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Novel All-Orders Single-Scale Approach to QCD Renormalization Scale-Setting
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The Principle of Maximal Conformality (PMC) provides a rigorous method for eliminating renor-
malization scheme-and-scale ambiguities for perturbative QCD predictions. The PMC uses the
renormalization group equation to fix the β-pattern of each order in an arbitrary pQCD approxi-
mant, and it then determines the optimal renormalization scale by absorbing all {βi} terms into the
running coupling at each order. The resulting coefficients of the pQCD series match the scheme-
independent conformal series with β = 0. As in QED, different renormalization scales appear at
each order; we call this the multi-scale approach. In this paper, we present a novel single-scale
approach for the PMC, in which a single effective scale is constructed to eliminate all non-conformal
β-terms up to a given order simultaneously. The PMC single-scale approach inherits the main
features of the multi-scale approach; for example, its predictions are scheme-independent, and the
pQCD convergence is greatly improved due to the elimination of divergent renormalon terms. As
an application of the single-scale approach, we investigate the e+e− annihilation cross-section ratio
Re+e− and the Higgs decay-width Γ(H → bb̄), including four-loop QCD contributions. The result-
ing predictions are nearly identical to the multi-scale predictions for both the total and differential
contributions. Thus in many cases, the PMC single-scale approach PMC-s, which requires a simpler
analysis, could be adopted as a reliable substitution for the PMC multi-scale approach for setting
the renormalization scale for high-energy processes, particularly when one does not need detailed
information at each order. The elimination of the renormalization scale uncertainty increases the
precision of tests of the Standard Model at the LHC.

PACS numbers: 12.38.-t, 12.38.Bx, 11.10.Gh

I. INTRODUCTION

A primary requirement of renormalization group in-
variance (RGI) is that a valid prediction for a physical
observable from quantum field theory must be indepen-
dent of the choice of renormalization scheme, such as the
minimum-subtraction MS or MOM schemes. Conven-
tional predictions based on a truncated perturbation se-
ries do not automatically satisfy this requirement, leading
to scheme-and-scale ambiguities. For example, perturba-
tive QCD predictions, where the renormalization scale
and its range are simply guessed, lead to an unphysical
dependence on the choice of renormalization scheme.
The renormalization group equation (RGE) provides

a rigorous basis for determining the running behavior of
the coupling constant and hence the setting of the renor-
malization scale. It determines the running of the strong
coupling from the analytic properties of the β-function:

β(α(µ)) = µ2 dα(µ)

dµ2
= −α2(µ)

∞
∑

i=0

βiα
i(µ), (1)

where a perturbative expansion of the β-function in terms
of α = αs/4π is assumed. The “Principle of Maximal
Conformality” (PMC) [1–4] utilizes the RGE recursively
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to unambigously identify the occurrence and pattern of
nonconformal {βi} terms at each order in a pQCD ex-
pansion. The PMC then determines the optimal renor-
malization scales by absorbing all occurrences of the {βi}
terms into the scales of the running coupling at each or-
der of perturbation theory. The coefficients of the result-
ing pQCD series then match the “conformal” series with
β = 0. Given one measurement which sets the value
of the coupling at a scale, the resulting PMC predic-
tions are independent of the choice of renormalization
scheme. Thus the PMC scale setting eliminates an unnec-
essary theoretical uncertainty. There is another uncer-
tainty from different choices of factorization scale, whose
determination is a separate issue, which may be solved
by matching nonpertubative bound-state dynamics with
perturbative DGLAP evolution [5–7] 1.
The elimination of the renormalization scale uncer-

tainty for pQCD is important since it increases the pre-
cision of tests of the Standard Model at the LHC. The
scales predicted by the PMC are physical – they reflect
the virtualities of the gluon propagators at each given or-
der, as well as setting the effective number of active fla-
vors nf . Specific renormalization scales and values of nf

appear for each skeleton graph. The QCD scales deter-
mined by the PMC can thus be considered as the relevant
physical scales for observables, in analogy to QED. In

1 We have observed that the factorization scale dependence could
be suppressed after applying the PMC [8, 9], which may be ex-
plained by the fact that the pQCD series behaves much better
after applying the PMC.
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fact, the PMC method reduces in the Abelian limit to the
standard Gell Mann-Low method for setting the renor-
malization scale for precision predictions in QED [10].

In practice, the PMC multi-scale method requires con-
siderable theoretical analysis. In this paper, we introduce
a new all-orders single-scale approach “PMC-s” which
makes the implementation and automation of PMC scale-
setting simpler and more transparent. In effect, the
PMC-s provides a mean value for the PMC multi-scales,
while retaining its central predictions. We also find that
the single PMC-s scale shows stability and convergence
with increasing order in pQCD.

The remaining parts of this paper are organized as fol-
lows. We will give the PMC single-scale method in Sec.II.
We will then apply it to two examples, i.e. the R-ratio at
the e+e− collider and the decay of H → bb̄, in Sec. III.
Section IV is reserved for a summary.

II. CALCULATION TECHNOLOGY

As we have shown in our previous papers [3, 4, 11], the
{βi}-dependence of any pQCD expression occurs with
a specific “degeneracy” pattern dictated by the RGE.
Specifically, one finds

ρ(Q) = r1,0α(µ)
p + [r2,0 + pβ0r2,1]α(µ)

p+1 +

[

r3,0 + pβ1r2,1 + (p+ 1)β0r3,1 +
p(p+ 1)

2
β2
0r3,2

]

α(µ)p+2

+

[

r4,0 + pβ2r2,1 + (p+ 1)β1r3,1 +
p(3 + 2p)

2
β1β0r3,2 + (p+ 2)β0r4,1 +

(p+ 1)(p+ 2)

2
β2
0r4,2

+
p(p+ 1)(p+ 2)

3!
β3
0r4,3

]

α(µ)p+3 + · · · , (2)

where r1,0 is the tree-level term and p is the power of
the coupling associated with the tree-level term, µ is the
initial renormalization scale, and Q represents the kine-
matic scale. The pattern of {βi} terms from one order

to the next are general properties of non-Abelian gauge
theory for any physical observable.
The pQCD expansion for ρ(Q) can be reorganized into

the following compact form:

ρ(Q) =
∑

n≥1

rn,0α(µ)
n+p−1 +

∑

n≥1

[

(n+ p− 1)α(µ)n+p−2β
]

∑

j≥1

(−1)j∆(j−1)
n rn+j,j (3)

where we have introduced the notation:

∆(0)
n = 1,

∆(1)
n =

1

2!

[

∂β

∂α
+ (n+ p− 2)

β

α

]

,

∆(2)
n =

1

3!

[

β
∂2β

(∂α)2
+

(

∂β

∂α

)2

+ 3(n+ p− 2)
β

α

∂β

∂α

+(n+ p− 2)(n+ p− 3)
β2

α2

]

,

· · ·

As a further step, we can explicitly identify the scale
dependence of the non-conformal coefficients ri,j(≥1) as

ri,j =

j
∑

k=0

Ck
j L

kr̂i−k,j−k , (4)

where L = ln(µ2/Q2), r̂i,j = ri,j |µ=Q, and the combi-
natorial coefficients are Ck

j = j!/k!(j − k)!. The con-
formal coefficients are free from scale dependence; i.e.,
ri,0 = r̂i,0. By substituting Eq.(4) into Eq.(3), we obtain

ρ(Q) =
∑

n≥1

r̂n,0α(µ)
n+p−1 +

∑

n≥1

[

(n+ p− 1)α(µ)n+p−2β
]

∑

j≥1

(−1)j∆(j−1)
n r̂n+j,j

+
∑

k≥1

Lk
∑

n≥1

[

(n+ p− 1)α(µ)n+p−2β
]

∑

j≥k

(−1)jCk
j ∆

(j−1)
n r̂n+j−k,j−k . (5)

Following the PMC procedure, all non-conformal terms
should be resummed into the running coupling. In the

case of the multi-scale approach, one can do this recur-
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sively, leading to a scale-fixed scheme-independent con-
formal series [3, 4]:

ρ(Q) =
∑

n≥1

r̂n,0α(Qn)
n+p−1, (6)

where Qn are the PMC scales appearing at each orders.
The PMC scales depend on the choice of renormalization
scheme; however, once the value of αs(Q) is determined
in the chosen scheme at a specific physical kinematic scale
Q, the resulting PMC predictions are independent of the
scheme choice.

In the following, we shall show that by introducing a
single universal renormalization scale Q⋆, one can also

obtain a scheme-independent conformal series, i.e.

ρ(Q) =
∑

n≥1

r̂n,0α(Q⋆)
n+p−1. (7)

This can be achieved by replacing the scale µ in Eq.(5)
as Q⋆, whose value is determined by requiring all non-
conformal terms vanish. The solution of lnQ2

⋆/Q
2 can be

written as a power series in α(Q), i.e.

ln
Q2

⋆

Q2
= T0 + T1α(Q) + T2α

2(Q) + · · · , (8)

where Ti are process-dependent coefficients. The coef-
ficients Ti (i = 0, 1, · · · , n) can be fixed by a Nn+1LO
pQCD calculation. For example, for a N3LO calculation,
we can get a next-to-next-to-leading log order (N2LL)
Q∗, whose three coefficients are

T0 = − r̂2,1
r̂1,0

, (9)

T1 =
(p+ 1)(r̂2,0r̂2,1 − r̂1,0r̂3,1)

pr̂21,0
+

(p+ 1)(r̂22,1 − r̂1,0r̂3,2)

2r̂21,0
β0, (10)

T2 =
(p+ 1)2

(

r̂1,0r̂2,0r̂3,1 − r̂22,0r̂2,1
)

+ p(p+ 2)
(

r̂1,0r̂2,1r̂3,0 − r̂21,0r̂4,1
)

p2r̂31,0
+

(p+ 2)
(

r̂22,1 − r̂1,0r̂3,2
)

2r̂21,0
β1

−
p(p+ 1)r̂2,0r̂

2
2,1 + (p+ 1)2

(

r̂2,0r̂
2
2,1 − 2r̂1,0r̂2,1r̂3,1 − r̂1,0r̂2,0r̂3,2

)

+ (p+ 1)(p+ 2)r̂21,0r̂4,2

2pr̂31,0
β0

+
(p+ 1)(p+ 2)

(

r̂1,0r̂2,1r̂3,2 − r̂21,0r̂4,3
)

+ (p+ 1)(1 + 2p)
(

r̂1,0r̂2,1r̂3,2 − r̂32,1
)

6r̂31,0
β2
0 . (11)

It is interesting that different orders of the perturbative
series for the PMC scale have an identical form; e.g., the
coefficients of (p + i + 1)βiα

i+1(Q) are the same. More-
over, the effective scaleQ⋆ is explicitly independent of the
choice of initial choice of the renormalization scale µ at
any fixed order. It thus has universal properties. It also
converges rapidly as shall be shown below; thus any resid-
ual scale dependence due to uncalculated higher-order
terms is greatly suppressed. Another important feature
is that the single-scale approach avoids the problem of
very small arguments of the running coupling appearing
at a specific order; e.g., when a soft gluon carries the mo-
mentum flow. An example of this appears in the analysis
of the Bjorken sum rule [12]. On the other hand, in some
leading-twist processes such as single spin asymmetries in
deep inelastic scattering [13] or the double Boer-Mulders
effect in lepton pair production [14], the scale of the run-
ning coupling at specific orders will be soft since these
processes involve gluonic initial-state or final-state inter-
actions at small momentum transfer.

A related single-scale approach has been suggested in
Refs.[15, 16] by applying the Brodsky-Lepage-Mackenzie

scale-setting approach [17] 2. However, in these analy-
sis an nf -power series was used to set the effective scale
without distinguishing whether the nf -terms are specific
to the {βi} terms; thus one cannot confirm the scheme-
independence of the resultant pQCD series. However, if
one improves this method, taking care that only the non-
conformal nf -terms associated with coupling constant
renormalization are used to set the scale, one will obtain
the same effective scale as that of Eq.(8).
An alternative single-scale approach [18, 19] called the

“xBLM” approach, has been suggested based on a pro-
cedure called the “sequential Brodsky-Lepage-Mackenzie
(seBLM)” approach [18]. The goal of the seBLM ap-
proach is to improve the convergence of perturbative
QCD expansions. For example, in the case of the R-
ratio, the single scale of the xBLM approach is fixed by
requiring the third-order coefficients to vanish after using

2 In those two references, only two-loop expressions are given, but
we have found that such an approach can be extended to all
orders. A detailed discussion on this point is in preparation.
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the seBLM procedure; however, the fourth and higher-
order coefficients remain non-zero (although small), thus
leading to an unnatural perturbative series.

III. APPLICATIONS

A. Example I : e+e− → hadrons

The annihilation of an electron and positron into
hadrons provides one of the most precise platforms for
testing the running behavior of the QCD coupling. The
R-ratio is defined as

Re+e−(Q) =
σ (e+e− → hadrons)

σ (e+e− → µ+µ−)

= 3
∑

q

e2q [1 +R(Q)] , (12)

where Q =
√
s. The pQCD approximant for R(Q)

up to (n + 1)-loop level can be written as, Rn(Q) =
∑n

i=0 Ci(Q,µ)αi+1(µ). The expansion coefficients in the

MS-scheme up to four-loop level can be found in Refs.[20–
23]. In order to apply the PMC, one first transforms
the calculated non-conformal nf -power series into the
{βi}-series and applies the standard PMC multi-scale or
single-scale procedures.

25
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⋆
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Q
(1)
⋆

Q
(2)
⋆

Q
(3)
⋆
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39.68 GeV
40.30 GeV

FIG. 1. The determined PMC scale Q⋆ for R(Q) up to N2LL

accuracy. Q
(1)
⋆ is at the LL accuracy, Q

(2)
⋆ is at the NLL

accuracy and Q
(3)
⋆ is at the N2LL accuracy. Q = 31.6 GeV.

By using Eq.(8), the PMC scale Q⋆ for R(Q) up to
N2LL precision can be determined using the four-loop
pQCD prediction for R(Q). The result is:

ln
Q2

⋆

Q2
= 0.2249 + 1.6369αs(Q) + 1.5559α2

s(Q).

Numerical results are shown in Fig.(1), in which Q
(1)
⋆ is

computed at LL, Q
(2)
⋆ is for NLL and Q

(3)
⋆ is for N2LL.

For the numerical predictions, we have assumed the value

for QCD mass scale Λ
(5)

MS
= 210 MeV, determined us-

ing the αs-running at four loops with α
s,MS(Mz) =

0.1181 [24]. The results show a monotonic increase of

the PMC-s single scale: Q
(1)
⋆ < Q

(2)
⋆ < Q

(3)
⋆ , and the dif-

ference between the two nearby values becomes smaller
and smaller when more loop-terms are included. The
rapid pQCD convergence of the scale Q⋆ indicates that
the single PMC scale converges as more loop corrections
are included.

R1 R2 R3 κ1 κ2 κ3

Conv. 0.04763 0.04648 0.04617 7.36% −2.43% −0.66%

PMC 0.04745 0.04649 0.04619 6.96% −2.03% −0.64%

PMC-s 0.04745 0.04635 0.04619 6.96% −2.33% −0.34%

TABLE I. Results for Rn and κn with various loop corrections
for three scale-setting approaches. R0 ≡ 0.04437 for all scale-
settings. Q = 31.6 GeV and µ = Q.

We compare the results of Rn(Q = 31.6 GeV) up to
the four-loop level in Table I using conventional scale-
setting with the fixed scale Q (labeled Conv.), the PMC
multi-scale approach (PMC), and the PMC single-scale
approach (PMC-s). We also give the results for the ra-
tio κn = (Rn −Rn−1)/Rn−1 which indicates how the
“known” estimate is altered by each “newly” available
one-order-higher correction.

LO NLO N2LO N3LO Total

Conv. 0.04482+0.00652
−0.00501 0.00283−0.00612

+0.00361 −0.00115−0.00109
+0.00147 −0.00033+0.00061

+0.00008 0.04617−0.00008
+0.00015

PMC 0.04275 0.00350 −0.00004 −0.00002 0.04619

PMC-s 0.04292 0.00339 −0.00008 −0.00004 0.04619

TABLE II. The value of each loop-term (LO, NLO, N2LO or N3LO) for the four-loop prediction R3(Q) under three scale-setting
approaches. Q = 31.6 GeV and µ ∈ [Q/2, 2Q]. The central values for the conventional scale-setting are for µ = Q. We observe
that each loop term for the PMC or PMC-s is almost unchanged for µ ∈ [Q/2, 2Q].
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n = 1 n = 2 n = 3

Q
(n)
⋆ 35.36 39.68 40.30

Q
(n)
eff 35.36 39.02 40.29

TABLE III. A comparison of Q
(n)
⋆ with Q

(n)
eff for Rn(Q) up

to Nn−1LO (n = 1, 2, 3) accuracy. The effective scale Q
(n)
eff is

determined by requiring
∑n+1

i=1
ri,0α

i(Q
(n)
eff ) = Rn|PMC.

In Table II, we present the values of each term in
the perturbative theory for the four-loop approximant
R3(Q), where the errors for each loop terms by varying
µ ∈ [Q/2, 2Q] are also presented. Tables I and II show the
PMC and PMC-s predictions are close to each other for
both the total and the separate loop terms. To show this

equivalency more clearly we present a comparison of Q
(n)
⋆

with the effective scale Q
(n)
eff up to Nn−1LO (n = 1, 2, 3)

accuracy in Table III. Here the effective scale Q
(n)
eff is de-

termined by requiring
∑n+1

i=1 ri,0α
i(Q

(n)
eff ) to be equal to

the PMC multi-scale prediction Rn|PMC. The scales Q
(1)
⋆

and Q
(1)
eff are by definition the same, and the high-order

ones become closer to each other with increasing loop
corrections; thus the PMC-s predictions are in effect, an
equivalent for PMC.

B. Example II: H → bb̄

The pQCD prediction for decay width of the Higgs
decay to a pair of bottom quarks H → bb̄ can be written

as

Γ(H → bb̄) =
3GFMHm2

b(µ)

4
√
2π

[1 + R̃(µ)], (13)

where GF is the Fermi constant, µ is the renormaliza-
tion scale, and mb(µ) is the b-quark MS running mass.

The pQCD prediction for R̃ takes the form R̃n(µ) =
∑n

i=0 C̃iαi+1(µ). At present, R̃n has been calculated up
to four-loop level; e.g., Ref.[25] gives the result, taking
µ = MH , which can be run to any required perturbative
scale using the RGE. We take MH = 126 GeV for the
Higgs mass.

By using Eq.(8), the PMC-s scale Q̃⋆ for Γ(H → bb̄)
up to N2LL accuracy can be determined using four-loop
prediction on R̃(MH), which reads,

ln
Q̃2

⋆

M2
H

= −1.4389− 1.1847αs(MH) + 3.8753α2
s(MH).

As shown in Fig.(2), the single PMC scale Q̃⋆ shows rapid
convergence as more loop corrections are included. In
contrast to Re+e− , the perturbative series for ln Q̃2

⋆/M
2
H

oscillates, leading to Q̃
(1)
⋆ > Q̃

(2)
⋆ and Q̃

(2)
⋆ < Q̃

(3)
⋆ . How-

ever, similar to the case of Re+e− , the absolute difference
between two nearby values becomes smaller as more loop
corrections are included.

We present the results for R̃n up to four loop level
using various scale-setting approaches in Table IV, where
the ratio κ̃n = (R̃n − R̃n−1)/R̃n−1. The contributions

from each loop-term to the four-loop prediction R̃3(MH)
are presented in Table V, where the errors for each loop
terms by varying µ ∈ [MH/2, 2MH] are also presented.
Negative N2LO or N3LO values for PMC and PMC-s
approaches indicate the conformal coefficients for higher-
orders are negative. At four-loop level, the predictions
for the decay width Γ(H → bb̄) are consistent with each
other due to the excellent pQCD convergence of these
scale-setting approaches.

We present a comparison of Q̃
(n)
⋆ with Q̃

(n)
eff for R̃n

up to Nn−1LO (n = 1, 2, 3) accuracy in Table VI.

Here the effective scale Q̃
(n)
eff is determined by requir-

ing
∑n+1

i=1 ri,0α
i(Q̃

(n)
eff ) to be equal to the PMC multi-

scale prediction R̃n|PMC. Similar to the previous case,

the scales Q̃
(1)
⋆ and Q̃

(1)
eff are exactly the same, and the

high-order ones become more closer to each other with
increasing loop corrections.

R̃1 R̃2 R̃3 κ̃1 κ̃2 κ̃3

Conv. 0.2406 0.2425 0.2411 18.2% 0.8% −0.6%

PMC 0.2482 0.2404 0.2402 22.0% −3.2% −0.1%

PMC-s 0.2482 0.2422 0.2401 22.0% −2.4% −0.86%

TABLE IV. Results for R̃n and κ̃n with various loop correc-
tions for three scale-setting approaches. R̃0 = 0.2035 for all
scale settings. µ = mH .

IV. SUMMARY

The PMC satisfies renormalization group invari-
ance [26, 27] and all the other self-consistency condi-
tions required by the renormalization group [28]. The
PMC eliminates a major systematic scale uncertainty for
pQCD predictions, thus greatly improving the precision
of empirical tests of the Standard Model and their sen-
sitivity to new physics. It eliminates the need to guess
the renormalization scale and its range. For example, the
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LO NLO N2LO N3LO total

Conv. 0.2031+0.0226
−0.0175 0.0374−0.0151

+0.0100 0.0019−0.0077
+0.0071 −0.0013−0.0005

+0.0020 0.2411−0.0007
+0.0016

PMC 0.2260 0.0247 −0.0093 −0.0012 0.2402

PMC-s 0.2282 0.0219 −0.0089 −0.0011 0.2401

TABLE V. The value of each loop-term (LO, NLO, N2LO or N3LO) for the four-loop prediction R̃3(MH) using three scale-
setting approaches. µ ∈ [MH/2, 2MH ]. The central values for the conventional scale-setting are for µ = MH . We observe that
each loop term for the PMC or PMC-s is almost unchanged for µ ∈ [MH/2, 2MH ].
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FIG. 2. The determined PMC scale Q̃⋆ for H → bb̄ up to

N2LL accuracy. Q
(1)
⋆ is at the LL accuracy, Q

(2)
⋆ is at the

NLL accuracy and Q
(3)
⋆ is at the N2LL accuracy. µ = MH .

n = 1 n = 2 n = 3

Q̃
(n)
⋆ 61.36 57.40 58.83

Q̃
(n)
eff 61.36 60.04 58.72

TABLE VI. A comparison of Q̃
(n)
⋆ with Q̃

(n)
eff for R̃n up to

Nn−1LO (n = 1, 2, 3) accuracy. The effective scale Q̃
(n)
eff is

determined by requiring
∑n+1

i=1
ri,0α

i(Q̃
(n)
eff ) = R̃n|PMC.

conventional approach assigns an uncertainty of
(

+1.0%
−3.0%

)

,
(

+0.3%
−1.6%

)

or
(

+0.4%
−0.2%

)

to the two-loop, three-loop, and the

four-loop approximants of R(Q = 31.6GeV) by assuming
the range 1/2Q < µ < 2Q, respectively; this uncertainty
is greatly suppressed via using the PMC, i.e. the PMC
prediction is almost unchanged for each loop term by

varying µ ∈ [1/2Q, 2Q]. Furthermore, as shown by Table
II, a negligible net scale error for the four-loop prediction
R3(Q) under conventional scale-setting is caused by can-
celations among different orders, and the scale error for
each loop term is still sizable.
In its original multi-scale approach, the PMC sets the

scales order-by-order; the individual scales reflect the
varying virtuality of the amplitudes at each order. In
this letter, to make the scale-setting procedures simpler
and easier to be automatized, we have introduced a new
single-scale approach (PMC-s) which achieves many of
the same goals of the PMC. The PMC-s scale is a sin-
gle effective scale which effectively replaces the individual
PMC scales in the sense of a mean value theorem.
The PMC-s fixes the renormalization scale by directly

requiring all the RG-dependent non-conformal terms up
to a given order to vanish, thus it inherits most of the
features of the mutli-scale approach: Its predictions are
also scheme-independent due to the resulting conformal
series, and the convergence of the pQCD expansion is
greatly improved due to the elimination of divergent
renormalon terms. As seen explicitly in Tables I, II,
IV and V, the resulting PMC and PMC-s predictions
are effectively same for both total and differential
observables. Thus the PMC-s approach, with its much
simpler scale-setting procedure, can be adopted as a
reliable substitute for the PMC multi-scale approach,
especially when one does not need detailed information
at each order.
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