prediction for B(B̄d → K+K−) also agrees

with the data. This implies that S2 is much more favored by the data on B(B̄s → π+π−) and

B(B̄d → K+K−). In the following discussions, we will focus only on the results of S2.

Comparing with the previous evaluations in QCDF by using the parameterization scheme for

the end-point divergence with ρA = 1, we find that the theoretical predictions are remarkably

improved by using the holographic DAs. Comparing our predictions with the ones in pQCD, we
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find good agreement for B(B̄s → π+π−); however, our result for B(B̄d → K+K−) is smaller than

that obtained in pQCD. The significant difference between B(B̄s → π+π−) and B(B̄d → K+K−)

in our evaluation can be well understood due to the following facts:

(i) For the B̄s → π+π− decay, because |VubV ∗us| ∼ |Aλ4(ρ − iη)| � |VcbV ∗cs| ∼ Aλ2, its decay

amplitude, Eq. (40), can be simplified as

A(B̄s → π+π−) ∼ Bc
ππ2 (bc4)π−π+ , (46)

in which (bc4)π−π+ = (bc4)π+π− because the u- and d-quark difference is not distinguished

in this paper. For the B̄d → K+K− decay, on the other hand, its amplitude can be

simplified as

A(B̄d → K+K−) ∼ Bu
KK (bu1)K−K+ +Bc

KK

[
(bc4)K−K+ + (bc4)K+K−

]
. (47)

Comparing with Eq. (46), one can easily find that the first and second terms in Eq. (47) are

relatively suppressed by additional Cabibbo factors λ ∼ 0.2 and λ2 ∼ 0.048, respectively.

Thus, a large ratio Rπ/K = B(B̄s → π+π−)/B(B̄d → K+K−) is generally expected.

(ii) Moreover, for the K−(+) meson, as shown by Fig. 2, the holographic DAs near the end-

point where the (anti-)strange quark carries small momentum fraction is suppressed due

to ms > mu,d. As a result, both twist-2 and twist-3 contributions are relatively suppressed

for the B̄d → K+K− compared to the B̄s → π+π− decay. In addition, since fBs > fBd

and the phase space of B̄s → π+π− decay is larger than that of B̄d → K+K− decay, the

ratio Rπ/K is further enhanced.

It should be noted that our evaluations are performed at leading order and the theoretical

uncertainties, especially the one induced by the renormalization scale, are still quite large.

Moreover, the refined measurements, especially for the B̄d → K+K− decay, are required for a

definite conclusion.

From the phenomenological point of view, an annihilation amplitude with a large strong

phase is generally welcome in order to fit experimental data and to explain some puzzles ob-

served in B-meson decays [79–84]. As a result, a complex parameter XA has been introduced

in the traditional parameterization scheme within the framework of QCDF [44]. By using the
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dynamical gluon mass mg(q
2) in QCDF approach [47] or by introducing transverse momentum

kT in pQCD approach [35,36,43], a large imaginary part in the annihilation amplitudes is also

obtained because the singularities exist in the integral over momentum fractions. In contrast to

the above regulation schemes, the leading-order annihilation contributions are real by using the

holographic DAs. This result is understandable due to the fact that, although the leading-order

annihilation corrections are evaluated at the order αs, they are in fact “tree” contributions and

there is no independent internal momentum; while the strong phases are generally induced by

the loop integration, such as in the vertex and penguin diagrams. In the SCET approach, real

annihilation contributions of the order of O(αs(mb)ΛQCD/mb) have also been predicted [42]. In

addition, it should be noted that complex annihilation contributions are of course possible if,

for instance, final-state interactions or higher-order corrections are taken into account.

6 Summary

Motivated by the development of the LF holographic QCD, the LFWFs for light pseudoscalar

mesons and their applications are studied in this paper. In order to restore the dynamical spin

effects of quarks and to improve the predictability of LFWFs for different pseudoscalar mesons,

the traditional LFWFs are modified according to two assumptions for the helicity-dependent

wavefunctions, corresponding to the structures ūh(iγ5)vh̄ (named as S1) and ūh(
m̃P
2p+ iγ

+γ5 +

iγ5)vh̄ (named as S2), respectively. The LF holographic DAs of pseudoscalar mesons are then

extracted using the helicity-improved LFWFs. The decay constants, the ξ-moments, the pion-

to-photon transition form factor, as well as the B̄s → π+π− and B̄d → K+K− decays are then

evaluated and compared with experiment. Our main findings are summarized as follows:

• In contrast to the LFWF for S1, we find that the LFWF for S2 can provide sufficient

flavor-asymmetry resources for predicting fπ, fK and their ratio fK/fπ. Moreover, the

results based on S2 for all of the observables considered in this paper are in a much better

agreement with experiment than the ones based on S1.

• Taking the π and K decay constants as constraints, we perform a χ2-fit for the holographic

parameters, the mass scale
√
λ and the effective quark masses mu,d and ms. Interestingly,

our fitted results are remarkably consistent with the ones obtained by fitting the Regge
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trajectory of light hadrons.

• A new scheme with LF holographic DAs for regulating the end-point divergence in the

annihilation amplitudes of B → PP decays is presented. In this scheme, the leading-

order annihilation contributions are real. Numerically, our predictions for the branching

fractions B(B̄s → π+π−) and B(B̄d → K+K−) by using the LF holographic DAs in S2

agree well with current data and result in a relatively large flavor-symmetry breaking

effect. These predictions will be further tested by future refined measurements.
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