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Abstract

We use holography to compute spectral functions of certain fermionic operators in three
different finite-density, zero-temperature states of ABJM theory with a broken U(1) sym-
metry. In each of the three states, dual to previously studied domain wall solutions of
four-dimensional gauged supergravity, we find that the fermionic operators have gapped
spectra. In one case the gap can be traced to the small charge of the fermions, while in the
other cases it is due to a particular interaction that mixes particles and holes.



1 Overview

When viewed in the context of the AdS/CFT correspondence, some classical solutions to

gauged supergravity theories take on a new life. What was once a novel or even esoteric

solution to the supergravity equations of motion may, in a holographic light, serve as a guide

to our understanding of the possible phases of strongly coupled matter.

If such supergravity solutions have no Hawking temperature, their field theory duals are

at zero temperature as well, and thus offer a holographic candidate for a ground state of the

dual field theory. Understanding which ground states strongly coupled matter can achieve is

a central theme of contemporary physics research. It follows that controllable computational

frameworks such as holography, which are capable of constructing and probing such states,

are highly desirable.

To exploit the full utility of the holographic methods in a “controllable” way, it is prag-

matic to focus one’s attention on the ten- or eleven-dimensional supergravity (SUGRA)

theories which provide the low energy limit of the known string theories or M-theory (re-

spectively). The primary advantage, which is substantial, is that in doing so one has access

to the full power of the holographic dictionary which relates supergravity modes to operators

in known, consistent, and typically well-studied field theories. Field theory results extracted

via holography in this way are sometimes classified as “top-down”, to distinguish them from

“bottom-up” models in which a phenomenological gravitational action is concocted and little

is known about the presumptive dual field theory.

In practice, the multitude of dynamical degrees of freedom in these ten- and eleven-

dimensional SUGRA theories presents a formidable challenge when it comes time to solve

the gravitational equations of motion. To partly circumvent this challenge, it is highly

beneficial to identify interesting sectors of the SUGRA that survive consistent Kaluza-Klein

truncations to lower dimensional SUGRA theories. By definition, any solution to such a

consistent truncation can be oxidized to a solution of the higher dimensional parent theory,

and thus the benefits of the top-down embedding are also realized in the lower dimensional

theory as well. A crucial feature of the consistent truncation approach is that the Kaluza-

Klein truncation does not introduce new approximations beyond the ones already present

in ten- or eleven-dimensional supergravity; in other words, the oxidized solutions are exact

in the original parent supergravity theory. Likewise, fluctuations around the backgrounds

as described by the consistently truncated theory can be oxidized exactly to the parent

supergravity theory.

In this work we will focus on some properties of solutions to the gauged SUGRA obtained
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by consistently truncating eleven dimensional SUGRA on a seven-sphere to the lowest lying

modes. This is the maximally supersymmetric gauged SUGRA in four dimensions, which has

gauge group SO(8) and about which we will have much more to say in section 2. Independent

of the details, it is important to note that such truncated theories are often still too unwieldy

to confront head on: the D = 4 N = 8 theory we study here, for example, contains 35 + 35

(pseudo)scalar degrees of freedom.

To avoid the unpleasant technical complications involved in the construction of classical

solutions with large numbers of interacting bosonic fields, a further truncation to singlets

under some subgroup H of the SUGRA gauge group G can prove invaluable. In the present

work, we have G = SO(8) and thus we will be interested in H ⊂ SO(8)-invariant sectors

of the theory that consist of a handful of bosonic fields which nevertheless admit non-trivial

solutions holographically dual to interesting phases of strongly coupled matter.

To understand which H-invariant sectors may yield interesting results, it is necessary to

first identify the broad stroke features of the dual phase of matter one wishes to investigate.

In this work, we will be interested in strongly-coupled matter at finite density. From the

perspective of the field theory, a finite density can be achieved by turning on a chemical

potential µ for fields carrying charge under some global symmetry current Jµ. An obvious

example might be that of a conserved R-symmetry current, in which case the field theory

Lagrangian is modified by a term

∆LQFT = µJ tR. (1)

For simplicity we focus here on the addition of a chemical potential for a single U(1) factor

of the Cartan subalgebra of the (in principle) non-Abelian R-symmetry.

By way of the gauge/gravity dictionary, this global U(1) current is translated into the

gravitational language to a bulk U(1) gauge field. So, to study a holographic phase of matter

at finite density, a crucial ingredient is a SUGRA truncation which retains at least a single

Abelian gauge field. Generically, we will thus focus on consistent truncations of D = 4

N = 8 gauged supergravity that we can write in the form H × U(1) ⊂ SO(8) where the

bosonic fields of the truncated theory are all invariant under H.

The form of the truncations we are considering clearly leaves open the interesting possi-

bility of including bulk matter which is charged under the U(1) outside of H. Background

solutions to the SUGRA equations of motion which contain non-trivial profiles for such

charged bulk matter are holographically dual to states in which a source for (or expecta-

tion value of) an operator carrying global U(1) charge is turned on. Such backgrounds thus

correspond to phases which break the global U(1) explicitly or spontaneously (respectively).
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Geometries where U(1) is broken spontaneously are often referred to as holographic super-

conductors in the literature, and were studied first in bottom-up constructions at nonzero

temperature [1, 2, 3, 4] and at zero temperature [5, 6]. We will be interested in two particular

top-down zero-temperature constructions of this type, both of which appear as flows from

the maximally symmetric AdS4 vacuum in the UV to a distinct AdS4 region in the IR, char-

acterized by a nontrivial extremum of the scalar potential. The first was originally found as

the solution to a compactification of 11D supergravity on a generic Sasaki-Einstein manifold

[7, 8, 9], and was later embedded in the H = SU(4)− truncation of four-dimensional gauged

supergravity [10], while the latter was constructed in an H = SO(3) × SO(3) truncation

[11]. The SU(4)− case involves only spontaneous breaking of U(1) and hence is a true su-

perconductor, while in the SO(3)× SO(3) case the U(1) is explicitly broken. These domain

wall geometries represent holographic candidates for finite density, zero-temperature ground

states of the dual ABJM theory with a broken U(1) symmetry.

Given such a solution, an immediate question is how to best characterize the holographi-

cally dual phase of matter. While some sources, expectation values, and even thermodynamic

properties can typically be extracted from the background solution with minimal effort, more

detailed information can often be obtained by studying the linear response of the solution

to various perturbations. Included in this information are field theory conductivities, vis-

cosities, and various spectral functions that can be related to two-point functions by an

assortment of Kubo relations.

In this work, we continue a line of inquiry [12, 13, 14] that is centered on top-down

fermionic response in strongly coupled phases of matter. The primary objects of interest in

these studies are Green’s functions of fermionic operators in the dual field theory. From such

correlation functions, one can construct fermionic spectral functions which in turn provide

useful data such as the existence, dispersion, and location of fermionic excitations in the

phases of interest.

In the standard BCS theory of superconductivity, the Fermi surface in the normal state of

a superconductor is unstable to the formation of Cooper pairs of fermions below the critical

temperature. When these Cooper pairs condense in the superconducting phase, an effective

interaction arises which mixes particle and hole excitations, simultaneously destroying the

Fermi surface and gapping the fermionic excitation spectrum. Both the gap and the disper-

sion relation governing the fermionic excitations of the superconducting phase are visible in

Angle Resolved PhotoEmission Spectroscopy (ARPES) experiments.

It is natural to wonder whether or not the fermionic excitation spectrum is similarly
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gapped in superconducting phases of holographic matter. Bottom-up “probe” fermions (bulk

fermions with constant charge and mass chosen arbitrarily) were studied in the top-down

SU(4)− background in [15], where it was noticed that due to the restored Lorentz invariance

of the IR fixed point, the dispersion relations of fermionic excitations have a “light-cone”

structure with unstable modes inside the light-cone and stable modes outside. Moreover,

in contrast to the BCS expectation, the fermionic excitations were not necessarily gapped

in the superconducting phase, and it was shown that the greater the fermion’s charge, the

more bands of gapless, stable excitations exist.

Faulkner et al. [16] studied bottom-up fermions in bottom-up holographic superconduc-

tors, introducing a “Majorana” coupling of a charged fermion ψ to itself along with a scalar

φ of twice the charge,

e−1L = φ† ψTC(η + η5Γ5)ψ + h.c. , (2)

which has a structure reminiscent of the coupling of a Cooper pair ψψ to the condensate φ in

an effective BCS Lagrangian. It was shown in [16] that such an interaction would generically

introduce a gap to the band of fermionic excitations as long as the chirality matrix Γ5 was

present. The effect of this chiral coupling is to mix “particle” and “hole” states, as we review

in section 4. In [17] the structure of the top-down fermionic couplings in the SO(3)×SO(3)

solution was described, and a simplified non-chiral fermionic mixing matrix was studied. In

this background, similar “Majorana” interactions occur, although with a charged fermion

coupled to a neutral fermion (suggestive of a charged-neutral “Cooper pair”) and it was

shown that the non-chiral mixing introduces gaps into some, but not all, bands that were

present for probe fermions.

In this work, we present the full top-down fermionic interactions for spin-1/2 fields that

do not mix with the gravitino, for both the SU(4)− and SO(3)×SO(3) backgrounds. Calcu-

lating fermionic spectral functions, we find that both holographic phases have fully gapped

fermionic degrees of freedom, though for different reasons. In the SU(4)− background, the

fermion charge is small and probe fermions of this charge already have no bands of stable

modes; the full top-down interactions do not change this fact. Moreover, in this back-

ground the fermion cannot form the Majorana couplings analogous to Cooper pairing, as

both the SU(4)− group theory and the large charge of the scalar condensate forbid it. In

the SO(3)× SO(3) background, on the other hand, it was known from [17] that the charge

is large enough for probe fermions to be ungapped and if a gap appears it will be due to

interactions. We indeed find the top-down couplings between charged and neutral fermions,

which include a chirality matrix as advocated in [16], fully gap the fermionic modes.

4



The structure of this paper is as follows. In section 2, we describe relevant aspects of four-

dimensional gauged supergravity. In section 3, we review the SU(4)− solution, determine the

top-down Dirac equations, and calculate the holographic Green’s functions and associated

spectral functions, while section 4 does the same for the SO(3)×SO(3) solutions. We discuss

lessons for strong coupled field theories in section 5.

2 4D N = 8 gauged supergravity and its Dual

The D = 4 N = 8 supersymmetric gauged supergravity theory [18, 19] is the consistent

truncation of eleven-dimensional supergravity compactified on a seven-sphere to retain only

the supermultiplet of the four-dimensional graviton. It is holographically dual to the large-N

limit of the superconformal theory on a stack of N M2-branes, which may be characterized

as ABJM theory [20], a 2+1 dimensional U(N)k×U(N)−k Chern-Simons gauge theory with

bifundamental matter, at Chern-Simons level k = 1.

The bosonic degrees of freedom of the SUGRA are the vierbein, 28 gauge fields in the

adjoint of the gauge group SO(8), and 70 real scalars; the fermions are 8 Majorana gravitini

and 56 Majorana spinors. The scalars parametrize the coset E7(7)/SU(8) as a 56-bein, which

can be written

V =

 u IJ
ij vijKL

vklIJ uklKL

 = exp

 0 ΣIJKL

ΣIJKL 0

 , (3)

where raising/lowering indices effects complex conjugation, and the ΣIJKL ≡ Σ∗IJKL obey

the self-duality relation

ΣIJKL =
1

24
εIJKLMNPQ ΣMNPQ. (4)

The second equality of (3) represents a “unitary” gauge-fixing of the internal SU(8) sym-

metry, removing the distinction between SO(8) index pairs [IJ ] and SU(8) pairs [ij] and

allowing one to associate definite SO(8) representations to all the fields: the scalars split

into a 35v of parity even scalars and a 35c of parity odd pseudoscalars (corresponding to

the real and imaginary parts of Σ respectively), the gravitini are in the 8s, and the spin-1/2

fields are in the 56s.
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2.1 The Bosonic Lagrangian

The bosonic sector of the gauged N = 8 theory in four dimensions can be written [19]

2κ2e−1L = R− 1

48
Aijklµ Aµijkl −

1

4

[
F+
µνIJ

(
2SIJ,KL − δIJKL

)
F+µν
KL + h.c.

]
− 2P , (5)

where the scalar kinetic tensor Aijkl is defined through

DµV · V−1 ≡ − 1

2
√

2

 0 Aijklµ

Aµmnpq 0

 , (6)

with the derivative being covariant with respect to both SO(8) and SU(8) indices; for ex-

ample, for a field ΦI
i transforming in the fundamental of both SO(8) and SU(8) we have

DµΦI
i = ∇µΦI

i −
1

2
B j
µ i Φ

I
j − gAIJµ ΦJ

i . (7)

Note that here we have not yet fixed unitary gauge and so SU(8) and SO(8) indices are

distinct. The definition (6) also implicitly fixes the composite SU(8) connection B i
µ j:

B i
µ j =

2

3

(
uikLMDµu

LM
jk − vikLMDµvjkLM

)
, (8)

where Dµ is covariant only with respect to the SO(8) that acts on I, J , and ignores SU(8)

indices i, j.

The gauge fields have non-abelian field strengths of the standard form, F IJ
µν = 2∂[µA

IJ
ν] −

2gAIK[µ A
KJ
ν] with F+ the (imaginary) self-dual part of the field strength; these couple to the

scalars in their kinetic terms via the S-tensor defined as

(
uijIJ + vijIJ

)
SIJ,KL = uijKL . (9)

Lastly, the scalar potential is given by

P = −g2

(
3

4
|Aij1 |2 −

1

24
|A jkl

2i |2
)
. (10)

where the scalar-dependent tensors A1 and A2 are defined in terms of the SU(8) covariant
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T -tensor,

Aij1 ≡
4

21
T ikj
k , A jkl

2i ≡ −4

3
T

[jkl]
i , T jkl

i ≡ (uklIJ + vklIJ)(u JK
im ujmKI − vimJKvjmKI) .(11)

The supergravity solutions we discuss in this paper are contained within particular trunca-

tions of 4D N = 8 gauged supergravity, in each case involving the H-invariant fields in a

decomposition H × U(1) ⊂ SO(8), with H = SU(4) or H = SO(3) × SO(3). The bosonic

sectors are fairly similar for both resulting truncations; they consist of the metric, one gauge

field generating the U(1) gauge group, and at least one scalar field charged under that U(1).

We will describe them in sections 3 and 4, respectively.

2.2 The Spin-1/2 Lagrangian

The objective of this paper is to compute Green’s functions for spin-1/2 operators in finite-

density states of ABJM theory. This will be done holographically by solving top-down

Dirac equations derived from the quadratic fermion part of the SUGRA Lagrangian in the

corresponding domain wall geometries. Unlike the bosonic fields in the background geometry,

we will not restrict our fermions to being H-invariant, but will consider a general spin-1/2

field in the 4D N = 8 gauged supergravity Lagrangian. As a further simplification, however,

we will consider only spin-1/2 modes that decouple from the gravitini. The spin-1/2 fields are

dual to composite fermionic operators in ABJM theory (see sections 3.5 and 4.4). Since the

standard AdS/CFT dictionary only allows the computation of gauge-invariant observables,

and the fundamental fermions of ABJM theory are not gauge invariant, these composite

operators are the simplest fermionic operators that are directly accessible to us.

The terms in the N = 8 gauged SUGRA Lagrangian quadratic in spin-1/2 fields are [19]:

e−1Lχ̄χ =
i

12

(
χ̄ijkΓµDµχijk − χ̄ijkΓµ

←−
Dµχijk

)
− 1

2

(
F+
µνIJS

IJ,KLO+µνKL + h.c.
)

+ g

√
2

144

(
εijklmnpqAr2lmnχ̄ijkχpqr + h.c.

)
, (12)

where the fermion tensor O+ is defined through

uijIJO
+µνIJ =

√
2

288
εijklmnpqχ̄klmΓµνχnpq , (13)
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and the derivative Dµ contains the spin connection and the SU(8) connection,

Dµχijk = ∇µχijk −
1

2
Blµ iχljk −

1

2
Blµ jχilk −

1

2
Blµ kχijl . (14)

For a summary of our spinor conventions, see appendix A. The fermions χijk are totally

antisymmetric in i, j, k and are Weyl spinors, with raised/lowered indices corresponding to

the two different chiralities [18]; we may write them as chiral projections of a Majorana

spinor χijkM ,

χijk ≡ PRχ
ijk
M and χijk ≡ PLχ

ijk
M , (15)

where PL, PR ≡ (1∓Γ5)/2; in a basis where Majorana spinors are real, Γ5 is imaginary, and

raising/lowering indices again becomes complex conjugation. It is convenient for us to write

the Lagrangian in terms of these Majorana spinors, with explicit projection operators. In

this case the up/down index structure previously used to distinguish complex representations

is broken, since we write all Majorana spinors with indices up, and so we show conjugation

explicitly with a ∗. With this switch in notation and some further processing, our fermion

Lagrangian becomes

e−1Lχ̄χ =
i

12
χ̄ijkM Γµ∇µχ

ijk
M −

i

16
χ̄ijkM Γµ

(
B l
µ i + (B l

µ i)
∗ − Γ5(B l

µ i − (B l
µ i)
∗)
)
χljkM

−
√

2

576
εijklmnpqχ̄

klm
M Γµν

[
F+
µνIJS

IJ,KL((u−1) ij
KL )∗PL + F−µνIJ(SIJ,KL)∗(u−1) ij

KL PR

]
χnpqM

+ g

√
2

144
εijklmnpqχ̄

ijk
M

(
(A lmn

2r )∗PL + A lmn
2r PR

)
χpqrM . (16)

Note that imaginary parts of the scalar tensors come with an extra factor of Γ5; in the case

where the scalar Ansatz is real (see e.g. [14]) these terms vanish. However, in the current

truncations of interest ΣIJKL will be complex, and these interactions will play a role.

To reach this point we have dropped gravitino coupling terms; we can determine the cases

for which this is valid using the H ⊂ SO(8) invariance preserved by the backgrounds. Any

term in the full Lagrangian is SO(8)-invariant, and henceH-invariant. Since the backgrounds

are made of fields in the H-invariant truncation, in any spinor/gravitino coupling

LΨχ = Ψ̄µΓµM(φ)χ , (17)

the scalar φ and hence anyM(φ) isH-invariant. (An analogous argument can rule out spinor-
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gravitino couplings due to H-invariant Pauli couplings involving Fµν .) Thus the coupling

can only exist if χ and Ψ̄µ transform in representations of H whose product contains a

singlet; in general this means χ and Ψµ only couple if they are in the same representation.

(Recall that unlike the bosonic fields in the background geometry, the fermions we study

need not be part of the H-invariant truncation.) Hence, to avoid such couplings, we can

simply decompose the 56s and 8s into H-representations, and choose to study the spinors

whose H-representations are not shared by any gravitino.

3 The SU(4)− Flow

In this section we study fermionic response in a zero-temperature geometry solving the

equations of an Einstein-Maxwell-scalar theory first obtained in compactifications of 11D

SUGRA on Sasaki-Einstein manifolds [7, 8, 9], and later embedded in the H = SU(4)−

truncation of 4D N = 8 gauged SUGRA in [10]; the fermions we study are associated to the

latter embedding of the bulk theory.

3.1 The SU(4)− Truncation

The SU(4)−-invariant sector of maximal gauged supergravity in four dimensions [10] is de-

fined as the fields invariant under the SU(4) ⊂ SO(8) which leaves invariant the four form

,

W−23 =W−2 + iW−3 ≡ dz1 ∧ dz2 ∧ dz3 ∧ dz̄4 , (18)

where the zi are coordinates on C4. The sector contains a neutral pseudoscalar, which we

can consistently set to zero, and a charged pseudoscalar which is embedded in the coset

representative Σ as

Σ =
i

2
Im
(
ω3W−23

)
=
i

2
ωW−3 . (19)

In the final equality the complex scalar ω3 ≡ ω eiα has been taken to be real.

The coset representatives are obtained from the exponential of the generators, as per (3).

To carry out the matrix exponentiation, it is useful to construct the projector

Π =
1

16
W−3 · W−3 where (A ·B)IJKL ≡ AIJMNBMNKL . (20)

This projector is Hermitian, and squares to itself. Moreover, it satisfies the following useful
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identities:

Σ · Σ∗ = 4ω2 Π and Σ∗ · Π = Σ∗ . (21)

Through explicit computation, one then finds

u IJ
ij = δIJij + (cosh 2ω − 1) ΠijIJ , vklIJ = − i

4
sinh 2ω (W−3 )klIJ . (22)

The single gauge field in the truncation commutes with SU(4)− inside SO(8). In terms of

the zi, one can define a Kahler structure on C4 with Kahler form J− invariant under the

SU(4)− × U(1) as:

J− =
i

2

(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3 − dz4 ∧ dz̄4

)
, (23)

and the U(1) gauge field is then embedded in the AIJ of the SO(8) theory as1

A =
1√
2
A J−. (24)

Inserting these ansatze, and defining ξ ≡ (2/
√

3) tanh 2ω to make contact with the conven-

tions of [9], we arrive at the Lagrangian governing the SU(4)− invariant sector of the N = 8

theory:

e−1L = R−F2 − 3

2

|Dξ|2
(1− 3

4
ξ2)2
− 24

(1− 3
4
ξ2)2

(−1 + ξ2) , (25)

where F = dA. In this section we employ conventions such that g2 = 2 and GN = 1/(8π).

The covariant derivative is thus given by Dµξ = ∂µξ − 4iAµξ, and the scalar has charge 4.

To see this from the group theory point of view, under the SO(8) → SU(4)− × U(1)

decomposition, the gauge fields transform as

28→ 150 ⊕ 62 ⊕ 6−2 ⊕ 10 , (26)

where the 10 is our A, and the parity-even and parity-odd pseudoscalars decompose as

35v → 150 ⊕ 102 ⊕ 10−2 , 35c → 20′0 ⊕ 62 ⊕ 6−2 ⊕ 14 ⊕ 1−4 ⊕ 10 , (27)

so our charged scalar ξ (or ω3) is the 14 and its conjugate.

1This A should not be confused with the scalar kinetic tensor defined in (6).
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3.2 SU(4)−-invariant Domain Wall Solutions

The zero-temperature solution we are interested in corresponds to a flow driven by a relevant

deformation from the maximally supersymmetric AdS4 geometry in the UV to the so-called

Pope-Warner AdS4 solution [21] in the IR [7, 8, 9]. This deformation does not involve

adding a scalar operator to the dual Lagrangian; the relevant deformation is a spatially

uniform chemical potential, and the response of the scalar operator is only to acquire an

expectation value, so the geometry is a true holographic superconductor with U(1) broken

only spontaneously.

The chemical potential breaks Lorentz invariance as well as conformal invariance, but

when it leads to a domain wall solution between two AdS4 vacua, full relativistic conformal

invariance is recovered in the infrared as an emergent symmetry. A striking feature is that the

speed of light vIR in the infrared is smaller than the speed of light vUV in the ultraviolet—

meaning simply that gtt/gxx has different IR and UV limits. Physically, we can think of

the ratio vUV /vIR as an index of refraction for the holographic state of matter that we are

describing. By rescaling ~x, we can change vUV and vIR by the same factor, but the index

of refraction remains invariant. An interesting conjecture [8] states (approximately) that

the type of deformation we study, based on a chemical potential and flowing to an infrared

conformal fixed point, always exists in holographic theories provided there is an associated

renormalization group flow preserving Lorentz invariance throughout with the same UV and

IR conformal fixed points.

The SU(4)− holographic superconductor geometry is encapsulated by the ansatz

ds2 = −G(r)e−β(r)dt2 +
dr2

G(r)
+ r2d~x2, A = φ(r) dt, and ξ = ξ(r). (28)

The maximally supersymmetric AdS4 vacuum has G = 4r2 and β = φ = ξ = 0, while the

PW AdS4 solution has ξ =
√

2/3, corresponding to another extremum of the potential (25),

as well as G = 16r2/3 and β = φ = 0.

To construct the flow between the AdS4 solutions, it is helpful to characterize the spec-

trum of irrelevant perturbations of the PW solution, as these can be used to integrate away

from the solution towards the maximally symmetric solution in the UV. Linearizing the equa-

tions of motion about the PW solution, one finds that there is a scalar mode and a vector

mode both with mass m2 = 6 which satisfy the flow criteria. They are holographically dual to

scalar and vector operators of the IR conformal field theory with dimension ∆ = (3+
√

33)/2

and ∆ = 4 respectively. The linearized analysis fixes the irrelevant perturbations to be of
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Figure 1: The AdS4 to PW flow. The flow is characterized by an index of refraction n ≈ 3.78
and a scalar vev proportional to ξ2/φ

2
UV ≈ 0.33.

the form

G =
16

3
r2 + . . . , β = 4 + . . . , φ = r2 + . . . , ξ =

√
2

3
+ J r 1

2
(−3+

√
33) + . . . (29)

Scaling symmetries of the equations of motion have been used to fix the amplitudes of the

β and φ perturbations arbitrarily, leaving only a single parameter J to be tuned such that

the desired behavior is obtained in the UV.

In the UV, the scalar ξ provides a ∆ = 2 perturbation of the maximally symmetric AdS4.

Since we are interested in the case when the UV fixed point is not deformed by a source

for the dual scalar operator, the UV behavior of the scalar is required to be of the form

ξ(r → ∞) ∼ ξ2/r
2 + . . . representing a spontaneously acquired vacuum expectation value

for the dual scalar operator.

The desired solution is readily constructed from a numerical shooting technique, tracing

the RG flow upstream to the UV. It appears in figure 1.
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3.3 The Fermionic Sector

The supersymmetries of the gauged supergravity transform in the 8s, which decomposes as

8s → 4−1 ⊕ 4̄1 , (30)

under the SU(4)− × U(1). Accordingly no supersymmetries survive the truncation. In fact,

since the spin-1/2 fermions decompose as

56s → 20−1 ⊕ 201 ⊕ 43 ⊕ 4̄−3 ⊕ 4−1 ⊕ 4̄1 , (31)

there are no singlets in the fermionic sector of the truncation at all—the SU(4)− invariant

theory is entirely bosonic. From our perspective this is not a problem, as we are happy to

study any N = 8 gauged supergravity spin-1/2 fields, regardless of whether they are in the

SU(4)− truncation. We only wish to avoid gravitino mixing, which we can do as long as we

avoid the 4 representations, and study instead the 20−1 and its conjugate.

Churning through the various supergravity tensors in (16), one arrives at a Lagrangian

for the spin-1/2 modes of the form

e−1Lχ̄χ = χ̄
(

/∇+ /B + /P + M
)
χ , (32)

where the χ are considered as 56 component vectors whose entries are the non-vanishing χijk,

∇ is the derivative covariant on the background geometry, and B,P,M are 56 by 56 dimen-

sional matrices describing the gauge, Pauli, and mass couplings, respectively. We are using a

schematic “slashed” notation to indicate the appropriate Lorentz invariant contraction with

the Γµ.

We can now isolate the Dirac equations for the fields in the 20. Due to an SU(4)-

invariance argument analogous to the argument for the gravitino/spin-1/2 coupling in (17),

each member of the 20 cannot mix with anything but itself. This forbids mixing with its own

conjugate (which is in the inequivalent 20 representation), ruling out “Majorana” couplings

of the type shown in (2). It is helpful to note that /B and /P commute in this case, and thus

the kinetic, gauge, and Pauli terms can be simultaneously diagonalized. In this basis, the

decomposition is manifest.

In terms of the χijk, a representative of the 20−1 can be chosen to be the combination

ψ = χ368 + χ467 + i(χ358 + χ457) , (33)

13



and this or any other fermion in the 20 can then be seen to satisfy the Dirac equation(
i /∇− 4 + 3ξ2

4− 3ξ2
/A+

i

4
/F − 3ξ2

4− 3ξ2

)
ψ = 0. (34)

At the UV fixed point, the scalar ξ vanishes and ψ is massless, and thus from the perspective

of the ABJM theory, ψ is dual to operators carrying charge |qψ| = 1 and having conformal

dimension ∆ = 3/2. Comparing to the complex scalar ξ of (25) with charge |qξ| = 4, one

finds that the scalar carries four times the U(1) charge of the decoupled fermions. This is

another reason why “Majorana” couplings of the type (2) are forbidden in this case.

Along the flow ξ runs from 0 to the IR value ξ =
√

2/3. Thus in the IR theory governed

by the PW solution, the supergravity mode ψ behaves as though it carries mass mIR = 1.

3.4 Fermion Response

We now wish to solve the equation (34) in the background of Figure 1. We use the basis

(A.2) for the generators Γa, and to label the four complex components of our spinors we

define the projectors [22]

Π̃α ≡
1

2

(
1− (−1)αiΓr̂Γt̂Γx̂

)
, P± ≡

1

2

(
1± iΓr̂

)
, (35)

where α = 1, 2. One can then write the four components of a bulk spinor ψ as

ψα± ≡ Π̃αP±ψ . (36)

From a 2+1 dimensional point of view, ψ+ and ψ− each transform as Dirac spinors, and α

labels the two complex components of these spinors. As discussed in [14], supersymmetry

fixes ψ+ to be the spinor that asymptotes to a source for the dual fermionic operator.

It is computationally convenient to “square” (34) to arrive at second order linear differ-

ential equations governing the components of ψ+. We also redefine the spinor as

ψ(t, r, x)→ (Gr4e−β)−
1
4ψ(r) e−i(ωt−kx) , (37)

where we have exploited the background isometries to set the momentum in the x-direction,

and the metric factor has been chosen to cancel the spin-connection part of the covariant

derivative. In practice, the basis we adopt allows one to focus on either the α = 1 or

α = 2 components independently. Rotational invariance of the background then ensures

14



that ψ1(k) = ψ2(−k).

Asymptotically, in the UV the source components behave like

ψ+(r) ∼ J(ω, k) +O(1/r) , (38)

where J(ω, k) is interpreted holographically as a source for the dual fermionic operator. In

the IR, these components obey an equation of the form

ψ′′+ +
2

r
ψ′+ −

(m̃(1 + m̃)

r2
+
L2

IRp
2

r4

)
ψ+ = 0 , (39)

where m̃ = mIRLIR = LIR is the dimensionless mass of the fermion in the IR and LIR of the

AdS radius in the PW solution. We have also introduced

p2 ≡ − ω2

v2
IR

+ k2 , (40)

the Lorentz invariant momentum squared of the mode in the PW background, where vIR is

the speed of light in the PW solution.

The features of the solution to (39) depend strongly on the sign of p2. The case of spacelike

momentum p2 > 0 is particularly interesting. This is because for a system consisting of a

finite density of fermions, one might expect to find significant spectral weight at zero energy

(as measured from the chemical potential) but non-vanishing momentum. In that situation,

(39) is solved by a component of the form

ψ+ =
1√
r
K− 1

2
−m̃

(pLIR

r

)
, (41)

with K the modified Bessel function of the second kind. The IR Green’s function GR(ω, k)αβ

can be a useful diagnostic to quantify the fermion response. To construct it, note that the

Dirac equation (34) implies that

ψ− =
r2

LIR

vIR

(
1

k vIR + ω

)(
m̃

r
ψ+ − ψ′+

)
=− p vIR√

r

(
1

k vIR + ω

)
K− 1

2
+m̃

(pLIR

r

)
, (42)

where ψ− is the component of the bulk spinor whose normalizable fall-off encodes the field

theory response. Applying the holographic prescription for the dual retarded correlator thus
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gives

GR(ω, k) α,β=1 = − 1

4m̃
Γ(1

2
− m̃)

Γ(1
2

+ m̃)

(pLIR)2m̃

k vIR + ω
p vIR (43)

where α, β are spinor indices. To construct a rotationally invariant correlator one can trace

over the spinor indices to obtain

GR ≡ trGR αβ = GR(ω, k) 11 + GR(ω,−k) 11

= − 1

22m̃−1

Γ(1
2
− m̃)

Γ(1
2

+ m̃)

(pLIR)2m̃

p vIR

ω. (44)

In performing the trace, we have exploited the fact that in this system GR(ω, k)22 = GR(ω,−k)11

as a consequence of the dual state’s isotropy.

The domain wall background of figure 1 departs fairly quickly from the PW solution which

characterizes the IR, and thus one expects that IR Green’s functions such as (44) characterize

the field theory dynamics only for those bulk fermion solutions which are localized very near

r = 0.

The solution (41) is regular as r → 0, and purely real. Its form suggests the interesting

possibility of constructing fermion normal modes in the domain wall solution which behave

like (41) in the IR and asymptote to (38) in the UV with J = 0 for some choice of (ω, k).

Indeed, such fermion normal modes were observed in various bottom-up holographic models,

such as [15, 16, 17]. We now attempt to construct these as linearized perturbations of the

SU(4)− invariant flow.

Solving the bulk Dirac equation (using numerical shooting from the IR to the UV) and

scanning over spacelike momenta reveals a null result: we find no fermion normal modes

for the fermions in the 20 or 20. In particular, there is no mode at ω = 0, and thus the

fermionic spectral function is gapped in this state of the ABJM theory.

To quantify and better visualize the fermion response one can look to the spectral function

of the dual field theory operators, which we define to be

A(ω, k) =
i

2
tr
(
GR −G†R

)
. (45)

Here GR is the 2× 2 matrix of retarded Green’s functions for the two-component fermionic

operators. To extend the domain of the spectral function to timelike momenta, one must

modify the IR boundary condition (41) to provide the proper notion of “ingoing” necessary

to reproduce the causal structure of the retarded correlator. The correct prescription is given
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in [23], and turns out to be

ψ+ =


1√
r
H

(1)

− 1
2
−m̃

(√
−p2 LIR

r

)
ω > vIR|k|

1√
r
H

(2)

− 1
2
−m̃

(√
−p2 LIR

r

)
ω < vIR|k|

(46)

with H the Hankel function of the first or second kind as indicated.

The spectral function is shown in figure 2. Here and elsewhere in the paper we plot

dimensionful quantities in units of the chemical potential, which can always be set to 1

without loss of generality because of conformal invariance. Notably, from the leftmost plot

one observes that for sufficiently large values of ω/µ the spectral weight is confined to the

edges of a roughly conical structure in momentum space with slope one in the units of the

figure. This is in fact the conformal behavior anticipated from the presence of the maximally

symmetric AdS4 in the UV. This can readily be seen from the analytic continuation of (44)

to timelike momenta, replacing the labels “IR” with “UV”, and evaluating m̃ = 0. To wit,

for ω > vUV|k| one obtains

A(ω, k) =
2

vUV

ω√
−p2

, (47)

where the Lorentz contraction implied by p2 is now understood to be with respect to the

maximally symmetric AdS4 metric. The right plot in figure 2 shows the spectral function

zoomed-in around the origin for ω < 0. The spectral function in this region is somewhat

diffuse, hence we have added two black dashed lines which trace out the peaks in the spectral

weight of the two spinor components of the fermionic operator. These lines clarify that the

bands of the two spinor components cross at k = 0 and reach their turning points at some

non-zero k; this is reminiscent of a holographic Rashba effect, as was discussed previously in

[24].

To further quantify the properties of any putative fermionic excitations, it is also helpful

to consider the spectral weight along several representative momentum slices. Strictly at

ω = k = 0, the bulk mode decays in the IR as a power law, and one can explicitly show

that the spectral weight vanishes at this point. Extending this computation to finite ω along

k = 0 results in the slice shown in the left plot of figure 3. Most notably, the spectral weight

exhibits a “soft gap”, vanishing like a power law as ω → 0. By studying the properties of

the IR Green’s functions along this slice, it is straightforward to demonstrate that

A(ω, k = 0) ∼ ω2∆IR−3 for
ω

µ
� 1 , (48)
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Figure 2: Spectral function for fermionic operators in the 20. The red lines mark the IR
lightcone, while the blue lines show the lightcone of the UV theory. The right figure shows
a close-up around the origin for ω < 0. Superimposed on the right figure are black dashed
lines, showing the lines of maxima of the spectral weight; black dots, marking the point of
closest approach to the ω = 0 axis (k?); and white dots, showing the location of the Fermi
surface singularities in the normal phase (kF ). These special points will be discussed in more
detail in section 5.
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Figure 3: Spectral function for fermionic operators in the 20 as a function of frequency at
various momenta. At left, k = 0 and the dashed purple line shows the maximally symmetric
AdS4 result as given by (47). The inset details the falloff at low frequencies, which asymptotes
to a power law with exponent 2∆IR − 3 =

√
3/2 as shown by the pink line. At non-zero

momenta (right), the spectral function develops a hard gap. For momenta in the vicinity of
k ≈ k? there is a narrow quasiparticle-like peak just below the gap, as well as a more diffuse
hump at larger |ω/µ| as dictated by the UV conformal theory.

where ∆IR = 1
2
(3 + 2m̃) is the conformal dimension of the fermionic operator in the IR

theory.

The slices along non-zero momenta are rather more interesting. From the right plot of

figure 3, one can clearly distinguish the appearance of the hard gap in the spectral weight

corresponding to the boundaries of the IR lightcone. As the momentum is increased from

zero, the broad peak controlled by the UV fixed point develops a shoulder near the gap, which

eventually sharpens into a well defined secondary peak. This secondary peak is present for

momenta k ≈ k? which is the momentum at which the maximum of the arcing spectral

weight achieves its closest approach to ω = 0. Accordingly it is natural to associate this

secondary peak with a gapped fermionic excitation in the dual ABJM phase of matter. We

will have more to say about this excitation and its holographic interpretation in section 5.

For now, we note that these spectral functions share similarities with the “peak-dip-hump”

structure observed in various ARPES measurements of the high Tc superconductors. This

experimental structure has been argued to be a consequence of many-body interactions in the

superconducting phase (eg. [25]). Similar line shapes were observed holographically in [26]

and [16]. The link between these results and the experimentally observed peak-dip-hump is

tenuous; in our current case the pattern is likely a consequence of the previously mentioned

Rashba-like crossing of two bands, in combination with the sharpening of the peaks as they

19



approach the IR lightcone.

3.5 Field Theory Operator Matching

To make contact with the dual field theory, it is necessary to first employ the holographic

dictionary to translate the bulk fields involved in our solutions into field theory operators.

These operators are distinguished by their quantum numbers—conformal dimensions and

charges under various symmetry groups.

The dual superconformal field theory is most commonly written in terms of ABJM theory

[20], a Chern-Simons-matter theory which makes a global SU(4)×U(1)b ⊂ SO(8) manifest,

while the full SO(8) is present but not apparent in the Lagrangian. However, this SU(4)

subgroup and the commuting U(1)b (associated with monopole charge) are different from

the SU(4)−×U(1) subgroup relevant to our geometry; the two sets of subgroups are related

by a triality transformation.

The supercharges in the 8s decompose under SU(4)− × U(1) as 8s → 4−1 ⊕ 4̄1 (30) but

under the SU(4)×U(1)b of ABJM theory as 8s → 60⊕ 12⊕ 1−2. This latter decomposition

aligns with the isometries of the moduli space for a stack of M2-branes probing a C4/Zk
singularity [20]. The former branching, on the other hand, corresponds to the decomposition

of the supersymmetries when the sign of the M2-brane charge is reversed. Reversing the sign

of the M2-brane charge is realized in the eleven dimensional SUGRA as a “skew-whiffed”

solution in which the four-form flux has opposite sign (or, equivalently, the orientation of

the S7 is reversed). Indeed, when the PW solution is oxidized to eleven dimensions, the

solution is of this skew-whiffed form [21, 10]. The flows constructed in section 3.2 thus

connect the PW solution to a skew-whiffed AdS4 in the UV. For Chern-Simons level k = 1,

the skew-whiffed AdS4×S7 still preserves maximal supersymmetry, and the holographic dual

remains the ABJM theory. This is the case relevant for the holographic interpretation of our

supergravity results. The skew-whiffing is then realized from the field theory perspective as

a triality rotation on the operator spectrum [27], as might be anticipated from the various

decompositions of the global symmetries we have considered.

Because the two SU(4) groups do not commute, representations of SU(4)− do not fill out

complete representations of the ABJM SU(4). Instead of presenting dual operators in the

ABJM language, we will instead use a simplified notation with manifest SO(8) invariance,

which we can think of as a generalization of the theory living on a single M2-brane: we will

combine 8 field theory scalars in the 8v into complex combinations Zi, i = 1, 2, 3, 4, and 8

field theory Majorana spinors in the 8c into complex combinations Λi, i = 1, 2, 3, 4.
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In this notation, the operator dual to the complex scalar turned on in the background is

the ∆ = 2 fermion bilinear,

ξ ↔ Λ1Λ1 . (49)

The gauge field (24) corresponds to the chemical potentials for the four Cartan generators

of SO(8) being identified as

µa = µb = µc = −µd . (50)

The fermionic supergravity fields are then dual to scalar/fermion composite operators with

dimension ∆ = 3/2 of the form ZΛ. The mode (33) is the linear combination

ψ ↔ Z̄3Λ2 − Z̄4Λ4 . (51)

4 The H = SO(3)× SO(3) Flow

We next turn our attention to a similar pair of domain wall geometries found within an

SO(3)×SO(3) invariant truncation of the gauged SUGRA [11]. As before, these backgrounds

are holographically dual to zero temperature phases of ABJM theory with a broken U(1)

global symmetry, though in this case it is explicitly as well as spontaneously broken. Again

we will discover a gapped fermion excitation spectrum in these states. This time, however,

the gapping mechanism relies on a special type of fermion coupling, similar to the “Majorana

coupling” previously studied in the bottom-up construction of [16].

4.1 The SO(3)× SO(3) Truncation and Domain Wall Solutions

To truncate the full supergravity to the SO(3)×SO(3) invariant sector, we make the following

ansatz for the scalar tensor [11]:

ΣIJKL =
λ

2
√

2

[
cosα

(
Y+
IJKL + iY−IJKL

)
− sinα

(
Z+
IJKL − iZ−IJKL

)]
. (52)
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Here, λ and α are four-dimensional scalars, and Y± and Z± are self dual (+) and anti-self

dual (−) invariant four-forms on the scalar manifold:

Y+ = dx3 ∧ dx4 ∧ dx5 ∧ dx1 + dx2 ∧ dx6 ∧ dx7 ∧ dx8 ,

Y− = dx3 ∧ dx4 ∧ dx5 ∧ dx2 + dx1 ∧ dx6 ∧ dx7 ∧ dx8 ,

Z− = dx3 ∧ dx4 ∧ dx5 ∧ dx1 − dx2 ∧ dx6 ∧ dx7 ∧ dx8 ,

Z+ = dx3 ∧ dx4 ∧ dx5 ∧ dx2 − dx1 ∧ dx6 ∧ dx7 ∧ dx8 . (53)

Here the xi are coordinates on the R8 of SO(8). In this language, (x3, x4, x5) and (x6, x7, x8)

transform as the fundamental representation under different SO(3) factors in H. Evaluating

the Lagrangian (5) in the SO(3)× SO(3) invariant truncation gives

e−1L =
1

2
R− 1

4
FµνF

µν − ∂µλ∂µλ−
sinh2(2λ)

4
(∂µα− gAµ) (∂µα− gAµ)− P , (54)

where κ2 has now been set to one, and the remaining U(1) is embedded in the AIJ like

A = A dx1 ∧ dx2. (55)

The scalar potential is

P =
g2

2

(
s4 − 8s2 − 12

)
with s ≡ sinhλ , (56)

and it has critical points at

λUV ≡ 0 and λIR ≡ ± log(2 +
√

5) , (57)

corresponding to AdS4 solutions with AdS radii LUV = 1√
2g

(the maximally supersymmetric

vacuum) and LIR =
√

3
7
LUV, respectively. In order to facilitate comparison to results which

have previously appeared in the literature, we will use slightly different units in this section

than in section 3, using units such that g = 1.

Solutions to the equations of motion coming from (54) will provide the classical back-

grounds we wish to probe. Domain wall solutions in this truncation can again be described

by a simple radial ansatz

ds2 = −G(r)e−β(r)dt2 +
dr2

G(r)
+ r2d~x2, A = Ψ(r) dt, and λ = λ(r) , (58)
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Figure 4: The “Massive Boson” background. The dashed lines in the plot of G/r2 are at 14/3
and 2, indicating the values obtained in the IR and UV AdS4 fixed points respectively. The
ratio of the speed of light in the UV CFT compared to that of the IR theory is n = 26.900,

and the non-vanishing scalar fall-off is
λ
1/2
2

ΨUV
≈ 0.0308.

and a non-trivial bulk profile for λ vanishes near the AdS boundary like λ(r → ∞) ∼
λ1/r+ λ2/r

2. To determine what boundary conditions are interesting, we must consider the

dimensionality of the operator dual to λ. As discussed previously [11, 17], λ is in fact dual

to a linear combination of a fermion and a boson bilinear (where each bilinear also includes

monopole operators). Bosonic bilinears have ∆ = 1 while fermionic bilinears have ∆ = 2,

hence their sources are proportional to λ2 and λ1, respectively. This has the consequence

that any solution with λ turned on necessarily leads to explicit symmetry breaking, being

dual to ABJM theory deformed by a bilinear charged under the global U(1). With λ1 6= 0 we

source the fermion bilinear, with λ2 6= 0 we source the boson bilinear. In [11] two solutions

corresponding to λ1 = 0 and λ2 = 0 were constructed; they were further explored in the

context of fermion response in [17]. These are the solutions we will study here. Since each

of these solutions sources a mass term for either a composite boson or fermion field, we will

refer to them as the “Massive Boson” and the “Massive Fermion” background, respectively.

The solutions are shown in figures 4 and 5. Note that the different choice of units for the

SUGRA gauge coupling g in this section relative to section 3 is visible in the difference in

the asymptotic value of the metric function G/r2 → 1/L2
UV as r →∞.
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Figure 5: The “Massive Fermion” background. The dashed lines in the plot of G/r2 are at
14/3 and 2, indicating the values obtained in the IR and UV AdS4 fixed points respectively.
This geometry is characterized by n = 1.861 and λ1

ΨUV
≈ 1.227.

4.2 The Fermionic Sector

We now wish to derive the SUGRA Dirac equations in the SO(3) × SO(3) domain wall

backgrounds. We first isolate a sector of spin-1/2 fermions that do not mix with the grav-

itini. The SO(3) × SO(3) group is embedded in the SO(6) ' SU(4) group of the ABJM

decomposition in the natural way. Under SO(8)→ SU(4)×U(1)b → SO(3)×SO(3)×U(1)

the gravitini transform as

8s → 60 ⊕ 12 ⊕ 1−2 → (3,1)0 ⊕ (1,3)0 ⊕ (1,1)2 ⊕ (1,1)−2 , (59)

and thus we can avoid mixing in the SO(3) × SO(3)-invariant backgrounds as long as we

study fermions in representations other than these. The spin-1/2 fields are contained in the

56s of SO(8), which decomposes as

56s → 152 ⊕ 15−2 ⊕ 100 ⊕ 100 ⊕ 60

→ (3,3)2 ⊕ (3,1)2 ⊕ (1,3)2 ⊕ (3,3)−2 ⊕ (3,1)−2 ⊕ (1,3)−2 ⊕ (60)

2(3,3)0 ⊕ 2(1,1)0 ⊕ (3,1)0 ⊕ (1,3)0 .
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We see there are four fermions in the (3,3) representation of SO(3) × SO(3)—a charged

fermion, a neutral fermion and their conjugates—that cannot mix with the gravitini. Group

theory does not prevent them from mixing with each other, and generically they do. The

different U(1) charges of the fermions in the (3,3) representations are no obstacle to this

mixing because the U(1) symmetry is broken by a non-trivial profile for the charged λ in our

backgrounds. Moreover, the fact that (3,3) is a real representation means mixing between

the spinors and their conjugates is possible, meaning the Majorana coupling of (2) can exist.

To derive the explicit Dirac equations, we evaluate the scalar tensors in the fermionic

Lagrangian (16) in the SO(3)× SO(3) truncation. As anticipated, we find mixing between

sets of four fermions, corresponding to the four copies of (3,3). We focus on only one of

these sets, say {χ467, χ538, χ418, χ428}, since the other sets are related through group theory.

The fermions can be assembled into complex combinations that are charge eigenstates,

χ2 = χ428 + iχ418, χ̄2 = χ428 − iχ418, χ0 = χ467 + iχ538, χ̄0 = χ467 − iχ538. (61)

The χ2 and χ0 modes have U(1) charges 2 and 0, respectively, and the barred spinors, being

charge conjugates of the un-barred ones, have opposite charge. The Dirac equations for these

fermions take the form (
iΓµ∇µ 1 + S

)
~χ = 0 , (62)

where 1 is a 4 × 4 identity matrix, ~χ ≡ {χ2, χ̄2, χ0, χ̄0}, and S is a mixing matrix with

contributions from gauge, Pauli, and mass type couplings, whose explicit form is

−1
4

/A(cosh 2λ+ 3) 0 Γ5 sinhλ − sinhλ

0 1
4

/A(cosh 2λ+ 3) − sinhλ −Γ5 sinhλ

−Γ5 sinhλ − sinhλ i
2
√

2
/F 1

2

(
/A−
√

2
)

Γ5 sinh2 λ

− sinhλ Γ5 sinhλ 1
2

(
/A+
√

2
)

Γ5 sinh2 λ − i
2
√

2
/F


.

(63)

Here /A ≡ ΓµAµ, and /F ≡ ΓµνFµν . This mixing matrix cannot be reduced into smaller

blocks, and so we are obliged to solve a coupled system of linear differential equations.

Before solving these Dirac equations numerically, it is instructive to summarize the types

of couplings the mixing matrix gives rise to, and the qualitative effects of these couplings on

the fermionic spectrum. We will use the same projectors (35) as in the previous section to

label the four spinor components as χα± with α = 1, 2. Writing out the Dirac equations (62)

25



at the level of the spinor components, it is easy to see that they split into two independent

sets. One set couples together the α = 1 components of χ2 and χ0 with the α = 2 components

of χ̄2 and χ̄0. The other set of equations is identical but with α = 1↔ α = 2 and k → −k.

This coupling is a generalization of the “Majorana coupling” discussed by [16] to involve

more than one spinor field. As we described in the introduction, [16] noted that such a

coupling effectively forbids the existence of a holographic Fermi surface. This can be under-

stood as a consequence of level repulsion. Imagine that in the absence of such a Majorana

coupling, the α = 1 component of χ2 has a band of normal modes that crosses ω = 0 and

at a non-zero k = kF ; this crossing is interpreted as a Fermi surface (left part of figure 6).

Because χ̄2 is the charge conjugate of χ2, it will have a similar normal mode band but with

(ω, k)→ (−ω,−k), thus it crosses ω = 0 at k = −kF . Moreover, the spectrum of the α = 1

components is related to that of α = 2 components by k → −k, as a consequence of the

background rotational symmetry. Taken together, this means that the α = 2 component

of χ̄2 has a normal mode band that is related to that of the α = 1 component of χ2 by

a reflection across ω = 0 (center of figure 6). In particular, these two bands will cross at

(ω, k) = (0, kF ). Finally then, turning on the Majorana coupling between them will cause

level repulsion at this crossing point, gapping out the Fermi surface (right part of figure

6). This mixing between components can be thought of as analogous to the Bogoliubov

transformation mixing particles and holes in BCS theory. This prediction will be confirmed

in our numerical results in the next subsection.

In field theory terms, the Majorana coupling in supergravity corresponds to the existence

of a three-point function which is schematically of the form 〈OλOχOχ〉 among the operator

Oλ dual to the active scalar λ and the fermion. This three-point function is visible in the

vacuum state of the dual field theory, and its strength controls how strong the gapping

of the Fermi surface will be. It would be interesting to try to develop a more model-

independent, field theoretic account of how similar three-point functions control the size of

a superconducting gap.

Additionally, a comparison to the results of [17] will be helpful. There, fermion response

for the same quartet of SUGRA fermions in the same SO(3) × SO(3) domain walls were

considered, but the chiral parts of the Majorana couplings in the fermion Lagrangian (16)

were neglected. As explained above, the Γ5 matrices in the Majorana couplings are directly

responsible for the coupling between spinor components with different α; without them the

Majorana terms couple only α = 1 to α = 1 components. Hence, by neglecting these

couplings the gapping mechanism described above is no longer present; level repulsion still
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k

Figure 6: An illustration of the level repulsion induced by the chiral Majorana coupling in
the (ω, k)-plane. Left : Without a Majorana coupling, (one of the two spinor components α
of) a fermion operator will generically display lines of normal modes (purple) crossing the
dashed ω = 0 line, leading to a Fermi surface singularity. Center : Looking at the conjugate
fermion, and switching to the other spinor component, gives an identical normal mode line
flipped across ω = 0. Right : Turning on the chiral Majorana coupling mixes these two
energy bands, causing them to repel.

occurs among the mixed fermions, but it is no longer guaranteed to be localized at ω = 0

where it can create a gap. Thus, when turning on the “non-chiral” Majorana couplings in

[17], some Fermi surface singularities were lifted, while others remained.

4.3 Fermion Response

We now proceed to solve our set of coupled Dirac equations. Many steps are identical to

those described in section 3 and will not be repeated. The one new ingredient in this system

is the mixing between different fermions through the matrix S. As a consequence of this

mixing, when sourcing any of the coupled fermions, there will generically be a response in

all four of them. This gives rise to a matrix of Green’s functions, schematically

GijR =
δ〈Oj〉
δJ i

∣∣∣
Jk=0

, (64)

where i, j ∈ {1, 2, 3, 4} label the four coupled fermions, J and 〈O〉 denote sources for and

responses of the dual operators, respectively, and Jk = 0 implies that all sources except J i

are zero. The computation of this matrix, including the implementation of correct boundary

conditions, requires some care; this is described in detail in [28, 29] and is implemented in a

very similar system in [17]. We refer the thorough reader to those references, and proceed

directly to a discussion of our results.

First of all, as was the case in section 3, the IR geometry controls important aspects of
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Figure 7: The band structure of fermion normal modes in the Massive Boson (type 1)
background. The normal mode is shown in purple. The inset zooms in on the beginning of
this band, emphasizing that it very nearly coincides with the edge of the IR lightcone.

these Green’s functions. For timelike IR momenta, as defined in (40), infalling boundary

conditions are imposed. These boundary conditions are complex, which can lead to quasi-

normal mode solutions. In the dual gauge theory these correspond to excitations with finite

lifetimes. In contrast, for spacelike IR momenta one instead imposes regular boundary con-

ditions in the IR. This is a purely real boundary condition, and may give rise to normal mode

solutions in the bulk. Such solutions could correspond holographically to stable fermionic

excitations in the boundary field theory.

If the fermion spectral weight is non-vanishing at zero frequency, it means that there are

gapless fermionic modes in the dual phase. In [17], an interesting prediction of the “nearly

top-down” model was that spectral weight appeared as a band of delta functions passing

through a Fermi surface singularity at ω = 0 and k = kF . However, as anticipated previously

by the chiral Majorana coupling-induced level repulsion argument, we find that the true top-

down system admits very few normal modes at all. In the Massive Fermion background we

find none, while in the Massive Boson background there is a line of normal modes very close

to the lightcone, as seen in figure 7. These lines sit very close to the lightcone edge, and go

on to quite large k and ω.

To get a more detailed picture of the spectrum, we plot the spectral functions as defined in

(45) for the fermions of the (3,3) in the Massive Boson and Massive Fermion backgrounds in
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Figure 8: The spectrum in the Massive Boson background. The red and blue lines mark
the IR and UV lightcones, respectively, and the white lines show the location of the line of
normal modes, corresponding to a line of delta function peaks in the spectral weight. The
white dots at ω = 0 show the Fermi momentum in the normal phase.

figures 8 and 9, respectively. As in section 3, we observe arcing spectral weight inside the IR

lightcone presumably due to the presence of bulk fermion quasinormal modes. Particularly

in figure 9 we again observe a crossing of the arcs coming from different spinor components.

The mixing of charged and neutral fermions is seen in the transfer of spectral weight between

arcs as one follows them while varying k (this is most clearly seen in the massive fermion

background). Note that the massive boson normal modes are some (k- and ω-dependent)

linear combination of the charged and neutral fermions, hence they are drawn in both plots.

Importantly, in both holographic phases the spectral weight is only non-zero away from ω =

0, and in nearly every case there is a fairly pronounced gap in the spectral function. Hence

we find no sign of a Fermi surface in the fermion correlation functions in these holographic

states. The figures show the spectral functions of χ2 and χ0; the spectral functions of their

charge conjugate modes are identical but with ω → −ω, as discussed above.
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Figure 9: The spectrum in the Massive Fermion background. The red and blue lines mark
the IR and UV lightcones, respectively; for spacelike IR momenta the spectral weight is zero
everywhere. The white dots at ω = 0 show the Fermi momentum in the normal phase.

4.4 Field Theory Operator Matching

Once more exploiting our top-down framework, we can write down exactly which operators

in ABJM theory are dual to the quartet of fermions under study. Unlike the SU(4)− case,

here the symmetry structure aligns nicely with the ABJM decomposition of SO(8) described

above (59), with SO(3)×SO(3) embedded in SO(6) ' SU(4) in the natural way. As a result,

we can use ABJM operator language directly. This was worked out in [17], and for details

we refer the reader there. Here, we simply quote the results:

χ2 ↔
(
Y 1ψ2 − Y 2ψ1 + Y 3ψ4 − Y 4ψ3

)
e2τ , (65)

χ̄2 ↔
(
Y †1 ψ

†2 − Y †2 ψ†1 + Y †3 ψ
†4 − Y †4 ψ†3

)
e−2τ , (66)

χ0 ↔ Y 1ψ†4 + Y 4ψ†1 − Y 2ψ†3 − Y 3ψ†2 , (67)

χ̄0 ↔ Y †1 ψ4 + Y †4 ψ1 − Y †2 ψ3 − Y †3 ψ2 . (68)

In this mapping, the Y ’s are ABJM scalars, ψ’s are fermions, and e2τ is a monopole operator

which carries all of the charge under the U(1)b.

This identification of symmetries facilitates the field theory description, allowing one to
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interpret the dual state of matter as a phase in which a chemical potential for monopole

operators has been turned on. The four Cartan chemical potentials are identified as

µa = µb = µc = µd . (69)

This corresponds to the gauge field A12 alone being turned on because 1, 2 are 8s indices, and

a triality rotation to the 8v basis reveals all four Cartan charges are turned on equally. The

non-trivial bulk scalar signals an explicit breaking of the number density for this composite

matter, by an operator of the form

O∆=1 ∼ Y AY Ae2τ or O∆=2 ∼ ψAψAe2τ , (70)

for the massive boson (fermion) case, respectively. Viewed in this language, our results for

the massive fermion phase demonstrate a novel phase of strongly coupled matter in which

there exist perfectly stable composite fermion excitations above a hard gap.

5 Lessons for Strongly Coupled Systems

One of the most striking lessons from our calculation of fermion spectral functions is that in

the broken symmetry phases of ABJM matter that we study, our fermion spectral densities

are always gapped. This observation merits further discussion, as it appears to manifest for

different reasons in the two cases, and it is not entirely clear how generic this result might

be. In an attempt to better understand the absence of Fermi surface singularities in these

spectral functions, it proves useful to compare our results against several related calculations

which we now describe.

5.1 Top-down vs. Bottom-up Fermion Response

In previous investigations of fermion spectral functions in domain wall flows [15, 17], the au-

thors employed non-top-down fermions in an attempt to gain intuition for how the fermionic

degrees of freedom behave in the dual phases of matter. A surprising result was the presence

of families of bulk fermion normal modes which collectively described ungapped bands of

perfectly stable fermionic excitations in the dual field theory.

To realize these bands, it is necessary to deform our top-down system by ignoring the

constraints that D = 4 maximal gauged SUGRA places on the bulk fermion couplings. In

the SU(4)− flow, for example, one can make contact with [15] by setting the scalar to zero in
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the top-down Dirac equation (34) (so that the fermion couplings do not run), dropping the

Pauli coupling, and artificially dialing the bulk fermion’s charge. As explained in [15], for

suitably large values of this “probe” fermion’s U(1) charge, ungapped bands of normal modes

appear and a holographic Fermi surface is present. To verify that the formation of a gap is

highly dependent on the various couplings in the Dirac equation, we computed the spectral

function for a number of deformations of (34). We find that setting the scalar to zero in the

Dirac equation, but otherwise leaving the magnitude of the couplings untouched, leaves the

results largely unchanged; in particular, the gap remains. However, if we additionally tune

the couplings by O(1) factors, for example by doubling the charge or changing the sign of

the Pauli coupling, the gap will in general close. This is consistent with the results of [15],

which show that the larger the fermion charge, the more bands of gapless modes are present.

In this context then, it would seem that the fermion spectral functions in the SU(4)−

domain wall of section 3.3 end up gapped for a fairly straightforward reason: SUGRA de-

mands that in this state, the fermions in the 20 carry a U(1) charge that is too small to

support a Fermi surface.

This stands in contrast to the gapping mechanism that appears to be at work in the

SO(3) × SO(3) flow. The results of [17] demonstrate that in this phase, the U(1) charge

carried by the bulk fermion is sufficient to form a holographic Fermi surface, provided that

one removes the chiral Majorana couplings by hand. (Purely bottom-up fermions with the

same mass and charge, also studied there, have yet more gapless bands.) In other words,

the mechanism of [16], in which the chiral Majorana couplings play the key role, makes the

difference in this case between an ungapped Fermi surface and gapped behavior.

Thus, we find that the SUGRA couplings conspire to gap out the spectral weights in all

the cases we study. However, while the resulting spectral weights all have similar features,

with gapped, arcing bands, the various bulk Dirac equations have qualitative differences.

The Majorana coupling (2) acts much like a bulk version of the BCS mechanism, and can

therefore be expected to lead to the observed gaps in spectral weights. Yet the fermion

spectral functions in the SU(4)− background emphasize that a gap may appear without this

coupling. The precise interpretation of these different gapping mechanisms in terms of the

physics in the boundary field theory deserves further investigation. Furthermore, it would

clearly be interesting to study fermionic spectral weights in other top-down realizations of

zero-temperature symmetry-broken states, in order to find out how general the formation of

a gap really is.
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5.2 Extremal AdSRN and Effects of Broken Symmetry

A complimentary line of insight is directed along comparisons between the spectral functions

in our domain wall flows and those in states of unbroken U(1) symmetry. Such states are

readily accessible to our decoupled fermions. They are solutions to the bosonic sectors

described by (25) and (54), but with the scalar set to zero. These backgrounds are the familiar

AdS4 Reissner-Nordström (AdSRN) solution, and its extremal limit is holographically dual

to a distinct zero temperature finite density phase.

Although the form of the AdSRN solution is basically the same in both the SU(4)−

and SO(3)×SO(3) truncations, their holographic interpretation is slightly different because

the U(1) gauge fields under which the black holes are charged and the associated chemical

potentials are embedded differently into SO(8), as is spelled out in (50) and (69).

Nonetheless, both the fermions in the 20 as well as those of the (3,3) behave similarly

in their respective AdSRN backgrounds. Importantly, both systems display Fermi surface

singularities in their dual fermion spectral functions. For the fermions in the (3,3), the

charged modes decouple from their neutral counterparts when the scalars vanish, and unsur-

prisingly it is the spectral function for the charged operators that exhibits a Fermi surface.

It is perhaps helpful to emphasize that these results (unlike the previous subsection) are

truly top-down. Both the AdSRN backgrounds and the spin-1/2 Dirac equations can be

embedded in the maximal gauged SUGRA theory.

The results of our present work show that breaking the U(1) either spontaneously or

explicitly destroys this Fermi surface and gaps the corresponding spectral functions. Notably,

the new state with broken symmetry appears to “remember” the location of the Fermi surface

that was present in the unbroken phase. This is demonstrated by the arcing spectral weights

in figure 2 (right plot) and in figures 8 and 9, which bend towards ω/µ = 0, and achieve their

closest approach at some finite momentum k? vUV/µ. Computation of the fermion response

in the unbroken phase reveals a Fermi surface singularity at kF vUV/µ ≈ 0.25 for fermions

in the 20 of SU(4)− ⊂ SO(8), and at kF vUV/µ ≈ 0.53 for the fermions in the (3,3) of

SO(3)× SO(3) ⊂ SO(8).2 From the figures, one finds that indeed k?/kF ∼ 1.

It is interesting to compare this to the gapping that occurs in the fermionic excitation

spectrum of the standard BCS theory. In the normal phase of a superconductor, particles

and holes have an approximately linear dispersion about the Fermi surface at k = kF . Thus,

in a rotationally invariant system, ε(k) ≈ vF (k − kF ) with vF the Fermi velocity. As the

2Note that due to the different units employed in sections 3 and 4, care should be taken in comparing the
Fermi momenta between the two phases.
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Figure 10: Illustration of gapped fermionic excitations in BCS theory and holography. In
the left panel, the BCS dispersion relation in the superconducting (normal) phase is plotted
in blue (dashed black). The parameters are arbitrarily chosen such that vF = kF = 1 and
|∆| = 2. In the holographic fermion spectral function (cartoon, right), the boundaries of
the IR lightcone determines the stability of the fermionic excitations, but the gapping is
qualitatively similar.

superconductor is cooled into the superconducting phase, Cooper pairs condense and the

mean field BCS Hamiltonian can be rediagonalized via a Bogoliubov transformation that

mixes particles and holes. These new Bogoliubov modes describe the fermionic excitations

in the superconducting phase, and have a dispersion relation of the form

E(k) =
√
ε(k)2 + |∆|2 ≈

√
v2
F (k − kF )2 + |∆|2, (71)

which is plotted in the left panel of figure 10.

In the right panel of the same figure, a sketch comparing some related features in figures

2, 8, and 9 is shown. The cartoon emphasizes the arcs in the spectral weight for fermionic

excitations, whose minima at k? ≈ kF define a gap that is present in the holographic results.3

Also depicted is the qualitative effect of the IR critical point, which opens a window of

stability for any excitations that may be present in the kinematic region defined by the

exterior of the IR lightcone. In the illustration there are no such stable excitations, but

such excitations do appear in the spectrum of fluctuations in the Massive Boson background

(figure 8).

It is worth noting that the peaks of the various spectral weight arcs we observe are in

3While the spectral functions we compute have a “soft gap” at k = 0 in the sense that the spectral weight
vanishes as a power law in ω (see e.g. figure 3), the majority of the spectral weight is concentrated into these
(gapped) arcs.
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general not sharpest at k = k?, where the gapped excitation achieves its lowest energy; this

can be seen particularly well in the right plot of figure 3. Instead, the peak representing the

gapped excitation typically sharpens further as it nears the IR lightcone. This behavior is

natural from the perspective of the dual field theory, where the presence of the IR lightcone

can be interpreted as the existence of a kinematic regime in which interactions mediating

decays of the fermionic excitations are forbidden.

The holographic spectral densities suggest a suitable (but somewhat rough) estimate for

the size of the gap in the holographic broken symmetry phases, ∆HSC. In the examples

shown in this work, the value of the excitation energy at k? is always close to the boundary

provided by the IR lightcone. Thus we can write

|∆|HSC ≡ E(k?) ≈ E(kF ) ∼ vIRkF (72)

where vIR is the effective speed of light in the IR theory, and kF is the value of the Fermi

momentum in the symmetry unbroken phase dual to the extremal AdSRN solution. This type

of estimate, while fairly accurate in our top-down realizations, will generally not be obeyed in

an arbitrary bottom-up construction where one is free to tune the different couplings. Again

it would be interesting to study other similar top-down embeddings in order to investigate

whether this is a standard feature of such states. At the very least, however, (72) is a

“phenomenological” rule for the finite density states we have studied here, supported by the

results in figures 2, 8, and 9.

5.3 Stability in Supergravity and Zero Temperature Response

The utility of the fermionic spectral functions is contingent on their ability to quantify and

elucidate properties of interesting strongly correlated phases. While we have applied this

tool to better understand how some of these phases are constructed from ABJM matter,

it is also important to address the possibilities that these zero temperature states have to

actually be realized in the phase diagram for ABJM matter at finite density.

Fundamentally, this is a question of stability. A useful example is provided by the SU(4)−-

invariant flow of section 3 and the AdSRN solution that also solves the equations of motion

derived from (25). Very generally, both solutions holographically describe zero-temperature

phases of strongly interacting ABJM matter at finite density. In both cases, the ABJM

theory remains undeformed by the application of any additional sources beyond the chemical

potential. Thus, it is natural to wonder which (if either) of these solutions provides the

35



thermodynamically preferred phase for such ABJM matter at low temperatures.

Neither the SU(4)−-invariant flow nor the extremal AdSRN solution preserve any of

the supersymmetries of the vacuum AdS4. Accordingly there is no guarantee that either

solution is stable at zero temperature, and it is necessary to consider the whole spectrum of

SUGRA fluctuations to hunt for instabilities. Unstable modes may, or may not, belong to

the consistent truncation that results in the maximal gauged SUGRA of section 2, and thus

the identification of all possible instabilities is a rather involved task.

It is by now well known that extremal AdSRN solutions exhibit a multitude of instabilities

in gauged SUGRA theories. These instabilities are often diagnosed by studying the mass

spectrum of supergravity fluctuations around the AdS2 factor of the near horizon geometry

of the extremal solution. If the fluctuation’s effective mass lies below the Breitenlohner-

Freedman bound [30, 31] of this IR AdS2 region, an instability to the formation of a new

branch of solutions with a non-trivial profile for the unstable mode is anticipated.

In the context of the present work, this is exemplified in the “superfluid” instability

of the extremal AdSRN solution to the formation of scalar ξ hair. The SU(4)−-invariant

flow studied in section 3 is the zero temperature endpoint of a branch of solutions which

extends to finite temperatures via a series of hairy black holes which terminate at some

temperature Tc. By comparing the thermodynamic free energy of the hairy black holes to

that of the AdSRN solutions, it is straightforward to demonstrate that the solutions with ξ

hair are thermodynamically preferred, and that as the finite density system cools there is a

second order phase transition at Tc from the symmetry unbroken “normal” phase to a broken

symmetry superfluid phase with a non-vanishing condensate of the operator holographically

dual to ξ.

Interestingly, in [10] the authors demonstrate that this superfluid instability is not the end

of the story at low temperatures. They show that the PW solution which characterizes the

IR of the SU(4)−-invariant flow is itself unstable to fluctuations of scalar modes within the

gauged SUGRA, and identify the origin of these unstable modes from the eleven dimensional

perspective. Consequently, the SU(4)−-invariant flow cannot describe a true ground state

for strongly interacting ABJM matter.

Further instabilities in the finite-temperature generalizations of the SU(4)− flow and its

AdSRN companion were identified, and the backreacted geometries corresponding to those

instabilities were constructed, by [32] in a larger SU(3)-invariant truncation containing ad-

ditional scalars that includes the SU(4)−-invariant case as a subtruncation. These other

branches of solutions are in thermodynamic competition with the branch we consider, al-
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though it is generally not known what their zero-temperature limit is.

Stability of the SO(3)× SO(3)-invariant flow has been investigated in [33]. The authors

find in this case that despite lacking any supersymmetry, the IR AdS4 solution is stable

to scalar perturbations in the gauged SUGRA. While this stability does not automatically

extend to the full flow, nor does it guarantee an absence of unstable modes in the eleven

dimensional theory, it is nonetheless an interesting observation that distinguishes this flow

in the context of holographic phases of matter.
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A Spinor Conventions

The four dimensional gamma matrices Γa generate Cliff(3, 1) and satisfy

{
Γa,Γb

}
= −2ηab , (A.1)

with η = diag(−,+,+,+). The frame indices a, b take values t̂, r̂, x̂, ŷ. A convenient basis for

these matrices (which has been used throughout this work) is provided by the decomposition

Γt̂ = σ1 ⊗ 1 Γr̂ = iσ3 ⊗ 1 Γx̂ = iσ2 ⊗ σ3 Γŷ = iσ2 ⊗ σ1. (A.2)

This basis diagonalizes the projectors Πα and P± which were used in the text to isolate the

components of the bulk spinor which contain the source for and response of the dual field

theory operator. Consequently, the spinor Green’s function is also diagonal in this basis.

The chiral projectors introduced in section 2 are defined by

Γ5 ≡ iΓt̂Γx̂ΓŷΓr̂ , PL ≡
1

2
(1− Γ5) , PR ≡

1

2
(1 + Γ5) . (A.3)
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