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Abstract: We develop an analytic perturbative expansion to study the propagation

of entanglement entropy for small subsystems after a global quench, in the context of

the AdS/CFT correspondence. Opposite to the large interval limit, in this case the

evolution of the system takes place at timescales that are shorter in comparison to the

local equilibration scale and thus, different physical mechanisms govern the dynamics

and subsequent thermalization. In particular, we show that the heuristic picture in

terms of a “entanglement tsunami” does not apply in this regime. We find two crucial

differences. First, that the instantaneous rate of growth of the entanglement is not

constrained by causality, but rather its time average. And second, that the approach

to saturation is always continuous, regardless the shape of the entangling surface. Our

analytic expansion also enables us to verify some previous numerical results, namely,

that the saturation time is non-monotonic with respect to the chemical potential. All of

our results are pertinent to CFTs with a classical gravity dual formulation.
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1 Introduction

Understanding the generation and spread of entanglement in quantum systems for

generic out-of-equilibrium configurations is a topic of great interest, and currently one of

the most challenging problems connecting quantum information and statistical physics.

If the system is prepared in a pure state, it will remain forever in a pure state due to

unitarity. However, finite subsystems seem to thermalize as a consequence of ergodicity.1

A useful order parameter in these situations is the entanglement entropy SA, which is

defined as follows. We can imagine a Cauchy surface that divides the entire system in

two subsystems, A and its complement B, so that the total Hilbert space factorizes as

Htotal = HA ⊗HB.2 On the other hand, the state of the system is completely specified

by its density matrix ρ, a self-adjoint, positive semi-definite, trace class operator. The

entanglement entropy of a region A with its complement B is then defined as the von

Neumann entropy SA = −tr[ρA log ρA], where ρA = trB[ρ] is the reduced density matrix

of the subsystem A. Due to its nonlocal character, entanglement entropy could in prin-

ciple reveal quantum correlations not accessible to other observables constructed from

any subset of local operators Oi.
The simplest dynamical process in which we could study the spread of entanglement

is a global quench. To describe this process, we can consider the Hamiltonian (or the La-

grangian) of the system, denoted by H0 (or L0), and add a time-dependent perturbation

of the form

Hλ = H0 + λ(t)δH∆ → Lλ = L0 + λ(t)O∆ . (1.1)

Here λ(t) corresponds to an external (tunable) parameter and H∆ (or O∆) represents

a deformation of the theory by an operator of conformal dimension ∆. Let us now

imagine that the perturbation is sharply peaked, i.e. λ(t) ∼ δ(t), so that the quench

is instantaneous. In this case, the process is effectively described by the injection of

a uniform energy density at t = 0 and the subsequent dynamics is dictated by the

original Hamiltonian H0. In a remarkable paper [3], Calabrese and Cardy showed that

for (1 + 1)−dimensional CFTs as well as for some lattice models, entanglement entropy

for a large interval of length ` = 2R grows linearly in time,

∆SA(t) = 2tseq , t ≤ R , (1.2)

and then saturates abruptly at t = tsat = R. Here, ∆SA(t) denotes the difference of the

entanglement entropy from that of the initial state (which is assumed to be the ground

1If we consider a finite region in a system of infinite size, the number of degrees of freedom outside

the region is much larger than in the inside. Therefore, in a typical excited pure state the reduced

density matrix for the finite region is approximately thermal [1].
2Notice that there can be multiple Cauchy surfaces resulting in the same partitioning of the Hilbert

space. More concretely, this partition is specified by the (future) Cauchy horizon rather than the Cauchy

surface itself [2].
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state of H0), and seq is the thermal entropy density of the final state. As explained in

[3], these results can be easily understood in terms of causality applied to left- and right-

moving EPR pairs of entangled quasiparticles emitted from the initial state. However, it

is not clear if such a simple interpretation could be valid more generally, in particular, in

systems with strong interactions between the pairs, which are ubiquitous in real-world

many body systems.

The discovery of the AdS/CFT (or holographic) correspondence [4–6] opened the

possibility to tackle the problem of entanglement propagation from a fundamental point

of view. This remarkable correspondence has already been very useful in addressing

problems of strongly coupled dynamics in various models, ranging from understanding

aspects of Quantum Chromodynamics (QCD) to condensed matter-inspired systems

[7, 8]. In this context, global quenches (as the ones described above) are commonly

modeled by a collapsing shell of matter in an asymptotically AdS geometry. See [9–11]

for early works on this topic. These gravity solutions have recently been employed to

study the growth of entanglement after a global quench both in (1 + 1)−dimensional

CFTs as well as in higher dimensional theories. For large subsystems, it was found that

the evolution of entanglement exhibits a universal linear regime

∆SA(t) = vEseqAΣt , tsat � t� tloc . (1.3)

In this formula, vE is interpreted as a velocity for entanglement propagation, which

depends on the number of spacetime dimensions d according to

vE =

√
d

d− 2

(
d− 2

2(d− 1)

) d−1
d

≤ 1 , (1.4)

and AΣ is the area of the entangling region’s boundary Σ = ∂A. The linear growth

(1.3) was first observed numerically in [12, 13] and analytically in [14–16], and was later

generalized to various holographic setups in [17–41]. Generally speaking, tsat scales like

the characteristic size of the region tsat ∼ ` while tloc is a local equilibration scale, which

scales like the inverse of the final temperature tloc ∼ 1/T . In d = 2 one obtains vE = 1

as in [3], so entanglement propagates as if it were carried by a free streaming of particles

moving at the speed of light. This suggests that interactions might not play a crucial role

in the growth of entanglement entropy; however, recent investigations have shown that

this picture fails to reproduce other holographic and CFT results, e.g. the entanglement

entropy for multiple intervals [42–44]. Further evidence comes from the results in higher

dimensional theories. In [45] it was shown that in free streaming models

vfree
E =

Γ[d−1
2

]√
πΓ[d

2
]
, (1.5)

which is smaller than the holographic result (1.4) for d ≥ 3. This implies that the

amount of entanglement generated in these simple models cannot account for the result

in strongly coupled theories, so interactions must play a role.
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Figure 1. Pictorial representation of the “entanglement tsunami” for a subsystem A. The

entanglement is carried by a wave that starts from the its boundary Σ (depicted in red) and

propagates inwards at a constant speed vE . The shaded region has been covered by the tsunami

wavefront (depicted in orange) and is now entangled with the region outside of A. The white

region is currently not entangled but it will become at a later time.

Given the simplicity and universality of equation (1.3), Liu and Suh proposed

a heuristic picture for the spread of entanglement which they called “entanglement

tsunami” [15, 16] (see Figure 1). According to their interpretation, the quench generates

a wave of entanglement that propagates inward from the boundary of the subsystem A,

with the region covered by the wave becoming entangled with the outside B. They

further conjectured that after local equilibration is achieved, t & 1/T , the instantaneous

rate of growth defined as

R(t) ≡ 1

seqAΣ

dSA
dt

(1.6)

is always bounded by the tsunami velocity, i.e. R(t) ≤ vE. It is important to emphasize

that, in spite of its name, vE is not actually a physical velocity so a priori it is not

obvious that it must be bounded by causality. More recent works have shown that for

large subsystems this is indeed the case [45, 46]. The authors of [45] proved it using

the positivity of mutual information, while [46] used inequalities of relative entropy with

respect to a thermal reference state. Thus, if the conjecture on the maximum rate of

growth is true, we can conclude that max[R(t)] ≤ 1.

For small subsystems, the situation is much less understood. In this case ` � 1/T

so tsat � tloc. The evolution of the subsystem and its thermalization take place before

local equilibration is achieved and it is not clear if the growth of the entanglement should

satisfy a simple law like (1.3). Furthermore, since this linear behavior was one of the

main assumptions of [45, 46], the bound on the maximum rate for the entanglement

growth does not apply in this regime.3 Indeed, later in this paper we will show that this

is actually the case: besides the strict large interval limit, max[R(t)] is not necessarily

3Another assumption of [45] that is not valid for small subsystems is the fact that mutual information

with the vacuum part subtracted is not generally positive definite. This can be easily checked from the

analytic result of mutual information for small regions, e.g. [47, 48].
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is actually the case: besides the strict large interval limit, max[R(t)] is not necessarily

constrained by causality. We will further show that for small subsystems, the linear

regime (1.3) is absent and thus, the heuristic picture in terms of a entanglement tsunami

breaks down. This is indeed expected: in this regime, the characteristic wavelength of

the thermal excitations λth ∼ 1/T is much larger than the size of the system, so a model

of local interactions within the entangling region cannot possibly account for the growth

of entanglement and its thermalization. Finally, we emphasize that our results for the

growth of entanglement in the limit of small subsystems apply only for instantaneous

global quenches in CFTs with holographic duals. More generally, we expect the precise

growth of entanglement in this regime to be sensitive to the details of the theory and

the quench itself.

This paper is organized as follows. In Section 2 we study the spread of entangle-

ment for large and small intervals based on the analytic result for holographic CFTs

in (1 + 1)−dimensions. Along the way, we point out crucial differences in the cor-

responding behaviors and motivate a more systematic study for the propagation of

entanglement for small subsystems in other holographic theories. In Section 3 we in-

troduce the holographic models of global quenches that we employ in the rest of the

paper: non-equilibrium states of CFTs dual to a collapsing AdS-RN-Vaidya geometries

in (d + 1)−dimensions. The motivation for studying these solutions is twofold: on one

hand, it will allow us to analytically explore theories in higher dimensions, so we will be

able to draw more general conclusions. On the other hand, it will give us the possibility

of explaining the behavior reported in [20, 32], namely that for near-thermal quenches

(T � µ) the saturation time decreases with increasing chemical potential. As mentioned

in these works, understanding this peculiar behavior may be of great relevance from a

phenomenological perspective, in particular for the physics of the strongly-coupled QGP.

In Section 4 we explain the approximation scheme that we use for small subregions and

we perform an explicit leading-order computation for two representative boundary re-

gions: the strip and the ball. In Section 5 we analyze in detail the different regimes of

thermalization and we compare with the corresponding results for large subregions. We

specialize to three different regimes: an initial quadratic growth, a quasi-linear growth,

and the saturation. In Section 6 we discuss some general properties of the spread of

entanglement for entangling surfaces of arbitrary size, namely, the universality of the

initial growth regime, and a general bound on the average velocity, vavg
E ≡ 〈R(t)〉, which

is obtained from bulk causality. Finally, in Section 7 we give a brief summary of our

main results and close with conclusions.

2 Preliminaries: spread of entanglement in (1 + 1)−dimensions

Remarkably, for holographic CFTs in (1 + 1)−dimensions the result for the evolution of

entanglement entropy after a global quench is known in a closed form [17, 18]. This will
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allow us to explore, as a first example, the different regimes of the spread of entanglement

for both, large and small subsystems.

We will consider the entanglement entropy of a boundary segment of length ` = 2R,

and introduce dimensionless variables

t = 2πTt , l = 2πTR , (2.1)

where T is the final temperature after the quench. In the final state, entanglement

entropy in a (1 + 1)−dimensional CFT is given by [49]

SA =
c

3
log

(
R

ε

)
+
c

3
log

(
sinh l

l

)
≡ Svac + ∆SA , (2.2)

where c is the central charge of the theory and ε is a UV regulator. Notice that we

have isolated two contributions: the entanglement entropy in the vacuum, Svac, and the

difference of entanglement entropy between the thermal state and the vacuum, ∆SA. It

is also useful to study the large and small interval limit of ∆SA. For l� 1 we obtain

∆SA '
cl

3
= seqVA , (2.3)

where seq is the thermal entropy density,

seq =
πcT

3
, (2.4)

and VA = ` = 2R is the “volume” of the region A. In this limit, entanglement entropy

reduces to thermal entropy and thus, satisfies the first law of thermodynamics

d(∆EA)

d(∆SA)

∣∣∣∣
`

= T , (2.5)

where ∆EA = EVA is the energy contained in region A, and

E =
πcT 2

6
(2.6)

is the energy density of the (1 + 1)−dimensional CFT. Importantly, in this limit the

entanglement entropy is an extensive quantity since it scales with the volume of the

system VA. On the other hand, for small intervals, l� 1, we have

∆SA '
cl2

18
=
cπ2T 2`2

18
. (2.7)

In this limit the entanglement entropy also satisfies a first law like relation for excited

states [50, 51],4

d(∆EA)

d(∆SA)

∣∣∣∣
`

= Tent , (2.8)

4Such a law is not expected to apply for generic time-dependent configurations, but it is likely to

hold if the system evolves adiabatically.
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where, again ∆EA = EVA, and Tent is the so called “entanglement temperature”. For

(1 + 1)−dimensional theories Tent is given by

Tent =
3

π`
. (2.9)

Since Tent is independent of the temperature, we can formally write

∆SA =
∆EA
Tent

=
EVA
Tent

= seqVA . (2.10)

Here, we have defined seq ≡ ∆SA/VA = E/Tent in analogy to (2.3). However, notice that

in the limit of small subregions seq is not expected to be equal to the thermal entropy

density. In particular, since Tent (and therefore seq) depend on `, the entanglement

entropy is not extensive in this case.

Let us now study the time dependent setup. The evolution of the entanglement

entropy after a global quench can be written as follows [17, 18]

SA(t) = Svac + ∆SA(t) , (2.11)

where Svac is the entanglement entropy in the vacuum and

∆SA(t) =
c

3
log

(
sinh t

l s(l, t)

)
, (2.12)

is the change in entanglement entropy following the quench. The function s(l, t) is given

implicitly by

l =

√
1− s2

ρs
+

1

2
log

(
2(1 +

√
1− s2)ρ2 + 2sρ−

√
1− s2

2(1 +
√

1− s2)ρ2 − 2sρ−
√

1− s2

)
. (2.13)

with

ρ ≡ 1

2
coth t +

1

2

√
1

sinh2 t
+

1−
√

1− s2

1 +
√

1− s2
. (2.14)

Equation (2.12) applies for any given l as long as

t ≤ tsat = l . (2.15)

At t = tsat one finds that s = 1, ρ = coth l, and

∆SA(tsat) = ∆Seq = seqVA . (2.16)

For t > tsat, ∆SA remains ∆Seq. Unfortunately, equation (2.13) cannot be inverted

analytically, so in order to extract the explicit time dependence of ∆SA(t) for t < tsat

and fixed l one must proceed numerically. Before doing so, let us make some important

remarks. For any given l we can easily compute the time-averaged entanglement velocity:

vavg
E = 〈R(t)〉 =

1

seqAΣ

∆SA
∆t

=
1

seqAΣ

seqVA
tsat

=
R

tsat

= 1 . (2.17)
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Since the maximum growth of entanglement is bounded by its average, max[R(t)] ≥ vavg
E ,

one might wonder if this inequality is strictly saturated so that max[R(t)] = 1 for any

value of l or, instead, max[R(t)] > 1 exceeding the speed of light.5 Indeed, we will argue

below that the maximum growth of entanglement generally exceeds the speed of light

and it is only in the limit l→∞ that one finds max[R(t)]→ 1.

In order to prove this claim, it suffices to focus on the early growth regime (for a

fixed value of l). In the limit t� tsat one finds [16]

ρ =
1

t
+

t

12
+ · · · , s =

t

l

(
1

t
− t

12
+ · · ·

)
, (2.18)

and

∆SA(t) =
ct2

12
+O(t4) = 2πEt2 + · · · . (2.19)

Therefore, at early times the instantaneous rate of growth increases linearly,

R(t) =
2πEt
seq

+ · · · . (2.20)

Since in this regime R(t) < 1 it is clear that the maximum rate should satisfy max[R(t)] >

1 in order to have an average vavg
E = 1. This is true for any finite value of l. The strict

limit l→∞ is peculiar; in this case, most part of the evolution is linear and R(t) is effec-

tively constant R ' 1. We can understand this as follows: as explained in [15, 16], one

of the relevant scales that govern the regimes of thermalization is the local equilibration

scale, tloc ∼ 1/T . For t � tloc the growth of entanglement is quadratic but for t & tloc

(once the system has reached local equilibrium) the evolution is indeed approximately

linear. Moreover, in (1 + 1)−dimensions this linear behavior persists all the way to the

saturation time, where the entanglement equilibrates discontinuously. Altogether, the

non-trivial dynamics of the system takes place over the time span t ∈ [0, tsat = R] or,

equivalently, x ≡ t/tsat ∈ [0, 1]. In the strict limit l → ∞, tsat → ∞ and therefore

xloc ≡ tloc/tsat → 0. Thus, in this limit the entire evolution is effectively linear. For

small intervals l� 1 and tsat � tloc so a linear approximation fails.

To add further evidence in support of these statements, we can explore numerically

(2.13) and study the evolution of entanglement entropy in the appropriate regimes. In

Figure 2 we show the results for ∆SA(t) and R(t) in the large interval limit. For the

plots we chose TR = 102 so that xloc = tloc/tsat = 10−2 � 1. As we can observe, the

evolution in this case is well approximated by a straight line, and the instantaneous rate

of growth R(t) approaches vavg
E = 1. However R(t) marginally exceeds this value for

xloc < x ∈ [0.015, 0.858] so the conjectured bound on max[R(t)] is violated for large but

finite intervals. We also observe that as we increase the size of the region, R(t) becomes

discontinuous both at t = 0 and t = tsat in the strict limit l→∞. This agrees with the

5We emphasize that R(t) is not actually a velocity, so it is not obvious that it must obey causality.
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Figure 2. (a) Evolution of entanglement entropy for TR = 102. For this choice of parameters

xloc = tloc/tsat = 10−2 � 1 and the growth of entanglement is approximately linear. (b)

Instantaneous rate of growth for TR = 102. We observe that R(t) > 1 for xloc < x ∈
[0.015, 0.858] which contradicts the conjectured bound on max[R(t)]. However, in the strict

limit l→∞, R(0 ≤ t ≤ tsat)→ 1 (and becomes discontinuous at both t = 0 and t = tsat).

results of [15, 16] which show that, for large intervals, the approach to saturation exhibits

a critical behavior akin to a first order phase transition. In Figure 3 we consider the small

interval limit. Here we chose TR = 10−2 so that tloc/tsat = 102 > 1. The evolution in this

case deviates from a linear behavior, which suggests that the heuristic picture in terms

of a “entanglement tsunami” fails in this regime. The instantaneous rate of growth R(t)

clearly exceeds the average vavg
E in a good portion of the evolution: it starts off at zero,

reaches a maximum max[R(t)] > 1, and goes back to zero at t = tsat. This indicates

that the approach to saturation is generally a second order transition, rather than a

first order transition, and it is only in the limit l→∞ that the discontinuous behavior

manifests. Our numerical results suggest a maximum growth of max[R(t)] = 3/2.6

3 Holographic models of global quenches in higher dimensions

3.1 Action and equations of motion

Given the previous evidence, it is natural to ask if a similar behavior is also present

in global quenches in higher dimensions. Here, we will consider specific models in

the context of AdSd+1/CFTd where CFT evolves from the vacuum of the theory to

a state at finite temperature and/or chemical potential. The starting point is the

(d+ 1)−dimensional Einstein-Hilbert action with a negative cosmological constant cou-

pled to a Maxwell field and an external source,

S = S0 + κSext , (3.1)

6Regrettably, we were not able to extract this value directly from (2.12)-(2.13). However, we will

show in Section 5.2 that this is indeed the exact value for the maximum growth in d = 2 dimensions.
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Figure 3. (a) Evolution of entanglement entropy for TR = 10−2. For this choice of parameters

xloc = tloc/tsat = 102 > 1 and the growth of entanglement deviates from a linear behavior. (b)

Instantaneous rate of growth for TR = 10−2. Our numerical results suggest a maximum rate

of max[R(t)] = 3/2.

where S0 is given by

S0 =
1

8πG
(d+1)
N

(
1

2

∫
dd+1x

√−g (R− 2Λ)− 1

4

∫
dd+1x

√−gFµνF µν

)
, (3.2)

and Λ = −d(d−1)
2L2 .7 In the above κ is a constant and Sext is the action of the external

source, which we do not specify. This action leads to the following equations of motion

Rµν −
1

2
(R− 2Λ) gµν − gαρFρµFαν +

1

4
gµνF

αβFαβ = 16πG
(d+1)
N κT ext

µν , (3.3)

∂ρ
[√−ggµρgνσFµν

]
= 8πG

(d+1)
N κJσext . (3.4)

We are interested in dynamical solutions that interpolate between pure AdS and a

charged AdS black hole. However, before presenting these solutions we will first study

the static black hole solutions that are dual to the final state of the quench.

3.2 Static solutions: AdS-RN

In the absence of sources (T ext
µν = 0, Jσext = 0) there is a family of two-parameter black

hole solutions to (3.3)-(3.4) known as the AdS-Reissner-Nordström black holes [52, 53].

For d ≥ 3 the solutions are the following:

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ d~x2

)
,

f(z) = 1−Mzd +
(d− 2)Q2

(d− 1)
z2(d−1) , (3.5)

At = Q(zd−2
H − zd−2) ,

7From here on we will set the AdS radius to unity L = 1. It can be easily restored via dimensional

analysis whenever necessary.
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where M is the mass of the black hole and Q is the charge. Here, zH denotes the location

of the horizon which is given by the smallest real root of f(z) = 0. The dual theory is

a CFT that lives in d spacetime dimensions and is characterized by a thermal density

matrix in the grand canonical ensemble, ρ = e−β(H−µq), where q is the total charge. The

temperature of the dual theory can be identified as the Hawking temperature of the

black hole,

T = − 1

4π

d

dz
f(z)

∣∣∣∣
zH

=
d

4πzH

(
1− (d− 2)2Q2z

2(d−1)
H

d(d− 1)

)
, (3.6)

while the chemical potential is given by

µ ≡ lim
z→0

At(z) = Qzd−2
H . (3.7)

For d = 2 the solution takes the following form:

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2

)
,

f(z) = 1−Mz2 +Q2z2 log z , (3.8)

At = Q log (zH/z) . (3.9)

Charged solutions in d = 2 (as the one above) have peculiar properties: the fall-off of the

fields is slower than the standard case and identification of the source and the VEV are

subtle [54] (see [55] for a different proposal, based on alternative boundary conditions).

To avoid these issues we will only focus on charged solutions in d ≥ 3 and consider the

neutral case in d = 2.

It is convenient to write down the metric (3.5) in the following form8

f(z) = 1− ε
(
z

zH

)d
+ (ε− 1)

(
z

zH

)2(d−1)

, (3.10)

where zH denotes the position of the horizon and ε is a constant proportional to the

energy density E [48]. In this parametrization, the temperature and chemical potential

are given by

T =
2(d− 1)− (d− 2)ε

4πzH
, µ =

1

zH

√
(d− 1)

(d− 2)
(ε− 1) , (3.11)

and can be inverted to obtain

zH =
2d

4πT

[
1 +

√
1 + d2

2π2ab

(
µ2

T 2

)] , ε = a− 2b

1 +

√
1 + d2

2π2ab

(
µ2

T 2

) . (3.12)

8Notice that (3.10) also includes the BTZ black hole, which is found by setting d = 2 and ε = 1.
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Here, a and b are constants that depend only on spacetime dimensions:

a =
2(d− 1)

(d− 2)
, b =

d

(d− 2)
. (3.13)

We will also define an effective temperature Teff(T, µ), which will play a crucial role:

Teff ≡
d

4πzH
=
T

2

[
1 +

√
1 +

d2

2π2ab

(
µ2

T 2

)]
. (3.14)

From the definition it follows that Teff interpolates between Teff ∝ T and Teff ∝ µ as one

goes from µ/T � 1 to µ/T � 1, so it effectively serves as a measure of the dominant

scale in the theory. Specifically, for µ/T � 1 we have that

Teff = T

[
1 +

d2

8π2ab

(
µ2

T 2

)
+O

(
µ4

T 4

)]
. (3.15)

In the opposite limit we find

Teff =
µd(d− 2)

2π
√

2d(d− 1)

[
1 +

2π

d− 2

√
a

2b

(
T

µ

)
+O

(
T 2

µ2

)]
. (3.16)

Finally, we can express the various thermodynamic quantities solely in terms of Teff

and ε. For instance, the temperature and chemical potential can be now written as

T =

(
2(d− 1)− (d− 2)ε

d

)
Teff , µ =

√
(d− 1)

(d− 2)
(ε− 1)

(
4πTeff

d

)
. (3.17)

Similarly, the energy, entropy and charge densities are given by

E =
(d− 1)ε

16πG
(d+1)
N

(
4πTeff

d

)d
, (3.18)

s =
1

4G
(d+1)
N

(
4πTeff

d

)d−1

, (3.19)

and

ρ =
(d− 2)

8πG
(d+1)
N

√
(d− 1)

(d− 2)
(ε− 1)

(
4πTeff

d

)d−1

, (3.20)

respectively. Together, they satisfy the first law of thermodynamics dE = Tds+ µdρ.
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3.3 Collapsing solutions: AdS-RN-Vaidya

Time-dependent solutions to (3.3)-(3.4) describing the formation of a charged black hole

have been studied in a number of works, e.g. [20, 21]. The metric in this case is given

by the AdS-RN-Vaidya solution9

ds2 =
1

z2

(
−f(z, v)dv2 − 2dvdz + d~x2

)
, (3.21)

f(z, v) = 1−m(v)zd +
(d− 2)q(v)2

(d− 1)
z2(d−1) , for d ≥ 3 , (3.22)

and is sourced by a (d+ 1)−dimensional infalling shell of charged null dust, T ext
µν ∼ kµkν

with k2 = 0. The explicit form of the vector field Aµ(v) will not play any role in our

discussion, so we will not transcribe it here. The metric (3.21) is written in terms

of Eddington-Finkelstein coordinates, so that v labels ingoing null trajectories. This

variable is related to the standard t-coordinate through

dv = dt− dz

f(z, v)
. (3.23)

The mass m(v) and charge q(v) are two functions that capture the information of the

black hole formation. On physical grounds, m(v) and q(v) should interpolate between

zero in the limit v → −∞ (corresponding to pure AdS) and a constant value in the

limit v →∞ (corresponding to an RN-AdS black hole). The final values should not give

rise to a naked singularity but, other than that, the mass and charge functions are in

principle arbitrary.10

One might wonder whether such a solution could be obtained from an actual collapse

in asymptotically AdS space, i.e. for a specific source Sext. Indeed, interesting steps in

this direction were given in [56]. In this paper, the authors studied a collapse of a massless

scalar field in the so-called “weak field expansion”. For fast quenches, and at the leading

order in the perturbation, the solutions they found take the form of a Vaidya geometry

(3.21), with a particular form of the metric that depends on the scalar profile. In the

dual field theory, this corresponds to a global quench by a marginal operator, where the

corresponding coupling is the small parameter in which the perturbation is carried out.

Thus, at least in this approximation, the results of [56] validate the phenomenological

studies based on Vaidya backgrounds from a first principle computation. This approach

was employed in [32], to the case of scalar collapse coupled to a Maxwell field.11

9The AdS-RN-Vaidya solution in d = 2 have the same issues as the static AdS-RN, hence we will

only consider charged solutions in d ≥ 3. The form of (3.22) is valid in d = 2 provided that q(v) = 0.
10However, there are stronger constrains on m(v) and q(v) if we want to respect strong subadditivity

in the boundary theory [21].
11It is also worth emphasizing that thin-shell limit of the Vaidya solution is in perfect agreement with

numerical simulations of scalar collapse [57, 58].
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Before proceeding further, let us parametrize the solution in a slightly different way.

Instead of using the functions m(v) and q(v) we will rewrite f(z, v) in terms of the

apparent horizon zH(v) and an auxiliary function ε(v) according to

f(z, v) = 1− ε(v)

(
z

zH(v)

)d
+ (ε(v)− 1)

(
z

zH(v)

)2(d−1)

. (3.24)

This expression is the equivalent of (3.10) now in the time dependent scenario, assuming

that we upgrade T → T (v) and µ→ µ(v). Here we are defining the function T (v) as

T (v) ≡ − 1

4π

d

dz
f(z, v)

∣∣∣∣
zH(v)

=
2(d− 1)− (d− 2)ε(v)

4πzH(v)
. (3.25)

However, strictly speaking the function T (v) can only be identified with the physical

temperature in the limits v → −∞ and v → ∞, which correspond to the initial and

final states, respectively. Away from this two limits the system is out-of-equilibrium and

the thermodynamics is not well defined. Similarly, the function µ(v) is defined as

µ(v) ≡ 1

zH(v)

√
(d− 1)

(d− 2)
(ε(v)− 1) . (3.26)

We can identify two special cases:

1. Thermal quench: in this case µ(v) = 0 which means ε(v) = 1.

2. Extremal quench: in this case T (v) = 0, which implies ε(v) = 2(d−1)
d−2

.12

It will also prove useful to define the function

Teff(v) ≡ d

4πzH(v)
=
T (v)

2

[
1 +

√
1 +

d2

2π2ab

(
µ(v)2

T (v)2

)]
, (3.27)

which interpolates between the initial and the final effective temperature (3.14).

3.3.1 Instantaneous quenches: thin shell limit

We will work in the limit where the mass and charge functions change instantaneously:

m(v) = M θ(v) and q(v) = Qθ(v), respectively. This can be achieved by considering an

infalling shell of null dust with infinitesimal thickness, which is referred to as the thin

shell limit. Naively, one might think that a thin shell would lead to an instantaneous

thermalization of the field theory observables, since in this case T (v) = T θ(v) and

µ(v) = µ θ(v). This statement is true for one-point functions of local operators, e.g.

one finds that 〈Tµν(t)〉 ∼ 〈T finalµν 〉 θ(t). On the other hand, non-local observables such as

12This case is often referred to as an electromagnetic quench [13]. For d = 3, due to the electric-

magnetic duality, this is equivalent to turn on a magnetic field in the dual CFT.
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two-point functions and entanglement entropies actually take finite time before reaching

equilibrium so they provide a more complete information of the thermalization process.

In the thin shell limit the function f(z, v) acquire the general form

f(z, v) = 1− θ(v)g(z) , g(z) = ε

(
z

zH

)d
− (ε− 1)

(
z

zH

)2(d−1)

, (3.28)

where zH and ε are related to the final temperature and chemical potential according to

(3.12). It will be useful to expand (3.28) and define the following two kind of quenches:

1. Near-thermal quenches (T � µ):

g(z) =

(
1 +

(d− 2)d2µ2

16π2T 2

)(
4πTz

d

)d
− (d− 2)d2µ2

16π2(d− 1)T 2

(
4πTz

d

)2(d−1)

+O
(
µ4

T 4

)
.

(3.29)

2. Near-extremal quenches (T � µ):

g(z) =
2(d− 2)d−1

dd/2(d− 1)d/2−1

(
1 +

2πd1/2T

(d− 1)1/2µ

)
(µz)d

− (d− 2)2d−3

dd−2(d− 1)d−1

(
1 +

4π(d− 1)1/2T

d1/2µ

)
(µz)2(d−1) +O

(
T 2

µ2

)
.

(3.30)

In both cases we have only kept the leading order corrections to the thermal and extremal

quenches, respectively. Physically, the main difference between these two processes is

the nature of the relevant excitations: in the first case the evolution of the system is

dominated by thermal fluctuations, while in the second case it is driven by quantum

fluctuations.

4 Evolution of entanglement entropy

4.1 General considerations for AdS-RN-Vaidya

We are interested in computing entanglement entropy in the boundary CFT. In the con-

text of the AdS/CFT correspondence, entanglement entropy of a region A is computed

by means of the Ryu-Takayanagi prescription [59], according to which:

SA =
1

4G
(d+1)
N

min [Area (ΓA)] , (4.1)

where G
(d+1)
N is the bulk Newton’s constant and ΓA is a (d−1)-dimensional surface in the

bulk such that ∂ΓA = ∂A = Σ. This proposal has been generalized to time dependent

backgrounds in [60]. In this case,

SA =
1

4G
(d+1)
N

ext [Area (ΓA)] , (4.2)
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where the condition for minimal surfaces is now replaced by extremal surfaces.

We will compute the entanglement entropy for two representative boundary regions:

• A (d− 1)−dimensional strip of width `, specified by

x ≡ x1 ∈
[
− `

2
,
`

2

]
, xi ∈

[
−`⊥

2
,
`⊥
2

]
, i = 2, ..., d− 2 (4.3)

with `⊥ → ∞. The corresponding extremal surface ΓA is invariant under trans-

lations in the transverse directions, ~x⊥. Therefore, without loss of generality, we

can parameterize it with two functions, x(z) and v(z), satisfying the following

boundary conditions:

x(0) = ± `
2
, v(0) = t . (4.4)

The area of this surface is given by the following functional:

Area(ΓA) ≡ A(t) =

∫ z∗

0

dz L , L ≡ AΣ

zd−1

√
x′2 − f(v, z)v′2 − 2v′ , (4.5)

where AΣ = 2`d−2
⊥ is area of two (d − 2)−dimensional hyperplanes. The constant

z∗ here is defined through x(z∗) = 0.

• A (d− 1)−dimensional ball of radius R, specified by

r2 ≡
∑

i

x2
i ≤ R . (4.6)

In this case it is convenient to write the d~x2 in (3.21) in spherical coordinates:

d~x2 = dr2 + r2dΩ2
d−2 . (4.7)

The corresponding extremal surface ΓA is invariant under rotations. Therefore,

without loss of generality, we can parameterize it with two functions, r(z) and

v(z), satisfying the following boundary conditions:

r(0) = R , v(0) = t . (4.8)

The area of this surface is given by the following functional:

A(t) =

∫ z∗

0

dz L , L ≡ AΣr
d−2

Rd−2zd−1

√
r′2 − f(v, z)v′2 − 2v′ , (4.9)

where AΣ = 2π
d−1
2 Rd−2/Γ[d−1

2
] is area of a (d − 2)-dimensional spherical cap of

radius R. The constant z∗ here is defined through r(z∗) = 0.
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Figure 4. Extremal area surfaces in a thin shell Vaidya geometry for two different geometries:

(a) the strip and (b) the ball. The shell (depicted in red) moves at the speed of light and

eventually collapses into a black hole. The entanglement entropy of region A grows as time

evolves until the corresponding extremal surface ΓA grazes the shell at v = 0. From this point

on the whole surface lies entirely in the AdS-RN portion of the geometry so the entanglement

entropy saturates to its final value.

We could go on and derive the equations of motion coming from (4.5) and (4.9). However,

these equations are generally highly non-linear so in practice one must proceed numer-

ically. Our goal here will be to develop perturbative techniques in order to extract the

explicit time dependence in various regimes of interest.

Before doing so, let us discuss the thin shell regime, where f(v, z) is given in terms of

a step function as in (3.28). The shell itself is located at v = 0 and is moving towards the

interior of the bulk. The regions v < 0 and v > 0 correspond to a pure AdS geometry and

an AdS-RN black hole, respectively. A pictorial representation of the situation is given

in Figure 4. One way to proceed is to consider the regions v < 0 and v > 0 independently

and then match the solutions across the shell, see e.g. [15, 16]. However, the analytical

solution for v > 0 is not known exactly so in practice one ends up expanding the solutions

and picking up the relevant leading contributions. In particular, the work of [15, 16]

focused on the limit of large subsystems, where the main contribution comes from the

near horizon portion of the geometry. Here, we will consider a different approximation

technique that is valid in the opposite regime, namely, for small subsystems.

4.2 Perturbative expansion for small subsystems

Besides the theoretical motivation presented in Section 2, understanding the different

analytical corners of the thermalization process is also interesting from a phenomeno-

logical point of view. One practical motivation is to shed light on the fast equilibration

of the Quark Gluon Plasma (QGP), produced at ultra-relativistic heavy-ion collision

experiments such as RHIC and LHC. In [20, 32] it was noticed that in the limit of small

subsystems, for near-thermal quenches (T � µ) the saturation time decreases with in-

creasing chemical potential and thus the systems thermalizes faster. On the other hand,

as we increase the size of the entangling region (in comparison to 1/T ) this behavior

becomes less pronounced and eventually the saturation time starts increasing with the
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increase of chemical potential indicating that different physics take place at the two

regimes of thermalization. Of course, these conclusions were based entirely on numeri-

cal calculations. We would like to understand this behavior better, using an appropriate

approximation scheme.

In order to compute the leading behavior of the entanglement entropy we proceed

in the following way. Consider the functional L[φ(z);λ] for the extremal surfaces, where

φ(z) denote collectively the set of embedding functions, {x(z), v(z)} for the strip or

{r(z), v(z)} for the ball, and λ is a dimensionless parameter in which the perturbation

will be carried out, i.e. λ� 1. We can expand both L and φ(z) as follows:

L[φ(z);λ] = L(0)[φ(z)] + λL(1)[φ(z)] +O(λ2) ,

φ(z) = φ(0)(z) + λφ(1)(z) +O(λ2) .
(4.10)

In principle, the functions φ(n)(z) could be obtained by solving the equations of motion

order by order in λ. However, these equations are in general highly non-linear so in

practice it is very difficult (and in most cases impossible) to obtain analytic results. The

key observation is that at first order in λ,13

Aon-shell[φ(z)] =

∫
dz L(0)[φ(0)(z)] + λ

∫
dz L(1)[φ(0)(z)]

+ λ

∫
dz φ

(1)
i (z)

[

�����������d

dz

∂L(0)

∂φ′i(z)
− ∂L(0)

∂φi(z)

]

φ(0)
+ · · ·

(4.11)

Therefore, we only need φ(0)(z) to obtain the first correction to the area. In our particular

case, the expansion parameter is taken to be λ ∼ (Teff`)
n (for some n > 1), where ` is the

characteristic length of the entangling region. Now, according to the UV/IR connection

[62–64], the bulk coordinate z maps into a length scale in the boundary theory. In

particular, since the extremal surface reach a maximum depth of z∗, then its natural to

assume that ` ∼ z∗. On the other hand, the effective temperature is related to the inverse

of the apparent horizon Teff ∼ 1/zH so, from the bulk perspective, having Teff` � 1 is

equivalent to z∗/zH � 1. Fortunately, in order to study this limit we just need the near

boundary region, which is nothing but AdS plus small corrections. In the exact limit

λ→ 0 we expect to recover the embedding in pure AdS, which is known analytically.

4.3 Explicit computation at leading order

4.3.1 The strip

Let us now make the above derivation more explicit. Since z∗ is actually the upper limit

of integration in (4.11), we can first change to a new radial coordinate y = z/z∗ ∈ [0, 1].

The combination z∗/zH appears only in f(v, z), which can now be expanded as

f(v, y) = 1− θ(v) ε yd
(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)

. (4.12)

13To our knowledge, this observation was first made in [61].
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At zeroth order in z∗/zH we get f(v, z) = 1 and the spacetime is pure AdS, as expected.

The leading correction is of order (z∗/zH)d so in the field theory we expect corrections

in λ ∼ (Teff`)
d. Expanding the area functional for the strip (4.5), and going back to the

original z variable, it follows that

L(0) =
AΣ

zd−1

√
x′2 − v′2 − 2v′ , L(1) =

εAΣ

2zdH

zv′2θ(v)√
x′2 − v′2 − 2v′

. (4.13)

We also need the embedding functions at zeroth order {x(z), v(z)}. For f(v, z) = 1 the

spacetime is static so all extremal surfaces lie on a constant-t slice, t(z) = t. Equation

(3.23) then yields

v(z) = t− z . (4.14)

Plugging (4.14) back into L(0) we obtain the standard area functional in empty AdS,

which has the known solution [65]

x(z) =
`

2
− z∗
d

(
z

z∗

)d
2F1

[
1

2
,

d

2(d− 1)
,

3d− 2

2(d− 1)
,

(
z

z∗

)2(d−1)
]
, (4.15)

with

` =
2
√
πΓ[ d

2(d−1)
]z∗

Γ[ 1
2(d−1)

]
. (4.16)

The zeroth order contribution to the area is time-independent and includes all UV

divergences. Here we are interested in the time-dependent part only, so we will focus on

the quantity

∆SA(t) =
∆A(t)

4G
(d+1)
N

=
1

4G
(d+1)
N

∫
dz L(1)[φ(0)(z)] + · · · , (4.17)

where ∆A(t) ≡ A(t) −AAdS and the dots denote higher order terms in λ.14 Note that

with this subtraction ∆SA(t) naturally starts from zero in the infinite past. Evaluating

the leading order term of (4.17) on shell leads to

∆SA(t) =
εAΣ

8G
(d+1)
N zdH

∫ z∗

0

dz θ(t− z)z
√

1− (z/z∗)2(d−1) . (4.18)

In order to evaluate this integral it is convenient to define a new variable ξ = t−z. With

this substitution, the integral in (4.18) becomes

I =

∫ t

t−z∗
dξ θ(ξ)(t− ξ)

√
1− [(t− ξ)/z∗]2(d−1) . (4.19)

Let us consider the following three cases, (i) t < 0, (ii) 0 < t < z∗ and (iii) z∗ < t:

(i) Since both limits are negative and θ(ξ < 0) = 0, then

I = 0 . (4.20)

14In Appendix A we compute the first sub-leading term in this expansion.
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(ii) The lower limit is negative so we can replace it by zero:

I =

∫ t

0

dξ (t− ζ)
√

1− [(t− ξ)/z∗]2(d−1) =

∫ t

0

dz z
√

1− (z/z∗)2(d−1) , (4.21)

=
t2

d+ 1





√
1−

(
t

z∗

)2(d−1)

+
d− 1

2
2F1

[
1

2
,

1

d− 1
,

d

d− 1
,

(
t

z∗

)2(d−1)
]
 .(4.22)

(iii) Since both limits are positive and θ(ξ > 0) = 1, we get:

I =

∫ z∗

0

dz z
√

1− (z/z∗)2(d−1) =

√
πΓ[ 1

d−1
]z2
∗

2(d+ 1)Γ[ d+1
2(d−1)

]
. (4.23)

Notice that this last expression is independent of time, so in this approximation the

saturation time is given by

tsat = z∗ =
Γ[ 1

2(d−1)
]`

2
√
πΓ[ d

2(d−1)
]
. (4.24)

Altogether, the leading correction to the entanglement entropy can be expressed as

∆SA(t) = ∆Seq

{
[θ(t)− θ(t− tsat)]F(t/tsat) + θ(t− tsat)

}
, (4.25)

where ∆Seq is the final value of the entropy,

∆Seq =

√
πΓ[ 1

d−1
]z2
∗AΣε

16(d+ 1)Γ[ d+1
2(d−1)

]zdHG
(d+1)
N

, (4.26)

and F is given by:

F(x) =
2Γ[ d+1

2(d−1)
]x2

√
πΓ[ 1

d−1
]

[√
1− x2(d−1) + d−1

2 2F1

(
1
2
, 1
d−1

, d
d−1

, x2(d−1)
)]
. (4.27)

By definition the function F satisfies that F(0) = 0 and F(1) = 1, so in this range its

average rate of change is 〈dF(x)/dx〉 = 1. With this result, we can now compute the

instantaneous rate of entanglement growth,15

R(t) =
1

seqAΣ

d(∆SA)

dt
=

VA
AΣtsat

dF
dx

=
2(d+ 1)Γ[ d

2(d−1)
]Γ[ d+1

2(d−1)
]

Γ[ 1
d−1

]Γ[ 1
2(d−1)

]
x
√

1− x2(d−1) . (4.28)

15 A comment on the normalization of (4.28) is in order: similar to (2.10), here seq = ∆Seq/VA refers

to the equilibrium entanglement entropy (rather than thermal entropy) after the quench in a volume

VA. For small subsystems, the entanglement entropy of excited states obeys a first-law like relation

∆EA = Tent∆SA, where Tent is the so-called entanglement temperature [50, 51]. Therefore, in this limit

seq = Seq/VA = T−1
entE , where E is the energy density of the final state.
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where x = t/tsat and the time-averaged entanglement velocity:

vavg
E = 〈R(t)〉 =

VA
AΣtsat

=

√
πΓ[ d

2(d−1)
]

Γ[ 1
2(d−1)

]
=





1 , d = 2 ,

0.5991 , d = 3 ,

0.4312 , d = 4 ,

0 , d→∞ .

(4.29)

In the above, we have used the expressions for the strip, VA = `d−2
⊥ ` and AΣ = 2`d−2

⊥ .

Before analyzing in detail the different regimes of (4.25), let us first briefly comment

on some generalities. In Figure 5 (a) we plot the evolution of entanglement entropy

for some sample parameters. In general, we observe a qualitatively similar behavior for

the entanglement entropy as the numerical results of [20, 32]. However, at this level of

approximation tsat ∼ ` so it is clear that our result does not capture the non-monotonic

behavior with respect to µ/T obtained in these references. In particular, for our plots

we have chosen to keep `Teff = fixed so it is clear that the change in saturation time

is entirely due to the variation of Teff as we increase µ/T , which is always monotonic.

We will come back to this point in Section 5.3, where we explicitly compute the leading

corrections to the tsat. In particular, we will show that the first correction is enough to

observe the expected behavior reported in [20, 32]. In (b) we plot the instantaneous rate

of growth (4.28) as a function of x = t/tsat. For d = 2 we get exactly the same curve

as in Figure 3, with a maximum of max[R(t)] = 3/2, so we can view it as a consistency

check of our perturbative method. For d ≥ 3 the maximum rate is always below the

speed of light and decreases monotonically as we increase the number of dimensions. We

will discuss this point in more detail in Section 5.2.

4.3.2 The ball

The computation for the ball is very similar to the case of the strip, so we will only

sketch the main few steps. Expanding the area functional (4.9) it follows that

L(0) =
AΣr

d−2

Rd−2zd−1

√
r′2 − v′2 − 2v′ , L(1) =

εAΣ

2Rd−2zdH

zrd−2v′2θ(v)√
r′2 − v′2 − 2v′

. (4.30)

We also need the embedding functions {r(z), v(z)} in pure AdS. For the case of the ball

v(z) is still given by (4.14) but r(z) now takes the form of a spherical cap [65]

r(z) =
√
z2
∗ − z2 , R = z∗ . (4.31)

Again, we are interested in the difference of entanglement with respect to pure AdS, so

we focus on the L(1) piece only. Evaluating this term on shell leads to:

∆SA(t) =
εAΣz

d−2
∗

8G
(d+1)
N Rd−2zdH

∫ z∗

0

dz θ(t− z)z
[
1− (z/z∗)

2] d−1
2 , (4.32)
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Figure 5. (a) Evolution of entanglement entropy for a strip in d = 3 and µ/T = {0, 2, 5, 10}
from bottom to top, respectively. For the plots we have fixed `Teff = 10−1 so that the ap-

proximation is valid and we have set the overall factor AΣ/4G
(d+1)
N = 1. According to (4.24),

the saturation time scales as tsat ∼ ` which, for our particular choice of parameters, translates

into tsat ∼ 1/Teff. Both, the differences in final entropies and saturation times become more

pronounced as we increase the number of dimensions, but the behavior is qualitatively similar.

In (b) we plot the instantaneous rate of growth for R(x) for d = {2, 3, 4, 5} from top to bot-

tom, respectively. We observe that the maximum rate growth only exceed the speed of light

for d = 2, and decreases as we increase the number of dimensions.

which resembles (4.18) and can be evaluated in a similar way. The upshot of the calcu-

lation is

∆SA(t) = ∆Seq

{
[θ(t)− θ(t− tsat)]G(t/tsat) + θ(t− tsat)

}
, (4.33)

where

tsat = z∗ = R , (4.34)

∆Seq =
R2AΣε

8(d+ 1)zdHG
(d+1)
N

, (4.35)

and G is given by:

G(x) = 1−
(
1− x2

) d+1
2 . (4.36)

We can also compute the instantaneous rate of change of the entanglement growth,

R(t) =
VA

AΣtsat

dF
dx

=
(d+ 1)

(d− 1)
x
(
1− x2

) d−1
2 . (4.37)
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Figure 6. (a) Evolution of entanglement entropy for a ball in d = 3 and µ/T = {0, 2, 5, 10}
from bottom to top, respectively. For the plots we have set RTeff = 10−1 and AΣ/4G

(d+1)
N = 1.

In (b) we plot the instantaneous rate of growth for R(x) for d = {2, 3, 4, 5} from top to bottom,

respectively. Again, the maximum rate growth only exceed the speed of light for d = 2.

where x = t/tsat and the time-averaged entanglement velocity:

vavg
E =

VA
AΣtsat

=
1

d− 1
=





1 , d = 2 ,

1

2
, d = 3 ,

1

3
, d = 4 ,

0 , d→∞ .

(4.38)

In the above, we have used the expressions for the ball, VA = 2π
d−1
2 Rd−1/Γ[d−1

2
](d− 1)

and AΣ = 2π
d−1
2 Rd−2/Γ[d−1

2
].

The behavior of these observables is qualitatively similar to the case of the strip.

In Figure 6 we plot the entanglement growth and the instantaneous rate of change for

some sample parameters. For the entanglement growth curves in (a) we have keep RTeff

fixed so the saturation time is monotonic in µ/T . We will compute the first correction

to tsat in Section 5.3. From the curves in (b) we observe that: i) the instantaneous rate

of growth does not exceed the speed of light for d ≥ 3 and ii) R → 0 as x → 1 so the

approach to saturation is continuous. All these behaviors are likely to hold for more

general entangling surfaces.

5 Regimes of thermalization

Let us now analyze in more detail our results for the strip (4.25) and the ball (4.33)

specializing to the different regimes of thermalization. Specifically, we will focus on

three distinct regimes: the initial quadratic growth, an intermediate quasi-linear growth

and the saturation.
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5.1 Initial quadratic growth

The initial growth regime is dominated by the behavior of F(x) or G(x) for x � 1.

Expanding these functions we get

F(x) =
(d+ 1)Γ[ d+1

2(d−1)
]

√
πΓ[ 1

d−1
]

x2 +O(x2d) , (5.1)

and

G(x) =
1

2
(d+ 1)x2 +O(x4) , (5.2)

respectively. In both cases, the early time growth of the entanglement is given by

∆SA(t) =
AΣε

16zdHG
(d+1)
N

t2 + · · · . (5.3)

The fact that equation (5.3) applies for both, the strip and the ball, suggests a universal

behavior at early times; we will comment more on this below. We can also express

this result in terms of the physical data T and µ. The general expression is a little

cumbersome so, for the sake of simplicity, we will only consider the following two limits:

1. Near-thermal quenches (T � µ):

∆SA(t) =
AΣ

16G
(d+1)
N

(
4πT

d

)d(
1 +

d2(d− 2)

16π2

(µ
T

)2

+ · · ·
)
t2 + · · · . (5.4)

2. Near-extremal quenches (T � µ):

∆SA(t) =
AΣ

16G
(d+1)
N

2(d− 2)d−1µd

dd/2(d− 1)d/2−1

(
1 +

2πd1/2

(d− 1)1/2

T

µ
+ · · ·

)
t2 + · · · . (5.5)

This last result includes the extremal case, for which T = 0.

We can also verify that our results agree with the ones presented in [15, 16] for large

subsystems. This is another clear indication that in the early growth regime the evo-

lution of entanglement is independent of the size and shape of the entangling region

as long as t � tsat. Furthermore, the absence of additional geometric quantities such

as ` or R in the expression (5.3) (besides AΣ itself) implies that the quadratic growth

behavior ∆SA(t) ∼ t2 may be entirely fixed by symmetries (more specifically, conformal

symmetry). We will confirm these claims explicitly in Section 6.1.

5.2 Quasi-linear growth

For large regions, entanglement entropy exhibits a universal intermediate regime [15, 16]

∆SA(t) = vEseqAΣt , tsat � t� tloc , (5.6)
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where seq is the entropy density of the final state, seq = ∆Seq/VA, and vE is the so

called “tsunami velocity”. The local equilibrium scale tloc is given by the position of

the horizon tloc ∼ zH , which can be rewritten as tloc ∼ 1/Teff. Of course, in this limit

the physics differs drastically from the regime we are focusing on: entanglement entropy

approaches the thermodynamic entropy and the main contribution to the extremal sur-

faces comes from the interior of the bulk geometry. Another crucial difference is that for

small subsystems we cannot really talk about “local equilibrium” before the entangle-

ment entropy reaches saturation. We will, nevertheless, attempt to make a comparison

between the two regimes and point out the main similarities and differences.

Let us begin by reviewing more explicitly the results of [15, 16] for the charged case.

In these papers the authors found that for large subsystems

vE =

√
d

d− 2

((
1− d u

2(d− 1)

) 2(d−1)
d

− (1− u)

) 1
2

, u ≡ 4πzHT

d
=

T

Teff

. (5.7)

The parameter u lies in the range 0 ≤ u ≤ 1 and decreases monotonically from its

Schwarzschild value u = 1 to u = 0, as the µ/T is increased from zero to infinity. Given

the dependence of (5.7) on u this implies that turning on a nonzero chemical potential

always slows down the evolution. Let us study more closely the small-µ/T and large-µ/T

limits of (5.7). For small µ/T we get that, at leading order

vE =

√
d

d− 2

(
d− 2

2(d− 1)

) d−1
d

=





1 , d = 2 ,

0.6874 , d = 3 ,

0.6204 , d = 4 ,

1/2 , d→∞ ,

(5.8)

while for large µ/T (and d ≥ 3) we get

vE =
2π

d− 2

(
T

µ

)
→ 0 . (5.9)

The fact that vE → 0 when the quench approaches extremality implies that the linear

growth regime no longer exists. This was indeed observed numerically in [13]. In this

case, the linear growth regime is replaced by a logarithmic growth regime.

Let us now go back to the case of small subsystems. Our results for the strip

(4.25) and the ball (4.33) indicate that in this case the evolution is non-universal. More

precisely, since the normalized rate of change R(t) is different in these two cases, we can

conclude that the equilibration process for small subsystems strongly depends on the

shape of the entangling region. Moreover, since the growth of entanglement is not strictly

linear in either case so we cannot define a velocity in the sense of (5.6). Instead, we will
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define a quasi-linear regime based on the maximum rate of growth of the entanglement

entropy:

vmax
E ≡ max[R(t)] =

1

seqAΣ

d(∆SA)

dt

∣∣∣∣
t=tmax

. (5.10)

A few comments are in order. First note that this would be natural way to define an

analogue of the tsunami velocity vE since at t = tmax

∆SA(t)−∆SA(tmax) = vmax
E seqAΣ(t− tmax) +O(t− tmax)3 , (5.11)

so the quadratic corrections to the rate of change of the entanglement entropy vanish.

However, since this linear behavior is instantaneous we argue that the heuristic picture

for the entanglement growth in terms of a wave propagating inwards from the boundary

Σ does not hold in this regime. This is indeed expected, since for small subsystems the

spread of entanglement takes place at timescales that are shorter in comparison to the

local equilibration scale tloc. Second, the value of vmax
E generally depends on the shape

of the entangling region, so the equation (5.11) is non-universal. For the strip, and at

leading order in `Teff we find that

vmax
E =

`

2tsat

dF
dx

∣∣∣∣
x=xmax

, (5.12)

where F(x) is given in (4.27). The first derivative of F is given by

dF
dx

=
2(d+ 1)Γ[ d+1

2(d−1)
]

√
πΓ[ 1

d−1
]

x
√

1− x2(d−1) . (5.13)

It first increases linearly, reach a maximum at some xmax and then decreases all the way

to zero, at x = 1. The maximum is attained at:

d2F
dx2

= 0 −→ xmax =
1

d
1

2(d−1)

, (5.14)

and is given by

dF
dx

∣∣∣∣
x=xmax

=
4(d− 1)3/2Γ[ 3d−1

2(d−1)
]

√
πd

d
2(d−1) Γ[ 1

d−1
]
. (5.15)

The expression for tsat is given in (4.24). Putting all together we find that for the strip

vmax
E =

4(d− 1)3/2Γ[ 3d−1
2(d−1)

]Γ[ d
2(d−1)

]

d
d

2(d−1) Γ[ 1
2(d−1)

]Γ[ 1
d−1

]
=





3

2
, d = 2 ,

0.9464 , d = 3 ,

0.7046 , d = 4 ,

π/d→ 0 , d→∞ .

(5.16)
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We can follow similar same steps for the case of the ball. At the end of the computation,

we find that in this case

vmax
E =

(1 + d)(d− 1)
d−3
2

dd/2
=





3

2
, d = 2 ,

0.7698 , d = 3 ,

0.5413 , d = 4 ,

1/
√
ed→ 0 , d→∞ ,

(5.17)

giving a lower maximum rate in comparison to the strip. On the other hand, it is

interesting that for small subsystems the maximum velocity vmax
E (and more generally,

the instantaneous rate R(t)) is independent of T and µ, contrary to the large interval

result (5.7). Thus, we can say that vmax
E is independent of the state, whereas vE is

independent of the entangling region. Comparing the two quantities, we can also observe

that the maximum rate of change of entanglement entropy can be faster in the UV for

d ≤ 4 (d ≤ 3 for the ball) as long as µ/T � 1, but it is generally slower in higher

dimensions. For µ/T � 1 the maximum rate is always faster in the UV.

It is remarkable that vmax
E can in some cases exceed the value of the tsunami velocity

vE, which had been previously proposed as an upper bound for the rate of change of the

entanglement entropy [15, 16]. However, we should bear in mind that the physics in these

two scenarios is completely different. Specifically, the bound proposed in [15, 16] seems

to apply specifically to the growth of entanglement after local equilibration has been

achieved, in the strict limit of large subsystems. More recently, the authors of [45, 46]

showed that vE is actually bounded by the speed of light, i.e. vE ≤ 1, even though vE
is not actually a physical velocity. Here, we argue that vmax

E (and more generally R(t))

is not constrained by this bound, even though for holographic models the violation only

appears for (1 + 1)−dimensional theories. On the other hand, it seems reasonable to

assume that for general d, the total equilibration time tsat must be at least the light-

crossing time of region A, so the average entanglement velocity vavg
E must be bounded by

the speed of light, vavg
E ≤ 1. For the case of small subsystems this bound holds for both,

the strip (4.29) and the ball (4.38). For large subsystems it is valid in general, given that

in this limit vE ≤ vavg
E ≤ 1 (e.g. for a strip vE = vavg

E and the inequality is saturated,

but for a ball vE < vavg
E ). We believe that vavg

E represents a more honest comparison

between entangling regions of different sizes. Indeed, if we compare the results of vavg
E

for small subsystems (4.29), (4.38) with those for large subsystems (5.8), (5.9) we can

reach a more universal conclusion for the process of thermalization: in average the UV

degrees of freedom equilibrate at a slower rate than the IR degrees of freedom when

the evolution is governed by thermal fluctuations (µ/T � 1) but at a faster rate if the

evolution is driven by quantum fluctuations (µ/T � 1). This conclusion is more robust

than the one reached for vmax
E because it is independent of the number of dimensions

and the shape of the entangling region A.
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5.3 Approach to saturation

For large subsystems, the authors of [15, 16] found that the equilibration of the en-

tanglement entropy depends quite generally on the shape of the entangling region, the

spacetime dimension d, and the final state. For the strip, in particular, it was found

that for general d ≥ 3 the transition is quite abrupt: the first derivative of ∆SA(t) is

generally discontinuous at t = tsat, in analogy to a first-order phase transition. For small

subregions, this stage can be studied by expanding F(x) or G(x) around x = 1. For the

strip we find that the saturation resembles that of a continuous (second-order) phase

transition with

∆SA(t)− Seq ∝ (tsat − t)γ , γ =
3

2
. (5.18)

However, it differs from the mean-field behavior γ = 2 of standard thermodynamic tran-

sitions. It is worth emphasizing that the phase transition observed for large subregions

is due to an abrupt exchange of dominance of extremal surfaces at t = tsat. The origin

of this feature is well understood since the earlier numerical studies of [17, 18]: it is

due to the multi-valuedness of z∗(`) near the saturation time, which in turn leads to

a swallow-tail behavior of the entanglement entropy. For small regions, however, the

leading contributions come from the pure AdS embedding, which has a unique value of

z∗(`), regardless of the temporal evolution. We expect this multi-valuedness to appear

at some point once we include higher order corrections in `Teff.

The case of the ball is a little more subtle. In [15, 16] it was found that, for RTeff � 1,

the same discontinuous behavior also appears for d = 3 as long as µ/T � 1. On the other

hand, for general d ≥ 4 the approach to saturation is continuous, and is characterized

by a nontrivial scaling exponent

∆SA(t)− Seq ∝ (tsat − t)γ , γ =
d+ 1

2
. (5.19)

The same exponent applies for d = 2, while for d = 3 and µ/T � 1 it was found that

∆SA(t) − Seq ∝ (tsat − t)2 log(tsat − t), marginally avoiding the mean-field exponent

γ = 2.16 Surprisingly, for RTeff � 1 we find that the formula (5.19) applies for all values

of d and µ/T ! Similar to the case of the strip, the fact that the saturation is continuous

is just a consequence of the fact that for RTeff � 1, z∗ is uniquely determined from the

AdS embedding, and this is true regardless of the shape of the entangling surface. The

curious feature here is the increasing value of γ with respect to the number of dimensions

d, e.g. the second derivative of ∆SA(t) becomes continuous for d ≥ 4 and so on. This

behavior can already be observed from the plots in Figure 6 (b).

Another feature of our result concerns to the saturation time tsat itself. At the

leading order of approximation, we find that tsat = z∗ is independent of the temperature

T and chemical potential µ. This is indeed expected because these results have been

16For the cases in which the saturation is continuous, the authors of [15, 16] referred to the stage

prior to saturation as the “memory loss” regime.
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derived with the zeroth order embedding, which does not contain information about the

state. However, as we will show below, the first correction to the saturation time is

enough to verify the numerical behavior observed in [20, 32].

Before doing so, let us comment on the case of large subsystems. For the case of

the strip the saturation is discontinuous and the linear growth behavior (5.6) persists

all the way to tsat. In this case one finds that

vE '
VΣ

AΣtsat

=
`

2tsat

+O(`0) . (5.20)

Inverting equation (5.20) gives the following expression for the saturation time at leading

order:

tsat =
`

2vE
+O(`0) . (5.21)

The fact that vE decreases monotonically in µ/T leads always to an increase in tsat. In

order to study its explicit dependence with respect to χ = µ/T it is convenient to define

t
(0)
sat = lim

χ→0
tsat(χ) , (5.22)

and normalize the result for tsat in units of t
(0)
sat [20, 32]. Let us consider the small µ/T

limit. In this case we find that

tsat

t
(0)
sat

= 1 + σ(d)
(µ
T

)2

+O
(µ
T

)4

, (5.23)

where

σ(d) =
d(d− 2)

16π2

[(
d− 2

2(d− 1)

) 2
d
−1

− 1

]
> 0 . (5.24)

So, the saturation time increases with increasing µ/T , as expected. For the case of the

ball (whenever the saturation is continuous) it is found that [15, 16]

tsat =
R

cE
− d− 2

4πT
logR +O(R0) , cE =

√
2πzHT

d− 1
. (5.25)

At leading order we find a similar expression as in (5.23) (with a subleading term of

order O(logR/R)→ 0) where in this case

σ(d) =
d(d− 2)2

32(d− 1)π2
> 0 . (5.26)

Again, the saturation time is found to increase with increasing chemical potential.

Let us now go back to the case of small subsystems. In the thin shell approximation,

the saturation time tsat is given by the time at which the vacuum extremal surface grazes

the shell at v = 0 (see Figure 4). This observation is intuitive: for t > tsat the whole
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extremal surface lies entirely in the portion of the geometry described by an AdS-RN

black hole and, therefore, the entanglement entropy has reached equilibrium. At the

leading order in `Teff (or RTeff) we have that v = t − z so v = 0 implies t = z. This is

the origin of the θ(t− z) function appearing in (4.18) and (4.32). The integrals are then

evaluated from 0 to z∗ so at the end of the computation one naturally obtains tsat = z∗,

independent of T or µ. There are two corrections that have to be taken into account

at the next order. One one hand, the translation between the Eddington-Finkelstein

coordinate v, the boundary time t and z receives corrections of order O(zd+1). These

corrections can be directly computed from (3.23). On the other hand, z∗ as a function of

` (or R) is modified as one consider corrections to the embedding above pure AdS. The

full computation is explicitly carried out in Appendix B. For the strip, the final result

reads:17

tsat

t
(0)
sat

= 1−
(
κ(d)(T`)d +O (T`)2(d−1)

)(µ
T

)2

+O
(µ
T

)4

, (5.27)

where

κ(d) =
(d− 2)2d−5π(d−4)/2Γ[ 1

2(d−1)
]d
(

Γ[ 1
2(d−1)

]Γ[ d
d−1

]− 2Γ[ d+1
2(d−1)

]Γ[ d
2(d−1)

]
)

(d+ 1)dd−2Γ[ d
2(d−1)

]d+1Γ[ d+1
2(d−1)

]
> 0 . (5.28)

Together with equation (5.23), this result confirms the numerical findings of [20, 32],

namely that for small regions and small values of µ/T the saturation time decreases as

we increase µ/T while, for large intervals, the saturation is delayed as we increase µ/T .

6 Observations for entangling surfaces of arbitrary size

6.1 Universality of the quadratic growth regime

The fact that the initial growth regime (5.3) shows no dependence with the size or shape

of the entangling region suggests that this behavior may be universal. Via dimensional

analysis, we can infer that in a quadratic growth regime, the coefficient of the t2 must

be given by the area of Σ, AΣ, times a dimensionless coefficient that may depend on the

shape of Σ. It is easy to see that this coefficient is indeed independent of Σ. For t� tsat

the shell is very close to the boundary so the relevant contribution comes from the near

boundary portion of the geometry. Since, all extremal surfaces intersect the boundary

of AdS at right angle (regardless of the shape of Σ), the leading contribution at early

times for the change in ∆A(t) is simply AΣ × zc(t) (where zc(t) is the position of the

shell at time t) times a conformal factor that may only depend on zc(t). This proves

that AΣ is the only dependence of Σ in the early time regime. In addition, since the

leading correction from AdS near the boundary has a factor of z−dH ∼ Teff
d ∼ E then, by

dimensional analysis, it follows that the time dependence in this regime must be t2 (see

Figure 7).

17In Appendix B we discuss some subtleties in the computation for case of the ball.
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z = z∗
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A ∆A(t) ∼ AΣ × t2
zc(t)}6

Figure 7. Computation of the entanglement entropy growth at early times. All extremal

surfaces intersect the boundary of AdS at right angle (regardless of the size or shape of Σ),

so the leading contribution is simply AΣ × zc(t) (where zc(t) is the position of the shell at

time t) times a conformal factor that may only depend on zc(t). The leading correction to the

geometry near the boundary comes with a factor of z−dH ∼ Teff
d ∼ E . Via dimensional analysis,

this fixes the initial time dependence to be t2.

A direct calculation of the early-time growth for a general Σ was done in [16] and

the final formula can be written in terms of the energy density as follows:

∆SA(t) =
π

d− 1
EAΣt

2 + · · · . (6.1)

Indeed, we can verify that with our formula for the energy density (3.18) and the high

and low effective temperature expansions (3.15)-(3.16) we can recover the appropriate

early time growth for near-thermal and near-extremal quenches (5.4)-(5.5).

6.2 Bound on the saturation time

In this section we will provide a bound on tsat in different corners of the space of pa-

rameters, specializing to the case of the strip. In order to obtain the bound we compute

the time t∗sat at which there is a solution which lies fully in the back hole region. If the

saturation is continuous then t∗sat = tsat but for discontinuous saturation one finds that

t∗sat ≤ tsat [15, 16], so it provides a lower bound. From equation (3.23) it follows that

t∗sat =

∫ z∗

0

dz

f(z)
. (6.2)

We also need the function z∗(`). Fortunately, at t = t∗sat the entire surface lies entirely

in a static AdS-RN background, so the problem is time-independent. In order to obtain

z∗(`) we use the fact that for the strip we have a conservation equation (since the area

functional does not depend explicitly on x):

x′(z) = ± 1√
f(z)[(z∗/z)2(d−1) − 1]

. (6.3)

– 31 –

Figure 7. Computation of the entanglement entropy growth at early times. All extremal
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geometry near the boundary comes with a factor of z−dH ∼ Teff
d ∼ E . Via dimensional analysis,

this fixes the initial time dependence to be t2.

A direct calculation of the early-time growth for a general Σ was done in [16] and

the final formula can be written in terms of the energy density as follows:

∆SA(t) =
π

d− 1
EAΣt

2 + · · · . (6.1)

Indeed, we can verify that with our formula for the energy density (3.18) and the high

and low effective temperature expansions (3.15)-(3.16) we can recover the appropriate

early time growth for near-thermal and near-extremal quenches (5.4)-(5.5).

6.2 Bound on the saturation time

In this section we will provide a bound on tsat in different corners of the space of pa-

rameters, specializing to the case of the strip. In order to obtain the bound we compute

the time t∗sat at which there is a solution which lies fully in the back hole region. If the

saturation is continuous then t∗sat = tsat but for discontinuous saturation one finds that

t∗sat ≤ tsat [15, 16], so it provides a lower bound. From equation (3.23) it follows that

t∗sat =

∫ z∗

0

dz

f(z)
. (6.2)

We also need the function z∗(`). Fortunately, at t = t∗sat the entire surface lies entirely

in a static AdS-RN background, so the problem is time-independent. In order to obtain

z∗(`) we use the fact that for the strip we have a conservation equation (since the area

functional does not depend explicitly on x):

x′(z) = ± 1√
f(z)[(z∗/z)2(d−1) − 1]

. (6.3)

Therefore, from the boundary condition (4.4) it follows that18

` = 2

∫ z∗

0

dz√
f(z)[(z∗/z)2(d−1) − 1]

. (6.4)

18For the ball we do not have a conservation equation, so we cannot use the same methodology.
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This last equation must be solved and inverted to obtain z∗(`). Now, following [66] we

can formally write (6.2) as double sum:

t∗sat = z∗

∞∑

n=0

n∑

k=0

(−1)kεn−k(ε− 1)kΓ[n+ 1]

(1 + nd+ (d− 2)k)Γ[k + 1]Γ[n− k + 1]

(
z∗
zH

)nd+k(d−2)

. (6.5)

Similarly from [48], we can write (6.4) as

` =
z∗

d− 1

∞∑

n=0

n∑

k=0

εn−k(ε− 1)kΓ
[

2n+1
2

]
Γ
[
d(n+k+1)−2k

2(d−1)

]

Γ[1 + n− k]Γ[k + 1]Γ
[
d(n+k+2)−2k−1

2(d−1)

]
(
z∗
zH

)nd+k(d−2)

. (6.6)

In the following we will use these expansion to compute the saturation time in various

regimes.

Small subsystems

For `Teff � 1 we expect continuous saturation. In this case

t∗sat = tsat = z∗

[
1 +

ε

d+ 1

(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)
]
, (6.7)

while

` =
2
√
πΓ[ d

2(d−1)
]z∗

Γ[ 1
2(d−1)

]

[
1 +

εΓ[ d
d−1

]Γ[ 1
2(d−1)

]

2(d+ 1)Γ[ d+1
2(d−1)

]Γ[ d
2(d−1)

]

(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)
]
. (6.8)

This last equation can be inverted perturbatively to obtain:

z∗ =
Γ[ 1

2(d−1)
]`

2
√
πΓ[ d

2(d−1)
]

[
1−

εΓ[ d
d−1

]Γ[ 1
2(d−1)

]d+1

2d+1(d+ 1)πd/2Γ[ d+1
2(d−1)

]Γ[ d
2(d−1)

]d+1

(
`

zH

)d
+O

(
`

zH

)2(d−1)
]
.

(6.9)

Therefore, at the leading order we obtain,

tsat =
` Γ[ 1

2(d−1)
]

2
√
πΓ[ d

2(d−1)
]

[
1 + ετ1(d)(`Teff)d +O(`Teff)2(d−1)

]
, (6.10)

where, τ1(d) is the following numerical factor

τ1(d) =
2dπd/2Γ[ 1

2(d−1)
]d

dd(d+ 1)Γ[ d
2(d−1)

]d


1−

2
1

d−1
−1Γ[ 1

2(d−1)
]Γ[ 2d−1

2(d−1)
]

√
πΓ[ d+1

2(d−1)
]


 < 0 . (6.11)

Let us now consider different regimes of the above saturation time. In the limit

µ/T � 1 we obtain

tsat =
`Γ[ 1

2(d−1)
]

2
√
πΓ[ d

2(d−1)
]

[
1 + τ1(d)(`T )d

(
1 +

d2(d− 2)

16π2

(µ
T

)2
)

+ · · ·
]
, (6.12)
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which can be rewritten as

tsat = t
(0)
sat

[
1− κ(d)(`T )d

(µ
T

)2

+ · · ·
]
, t

(0)
sat ≡

`Γ[ 1
2(d−1)

]

2
√
πΓ[ d

2(d−1)
]
, (6.13)

The constant κ(d) is given in (5.28) and is positive. Therefore, the saturation time

decreases with the increase of chemical potential.

A similar result can also be obtained in the limit µ/T � 1. From (6.10) it follows

that, for T = 0:

t̃
(0)
sat =

`Γ[ 1
2(d−1)

]

2
√
πΓ[ d

2(d−1)
]

[
1 +

2(d− 1)τ1(d)

(d− 2)

(
d1/2(d− 2)

4π(d− 1)1/2

)d
(µ`)d

]
. (6.14)

Now, for µ/T � 1 we obtain

tsat = t̃
(0)
sat

[
1− τ1(d)

2(d− 1)

(
d1/2(d− 2)

4π(d− 1)1/2

)d−1

(µ`)d
(
T

µ

)
+ · · ·

]
. (6.15)

Since τ1(d) is negative, the saturation time increases with the increase of temperature.

Large subsystems

The limit `Teff � 1 corresponds to z∗ → zH . In this case the saturation can be discon-

tinuous in some cases so t∗sat provides a lower bound for the actual saturation time tsat

[15, 16]. It is easy to check that in this limit both ` and t∗sat diverge. However, we can

define a combination of ` and t∗sat which is finite as we let z∗ → zH :

t∗sat − `
√

(d− 1)

2(d− 2)δ
=

∫ z∗

0

dz

[
1

f(z)
−
√

2(d− 1)

(d− 2)δ

1√
f(z)[(z∗/z)2(d−1) − 1]

]
, (6.16)

where

δ =
2(d− 1)

(d− 2)
− ε . (6.17)

Before we proceed, a few comments are in order: the right hand side of (6.16) is finite

in the limit z∗ → zH and hence we can write

t∗sat = `

(√
(d− 1)

2(d− 2)δ
+
τ2(d, δ) d

4πTeff`

)
, (6.18)

where,

τ2(d, δ) =

∫ 1

0

dx

[
1

f(xzH)
−
√

2(d− 1)

(d− 2)δ

1√
f(xzH)[(1/x)2(d−1) − 1]

]
. (6.19)
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Secondly, the limit δ → 0 (or T = 0) appears to be singular. Indeed, in this case t∗sat is

no longer linear in ` and is expected to grow at a faster rate [13]; we will consider this

case separately. Before doing so, let us consider the case µ/T � 1. For µ = 0 we have

t
∗(0)
sat =

√
d− 1

2d
`

[
1 +O

(
1

`T

)]
. (6.20)

Now, for µ/T � 1 we obtain

t∗sat = t
∗(0)
sat

[
1 +

d(d− 2)2

32π2(d− 1)

(µ
T

)2

+O
(

1

`T

)
+O

(µ
T

)4
]
, (6.21)

which increases with the chemical potential. Notice that (6.21) is the result that we

obtained for the case of the ball (5.26). This suggests that (6.21) gives the actual

saturation time for all shapes, provided that the saturation is continuous.19 Also note

that equation (6.21) is different from the actual saturation time (5.23), which tells us

that the saturation is discontinuous for strips of length `� 1/Teff.

Finally, let us consider the T = 0 case. Assuming that z∗ = zH(1 − ε) with ε � 1,

it is easy to show that in this case

t∗sat =
d

4πTeff

[
1

d(d− 1)ε
+

(3d− 5) log ε+ 3

3(1− d)d
+ τ3(d)

]
, (6.22)

where τ3(d) is the finite integral

τ3(d) =

∫ 1

0

dx

[
1

f(xzH)
+

3d(x− 1)− 5x+ 2

3(d− 1)d(x− 1)2

]

δ=0

. (6.23)

Similarly, in this limit one can also show

` =
2d

4πTeff

[ √
2

(d− 1)
√
d
√
ε

+

√
2

(1− d)
√
d

+ τ4(d)

]
, (6.24)

where τ4(d) is another finite integral

τ4(d) =

∫ 1

0

dx

[
1√

f(xzH)[(1/x)2(d−1) − 1]
− 1√

2d(d− 1)(1− x)3/2

]

δ=0

. (6.25)

Therefore, at the leading order

ε =
d

2π2(d− 1)2`2Teff
2 (6.26)

19Let us assume that t
∗(0)
sat is known for a specific shape. Since the first correction in µ/T is independent

of `, the result at this order should be independent of the precise definition of `, i.e. it can be taken as

a characteristic length scale of the subsystem.
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and hence

t∗sat =
π(d− 1)Teff`

2

2d
=

(d− 2)
√
π(d− 1)d µ`2

8d
. (6.27)

Therefore, in this limit t∗sat increases with the chemical potential. Our result (6.27) is also

consistent with the numerical results of [13] regarding the fast growth of the saturation

time with respect to the length `.

6.3 Bound on the average velocity from bulk causality

Let us now discuss the average velocity in more generality. In Section 5.2 we showed

that vavg
E is a better quantity to consider when comparing results between entangling

regions of different sizes. We further conjectured that, even though vmax
E can exceed

the speed of light, vavg
E should be constrained by causality. In the limit of large regions

vE = vavg
E so the bound derived in [45, 46] is directly applicable. For small regions the

bound seems to be satisfied at least for the strip and the ball so it is very likely that

vavg
E ≤ 1 (6.28)

holds more generally. Here, we argue that such a bound is a direct consequence of bulk

causality. To see this, consider the formula for the average velocity:

vavg
E =

VA
AΣtsat

. (6.29)

For the case of the strip, the ratio VA/AΣ = `/2 = tlight is equal to the light-crossing

time from Σ to the interior of the region A. So, in order to decide if (6.28) is satisfied

or not we have to compute tsat and compare it with tlight. Quite generally, we find that

tsat ≥ t∗sat =

∫ z∗

0

dz

f(z)
≥
∫ z∗

0

dz = z∗ ≥ tlight . (6.30)

The first part of this equation comes from the definition of t∗sat (6.2) which gives us a

bound on the saturation time tsat. At t = t∗sat there is an extremal surface which lies

fully in the back hole region, for which v ≥ 0. The shell is located at v = 0 and is

moving at the speed of light; however, due to the redshift factor f(z) ≤ 1, we obtain

that t∗sat ≥ z∗. The last part of equation (6.30) comes from a comparison of the extremal

surface ΓA and the causal wedge ΞA associated to A [67]. In this paper it was found

that the causal wedge ΞA always lies closer to the boundary than the extremal surface

ΓA, so z∗ ≥ zΞ
∗ ≥ tlight. Putting everything together, then, we conclude that for the

strip vavg
E ≤ 1. For other geometries (6.30) is still true but the ratio VA/AΣ may vary.

For finite subsystem, the volume-to-area ratio is maximized for the case of the ball, for

which VA/AΣ = R/(d− 1) = tlight/(d− 1).20 Therefore, vavg
E ≤ 1 still holds. For convex

strips the volume-to-area ratio is maximized for the case of the rectangular strip, which

we already consider. Finally, for concave strips the ratio can be higher but these are

considered as large subsystems so, again, vavg
E ≤ 1. This conclude our proof of (6.28).

20This is a consequence of the isoperimetric inequality, see e.g. [68].
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7 Conclusions

In this paper we developed new analytical tools to study the thermalization of entangle-

ment entropy after a global quench in the context of the AdS/CFT correspondence. We

focused on the limit of small subsystems, for which no previous technique was available

in the literature, and found some surprising results.

In Section 2 we began our investigation by exploring the known analytical results

for (1 + 1)−dimensional holographic CFTs, focusing on the different regimes of interest.

We pointed out that the conjectured bound on the maximum rate of growth for the

entanglement entropy only holds in the strict limit of large intervals, but is violated

otherwise. In particular, we found that max[R(t)]→ 1 as we let l→∞ but it generally

exceeds the speed of light for intervals of finite size. We also observed that the linear

growth regime is smoothed out as we reduce the size of the system, suggesting that the

interpretation in terms of a “entanglement tsunami” is no longer valid. In Section 3

we introduced holographic models of global quenches in higher dimensions: CFT states

dual to a collapsing AdS-RN-Vaidya geometry. We specialized to the thin shell regime,

which is valid for instantaneous quenches. In Section 4 we computed perturbatively the

evolution of entanglement entropy after the quench focusing on two different entangling

surfaces: the strip and the ball. At this point it became clear that: i) the violation of

the inequality max[R(t)] ≤ 1 is only present in (1 + 1) dimensions ii) the initial and

final stages of the evolution are always smooth and iii) the evolution in the intermediate

regime depends on the shape of the entangling region but is insensitive to the final state

of the quench.

In Section 5 we studied more in detail our results for the strip and the ball in

different regimes of the thermalization process. For the early time regime, the evolution

turned out to be independent of the entangling region and in agreement with the results

for large subsystems. This observation led us to conjecture that the evolution in this

regime is universal and completely fixed by symmetries. In the intermediate regime we

found a non-universal quasi-linear growth regime with a maximum rate of growth vmax
E

that depends on the shape of the entangling region. The maximum rate is found to be

higher for small intervals in d ≤ 4 (strip) or d ≤ 3 (ball) as long as µ/T � 1, but is

lower in higher dimensions. For µ/T � 1 the maximum rate is always higher for small

intervals. We pointed out that the average velocity vavg
E is a better parameter if we are

to compare results for entangling regions of different sizes. We found that, in average,

the UV degrees of freedom equilibrate at a slower rate when the evolution is governed by

thermal fluctuations (µ/T � 1) but at a faster rate if the evolution is driven by quantum

fluctuations (µ/T � 1). This conclusion is more robust than the one for vmax
E because

it is independent of the number of dimensions and the shape of the entangling region.

Moreover, as we proved in the last section, vavg
E is actually constrained by causality.

The approach to saturation is found to be always continuous and is characterized by a
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nontrivial scaling exponent that depends on the number of dimensions and the shape

of the entangling region. We explain this by arguing that, at the leading order, z∗ is

uniquely determined by the embedding pure AdS. However, for large subsystems z∗ may

be multi-valued near the saturation time, leading to a discontinuous behavior. We also

computed the leading correction to tsat and confirmed the non-monotonicity with respect

to µ/T observed numerically in [20, 32].

In Section 6 we made some general remarks about entangling surfaces of arbitrary

size. We started by giving a simple argument to explain the universality of the initial

quadratic growth regime. The physical picture is the following: all extremal surfaces

intersect the boundary of AdS at right angle (regardless of the size or shape of the

entangling region), so the leading contribution at early times is simply AΣ×zc(t) (where

zc(t) is the position of the shell at time t) times a conformal factor that may only

depend on zc(t). The leading correction to the geometry near the boundary comes with

a factor of zdH ∼ E , which in turn fixes the initial time dependence to be t2. Later in the

same section, we gave a simple recipe for computing a bound on the saturation time in

different regimes of interest. Using this method, we were able to study the saturation

time in various limits and to corroborate its non-trivial dependence with respect to the

chemical potential. At the end of the section we provided a proof for a bound on vavg
E

based on bulk causality. We believe that this bound should hold more generally, as long

as the theory is relativistically invariant.

There are various open questions and a number of possibilities for the extension of

this work. The most urgent one is to investigate possible bounds on vmax
E and vavg

E from

the field theory perspective, i.e. generalize the analysis of [45, 46] for entangling regions

of arbitrary size. In particular, the interacting models of [45] seem a good staring

point for this investigation. Another interesting possibility is to consider the case of

(1 + 1)−dimensional CFTs at large central charge, where the conformal block expansion

has proved to be an efficient tool [44]. Moving to the realm of holography, we can consider

gravity duals of theories with different symmetries. Of particular interest are the non-

relativistic theories with Lifshitz scaling and/or hyperscaling violation [27, 28], which

have recently gained attention in the context of AdS/CMT. We can also consider CFTs

on a sphere; interestingly, charged solutions in global AdS have been shown to exhibit

a very rich entanglement phase structure [69, 70]. Finally, we can use the techniques

developed here to study the thermalization of other field theory observables after a global

quench, e.g. two-point functions [71], Wilson loops [18], and other entanglement related

quantities such as mutual information [72–74], causal holographic information [22] and

holographic complexity [75]. We hope to return to some of these problems in the near

future [76].
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A Perturbative computation at next-to-leading order

Based on the expansion given in (4.11) we expect that the first correction due to the cor-

rected embedding will appear at orderO(λ2); this is indeed expected since this correction

arises from the combination of both φ(1) and L(1), which are of order O(λ). However,

due to the particular form of the metric (4.12) we can see that the second correction to

the functional L is actually of order O(λ2−2/d) � O(λ2) for any finite d. Therefore, at

this order of approximation the correction to the embedding is still negligible and we

can still use the solution for pure AdS!

The computations are very similar to the ones presented in Section 4.3, so we will

only sketch the main few steps, specializing to the two geometries in consideration, the

strip and the ball.

The strip

Expanding the area functional (4.5) to the next-to-leading order we get,

L(2−2/d) = −(ε− 1)AΣ

2z
2(d−1)
H

zd−1v′2θ(v)√
x′2 − v′2 − 2v′

. (A.1)

Evaluating it on shell, this yields the following contribution to the entanglement entropy:

∆S
(2−2/d)
A (t) = − (ε− 1)AΣ

8G
(d+1)
N z

2(d−1)
H

∫ z∗

0

dz θ(t− z)zd−1
√

1− (z/z∗)2(d−1) . (A.2)

The integral in (A.7) is reminiscent of the one appearing in (4.18) and can be evaluated

in a similar way. The final result can be written as follows:

∆S
(2−2/d)
A (t) = ∆S(2−2/d)

eq

{
[θ(t)− θ(t− tsat)]F̃(t/tsat) + θ(t− tsat)

}
, (A.3)

where ∆S
(2−2/d)
eq is given by,

∆S(2−2/d)
eq = −

(d− 1)
√
πΓ[ 3d−2

2(d−1)
]zd∗AΣ(ε− 1)

8d(2d− 1)Γ[ 2d−1
2(d−1)

]z
2(d−1)
H G

(d+1)
N

, (A.4)
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and

F̃(x) =
dΓ[ 2d−1

2(d−1)
]xd

(d− 1)
√
πΓ[ 3d−2

2(d−1)
]

[√
1− x2(d−1) + d−1

d 2F1

(
1
2
, d

2(d−1)
, 3d−2

2(d−1)
, x2(d−1)

)]
. (A.5)

The ball

Expanding the area functional (4.9) for the ball we get,

L(2−2/d) = − (ε− 1)AΣ

2Rd−2z
2(d−1)
H

zd−1rd−2v′2θ(v)√
r′2 − v′2 − 2v′

. (A.6)

Evaluating it on shell leads to the following contribution to the entanglement entropy:

∆S
(2−2/d)
A (t) = − (ε− 1)AΣz

d−2
∗

8G
(d+1)
N Rd−2z

2(d−1)
H

∫ z∗

0

dz θ(t− z)zd−1
[
1− (z/z∗)

2] d−1
2 . (A.7)

Finally, performing the integration we obtain:

∆S
(2−2/d)
A (t) = ∆S(2−2/d)

eq

{
[θ(t)− θ(t− tsat)]G̃(t/tsat) + θ(t− tsat)

}
, (A.8)

where in this case

∆S(2−2/d)
eq = −

√
πΓ[d]RdAΣ(ε− 1)

2d+3Γ[2d+1
2

]z
2(d−1)
H G

(d+1)
N

, (A.9)

and

G̃(x) =
2dxdΓ[2d+1

2
]√

πdΓ[d]
2F1

(
−d−1

2
, d

2
, d+2

2
, x2
)
. (A.10)

B First correction to the saturation time

Let us start by considering equation (3.23). In the black hole portion of the geometry

v = t−
∫ z

0

dz′

f(z′)
= t−

∫ z

0

dz′
[

1 + ε

(
z′

zH

)d
+O

(
z′

zH

)2(d−1)
]
,

v = t− z
[

1 +
ε

(d+ 1)

(
z

zH

)d
+O

(
z

zH

)2(d−1)
]
. (B.1)

Thus, evaluating at v = 0 and z = z∗ we get

tsat = z∗

[
1 +

ε

(d+ 1)

(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)
]
. (B.2)

Let us now compute the corrections to z∗. In the following we will specialize to the two

cases in consideration, namely the strip and the ball.
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The strip

In order to find the corrections to z∗(`) we have to solve the equations of motion that

come from (4.5) at next-to-leading order. Fortunately, since at t = tsat the entire surface

lies entirely in the black hole portion of the geometry we can consider solving the problem

in a static AdS-RN geometry. For the strip we have a conservation equation since the

lagrangian does not depend explicitly on x:

x′(z) = ± (z/z∗)d−1

√
f(z)

√
1− (z/z∗)2(d−1)

. (B.3)

The embedding is even with respect to x → −x so without loss of generality, we will

consider the (−) sign in (B.3) (this corresponds to the x > 0 portion of the embedding).

Evidently, all the corrections over AdS come from the f(z) term so we can expand all

terms as in (4.12). More specifically, we consider

f(z) = 1− ε
(
z

zH

)d
ζd +O(ζ2(d−1)) , (B.4)

and

x(z) = x0(z) + xd(z)ζd +O(ζ2(d−1)) , (B.5)

and at the end we set ζ → 1. Plugging (B.4) and (B.5) back into (B.3) we get the

following equations at leading and next-to-leading order:

x′0(z) = − (z/z∗)d−1

√
1− (z/z∗)2(d−1)

, (B.6)

and

x′d(z) = −ε
2

(
z

zH

)d
(z/z∗)d−1

√
1− (z/z∗)2(d−1)

, (B.7)

respectively. The solution for x0(z) part is given in (B.8), namely

x0(z) =
`

2
− z∗
d

(
z

z∗

)d
2F1

[
1

2
,

d

2(d− 1)
,

3d− 2

2(d− 1)
,

(
z

z∗

)2(d−1)
]
. (B.8)

For now we do not assume any relation between ` and z∗. Since x0(z) already satisfy the

boundary condition (4.4), we have to solve (B.7) subject to the constraint xd(0) = 0.

The solution is the following:

xd(z) =
εzd−1
∗ z2

2(d+ 1)zdH



√

1−
(
z

z∗

)2(d−1)

− 2F1

(
1

2
,

1

d− 1
,

d

d− 1
,

(
z

z∗

)2(d−1)
)
 . (B.9)

Next, imposing that x(z∗) = 0 we get the following relation between ` and z∗:

` =
2
√
πΓ[ d

2(d−1)
]z∗

Γ[ 1
2(d−1)

]

[
1 +

εΓ[ d
d−1

]Γ[ 1
2(d−1)

]

2(d+ 1)Γ[ d+1
2(d−1)

]Γ[ d
2(d−1)

]

(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)
]
. (B.10)
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This equation can be inverted perturbatively to obtain:

z∗ =
Γ[ 1

2(d−1)
]`

2
√
πΓ[ d

2(d−1)
]

[
1−

εΓ[ d
d−1

]Γ[ 1
2(d−1)

]d+1

2d+1(d+ 1)πd/2Γ[ d+1
2(d−1)

]Γ[ d
2(d−1)

]d+1

(
`

zH

)d
+O

(
`

zH

)2(d−1)
]
.

(B.11)

Plugging (B.11) into (B.2) we can easily get the first correction to tsat. After some

algebra, we finally arrive to (5.27).

The ball

We can repeat the same steps for the case of the ball in order to get the corrections to

z∗(R). However, in this case we do not have a conservation law so we have to solve a

second order differential equation. Again, we use (B.4) and expand the embedding as

r(z) = r0(z) + rd(z)ζd +O(ζ2(d−1)) . (B.12)

At the end we restore ζ → 1. At the leading order, the equation of motion is

r′′0(z)− (d− 1)

z
r′0(z)3 − (d− 2)

r0(z)
r′0(z)2 − 2(d− 1)

2z
r′0(z)− (d− 2)

r0(z)
= 0 , (B.13)

and the solution is the standard spherical cap (4.31),

r0(z) =
√
z2
∗ − z2 . (B.14)

This solution satisfies the IR boundary condition, r0(z∗) = 0. For now we do not assume

any relation between z∗ and R. The equation of motion for the second term is:

r′′d(z)− (d− 1)R2 + 2z2

z(R2 − z2)
r′d(z) +

(d− 2)R2

(R2 − z2)2
rd(z) =

εzd((d− 4)R2 + (d+ 2)z2)

2zdH(R2 − z2)3/2
, (B.15)

which has to solved subject to the constraint rd(z∗) = 0. The solution is the following:

rd(z) =
ε

zdH

(
2zd+2
∗ − zd(z2

∗ + z2)

2(d+ 1)
√
z2
∗ − z2

)
. (B.16)

Finally, imposing that r(0) = R we arrive to

R = z∗

[
1 +

ε

d+ 1

(
z∗
zH

)d
+O

(
z∗
zH

)2(d−1)
]
, (B.17)

which can be inverted to obtain

z∗ = R

[
1− ε

d+ 1

(
R

zH

)d
+O

(
R

zH

)2(d−1)
]
. (B.18)

Unfortunately, if we plug (B.18) into (B.2) we find that the leading correction to tsat

cancels out, so we have to go even higher order. At the next level, we could not find an

analytic solution for r2(d−1)(z).
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