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Abstract

We study the charmless two-body decays of b-baryons (Λb, Ξ
−
b , Ξ

0
b). We find that B(Ξ−

b →

Λρ−) = (2.08+0.69
−0.51)× 10−6 and B(Ξ0

b → Σ+M−) = (4.45+1.46
−1.09, 11.49

+3.8
−2.9, 4.69

+1.11
−0.79, 2.98

+0.76
−0.51)× 10−6

for M− = (π−, ρ−,K−,K∗−), which are compatible to B(Λb → pπ−, pK−). We also obtain that

B(Λb → Λω) = (2.30±0.10)×10−6 , B(Ξ−
b → Ξ−φ,Ξ−ω) ≃ B(Ξ0

b → Ξ0φ,Ξ0ω) = (5.35±0.41, 3.65±

0.16) × 10−6 and B(Ξ−
b → Ξ−η(′)) ≃ B(Ξ0

b → Ξ0η(′)) = (2.51+0.70
−0.46, 2.99

+1.16
−0.57) × 10−6. For the CP

violating asymmetries, we show that ACP (Λb → pK∗−) = ACP (Ξ
−
b → Σ0(Λ)K∗−) = ACP (Ξ

0
b →

Σ+K∗−) = (19.7±1.4)%. Similar to the charmless two-body Λb decays, the Ξb decays are accessible

to the LHCb detector.

1



I. INTRODUCTION

The charmful and charmless Λb decays, such as Λb → pM [1, 2], Λb → Λ(η(′), φ) [3, 4],

Λb → D−
s p,Λ

+
c M [5], and Λb → pJ/ψM [6, 7] with M = (K−, π−), have been measured

by several experiments. Recently, the LHCb Collaboration discovered the hidden-charm

pentaquarks in Λb → J/ψpM [8, 9], and found the evidence of the time-reversal violating

asymmetry in Λb → pπ−π+π− [10], which indicates CP violation. Clearly, the Bb decays are

worthy of more theoretical and experimental studies, where Bb denotes one of the anti-triplet

b-baryons of Λb, Ξ
0
b , and Ξ−

b . However, it seems more difficult to measure the Ξb decays due to

fΞb
≃ 1/10fΛb

with fBb
≡ B(b→ Bb) as the fragmentation fraction. To one’s surprise, apart

from the charmful Λb → J/ψΛ and Ξ−
b → J/ψΞ− decays [1, 11, 12], the three-body Λb and

Ξb modes have been equally observed [5, 13, 14], that is, Λb/Ξ
0
b → pK̄0M , Λb/Ξ

0
b → Λπ+π−,

Λb/Ξ
0
b → ΛK+M , Ξ−

b → pK̄−M , and Ξ−
b → pπ−π−.

The charmless two-body Λb decays have been measured as follows [1–4]:

B(Λb → pK−, pπ−) = (4.9± 0.9, 4.1± 0.8)× 10−6 ,

B(Λb → Λη,Λη′) = (9.3+7.3
−5.3, < 3.1)× 10−6 ,

B(Λb → Λφ) = (5.18± 1.04± 0.35+0.67
−0.62)× 10−6 , (1)

where Λb → Λφ can be viewed as the first observed vector mode, while the results of

Λb → Λ(η, η′) are still consistent with the theoretical relation of B(Λb → Λη) ≃ B(Λb →
Λη′) [15, 16]. As the counterparts of the Λb cases, the two-body Ξb decays of Ξ0

b → Σ+M ,

Ξ−
b → ΛM , and Ξ0,−

b → Ξ0,−(η(′), φ) should be explored experimentally, whereas no such

decay has yet been observed. Similar to the experimental situation, theoretically, even

though the two-body Λb decays have been well studied in Refs. [15–22], the Ξb cases are

barely explored except those in Refs. [23–25]. In addition, the CP-violating asymmetry

(CPA) of ACP (Λb → pK∗−) predicted to be 20% [21] suggests that there can be large CPAs

in the Ξb processes due to the same anti-triplet hadronic structure. Moreover, some of

the charmless two-body decays of Bb → BnM with M being π0, η(′), φ, ρ0 and ω remain

unexplored. To compare with the future data, in this paper we systematically study the

charmless two-body Bb → BnM decays with Bn being denoted as the baryon octet and M

the pseudoscalar or vector meson.
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II. FORMALISM

In terms of the effective Hamiltonian at the quark level, the amplitudes of the charmless

two-body Bb → BnM decays under the factorization approach can be decomposed as the

matrix elements of the Bb → Bn baryon transitions along with the vacuum to meson pro-

ductions (0 → M). In our classification, the first types of amplitudes with the unflavored

mesons of π0, ρ0, ω and φ are given by [16, 26]

A(Bb → BnM) =
GF√
2

{[

α2〈M |(ūu)V−A|0〉+ α3〈M |(ūu+ d̄d)V−A|0〉+ α4〈M |(q̄q)V−A|0〉

+α5〈M |(ūu+ d̄d)V+A|0〉+ α9〈M |(2ūu− d̄d)V−A|0〉
]

〈Bn|(q̄b)V−A|Bb〉

+α6〈M |(q̄q)S+P |0〉〈Bn|(q̄b)S−P |Λb〉
}

,

A(Bb → Bnφ) =
GF√
2
ᾱ3〈φ|(s̄s)V |0〉〈Bn|(s̄b)V−A|Bb〉 , (2)

with (q̄iqj)V (A) = q̄iγµ(γ5)qj and (q̄iqj)S(P ) = q̄i(γ5)qj , where α2 = VubV
∗
uq a2, α3 = −VtbV ∗

tq a3,

α4 = −VtbV ∗
tq a4, α5 = −VtbV ∗

tq a5, α6 = VtbV
∗
tq2a6, α9 = −VtbV ∗

tq a9/2, and ᾱ3 = −VtbV ∗
ts (a3 +

a4 + a5 − a9/2 − a10/2). In the generalized factorization approach [26], the color-singlet

currents as in Eq. (2) are kept for the vacuum to meson production and the Bb → Bn

transition, such that one derives the parameters ai ≡ ceffi + ceffi±1/N
eff
c for i =odd (even)

with the effective Wilson coefficients ceffi and color number N eff
c . On the other hand, the

color-octet currents lead to the amplitudes of 〈MBn|(q̄αq′β)(q′′βbα)|Bb〉 with α and β the color

indices, which are non-factorizable and disregarded. Nonetheless, by effectively shifting

N eff
c from 2 to ∞, the non-factorizable contributions have been demonstrated to be well

accounted [26]. Note that Λb → Λφ [16] with a3,5 is estimated to have the large non-

factorizable effect, in which N eff
c is found to be around 2. The relevant decays from the

amplitudes in Eq. (2) are

Λb → nM, Ξ−,0
b → Σ−,0M, (for q=d)

Λb → (Λ,Σ0)M, Ξ−,0
b → Ξ−,0M, (for q=s)

Λb → (Λ,Σ0)φ, Ξ−,0
b → Ξ−,0φ , (3)
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with M = (π0, ρ0, ω). The second types of amplitudes with the flavored mesons are given

by [21]

A(Bb → BnM)

=
GF√
2

{

(α1 + α4)〈M |(q̄u)V−A|0〉〈Bn|(ūb)V−A|Bb〉+ α6〈M |(q̄u)S+P |0〉〈Bn|(ūb)S−P |Bb〉
}

,

A(Bb → BnK̄
(∗)0)

=
GF√
2

{

α4〈K̄(∗)0|(s̄d)V−A|0〉〈Bn|(d̄b)V−A|Bb〉+ α6〈K̄(∗)0|(s̄d)S+P |0〉〈Bn|(d̄b)S−P |Bb〉
}

,

A(Bb → BnK
(∗)0) = −GF√

2
VtbV

∗
tda4〈K(∗)0|(d̄s)V−A|0〉〈Bn|(s̄b)V−A|Bb〉 , (4)

with α1 = VubV
∗
uqa1, where the explicit decay modes are

Λb → pM, Ξ−
b → (Λ,Σ0)M, Ξ0

b → Σ+M,

Λb → nK̄(∗)0, Ξ−,0
b → Σ−,0K̄(∗)0,

Λb → (Λ,Σ0)K(∗)0, Ξ−,0
b → Ξ−,0K(∗)0, (5)

with M = (π−, ρ−) for q = d and M = K(∗)− for q = s. With the mesons of η(′), the third

types of amplitudes are given by [16]

A(Bb → Bnη
(′)) =

GF√
2

{[

β2〈η(′)|(q̄′q′)A|0〉+ β3〈η(′)|(s̄s)A|0〉+ β4〈η(′)|(q̄q)A|0〉
]

× 〈Bn|(q̄b)V−A|Bb〉+ β6〈η(′)|(q̄q)P |0〉〈Bn|(q̄b)S−P |Bb〉
}

, (6)

where q′ = u or d, β2 = −VubV ∗
uq a2 + VtbV

∗
tq(2a3 − 2a5 + a9/2), β3 = VtbV

∗
tq(a3 − a5 − a9/2),

β4 = VtbV
∗
tqa4, and β6 = VtbV

∗
tq2a6. In Eq. (6), the corresponding decays are

Λb → nη(′), Ξ−,0
b → Σ−,0η(′), (for q=d)

Λb → (Λ,Σ0)η(′), Ξ−,0
b → Ξ−,0η(′). (for q=s) (7)

In Eqs. (2), (4), and (6), the matrix elements of the Bb → Bn transitions can be presented

as [23, 24]

〈Bn|(q̄b)V−A|Bb〉 = ūBn
(f1γµ − g1γµγ5)uBb

,

〈Bn|(q̄b)S+P |Bb〉 = ūBn
(fS + gPγ5)uBb

, (8)

where f1,S and g1,P are the form factors. Note that the parameterizations of the first matrix

elements safely ignore the terms of ūBn
σµνq

ν(γ5)uBb
and ūBn

qµ(γ5)uBb
that flip the helicity of
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TABLE I. Bb to Bn transition form factors.

〈Bn|(q̄b)|Bb〉 F(0)

〈p|(ūb)|Λb〉
√

3
2C||

〈n|(d̄b)|Λb〉
√

3
2C||

〈Λ|(s̄b)|Λb〉 C||

〈Σ0|(s̄b)|Λb〉 0

〈Bn|(q̄b)|Bb〉 F (0)

〈Σ+|(ūb)|Ξ0
b〉 −

√

3
2C||

〈Λ|(d̄b)|Ξ0
b〉 −1

2C||

〈Σ0|(d̄b)|Ξ0
b〉

√

3
4C||

〈Ξ0|(s̄b)|Ξ0
b〉 −

√

3
2C||

〈Bn|(q̄b)|Bb〉 F (0)

〈Σ−|(d̄b)|Ξ−
b 〉

√

3
2C||

〈Λ|(ūb)|Ξ−
b 〉 1

2C||

〈Σ0|(ūb)|Ξ−
b 〉 −

√

3
4C||

〈Ξ−|(s̄b)|Ξ−
b 〉

√

3
2C||

the spinor, whereas the (axial)vector quark currents conserve the helicity. In the equations

of motion, (fS, gP ) are related to (f1, g1) as fS = (mBb
− mBn

)/(mb − mq)f1 and gP =

(mBb
+mBn

)/(mb +mq)g1, respectively, whose momentum dependences are given by [21]

f1(q
2) =

f1(0)

(1− q2/m2
Bb
)2
, g1(q

2) =
g1(0)

(1− q2/m2
Bb
)2
. (9)

The Bb → Bn transition form factors for different decay modes can be related by the SU(3)

flavor and SU(2) spin symmetries [24, 27], resulting in the connection of F (0) ≡ g1(0) =

f1(0) and the relations given in Table I, where C|| has been extracted from the data of

B(Λb → pK−) and B(Λb → pπ−) [21]. For the meson productions, the matrix elements read

〈P |(q̄1q2)A|0〉 = −ifP qµ , (mq1 +mq2)〈P |(q̄1q2)P |0〉 = −ifPm2
P ,

〈V |(q̄1q2)V |0〉 = mV fV ǫµ , (10)

where M = (P, V ) are denoted as the pseudoscalar and vector mesons, respectively, and [29]

〈η(′)|(s̄s)A|0〉 = −if s
η(′)
qµ , 〈η(′)|(q̄q)A|0〉 = −i

f q

η(′)√
2
qµ ,

2ms〈η(′)|(s̄s)P |0〉 = −ihs
η(′)

, 2mq〈η(′)|(q̄q)P |0〉 = −i
hq
η(′)√
2
, (11)

with (fP , fV , f
s
η(′)
, f q

η(′)
, hs

η(′)
, hq

η(′)
) decay constants, qµ(ǫµ) the four-momentum (-vector po-

larization), and q̄q = (ūu, d̄d). The direct CP-violating asymmetry is defined by

ACP (Bb → BnM) ≡ Γ(Bb → BnM)− Γ(B̄b → B̄nM̄)

Γ(Bb → BnM) + Γ(B̄b → B̄nM̄)
, (12)

where Γ(Bb → BnM) and Γ(B̄b → B̄nM̄) are the decay widths from the particle and an-

tiparticle decays, respectively.
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III. NUMERICAL RESULTS AND DISCUSSIONS

For our numerical analysis, we use the CKM matrix elements in the Wolfenstein param-

eterization, given by [1]

(Vub, Vtb) = (Aλ3(ρ− iη), 1) ,

(Vud, Vtd) = (1− λ2/2, Aλ3) ,

(Vus, Vts) = (λ, −Aλ2), (13)

with (λ, A, ρ, η) = (0.225, 0.814, 0.120± 0.022, 0.362± 0.013). The effective Wilson coeffi-

cients ceffi are adopted as [26]

ceff1 = 1.168, ceff2 = −0.365 ,

104ǫ1c
eff
3 = 64.7 + 182.3ǫ1 ∓ 20.2η − 92.6ρ+ 27.9ǫ2

+i(44.2− 16.2ǫ1 ∓ 36.8η − 108.6ρ+ 64.4ǫ2),

104ǫ1c
eff
4 = −194.1− 329.8ǫ1 ± 60.7η + 277.8ρ− 83.7ǫ2

+i(−132.6 + 48.5ǫ1 ± 110.4η + 325.9ρ− 193.3ǫ2),

104ǫ1c
eff
5 = 64.7 + 89.8ǫ1 ∓ 20.2η − 92.6ρ+ 27.9ǫ2

+i(44.2− 16.2ǫ1 ∓ 36.8η − 108.6ρ+ 64.4ǫ2),

104ǫ1c
eff
6 = −194.1− 466.7ǫ1 ± 60.7η + 277.8ρ− 83.7ǫ2

+i(−132.6 + 48.5ǫ1 ± 110.4η + 325.9ρ− 193.3ǫ2),

104ǫ1c
eff
9 = −3.0− 109.5ǫ1 ± 0.9η + 4.3ρ− 1.3ǫ2

+i(−2.0± 1.7η + 5.0ρ− 3.0ǫ2),

104ceff10 = 37.5, (14)
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for the b→ d (b̄→ d̄) transition, and

ceff1 = 1.168, ceff2 = −0.365 ,

104ceff3 = 241.9± 3.2η + 1.4ρ+ i(31.3∓ 1.4η + 3.2ρ),

104ceff4 = −508.7∓ 9.6η − 4.2ρ+ i(−93.9± 4.2η − 9.6ρ),

104ceff5 = 149.4± 3.2η + 1.4ρ+ i(31.3∓ 1.4η + 3.2ρ),

104ceff6 = −645.5∓ 9.6η − 4.2ρ+ i(−93.9± 4.2η − 9.6ρ),

104ceff9 = −112.2∓ 0.1η − 0.1ρ+ i(−2.2 ± 0.1η − 0.1ρ),

104ceff10 = 37.5, (15)

for the b → s (b̄ → s̄) transition, where ǫ1 = (1 − ρ)2 + η2 and ǫ2 = ρ2 + η2. The meson

decay constants are taken to be [1, 28–30]

(fπ, fK , fρ, fK∗ , fω, fφ) = (0.130, 0.156, 0.205, 0.217, 0.195, 0.231)GeV ,

(f q
η , f

q
η′ , f

s
η , f

s
η′) = (0.108, 0.089, −0.111, 0.136)GeV ,

(hqη, h
q
η′ , h

s
η, h

s
η′) = (0.001, 0.001, −0.055, 0.068)GeV . (16)

In addition, the extraction from the data gives |C||| = 0.111 ± 0.007 [21, 24] in Table I.

Subsequently, we obtain the branching ratios and direct CPAs for the two-body charmless

Λb, Ξ
−
b and Ξ0

b decays, shown in Tables II, III and IV, respectively.

For the Λb decays, it is interesting to note that all Λb → Σ0M decays, such as Λb →
Σ0(π0, η(′), φ, ρ0, ω), have zero branching ratios, which are not listed in Table II. This is due

to 〈Σ0|(s̄b)|Λb〉 = 0, where the b to s transition currents transform Λb to Λ = (ud−du)s that
does not correlate to Σ0 = (ud+du)s. It is clear that these nonexistent decays with B = 0 can

test the theory based on the factorization approach. To get the values of B(Λb → pπ−, pρ−)

in Table II, we have used a1 ≃ 1.0 as the input in the amplitudes. In contrast, though being

the tree-dominated modes also, we take a2 = 0.18 ± 0.05 (N eff
c ≃ 2) [23, 24] to calculate

the decays of Λb → n(π0, ρ0, ω). While 〈π0(ρ0)|(ūu + d̄d)|0〉 = 0 with (π0, ρ0) = uū − dd̄

makes the α3,5 terms disappear in the first amplitude in Eq. (2), one obtains B(Λb →
Λπ0,Λρ0) ≃ O(10−8 − 10−7). On the other hand, Λb → Λω with ω = uū+ dd̄ enhances its

contribution from the α3,5 terms in Eq. (2), resulting in B(Λb → Λω) > B(Λb → Λρ0). Note

that B(Λb → nK̄0, nK̄∗0) = (4.61+1.48
−0.90, 3.09

+1.64
−0.81) × 10−6 are as large as the counterparts

of B(Λb → pK−, pK∗−) = (4.49+1.06
−0.76, 2.86

+0.73
−0.49) × 10−6, whereas B(Λb → ΛK0,ΛK∗0) =

O(10−8, 10−7) are mainly due to the CKM suppression of |Vtd/Vts| = 0.225, respectively.
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For the Ξb decays, we obtain

B(Ξ−
b → Λπ−,Λρ−) = (0.80+0.26

−0.20, 2.08
+0.69
−0.51)× 10−6 ,

B(Ξ−
b → ΛK(∗)−) = (0.85+0.20

−0.14, 0.54
+0.14
−0.09)× 10−6 ,

B(Ξ0
b → ΛK̄(∗)0) = (0.82+0.26

−0.16, 0.54
+0.29
−0.14)× 10−6 . (17)

By inputing the form factors of F (0)2 = (3/4, 1/4)C2
|| for the Ξ−

b → Σ0 and Ξ−
b → Λ tran-

sitions, we get B(Ξ−
b → Σ0M−) ≃ 3B(Ξ−

b → ΛM−) for M− = (π−, ρ−, K(∗)−), respectively,

indicating that the Σ modes can be larger than the Λ ones in the Ξb decays. Explicitly, we

have

B(Ξ0
b → Σ+π−,Σ+ρ−) = (4.45+1.46

−1.09, 11.49
+3.8
−2.9)× 10−6 ,

B(Ξ0
b → Σ+K(∗)−) = (4.69+1.11

−0.79, 2.98
+0.76
−0.51)× 10−6 ,

B(Ξ−
b → Σ−K̄(∗)0) = (5.14+2.52

−1.70, 3.43
+1.81
−0.90)× 10−6 , (18)

where the relation of B(Ξ0
b → Σ+M−) ≃ B(Λb → pM−) with M− = (π−, ρ−, K(∗)−) can be

traced back to the same amplitudes in Eq. (4) with the identical inputing form factors. On

the other hand, with F (0)2 = (3/4, 3/2)C2
|| for Ξ−

b → Σ0 and Ξ0
b → Σ+, we find B(Ξ−

b →
Σ0K(∗)−) ≃ B(Ξ0

b → Σ+K(∗)−)/2 and B(Ξ0
b → Σ0K̄(∗)0) ≃ B(Ξ−

b → Σ−K̄(∗)0)/2. For the

decays with η(′), the branching fractions are given by

B(Ξ−
b → Ξ−η(′)) = (2.67+0.74

−0.49, 3.19
+1.24
−0.61)× 10−6 ,

B(Ξ0
b → Ξ0η(′)) = (2.51+0.70

−0.46, 2.99
+1.16
−0.57)× 10−6 , (19)

with B(Ξ−
b → Ξ−η(′)) ≃ B(Ξ0

b → Ξ0η(′)) to obey the isospin symmetry. Note that the

branching ratios of these η(′) modes in Eq. (19) are about 1.5 times larger than B(Λb → Λη(′))

(see Table II). As a result, the decays of Ξb → Ξη(′) are promising to be measured.

The Λb → Λφ decay is sensitive to N eff
c (see Table II). To explain the data in Eq. (1),

we fix N eff
c = 2 to get B(Λb → Λφ) = (3.42 ± 0.26) × 10−6, which implies the sizeable

non-factorizable effects for Bb → Bn(ω, φ). Explicitly, we predict that

B(Λb → Λω) = (2.30± 0.10)× 10−6 ,

B(Ξ−,0
b → Ξ−,0φ) = (5.70± 0.43, 5.35± 0.41)× 10−6 ,

B(Ξ−,0
b → Ξ−,0ω) = (3.85± 0.17, 3.62± 0.16)× 10−6 , (20)

which can be used to test the non-factorizable effects.

8



For the CPAs, since the Λb and Ξ−,0
b decays are associated with the same amplitudes, we

obtain

ACP (M
−) ≡ ACP (Λb → pM−) = ACP (Ξ

−
b → Σ0(Λ)M−) = ACP (Ξ

0
b → Σ+M−) , (21)

whereACP (M
−) = (−3.9±0.4,−3.8±0.4, 6.7±0.4, 19.7±1.4)% forM− = (π−, ρ−, K−, K∗−),

respectively. Note that both uncertainties from the non-factorizable effects and form factors

have been eliminated in Eq. (12) due to the ratios, leading to small errors for the CPAs in

Tables II and III. It is interesting to see that ACP (K
∗−) is around 20%, which is large and

should be measurable by the LHCb experiment. We remark that the large non-factorizable

effects in Bb → Bn(ω, φ) would flip the signs of uncertainties in the corresponding CPAs.

IV. CONCLUSIONS

We have systematically examined all possible two-body Bb → BnM decays with Bb =

(Λb,Ξ
−
b ,Ξ

0
b), Bn = (p, n,Λ,Ξ−,0,Σ±,0) and M = (π−,0, K−,0, K̄0, ρ−,0, ω, φ,K∗−,0, K̄∗0). Ex-

plicitly, we have found that B(Ξ−
b → Λρ−) = (2.08+0.69

−0.51) × 10−6, B(Ξ0
b → Σ+M−) =

(4.45+1.46
−1.09, 11.49

+3.8
−2.9, 4.69

+1.11
−0.79, 2.98

+0.76
−0.51)× 10−6 for M− = (π−, ρ−, K−, K∗−), B(Λb → Λω) =

(2.30 ± 0.10) × 10−6, B(Ξ−
b → Ξ−φ,Ξ−ω) ≃ B(Ξ0

b → Ξ0φ,Ξ0ω) = (5.35 ± 0.41, 3.65 ±
0.16) × 10−6, and B(Ξ−

b → Ξ−η(′)) ≃ B(Ξ0
b → Ξ0η(′)) = (2.51+0.70

−0.46, 2.99
+1.16
−0.57) × 10−6. For

CP violation, we have obtained ACP (Λb → pK∗−) = ACP (Ξ
−
b → Σ0(Λ)K∗−) = ACP (Ξ

0
b →

Σ+K∗−) = (19.7 ± 1.4)%. We urge to have some dedicated experiments to confirm these

large CP asymmetries. In sum, we have demonstrated that most of the charmless two-body

anti-triplet b-baryon decays are accessible to the LHCb detector.
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TABLE II. Two-body Λb decays, where the first two errors for (B,ACP ) come from the non-

factorizable effects and CKM matrix elements, respectively, while the third error for B is due to

the form factors.

Bb → BnM B × 106 ACP × 102

Λb → pπ− 4.25+1.04
−0.48 ± 0.74 ± 0.56 −3.9+0.0

−0.0 ± 0.4

Λb → pK− 4.49+0.84
−0.39 ± 0.26 ± 0.59 6.7+0.3

−0.2 ± 0.3

Λb → nπ0 0.10+0.03
−0.03 ± 0.01 ± 0.01 8.0+1.2

−1.4 ± 0.3

Λb → nK̄0 4.61+1.31
−0.58 ± 0.31 ± 0.61 1.1+0.0

−0.0 ± 0.0

Λb → Λπ0 (3.4+0.8
−0.4 ± 0.1 ± 0.4)× 10−2 0.0+0.0

−0.0 ± 0.0

Λb → ΛK0 (9.4+2.3
−3.8 ± 0.4 ± 1.3)× 10−3 0.2+0.1

−0.0 ± 0.0

Λb → pρ− 11.03+2.72
−1.25 ± 1.97 ± 1.46 −3.8+0.0

−0.0 ± 0.4

Λb → pK∗− 2.86+0.62
−0.29 ± 0.11 ± 0.51 19.7+0.4

−0.3 ± 1.4

Λb → nρ0 0.18+0.09
−0.09 ± 0.02 ± 0.02 14.0+1.8

−1.8 ± 1.0

Λb → nω 0.22+0.16
−0.10 ± 0.03 ± 0.03 −18.2+24.4

− 4.2 ± 1.6

Λb → nφ 0.02+0.17
−0.02 ± 0.00 ± 0.00 −8.8+7.4

−5.1 ± 0.3

Λb → nK̄∗0 3.09+1.57
−0.67 ± 0.21 ± 0.41 1.3+0.1

−0.1 ± 0.0

Λb → Λρ0 (9.5+3.0
−1.3 ± 0.4 ± 1.3)× 10−2 2.3+0.7

−0.8 ± 0.2

Λb → Λω 0.71+1.59
−0.70 ± 0.04 ± 0.09 3.6+4.8

−4.0 ± 0.2

Λb → Λφ 1.77+1.65
−1.68 ± 0.12 ± 0.23 1.4+0.7

−0.1 ± 0.1

Λb → ΛK∗0 (9.2+4.7
−2.0 ± 0.4 ± 1.2)× 10−2 1.3+0.1

−0.1 ± 0.0

Λb → nη (6.9+2.7
−2.4 ± 0.9 ± 0.9)× 10−2 −16.8+2.1

−2.1 ± 1.3

Λb → nη′ (4.2+1.8
−1.8 ± 0.6 ± 0.6)× 10−2 −15.7+4.0

−5.6 ± 1.3

Λb → Λη 1.59+0.38
−0.17 ± 0.11 ± 0.21 0.4+0.2

−0.2 ± 0.0

Λb → Λη′ 1.90+0.68
−0.23 ± 0.13 ± 0.25 1.6+0.1

−0.1 ± 0.1
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TABLE III. Two-body Ξ−
b decays with the error descriptions being the same as Table II.

Bb → BnM B × 106 ACP × 102

Ξ−
b → Ξ−π0 (5.7+1.3

−0.6 ± 0.2± 0.7) × 10−2 0.0+0.0
−0.0 ± 0.0

Ξ−
b → Σ−π0 0.11+0.04

−0.04 ± 0.01 ± 0.01 8.0+1.2
−1.4 ± 0.3

Ξ−
b → Σ0K− 2.50+0.47

−0.22 ± 0.15 ± 0.33 6.7+0.3
−0.2 ± 0.3

Ξ−
b → ΛK− 0.85+0.16

−0.07 ± 0.05 ± 0.11 6.7+0.3
−0.2 ± 0.3

Ξ−
b → Σ−K̄0 5.14+1.46

−0.64 ± 0.35 ± 0.68 1.1+0.0
−0.0 ± 0.0

Ξ−
b → Σ0π− 2.37+0.58

−0.27 ± 0.41 ± 0.31 −3.9+0.0
−0.0 ± 0.4

Ξ−
b → Λπ− 0.80+0.20

−0.09 ± 0.14 ± 0.11 −3.9+0.0
−0.0 ± 0.4

Ξ−
b → Ξ−K0 (1.6+0.3

−0.6 ± 0.1± 0.2) × 10−2 0.2+0.1
−0.0 ± 0.0

Ξ−
b → Ξ−ρ0 0.16+0.05

−0.02 ± 0.01 ± 0.02 2.3+0.7
−0.8 ± 0.2

Ξ−
b → Ξ−ω 1.18+2.67

−1.17 ± 0.07 ± 0.16 3.6+4.8
−4.0 ± 0.2

Ξ−
b → Ξ−φ 2.95+2.75

−2.80 ± 0.20 ± 0.39 1.4+0.7
−0.1 ± 0.1

Ξ−
b → Σ−ρ0 0.20+0.10

−0.10 ± 0.03 ± 0.03 14.0+1.8
−1.8 ± 1.0

Ξ−
b → Σ−ω 0.24+0.17

−0.11 ± 0.04 ± 0.03 −18.2+24.4
− 4.2 ± 1.6

Ξ−
b → Σ−φ 0.02+0.19

−0.02 ± 0.00 ± 0.00 −8.8+7.4
−5.1 ± 0.3

Ξ−
b → Σ0K∗− 1.59+0.34

−0.16 ± 0.06 ± 0.21 19.7+0.4
−0.3 ± 1.4

Ξ−
b → ΛK∗− 0.54+0.12

−0.05 ± 0.02 ± 0.07 19.7+0.4
−0.3 ± 1.4

Ξ−
b → Σ−K̄∗0 3.43+1.75

−0.74 ± 0.23 ± 0.45 1.3+0.1
−0.1 ± 0.0

Ξ−
b → Σ0ρ− 6.12+1.51

−0.69 ± 1.09 ± 0.81 −3.8+0.0
−0.0 ± 0.4

Ξ−
b → Λρ− 2.08+0.51

−0.23 ± 0.37 ± 0.27 −3.8+0.0
−0.0 ± 0.4

Ξ−
b → Ξ−K∗0 0.15+0.08

−0.03 ± 0.01 ± 0.02 1.3+0.1
−0.1 ± 0.0

Ξ−
b → Ξ−η 2.67+0.63

−0.29 ± 0.19 ± 0.35 0.4+0.2
−0.2 ± 0.0

Ξ−
b → Ξ−η′ 3.19+1.14

−0.38 ± 0.21 ± 0.42 1.6+0.1
−0.1 ± 0.1

Ξ−
b → Σ−η (7.6+3.0

−2.7 ± 1.0± 1.0) × 10−2 −16.8+2.1
−2.1 ± 1.3

Ξ−
b → Σ−η′ (4.7+2.0

−2.0 ± 0.6± 0.6) × 10−2 −15.7+4.0
−5.6 ± 1.3
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TABLE IV. Two-body Ξ0
b decays with the error descriptions being the same as Table II.

Bb → BnM B × 106 ACP × 102

Ξ0
b → Ξ0π0 (5.3+1.2

−0.6 ± 0.2± 0.7) × 10−2 0.0+0.0
−0.0 ± 0.0

Ξ0
b → Σ0π0 (5.1+1.8

−1.7 ± 0.5± 0.6) × 10−2 8.0+1.2
−1.4 ± 0.3

Ξ0
b → Λπ0 (1.7+0.6

−0.5 ± 0.1± 0.2) × 10−2 8.0+1.2
−1.4 ± 0.3

Ξ0
b → Σ0K̄0 2.41+0.68

−0.30 ± 0.16 ± 0.32 1.1+0.0
−0.0 ± 0.0

Ξ0
b → ΛK̄0 0.82+0.23

−0.10 ± 0.06 ± 0.11 1.1+0.0
−0.0 ± 0.0

Ξ0
b → Σ+K− 4.69+0.87

−0.41 ± 0.27 ± 0.62 6.7+0.3
−0.2 ± 0.3

Ξ0
b → Σ+π− 4.45+1.09

−0.50 ± 0.77 ± 0.59 −3.9+0.0
−0.0 ± 0.4

Ξ0
b → Ξ0K0 (1.5+0.4

−0.6 ± 0.1± 0.2) × 10−2 0.2+0.1
−0.0 ± 0.0

Ξ0
b → Ξ0ρ0 0.15+0.05

−0.02 ± 0.01 ± 0.02 2.3+0.7
−0.8 ± 0.2

Ξ0
b → Ξ0ω 1.11+2.51

−1.10 ± 0.07 ± 0.15 3.6+4.8
−4.0 ± 0.2

Ξ0
b → Ξ0φ 2.77+2.58

−2.63 ± 0.19 ± 0.37 1.4+0.7
−0.1 ± 0.1

Ξ0
b → Σ0ρ0 (9.5+4.6

−4.5 ± 1.3± 1.3) × 10−2 14.0+1.8
−1.8 ± 1.0

Ξ0
b → Σ0ω 0.11+0.08

−0.05 ± 0.02 ± 0.01 −18.2+24.4
− 4.2 ± 1.6

Ξ0
b → Σ0φ (1.0+8.7

−0.8 ± 0.0± 0.1) × 10−2 −8.8+7.4
−5.1 ± 0.3

Ξ0
b → Λρ0 (3.2+1.6

−1.6 ± 0.4± 0.4) × 10−2 14.0+1.8
−1.8 ± 1.0

Ξ0
b → Λω (3.8+2.8

−1.8 ± 0.6± 0.5) × 10−2 −18.2+24.4
− 4.2 ± 1.6

Ξ0
b → Λφ (0.3+3.0

−0.3 ± 0.0± 0.0) × 10−2 −8.8+7.4
−5.1 ± 0.3

Ξ0
b → Σ0K̄∗0 1.61+0.82

−0.35 ± 0.11 ± 0.21 1.3+0.1
−0.1 ± 0.0

Ξ0
b → ΛK̄∗0 0.54+0.28

−0.12 ± 0.04 ± 0.07 1.3+0.1
−0.1 ± 0.0

Ξ0
b → Σ+K∗− 2.98+0.64

−0.30 ± 0.11 ± 0.39 19.7+0.4
−0.3 ± 1.4

Ξ0
b → Σ+ρ− 11.49+2.83

−1.30 ± 2.05 ± 1.52 −3.8+0.0
−0.0 ± 0.4

Ξ0
b → Ξ0K∗0 0.14+0.07

−0.03 ± 0.01 ± 0.02 1.3+0.1
−0.1 ± 0.0

Ξ0
b → Ξ0η 2.51+0.59

−0.27 ± 0.17 ± 0.33 0.4+0.2
−0.2 ± 0.0

Ξ0
b → Ξ0η′ 2.99+1.07

−0.36 ± 0.20 ± 0.40 1.6+0.1
−0.1 ± 0.1

Ξ0
b → Λη (1.2+0.5

−0.4 ± 0.2± 0.2) × 10−2 −16.8+2.1
−2.1 ± 1.3

Ξ0
b → Λη′ (7.4+3.2

−3.1 ± 1.0± 1.0) × 10−3 −15.7+4.0
−5.6 ± 1.3

Ξ0
b → Σ0η (3.6+1.4

−1.3 ± 0.5± 0.5) × 10−2 −16.8+2.1
−2.1 ± 1.3

Ξ0
b → Σ0η′ (2.2+0.9

−0.9 ± 0.3± 0.3) × 10−2 −15.7+4.0
−5.6 ± 1.3
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