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Using (223.7 ± 1.4) × 106 J/ψ events accumulated with the BESIII detector, we study ηc decays
to φφ and ωφ final states. The branching fraction of ηc → φφ is measured to be Br(ηc → φφ) =
(2.5±0.3+0.3

−0.7±0.6)×10−3 , where the first uncertainty is statistical, the second is systematic, and the
third is from the uncertainty of Br(J/ψ → γηc). No significant signal for the double OZI-suppressed
decay of ηc → ωφ is observed, and the upper limit on the branching fraction is determined to be
Br(ηc → ωφ) < 2.5 × 10−4 at the 90% confidence level.

PACS numbers: 13.25.Gv, 13.20.Gd

I. INTRODUCTION

Our knowledge of the ηc properties is still relatively
poor, although it has been established for more than thir-
ty years [1]. Until now, the exclusively measured decays
only sum up to about 63% of its total decay width [2].
The branching fraction of ηc → φφ was measured for the
first time by the MarkIII collaboration [3], and improved
measurements were performed at BESII [4, 5] with a pre-
cision of about 40%. The decay ηc → ωφ, which is a dou-
bly Okubo-Zweig-Iizuka (OZI) suppressed process, has
not been observed yet.
Decays of ηc into vector meson pairs have stood as

a bewildering puzzle in charmonium physics for a long
time. This kind of decay is highly suppressed at leading
order in QCD, due to the helicity selection rule (HSR) [6].
Under HSR, the branching fraction for ηc → φφ was
calculated to be ∼ 2 × 10−7 [7]. To avoid the mani-
festation of HSR in charmonium decays, a HSR evasion
scenario was proposed [8]. Improved calculations with
next-to-leading order [9] and relativistic corrections in
QCD yield branching fractions varying from 10−5 [10] to
10−4 [11]. Some non-perturbative mechanisms, such as
the light quark mass corrections [12], the 3P0 quark pair
creation mechanism [13] and long-distance intermediate
meson loop effects [14], have also been phenomenologi-
cally investigated.
However, the measured branching fraction, Br(ηc →

φφ) = (1.76 ± 0.20) × 10−3 [2, 15], is much larger than

those of theoretical predictions. To help understand
the ηc decay mechanism, high precision measurements
of the branching fraction are desirable. In this paper,
we present an improved measurement of the branching
fraction of ηc → φφ, and a search for the doubly OZI-
suppressed decay ηc → ωφ. The analyses are performed
based on (223.7 ± 1.4) × 106 J/ψ events [16] collected
with the BESIII detector.

II. DETECTOR AND MONTE CARLO

SIMULATION

The BESIII experiment at BEPCII [17] is an upgrade
of BESII/BEPC [18]. The detector is designed to study
physics in the τ -charm energy region [19]. The cylindri-
cal BESIII detector is composed of a helium gas-based
main drift chamber (MDC), a time-of-flight (TOF) sys-
tem, a CsI (Tl) electromagnetic calorimeter (EMC) and a
resistive-plate-chamber-based muon identifier with a su-
perconducting magnet that provides a 1.0 T magnetic
field. The nominal geometrical acceptance of the detec-
tor is 93% of 4π solid angle. The MDC measures the
momentum of charged particles with a resolution of 0.5%
at 1 GeV/c, and provides energy loss (dE/dx) measure-
ments with a resolution better than 6% for electrons from
Bhabha scattering. The EMC detects photons with a res-
olution of 2.5% (5%) at an energy of 1 GeV in the barrel
(end cap) region.
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To optimize event selection criteria and to understand
backgrounds, a geant4-based [20] Monte Carlo (MC)
simulation package, BOOST, which include the descrip-
tion of the geometries and material as well as the BESIII
detection components, is used to generate MC samples.
An inclusive J/ψ-decay MC sample is generated to study
the potential backgrounds. The production of the J/ψ
resonance is simulated with the MC event generator
kkmc [21], while J/ψ decays are simulated with besevt-

gen [22] for known decay modes by setting the branching
fractions to the world average values [2], and with lund-

charm [23] for the remaining unknown decays. The anal-
ysis is performed in the framework of the BESIII offline
software system [24], which handles the detector calibra-
tion, event reconstruction and data storage.

III. EVENT SELECTION

The ηc candidates studied in this analysis are produced
by J/ψ radiative transitions. We search for ηc → φφ and
ωφ from the decays J/ψ → γφφ and γωφ, with final
states of γ2(K+K−) and 3γK+K−π+π−, respectively.
The candidate events are required to have four charged
tracks with a net charge of zero, and at least one or three
photons, respectively.
Charged tracks in the polar angle region | cos θ| < 0.93

are reconstructed from the MDC hits. They must have
the point of closest approach to the interaction point
within ±10 cm along the beam direction and 1 cm in
the plane perpendicular to the beam direction. For the
particle identification (PID), the ionization energy de-
posited (dE/dx) in the MDC and the TOF information
are combined to determine confidence levels (C.L.) for
the pion and kaon hypotheses, and each track is assigned
to the particle type with the highest PID C.L. For the de-
cay J/ψ → γωφ→ 3γK+K−π+π−, two identified kaons
are required within the momentum range of 0.3-0.9 GeV
with an average efficiency of about 8%. For the decay
J/ψ → γφφ → γ2(K+K−), no PID is required. The in-
termediate states, φ and ω, are selected using invariant
mass requirements.
Photon candidates are reconstructed by clustering en-

ergy deposits in the EMC crystals. The energy deposited
in the nearby TOF counters is included to improve the
photon reconstruction efficiency and energy resolution.
The photon candidates are required to be in the bar-
rel region (| cos θ| < 0.8) of the EMC with at least 25
MeV total energy deposition, or in the end cap regions
(0.86 < | cos θ| < 0.92) with at least 50 MeV total energy
deposition, where θ is the polar angle of the photon. The
photon candidates are, furthermore, required to be sepa-
rated from all charged tracks by an angle larger than 10◦

to suppress photons radiated from charged particles. The
photons in the regions between the barrel and end caps
are poorly measured and, therefore, excluded. Timing
information from the EMC is used to suppress electronic
noise and showers that are unrelated to the event.

Kinematic fits, constrained by the total e+e− beam
energy-momentum, are performed under the J/ψ →
γ2(K+K−) and 3γK+K−π+π− hypotheses. Fits are
done with all photon combinations together with the four
charged tracks. Only the combination with the smallest
kinematic fit χ2

4C is retained for further analysis, and
χ2
4C < 100 (40) for J/ψ → γ2(K+K−) (3γK+K−π+π−)

is required. These requirements are determined from MC
simulations by optimizing S/

√
S +B, where S and B are

the numbers of signal and background events, respective-
ly.
Two φ candidates in the J/ψ → γφφ decay are re-

constructed from the selected 2(K+K−) tracks. Only

the combination with a minimum of |M (1)
K+K−

−Mφ|2 +
|M (2)

K+K−
− Mφ|2 is retained, where M

(i)

K+K−
(i = 1, 2)

and Mφ denote the invariant mass of the K+K− pair
and the nominal mass of the φ-meson, respectively. A

scatter plot of M
(1)
K+K−

versus M
(2)
K+K−

for the surviving
events is shown in Fig. 1 (a). There is a cluster of events
in the φφ region (indicated as a box in Fig. 1 (a)) orig-
inating from the decay J/ψ → γφφ. Two φ candidates
are selected by requiring |MK+K− −Mφ| < 0.02 GeV/c2,

which is determined by optimizing S/
√
S +B, also.

For the decay J/ψ → γωφ → γK+K−π+π−π0, the
photon combination with mass closest to the π0 nominal
mass is chosen, and |Mγγ −Mπ0 | < 0.02 GeV/c2 is re-
quired. A scatter plot of the MK+K− versus Mπ+π−π0

for the surviving events is shown in Fig. 1 (b). Three
vertical bands, as indicated in the plot, correspond to
the η, ω and φ decays into π+π−π0, and the horizon-
tal band corresponds to the decay φ → K+K−. For the
selection of J/ψ → γωφ candidates, the φ and ω require-
ments are determined, by optimizing S/

√
S +B, to be

|Mπ+π−π0 −Mω| < 0.03 GeV/c2 and |MK+K− −Mφ| <
0.008 GeV/c2.

IV. DATA ANALYSIS

A. Observation of ηc → φφ

Figure 2 shows the invariant mass distribution of the
φφ-system within the range from 2.7 to 3.1 GeV/c2. The
ηc signal is clearly observed. Background events from
J/ψ decays are studied using the inclusive MC sam-
ple. The dominant backgrounds are from the decays
J/ψ → γφK+K− and J/ψ → γK+K−K+K− with or
without an ηc intermediate state, which have exactly
the same final state as the signal, and are the peaking
and non-peaking backgrounds in the 2(K+K−) invariant
mass distribution. In addition, there are 43 background
events from the decays J/ψ → φf1(1420)/f1(1285) with
f1 decay to K+K−π0 and J/ψ → φK∗(892)±K∓ with
K∗(892)± decay to K±π0, which have a final state of
π02(K+K−) similar to that of the signal. These back-
ground decay channels have low detection efficiency (<
0.1%), and don’t produce a peak in the ηc signal range.
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Fig. 1: (Color online) Scatter plot of (a) M
(1)

K+K−

versus M
(2)

K+K−

for the decay J/ψ → γ2(K+K−), and (b) MK+K− versus

Mπ+π−π0 for the decay J/ψ → 3γK+K−π+π−.
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Fig. 2: (Color online) Projection of fit results onto the Mφφ

spectrum. The dots with error bars denote the data, the
solid line histogram is the overall result, the dot-dashed his-
togram is the ηc signal, the filled red histogram is the com-
bined backgrounds estimated with exclusive MC simulations,
the dotted histogram denotes non-ηc decays, and the long-
dash histogram is the interference between the ηc and non-ηc
decays.

The expected yields of background events are 26 and 75
for the peaking and non-peaking backgrounds, respec-
tively, determined with MC simulation. As a cross check,
the backgrounds are also estimated with the events in the
φ sidebands region in data, and then using the MC in-
formation of the ηc → φK+K− and 2(K+K−) to scale
the ηc events in boxes B, C and D to the signal region
A, and total 104 events are obtained.
To determine the ηc → φφ yield, an amplitude analy-

sis is performed on the selected candidate 1,276 events.
We assume the observed candidates are from the process
J/ψ → γφφ with or without the ηc intermediate state in
the φφ system. The amplitude formulae are construct-

ed with the helicity-covariant method [25], and shown in
the appendix. The ηc resonance is parameterized with
the Breit-Wigner function multiplied by a damping fac-
tor

f(s) =
1

M2 − s− iMΓ

F(Eγ)

F(E0
γ)
, (1)

where s is the square of φφ invariant mass, and M and
Γ are the ηc mass and width, respectively. The damping

factor is taken as F(Eγ) = exp(− E2
γ

16β2 ) with β = 0.065

GeV [26], and the photon energy E0
γ corresponds to the√

s =M .
In the analysis, the decay J/ψ → γηc → γφφ and the

non-resonant decays J/ψ → γφφ with different quantum
numbers JP (spin-parity) in the φφ system are taken
into consideration. The differential cross section dσ/dΩ
is calculated with

dσ

dΩ
=

∑

helicities

|Aηc(λ0, λγ , λ1, λ2)

+
∑

JP

AJ
P

NR(λ0, λγ , λ1, λ2)|2,
(2)

where Aηc is the amplitude for the J/ψ(λ0) → γ(λγ)ηc →
γφ(λ1)φ(λ2), with the joint helicity angle Ω, and AJ

P

NR is
the amplitude for the nonresonant decay J/ψ → γφφ
with JP for the φφ system. To simplify the fit, only
the non-resonant components with JP = 0+, 0− and 2+

are included, and the components with higher spin are
ignored. The symmetry of the identical particles for the
φφ meson pair is implemented in the amplitude.
The magnitudes and phases of the coupling constants

are determined with an unbinned maximum likelihood
fit to the selected candidates. The likelihood function
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for observing the N events in the data sample is

L =
N
∏

i=1

P (xi), (3)

where P (xi) is the probability to observe event i with
four momenta xi = (pγ , pφ, pφ)i, which is the normalized
differential cross section taking into account the detection
efficiency (ǫi), and calculated by

P (xi) =
(dσ/dΩ)iǫi

σMC
, (4)

where the normalization factor σMC can be calculated
by a signal MC sample J/ψ → γφφ with NMC accepted
events. These events are generated with a phase space
model and then subjected to the detector simulation, and
passed through the same events selection criteria as ap-
plied to the data. With a MC sample which is sufficiently
large, σMC is evaluated with

σMC =
1

NMC

NMC
∑

i=1

(

dσ

dΩ

)

i

. (5)

For a given N events data sample, the product of ǫi
in Eq.(3) is constant, and can be neglected in the fit.
Rather than maximizing L, T = − lnL is minimized us-
ing minuit [27].
In the analysis, the background contribution to the

log-likelihood value (lnLbkg) is subtracted from the log-
likelihood value of data (lnLdata), i.e. lnL = lnLdata −
lnLbkg, where lnLbkg is estimated with the MC simulat-
ed background events, normalized to 101 events including
peaking and non-peaking ηc background.
In the fit, the mass and width of ηc are fixed to the pre-

vious BESIII measurements [28], i.e. M = 2.984 GeV/c2

and Γ = 0.032 GeV. The mass resolution of the ηc is not
considered in the nominal fit, and its effect will be con-
sidered as a systematic uncertainty. The fit results are
shown in Fig. 2, where the rightmost peak is due to back-
grounds from J/ψ → φK+K− decay. The ηc yield from
the fit is Nηc = 549±65, which is derived from numerical
integration of the resultant amplitudes, and the statisti-
cal error is derived from the covariance matrix obtained
from the fit.
To determine the goodness of fit, a global χ2

g is calcu-
lated by comparing data and fit projection histograms,
defined as

χ2
g =

5
∑

j=1

χ2
j , with χ

2
j =

N
∑

i=1

(NDT
ji −NFit

ji )2

NDT
ji

, (6)

where NDT
ji and NFit

ji are the numbers of events in the ith

bin of the jth kinematic variable distribution. If NDT
ji is

sufficiently large, the χ2
g is expected to statistically follow

the χ2 distribution function with the number of degrees
of freedom (ndf), which is the total number of bins in

histograms minus the number of free parameters in the
fit. In a histogram, bins with less than 10 events are
merged with the nearby bins. The individual χ2

j give a
qualitative evaluation of the fit quality for each kinematic
variable, as described in the following.
Five independent variables are necessary to describe

the three-body decay J/ψ → γφφ. These are chosen to
be the mass of the φφ-system (Mφφ), the mass of the γφ-
system (Mγφ), the polar angle of the γ (θγ), the polar an-
gle (θφ) and azimuthal angle (ϕφ) of the φ-meson, where
the angles are defined in the J/ψ rest frame. Figure 3
shows the comparison of the distributions of Mγφ and
angles between the global fit and the data. A sum of all
of χ2

j values gives χ2
g = 215 with ndf=191. The quali-

ty of the global fit (χ2
g/ndf) is 1.1, which indicates good

agreement between data and the fit results.
To validate the robustness of the fit procedure, a

pseudo-data sample is generated with the amplitude
model with all parameters fixed to the fit results. A
total of 2936 events are selected with the same selection
criteria as applied to the data. An identical fit process
is carried out, and the ratio of output ηc signal yield to
input number of events is 1.03± 0.03.

B. Search for ηc → ωφ

Figure 4 shows the ωφ invariant mass distribution in
the range from 2.70 to 3.05 GeV/c2 for the selected can-
didate events of J/ψ → γωφ, and no significant ηc signal
is observed. The background events from J/ψ decays are
dominated by J/ψ → η′φ with η′ → γω. A small amount
of background is from the decays J/ψ → f0(980)ω →
K+K−ω and J/ψ → fXω → π0K+K−ω, where fX
stands for the f1(1285) and f1(1420) resonances. The
sum of all above backgrounds estimated from inclusive
MC samples is small compared to the total number of
selected candidates and appears as a flat Mωφ distribu-
tion, as shown in Fig. 4.
To set an upper limit for the branching fraction

Br(ηc → ωφ), the signal yield is calculated at the 90%
C.L. by a Bayesian method [2], according to the distribu-
tion of normalized likelihood values versus signal yield,
which is obtained from the fits by fixing the ηc signal
yield at different values.
In the fit, the shape for the ηc signal is described by the

MC simulated lineshape by setting the mass and width
of ηc to the BESIII measurement [28]; the known back-
ground estimated with MC simulation is fixed in shape
and magnitude in the fit; and the others are described by
a second order Chebychev function with floating param-
eters. The distribution of normalized likelihood values is
shown in Fig. 5, and the upper limit of signal yield at
the 90% C.L. is calculated to be 18.
To check the robustness of the event selection crite-

ria, especially the dependence on Br(ηc → ωφ), the re-
quirements of kinematic fit χ2 and φ/ω mass windows
are re-optimized with the measured upper limit. The ηc
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Fig. 3: (Color online) Distributions of (a) the γφ invariant mass Mγφ; (b) the polar angular of the photon cos θγ ; (c) the polar
angular of φ mesons cos θφ; (d) the azimuthal angular of φ mesons ϕφ. The dots with error bar are the data, the solid line
histograms represent the total fit results, and the filled histograms are the non J/ψ → γφφ backgrounds estimated with the
exclusive MC samples.
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Fig. 4: (Color online) Results of the best fit to the Mωφ dis-
tribution. Dots with error bars are data, the solid curve is
the best fit result, corresponding to a ηc signal yield of 10± 6
events, the shaded histogram is the background estimated
from exclusive MC samples, the dashed curve indicates the
ηc signal, and the dotted curve is the fitted background.

signal yield is re-estimated and is consistent within the
statistical errors.
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Fig. 5: Normalized likelihood distribution versus the ηc yield
for ηc → ωφ.

V. SYSTEMATIC UNCERTAINTIES

The following sources of systematic uncertainties are
considered in the measurements of branching fractions.

1. Number of J/ψ events
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The number of J/ψ events is determined using its
hadronic decays. The uncertainty is 0.6% [16].

2. Photon detection efficiency
The soft and hard photon detection efficiencies are
studied using the control samples ψ′ → π0π0J/ψ,
with J/ψ decay e+e− or µ+µ− and J/ψ → ρπ →
π+π−π0, respectively. The difference in the photon
detection efficiency between the MC simulation and
data is 1%, which is taken as the systematic uncer-
tainty.

3. Kaon/pion tracking and PID efficiency
The uncertainties of kaon/pion tracking and PID
efficiency are studied using the control samples
J/ψ → π+π−pp̄ and J/ψ → K0

SKπ, with the decay
K0
S → π−π+ [29]. The uncertainties for tracking

and PID efficiencies are both determined to be 1%
per track.

4. Branching fractions
The uncertainties of branching fractions for J/ψ →
γηc, φ→ K+K−, and ω → π+π−π0 are taken from
the PDG [2].

5. Kinematic fit
To estimate the uncertainty associated with the
χ2 requirement of the kinematic fit for the final
state γ2(K+K−), we select the candidate events of
J/ψ → γφφ by requiring χ2 < 20, 60 or 150, and
the ηc signal yields are re-estimated with ampli-
tude analysis. The largest deviation to the nominal
branching fraction, 6.7%, is taken as the systematic
uncertainty.

For the final states γK+K−π+π−π0, we re-
determine the upper limit on the branching fraction
with the alternative requirement of the kinematic
fit χ2 < 20, 30, 50 or 60, and the largest deviation
to the nominal value, 2.4% at χ2 < 30, is taken as
the systematic uncertainty.

6. Mass window
The uncertainties associated with the φ/ω mass-
window requirement arise if the mass resolution is
not consistent between the data and MC simula-
tion. The uncertainty related to the φ-mass window
requirement is determined with the control sample
ψ′ → γχcJ , χcJ → φφ, and φ → K+K−. The
difference in φ-selection efficiency is estimated to
be 0.7% and 1.1% for the ηc → φφ and ηc → ωφ
modes, respectively, where the different uncertain-
ties obtained for the two decay modes are due to the
different mass window requirements. The uncer-
tainty related with the ω mass window requirement
is determined with the control sample J/ψ → ωη
with ω → π+π−π0 and η → π+π−π0. The dif-
ference in ω selection efficiency is estimated to be
1.5% for the ηc → ωφ mode.

7. Background
In the analysis of J/ψ → γφφ, the uncertain-
ty associated with the peaking background from
J/ψ → γηc, ηc → φK+K−, and 2(K+K−) as
well as the other unknown background is estimat-
ed by varying up or down the numbers of back-
ground events by one standard deviation accord-
ing to the uncertainties of branching fractions in
PDG [2]. The largest change in the ηc → φφ signal
yield is determined to be 0.9%, and is taken as the
systematic uncertainty.

In the study of J/ψ → γωφ, the uncertainty asso-
ciated with the unknown background is estimated
by replacing the second-order Chebychev function
with the first-order one. The change of the up-
per limit of signal events is negligible. The uncer-
tainty associated with the dominant background,
J/ψ → η′φ → γωφ, is estimated by varying the
branching fraction by one standard deviation when
normalizing the background in the fit. The differ-
ence in the resulting upper limit is determined to
be 5.6%, and is taken as the systematic uncertainty.

8. Fit range
In the nominal fit, the fit range is set to be Mφφ

and Mωφ > 2.70 GeV/c2. Its uncertainty is esti-
mated by setting the range of Mφφ and Mωφ >
2.60, 2.65, 2.75 or 2.80 GeV/c2. The branching
fraction of ηc → φφ and the upper limit for ηc → ωφ
are reestimated. The largest deviations to the nom-
inal results, 0.7% for the decay ηc → φφ and 0.2%
for the decay ηc → ωφ, are taken as the systematic
uncertainties.

9. ηc mass and width
Uncertainties associated with the ηc mass and
width are estimated by the alternative fits with the
PDG values for the ηc parameters [2]. The resulting
differences in the ηc signal yield, 1.3% for ηc → φφ
and 5.6% for ηc → ωφ, are taken as systematic un-
certainties.

10. Amplitude analysis
Systematic uncertainties associated with the am-
plitude analysis arise including the uncertainties of
the non-ηc component and the mass resolution of
ηc.

In the nominal fit, the non-ηc component is de-
scribed by the nonresonant φφ-system assigned
with quantum number JP = 0−, 0+ and 2+. The
statistical significance for the component with dif-
ferent JP is determined according to the difference
of log-likelihood value between the cases with and
without this component included in the fit, taking
into account the change in the number of degrees
of freedom. The significances for non-ηc component
with JP = 0−, 2+, 0+ are 2.8σ, 3.0σ and 0.1σ, re-
spectively. If the 0− component is removed, the
uncertainty is estimated to be +6.7%. If the 2+
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TABLE I: Summary of all systematic uncertainties from the
different resources (%). The combined uncertainty excludes
the uncertainty associated with Br(J/ψ → γηc), which is
given separately.

sources ηc → φφ ηc → ωφ
NJ/ψ 0.6 0.6
Photon 1.0 3.0
Tracking 4.0 4.0
PID — 4.0
Br(φ→ K+K−) 2.0 1.0
Br(ω → π+π−π0) — 0.8
Kinematic fit 6.7 2.4
MK+K− mass 0.7 1.1
Mπ+π−π0 mass — 1.5
Background 0.9 5.6
Fit range 0.7 0.2
ηc Mass and width 1.3 5.6
Amplitude analysis +7.1

−26.1 —
Combined +11.0

−27.4 10.7
Br(J/ψ → γηc) 23.5 23.5

component is removed, the uncertainty is estimated
to be −26.0% mainly due to the strong interference
between the ηc and the 0− components.

The uncertainty related with the ηc mass resolution
is estimated by the alternative amplitude analysis
with the detected width of the ηc set to 34.2 MeV,
estimated from the MC simulation with the nom-
inal input ηc width 32.0 MeV from Ref. [28]. The
resulting difference of the ηc signal yield with re-
spect to the nominal value is 2.2%.

The total uncertainty from the amplitude analysis
is estimated to be +7.1%

−26.1%.

Table I summarizes all sources of systematic uncer-
tainties. The combined uncertainty is the quadratic
sum of all uncertainties except for that associated with
Br(J/ψ → γηc).

VI. BRANCHING FRACTIONS

A. ηc → φφ

The product branching fraction of J/ψ → γηc → γφφ
is calculated by

Br(J/ψ → γηc)Br(ηc → φφ) =
Nsig

NJ/ψǫBr2(φ→ K+K−)

= (4.3± 0.5(stat)+0.5
−1.2(syst))× 10−5,

where Br(φ → K+K−) is the branching fraction of
the φ → K+K− decay taken from the PDG [2], Nsig

is the ηc signal yield, and ǫ = 24% is the detection
efficiency, determined with the MC sample generated
with the amplitude model with parameters fixed accord-
ing to the fit results. The number of J/ψ events is
NJ/ψ = 223.7× 106 [16].

Using Br(J/ψ → γηc) = (1.7±0.4)% [2], Br(ηc → φφ)
is calculated to be

Br(ηc → φφ) =

(2.5± 0.3(stat)+0.3
−0.7(syst)± 0.6(Br))× 10−3,

where the third uncertainty, which is dominant, is from
the uncertainty of Br(J/ψ → γηc), and the second un-
certainty is the quadratic sum of all other systematic un-
certainties.

B. ηc → ωφ

No significant signal is observed for ηc → ωφ, and we
determine the upper limit at the 90% C.L. for its branch-
ing fraction,

Br(ηc → ωφ) <
Nup

NJ/ψǫBr(1 − σsys)

= 2.5× 10−4,

(7)

where Nup = 18 is the upper limit on the number of ηc
events at the 90% C.L., ǫ = 5.9% is the detection efficien-
cy, σsys = 25.8% is the total systematic error, and Br is
the product branching fractions for the decay J/ψ → γηc,
φ→ K+K− and ω → π+π−π0 [2].

VII. SUMMARY AND DISCUSSION

Using 223.7 million J/ψ events accumulated with the
BESIII detector, we perform an improved measurement
on the decay of ηc → φφ. The measured branching
fraction is listed in Table II, and compared with the
previous measurements. Within one standard devia-
tion, our result is consistent with the previous measure-
ments, but the precision is improved. No significant sig-
nal for ηc → ωφ is observed. The upper limit at the
90% C.L. on the branching fraction is determined to be
Br(ηc → ωφ) < 2.5× 10−4, which is one order in magni-
tude more stringent than the previous upper limit [2].
The measured branching fractions of ηc → φφ is

3 times larger than that calculated by next-to-leading
pQCD together with higher twist contributions [10]. This
discrepancy between data and the HSR expectation [6]
implies that non-perturbative mechanisms play an im-
portant role in charmonium decay. To understand the
HSR violation mechanism, a comparison between the ex-
perimental measurements and the theoretical predictions
based on the light quark mass correction [12], the 3P0

quark pair creation mechanism [13] and the intermediate
meson loop effects [14] is presented in Table II. We note
that the measured Br(ηc → φφ) is close to the predic-
tions of the 3P0 quark model [13] and the meson loop
effects [14]. In addition, the measured upper limit for
Br(ηc → ωφ) is comparable with the predicted value
3.25 × 10−4 in Ref. [14]. The consistency between data
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TABLE II: Comparison of BESIII measured Br(ηc → φφ) with the previous results and theoretical predictions, where the
branching fractions of ηc → φφ from BESII and DM2 are re-calculated with Br(J/ψ → γηc) = (1.7± 0.4)% [2].

Experiment Br(J/ψ → γηc)Br(ηc → φφ)(×10−5) Br(ηc → φφ) (×10−3)

BESIII 4.3± 0.5+0.5
−1.2 2.5± 0.3+0.3

−0.7 ± 0.6
BESII [5] 3.3± 0.8 1.9 ± 0.6
DM2 [30] 3.9± 1.1 2.3 ± 0.8

Theoretical prediction Br(ηc → φφ) (×10−3)
pQCD[10] (0.7 ∼ 0.8)

3P0 quark model [13] (1.9 ∼ 2.0)
charm meson loop [14] 2.0

and the theoretical calculation indicates the importance
of QCD higher twist contributions or the presence of a
non-pQCD mechanism.
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Appendix

A. AMPLITUDES

For the decay J/ψ(λ0) → γ(λγ)ηc → γφ(λ1)φ(λ2),
where the λi(i = γ, 0, 1, 2) indicates helicity values for the
corresponding particles, the helicity-coupling amplitude
is given by:

Aηc(λ0, λγ , λ1, λ2) = Fψλγ
(r1)D

1∗
λ0,−λγ

(θ0, φ0)BWj(mφφ)

× F ηcλ1,λ2
(r2)D

0∗
0,λ1−λ2

(θ1, φ1)
F(Eγ)

F(E0
γ)
,

(8)

where r1(r2) is the momentum differences between γ
and ηc (two φ mesons) in the rest frame of J/ψ (ηc),
θ0 (φ0) and θ1 (φ1) are the polar (azimuthal) angles of
the momentum vectors Pηc and Pφ in the helicity sys-
tem of J/ψ and ηc, respectively. The z-axis defined for
ηc → φ(λ1)φ(λ2) is taken along the outgoing direction of
φ(λ1) in the ηc rest frame, and the x-axis is in the Pηc

and Pφ(λ1) plane, which together with the new y-axis
forms a right hand system. BWj(m) denotes the Breit-
Wigner parametrization for the ηc peak. The damp-

ing factor F(Eγ) is taken as F(Eγ) = exp(− E2
γ

16β2 ) with

β=0.065 GeV [26], E0
γ is the photon energy correspond-

ing to mφφ = mηc . The helicity-coupling amplitudes

Fψλγ
and F ηcλ1,λ2

are related to the covariant amplitudes

in LS−coupling scheme by [25]:

Fψ1 = −Fψ−1 =
g11√
2
r1
B1(r1)

B1(r01)
,

F ηc1,1 = −F ηc−1,−1 =
g′11√
2
r2
B1(r2)

B1(r02)
,

F ηc0,0 = 0, (9)

where Bl(r) is the Blatt-Weisskopf factor [25], r01 and
r02 indicate the momentum differences for the two decays
with mφφ = mηc , gls and g′ls are the coupling constants
for the two decays.
For the direct decay J/ψ → γφφ, the mass spectrum

of φφ appears as a smooth distribution within the ηc sig-
nal region, hence the Breit-Wigner function is excluded.
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The amplitudes for the direct decay are decomposed into
partial waves associated with φφ-system with quantum
numbers JP = 0−, 0+ and 2+, and the high spin waves
are neglected. These amplitudes are taken as:

A0−

NR(λ0, λγ , λ1, λ2) = Fψλγ ,0
D1∗
λ0,−λγ

(θ0, φ0)F
0−

λ1,λ2

× D0∗
0,λ1−λ2

(θ1, φ1) for 0
−,

A0+

NR(λ0, λγ , λ1, λ2) = Fψλγ ,0
D1∗
λ0,−λγ

(θ0, φ0)F
0+

λ1,λ2

× D0∗
0,λ1−λ2

(θ1, φ1) for 0
+,

A2+

NR(λ0,−λγ , λ1, λ2) =
∑

λJ

Fψλγ ,λJ
D1∗
λ0,λJ−λγ

(θ0, φ0)

× F 2+

λ1,λ2
D2∗
λJ ,λ1−λ2

(θ1, φ1) for 2
+.

Here, helicity coupling amplitudes F J
P

λ1,λ2
are related to

covariant amplitudes. For JP = 0−, helicity amplitudes
take the same form as that in Eq. (9).
For the 0+ case, helicity amplitudes are taken as

Fψ1 = Fψ−1 =
g21r

2
1√
6

B2(r1)

B2(r01)
+
g01√
3
,

F 0+

11 = F 0+

11 =
g′22r

2
2√
6

B2(r2)

B2(r02)
+
g′00√
3
, (10)

F 0+

00 =

√

2

3
r22g

′
22

B2(r2)

B2(r02)
− g′00√

3
.

For the 2+ case, helicity amplitudes are taken as

Fψ12 = Fψ−1−2 =
g43r

4
1√

70

B4(r1)

B4(r01)
+
g21r

2
1√

10

B2(r1)

B2(r01)

− g22r
2
1√
6

B2(r1)

B2(r01)
+

√

2

105
g23r

2
1

B2(r1)

B2(r01)
+
g01√
5
,

(11)

Fψ11 = Fψ−1−1 =
−2g43r

4
1√

35

B4(r1)

B4(r01)
− g21r

2
1√
5

B2(r1)

B2(r01)

+

√

3

35
g23r

2
1

B2(r1)

B2(r01)
+

g01√
10
,

(12)

Fψ10 = Fψ−10 =

√

3

35
g43r

4
1

B4(r1)

B4(r01)
+
g21r

2
1

2
√
15

B2(r1)

B2(r01)

+
1

2
g22r

2
1

B2(r1)

B2(r01)
+

2g23r
2
1√

35

B2(r1)

B2(r01)
+

g01√
30
,

(13)

F 2+

11 = F 2+

−1−1 =

√

3

35
g′42

B4(r)

B4(r′)
r4 +

g′20r
2
2√
3

B2(r2)

B2(r02)

− g′22r
2
2√

21

B2(r2)

B2(r02)
+

g′02√
30
,

(14)

F 2+

10 = F 2+

−10 = − 2√
35
g′42r

4 B4(r)

B4(r′)
− 1

2
g′21r

2
2

B2(r2)

B2(r02)

− g′22r
2
2

2
√
7

B2(r2)

B2(r02)
+

g′02√
10
,

(15)

F 2+

1−1 = F 2+

−11 =
g42r

4

√
70

B4(r)

B4(r′)
+

√

2

7
g′22r

2
2

B2(r2)

B2(r02)

+
g′02√
5
. (16)

For these nonresonant decays, the differences of momenta
r0l are calculated at the value mφφ = 2.55 GeV.
The total amplitude is expressed by:

A(λ0, λγ , λ1, λ2) = Aηc(λ0, λγ , λ1, λ2)

+
∑

JP

AJ
P

NR(λ0, λγ , λ1, λ2), (17)

where the sum runs over JP = 0−, 0+ and 2+, and the
symmetry of identical particle for two φ mesons is im-
plied by exchanging their helicities and momentum. The
differential cross-section is given by:

dΓ =

(

3

8π2

)

∑

λ0,λγ ,λ1,λ2

A(λ0, λγ , λ1, λ2)

× A∗(λ0, λγ , λ1, λ2)dΦ, (18)

where λ0, λγ = ±1, and λ1, λ2 = ±1, 0, and dΦ is the
element of standard three body phase space.

B. FIT METHOD

The relative magnitudes and phases for coupling con-
stants are determined by an unbinned maximum likeli-
hood fit. The joint probability density for observing N
events in the data sample is

L =

N
∏

i=1

P (xi), (19)

where P (xi) is a probability to produce event i with a set
of four-vector momentum xi = (pγ , pφ, pφ)i. The normal-
ized P (xi) is calculated from the differential cross section

P (xi) =
(dΓ/dΦ)i
σMC

, (20)

where the normalization factor σMC is calculated from a
MC sample with NMC accepted events, which are gener-
ated with a phase space model and then subject to the
detector simulation, and are passed through the same
event selection criteria as applied to the data analysis.
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With an MC sample of sufficiently large size, the σMC is
evaluated with

σMC =
1

NMC

NMC
∑

i=1

(

dΓ

dΦ

)

i

. (21)

For technical reasons, rather than maximizing L, S =
− lnL is minimized using the package MINUIT. To sub-
tract the background events, the lnL function is replaced
with:

lnL = lnLdata − lnLbg. (22)

After the parameters are determined in the fit, the
signal yields of a given resonance can be estimated by
scaling its cross section ratio Ri to the number of net
event, i.e.:

Ni = Ri ∗ (Nobs −Nbg), with Ri =
Γi
Γtot

, (23)

where Γi is the cross section for the ith resonance, Γtot is
the total cross section, andNobs andNbg are the numbers
of observed events and background events, respectively.
The statistical error, δNi, associated with signal yields

Ni is estimated based on the covariance matrix, V , ob-
tained from the fit according to:

δN2
i =

Npars
∑

m=1

Npars
∑

n=1

(

∂Ni
∂Xm

∂Ni
∂Xn

)

X=µ

Vmn(X), (24)

where X is a vector containing parameters, and µ con-
tains the fitted values for all parameters. The sum runs
over all Npars parameters.

C. RESULTS OF PARAMETERS

The nominal fit includes the decays, J/ψ → γηc →
γφφ and J/ψ → γ(φφ)JP → γφφ with JP = 0−, 0+, 2+.

The coupling constants gls are taken as complex num-
bers, and they are recombined to give new reduced pa-
rameters, which are determined in the fit. The reduced
parameters are listed in Tab. III, and the fitted values
are given in Tab. IV.

TABLE III: Definition of reduced parameters for decays in
the nominal fit.

Decays Reduced parameters
J/ψ → γηc → γφφ N0 = g11g

′

11

J/ψ → γ(φφ)0− → γφφ N1 = g11g
′

11

J/ψ → γ(φφ)2+ → γφφ N2 = g43g
′

22, g̃21 = g21/g43,
g̃22 = g22/g43, g̃23 = g23/g43,
g̃20 = g20/g43, g̃

′

20 = g′20/g
′

22,
g̃′21 = g′21/g

′

22, g̃
′

02 = g′02/g
′

22,
g̃′42 = g′42/g

′

22

J/ψ → γ(φφ)0+ → γφφ N3 = g01g
′

00, h̃21 = g21/g01,

h̃′

22 = g′22/g
′

00.

TABLE IV: The values of reduced parameters determined in
the nominal fit.

Parameter z magnitude |z| argument arg(z) /(2π)
N0 0.11 ± 0.01 0.65 ± 0.05
N1 0.12 ± 0.01 0.13 ± 0.05
N2 0.59 ± 0.27 0.87 ± 0.07
g̃21 0.29±0.12 0.59±0.07
g̃22 0.36±0.14 0.90±0.07
g̃23 0.43± 0.31 0.96±0.11
g̃20 0.07±0.04 0.54±0.10
g̃′20 1.00±0.54 0.61±0.09
g̃′21 0.00±0.51 0.21±0.34
g̃′02 0.66± 0.28 0.50±0.08
g̃′42 0.59±0.26 0.50±0.08
N3 0.01 ± 0.00 0.52 ± 0.07

h̃′

21 1.00±0.90 0.99±0.98

h̃′

22 2.35±1.25 0.89±0.09
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