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Abstract

We study a holographic theory of general spacetimes that does not rely on the existence of
asymptotic regions. This theory is to be formulated in a holographic space. When a semiclas-
sical description is applicable, the holographic space is assumed to be a holographic screen: a
codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our
analysis is guided by conjectured relationships between gravitational spacetime and quantum
entanglement in the holographic description. To understand basic features of this picture, we
catalog predictions for the holographic entanglement structure of cosmological spacetimes.
We find that qualitative features of holographic entanglement entropies for such spacetimes
differ from those in AdS/CFT but that the former reduce to the latter in the appropriate
limit. The Hilbert space of the theory is analyzed, and two plausible structures are found:
a direct sum and “spacetime equals entanglement” structure. The former preserves a naive
relationship between linear operators and observable quantities, while the latter respects a
more direct connection between holographic entanglement and spacetime. We also discuss
the issue of selecting a state in quantum gravity, in particular how the state of the multiverse
may be selected in the landscape.



1 Introduction

As with any other classical object, spacetime is expected to consist of a large number of quantum

degrees of freedom. The first explicit hint of this came from the discovery that empty spacetime

can carry entropy [1–6]. What theory describes these degrees of freedom as well as the excitations

on them, i.e. matter?

Part of the difficulty in finding such a theory is the large redundancies present in the description

of gravitational spacetime. The holographic principle [7–9] suggests that the natural space in which

the microscopic degrees of freedom for spacetime (and matter) live is a non-dynamical spacetime

whose dimension is one less than that in the original description (as demonstrated in the special

case of the AdS/CFT correspondence [10]). This represents a huge redundancy in the original

gravitational description beyond that associated with general coordinate transformations. For

general spacetimes, causality plays a central role in fixing this redundancy [11, 12]. A similar

idea also plays an important role in addressing problems in the semiclassical descriptions of black

holes [13] and cosmology [14, 15].

In this paper, we explore a holographic theory for general spacetimes. We follow a “bottom-up”

approach given the lack of a useful description in known frameworks, such as AdS/CFT and string

theory in asymptotically Minkowski space. We assume that our holographic theory is formulated

on a holographic screen [16], a codimension-1 surface on which the information about the original

spacetime can be encoded. This construction can be extended beyond the semiclassical regime by

considering all possible states on all possible slices—called leaves—of holographic screens [14, 17],

where the nonuniqueness of erecting a holographic screen is interpreted as the freedom in fixing

the redundancy associated with holography. The resulting picture is consistent with the recently

discovered area theorem applicable to the holographic screens [18–20].

To study the structure of the theory, we use conjectured relationships between spacetime in

the gravitational description and quantum entanglement in the holographic theory. Recently, it

has become increasingly clear that quantum entanglement among holographic degrees of freedom

plays an important role in the emergence of classical spacetime [21–32]. In particular, Ref. [28]

showed that the areas of the extremal surfaces anchored to the boundaries of regions on a leaf

of a holographic screen satisfy relations obeyed by entanglement entropies, so that they can in-

deed be identified as the entanglement entropies associated with the corresponding regions in the

holographic space. We analyze properties of these surfaces and discuss their implications for a

holographic theory of general spacetimes.

We lay down our general framework in Section 2. We then study the behavior of extremal

surfaces in cosmological Friedmann-Robertson-Walker (FRW) spacetimes in Section 3. Here we

focus on initially expanding flat and open universes, in which the area of the leaves monotonically

increases. We first consider universes dominated by a single component in the Friedmann equa-
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tion, and we identify how screen entanglement entropies—the entanglement entropies among the

degrees of freedom in the holographic space—encode information about the spacetimes. We discuss

next how the screen entanglement entropies behave in a transition period in which the dominant

component of the universe changes. We find an interesting theorem when the holographic screen

is spacelike: the change of a screen entanglement entropy is always monotonic. The proof of this

theorem is given in Appendix A. If the holographic screen is timelike, no such theorem holds.

In Section 4, we study the structure of the holographic theory for general spacetimes, building on

the results obtained earlier. In particular, we discuss how the holographic entanglement entropies

for general spacetimes differ from those in AdS/CFT and how, nevertheless, the former reduce to

the latter in an appropriate limit. We emphasize that the holographic entanglement entropies for

cosmological spacetimes obey a volume law, rather than an area law, implying that the relevant

holographic states are not ground states of local field theories. This is the case despite the fact

that the dynamics of the holographic theory respects some sense of locality, indicated by the fact

that the area of a leaf increases in a local manner on a holographic screen.

The Hilbert space of the theory is analyzed in Section 4.2 under two assumptions:

(i) The holographic theory has (effectively) a qubit degree of freedom per each volume of 4 ln 2 in

Planck units. These degrees of freedom appear local at lengthscales larger than a microscopic

cutoff lc.

(ii) If a holographic state represents a semiclassical spacetime, the area of an extremal surface

anchored to the boundary of a region Γ on a leaf σ and contained in the causal region

associated with σ represents the entanglement entropy of Γ in the holographic theory.

We find that these two assumptions strongly constrain the structure of the Hilbert space, although

they do not determine it uniquely. There are essentially two possibilities:

Direct sum structure — Holographic states representing different semiclassical spacetimes

M live in different Hilbert spaces HM even if these spacetimes have the same boundary space

(or leaf) B

HB =
⊕

M

HM. (1)

In each Hilbert space HM, the states representing the semiclassical spacetime comprise only

a tiny subset of all the states—the vast majority of the states in HM do not allow for a

semiclassical interpretation, which we call “firewall” states borrowing the terminology in

Refs. [33–35]. In fact, the states allowing for a semiclassical spacetime interpretation do not

even form a vector space—their superposition may lead to a firewall state if it involves a

large number of terms, of order a positive power of dimHM. This is because a superposition

involving such a large number of terms significantly alters the entanglement entropy structure,

so under assumption (ii) above we cannot interpret the resulting state as a semiclassical state
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representing M. In this picture, small excitations over spacetime M can be represented by

standard linear operators acting on the (suitably extended) Hilbert space HM, which can be

trivially promoted to linear operators in HB.

Spacetime equals entanglement — Holographic states that represent different semiclas-

sical spacetimes but have same boundary space B are all elements of a single Hilbert space

HB. And yet, the number of independent microstates representing each of these spacetimes,

M,M′,M′′, · · · , is the dimension of HB:

|ΨM
i 〉, |ΨM′

i′ 〉, |ΨM′′

i′′ 〉, · · · ∈ HB; i, i′, i′′, · · · = 1, · · · , dimHB, (2)

which implies that the microstates representing different spacetimes are not independent.

This picture arises if we require the converse of assumption (ii) and is called “spacetime

equals entanglement” [31]: if a holographic state has the form of entanglement entropies cor-

responding to a certain spacetime, then the state indeed represents that spacetime. The

structure of Eq. (2) is then obtained because arbitrary unitary transformations acting in each

cutoff size cell in B do not change the entanglement entropies, implying that the number

of microstates for any geometry is dimHB (so they span a basis of HB). Despite the intri-

cate structure of the states, this picture admits the standard many worlds interpretation for

classical spacetimes, as shown in Ref. [31]. Small excitations over spacetime are represented

by non-linear/state-dependent operators, along the lines of Ref. [36] (see also [37–39]), since

a superposition of background spacetimes may lead to another spacetime, so that operators

representing excitations must know the entire quantum state they act on.

We note that a dichotomy similar to the one described above was discussed earlier in Ref. [36],

but the interpretation and the context in which it appears here are distinct. First, the state-

dependence of the operators representing excitations in the second scenario (as well as that of the

time evolution operator) becomes relevant when the boundary space is involved in the dynamics

as in the case of cosmological spacetimes. Hence, this particular state-dependence need not persist

in the AdS/CFT limit. This does not imply anything about the description of the interior a black

hole in the CFT. It is possible that the CFT does not provide a semiclassical description of the

black hole interior, i.e. it gives only a distant description. Alternatively, there may be a way of

obtaining a state-dependent semiclassical description of the black hole interior within a CFT, as

envisioned in Ref. [36]. We are agnostic about this issue.

Second, Ref. [36] describes the dichotomy as state-dependence vs. firewalls. Our picture, on

the other hand, does not have a relation with firewalls because the following two statements apply

to both the direct sum and spacetime equals entanglement pictures:

• Most of the states in the Hilbert space, e.g. in the Haar measure, are firewalls in the sense that

they do not represent smooth semiclassical spacetimes, which require special entanglement
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structures among the holographic degrees of freedom.

• The fact that most of the states are firewalls does not mean that these states are realized as

a result of standard time evolution, in which the volume of the boundary space increases in

time. In fact, the direct sum picture even has a built-in mechanism of eliminating firewalls

through time evolution, as we will see in Section 4.5.1

Rather, the real tension is between the linearity/state-independence of operators representing

observables (including the time evolution operator) and the spacetime equals entanglement hy-

pothesis, i.e. the hypothesis that if a holographic state has entanglement entropies corresponding

to a semiclassical spacetime, then the state indeed represents that spacetime. If we insist on the

linearity of observables, we are forced to take the direct sum picture; if we adopt the spacetime

equals entanglement hypothesis, then we must give up linearity.

Our analysis in Section 4 also includes the following. In Section 4.3, we discuss bulk reconstruc-

tion from a holographic state, which suggests that the framework provides a distant description

for a dynamical black hole. In Section 4.4, we consider how the theory encodes information about

spacetime outside the causal region of a leaf, which is needed for autonomous time evolution. Our

analysis suggests a strengthened covariant entropy bound: the entropy on the union of two light

sheets (future-directed ingoing and past-directed outgoing) of a leaf is bounded by the area of the

leaf divided by 4. This bound is stronger than the original bound in Ref. [12], which says that the

entropy on each of the two light sheets is bounded by the area divided by 4. In Section 4.5, we an-

alyze properties of time evolution, in particular a built-in mechanics of eliminating firewalls in the

direct sum picture and the required non-linearity of the time evolution operator in the spacetime

equals entanglement picture. In Sections 4.4 and 4.5, we discuss how our framework may reduce

to AdS/CFT and string theory in an asymptotically Minkowski background in the appropriate

limits. We argue that the dynamics of these theories (in which the boundaries are sent to infinity)

describe that of the general holographic theory modded out by “vacuum degeneracies” relevant for

the dynamics of the boundaries and the exteriors.

In Section 5, we devote our final discussion to the issue of selecting a state. In general, specifying

a system requires selection conditions on a state in addition to determining the theory. To address

this issue in quantum gravity, we need to study the problem of time [40, 41]. We discuss possible

signals from a past singularity or past null infinity, closed universes and “fine-tuning” of states,

and selection conditions for the string theory landscape [42–45], especially the scenario called the

“static quantum multiverse” [46]. While our discussion in this section is schematic, it allows us to

develop intuition about how quantum gravity might work at the fundamental level when applied

1This is natural because any dynamics leading to classicalization selects only a very special set of states as the
result of time evolution: states interpreted as a superposition of a small number of classical worlds, where small
means a number (exponentially) smaller than the dimension of the full microscopic Hilbert space.
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to the real world.

Throughout the paper, we adopt the Schrödinger picture of quantum mechanics and take the

Planck length to be unity, lP = 1. When the semiclassical picture is applicable, we assume the null

and causal energy conditions to be satisfied. These impose the conditions ρ ≥ −p and |ρ| ≥ |p|,
respectively, on the energy density ρ and pressure p of an ideal fluid component. The equation of

state parameter w = p/ρ, therefore, takes a value in the range |w| ≤ 1.

2 Holography and Quantum Gravity

The holographic principle states that quantum mechanics of a system with gravity can be for-

mulated as a non-gravitational theory in spacetime with dimension one less than that in the

gravitational description. The covariant entropy bound, or Bousso bound, [12] suggests that this

holographically reduced—or “boundary”—spacetime may be identified as a hypersurface in the

original gravitational spacetime determined by a collection of light rays. Specifically, it implies

that the entropy on a null hypersurface generated by a congruence of light rays terminating at a

caustic or singularity is bounded by its largest cross sectional area A; in particular, the entropy on

each side of the largest cross sectional surface is bounded by A/4 in Planck units.2 It is therefore

natural to consider that, for a fixed gravitational spacetime, the holographic theory lives on a

hypersurface—called the holographic screen—on which null hypersurfaces foliating the spacetime

have the largest cross sectional areas [16].

This procedure of erecting a holographic screen has a large ambiguity, presumably reflecting a

large freedom in fixing the redundancy of the gravitational description associated with the holo-

graphic principle. A particularly useful choice advocated in Refs. [14,17,47] is to adopt an “observer

centric reference frame.” Let the origin of the reference frame follow a timelike curve p(τ) which

passes through a fixed spacetime point p0 at τ = 0, and consider the congruence of past-directed

light rays emanating from p0.
3 The expansion of the light rays θ satisfies

∂θ

∂λ
+

1

2
θ2 ≤ 0, (3)

where λ is the affine parameter associated with the light rays. This implies that the light rays

emitted from p0 focus toward the past (starting from θ = +∞ at λ = 0+), and we may identify

the apparent horizon, i.e. the codimension-2 surface with

θ = 0, (4)

2We will conjecture a stronger bound in Section 4.4.
3In Refs. [14, 17, 47], p(τ) was chosen to be a timelike geodesic with τ being the proper time measured at p(τ).

We suspect that this simplifies the time evolution operator in the holographic theory.
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Figure 1: For a fixed semiclassical spacetime, the holographic screen is a hypersurface obtained as the
collection of codimension-2 surfaces (labeled by τ) on which the expansion of the light rays emanating
from a timelike curve p(τ) vanishes, θ = 0. This way of erecting the holographic screen automatically
deals with the redundancy associated with complementarity. The ambiguity of choosing p(τ) reflects a
large freedom in fixing the redundancy associated with holography.

to be an equal-time hypersurface—called a leaf—of a holographic screen. Repeating the procedure

for all τ , we obtain a specific holographic screen, with the leaves parameterized by τ , corresponding

to foliating the spacetime region accessible to the observer at p(τ); see Fig. 1. Such a foliation is

consonant with the complementarity hypothesis [13], which asserts that a complete description of

a system is obtained by referring only to the spacetime region that can be accessed by a single

observer.

With this construction, we can view a quantum state of the holographic theory as living on a leaf

of the holographic screen obtained in the above observer centric manner. We can then consider

the collection of all possible quantum states on all possible leaves, obtained by considering all

timelike curves in all spacetimes. We take the view that a state of quantum gravity lives in the

Hilbert space spanned by all of these states (together with other states that do not admit a full

spacetime interpretation) [14, 17]. It is often convenient to consider a Hilbert space HB spanned

by the holographic states that live on the “same” boundary space B.4 The relevant Hilbert space

can then be written as

H =
∑

B

HB, (5)

4The exact way in which the boundary spaces are grouped into different B’s is unimportant. For example, one
can regard the boundary spaces having the same area A within some precision δA to be in the same B, or one can
discriminate them further by their induced metrics. This ambiguity does not affect any of the results, unless one
takes δA to be exponentially small in A or discriminates induced metrics with the accuracy of order the Planck
length (which corresponds to resolving microstates of the spacetime).
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where the sum of Hilbert spaces is defined by5

H1 +H2 = {v1 + v2 | v1 ∈ H1, v2 ∈ H2}. (6)

This formulation is not restricted to descriptions based on fixed semiclassical spacetime back-

grounds. For example, we may consider a state in which macroscopically different spacetimes are

superposed; in particular, this picture describes the eternally inflating multiverse as a state in

which macroscopically different universes are superposed [14, 46]. The space in Eq. (5) is called

the covariant Hilbert space with observer centric gauge fixing.

Recently, Bousso and Engelhardt have identified two special classes of holographic screens [18,

19]: if a portion of a holographic screen is foliated by marginally anti-trapped (trapped) surfaces,

then that portion is called a past (future) holographic screen. Specifically, denoting the two future-

directed null vector fields orthogonal to a portion of a leaf by ka and la, with ka being tangent

to light rays emanating from p(τ), the expansion of the null geodesic congruence generated by

la satisfies θl > 0 and < 0 for past and future holographic screens, respectively. They proved,

building on earlier works [48–51], that the area of leaves A(τ) monotonically increases (decreases)

for a past (future) holographic screen:

{

θk = 0
θl ≷ 0

⇔ d

dτ
A(τ) ≷ 0; (7)

see Fig. 2. In many regular circumstances, including expanding FRW universes, the holographic

screen is a past holographic screen, so that the area of the leaves monotonically increases, dA(τ)/dτ >

0. In this paper we mostly focus on this case, and we interpret the area theorem in terms of the

second law of thermodynamics applied to the Hilbert space of Eq. (5). Moreover, in Ref. [20] it

was proved that this area theorem holds locally on the holographic screen: the area of any fixed

spatial portion of the holographic screen, determined by a vector field tangent to the holographic

screen and normal to its leaves, increases monotonically in time. This implies that the dynamics

of the holographic theory respects some notion of locality.

What is the structure of the holographic theory and how can we explore it? Recently, a conjec-

ture has been made in Ref. [28] which relates geometries of general spacetimes in the gravitational

description to the entanglement entropies of states in the holographic theory. This extends the

analogous theorem/conjecture in the AdS/CFT context [21–23] to more general cases, allowing

us to probe the holographic description of general spacetimes, including those that do not have

an obvious spacetime boundary on which the holographic theory can live. In particular, Ref. [28]

5Unlike Ref. [17], here we do not assume specific relations between HB’s; for example, HB1
and HB2

for different
boundary spaces B1 and B2 may not be orthogonal. Also, we have included in the sum over B the cases in which
B is outside the semiclassical regime, i.e. the cases in which the holographic space does not correspond to a leaf of
a holographic screen in a semiclassical regime. These issues will be discussed in Section 4.
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Figure 2: The congruence of past-directed light rays emanating from p0 (the origin of the reference frame)
has the largest cross sectional area on a leaf σ, where the holographic theory lives. At any point on σ,
there are two future-directed null vectors orthogonal to the leaf: ka and la. For a given region Γ of the
leaf, we can find a codimension-2 extremal surface E(Γ) anchored to the boundary ∂Γ of Γ, which is fully
contained in the causal region Dσ associated with σ.

proved that for a given region Γ of a leaf σ, a codimension-2 extremal surface E(Γ) anchored to

the boundary ∂Γ of Γ is fully contained in the causal region Dσ of σ:

Dσ : the domain of dependence of an interior achronal hypersurface whose only boundary is σ,

(8)

where the concept of the interior is defined so that a vector on σ pointing toward the interior takes

the form c1k
a − c2l

a with c1, c2 > 0 (see Fig. 2). This implies that the normalized area of the

extremal surface E(Γ)

S(Γ) =
1

4
‖E(Γ)‖, (9)

satisfies expected properties of entanglement entropy, such as strong subadditivity, so that it can

be identified with the entanglement entropy of the region Γ in the holographic theory. Here, ‖x‖
represents the area of x. If there are multiple extremal surfaces in Dσ for a given Γ, then we must

take the one with the minimal area.

In the rest of the paper, we study the holographic theory of quantum gravity for general

spacetimes, adopting the framework described in this section. We first analyze FRW spacetimes

and then discuss lessons learned from that analysis later.
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3 Holographic Description of FRW Universes

In this section, we study the putative holographic description of (3 + 1)-dimensional FRW cosmo-

logical spacetimes:

ds2 = −dt2 + a2(t)

[

dr2

1− κr2
+ r2(dψ2 + sin2ψ dφ2)

]

, (10)

where a(t) is the scale factor, and κ < 0, = 0 and > 0 for open, flat and closed universes,

respectively. The Friedmann equation is given by
(

ȧ

a

)2

+
κ

a2
=

8π

3
ρ, (11)

where the dot represents t derivative. Here, we include the energy density from the cosmological

constant as a component in ρ having the equation of state parameter w = −1.

As discussed in the previous section, we describe the system as viewed from a reference frame

whose origin follows a timelike curve p(τ), which we choose to be at r = 0. The holographic

theory then lives on the holographic screen, an equal-time slice of which is an apparent horizon: a

codimension-2 surface on which the expansion of the light rays emanating from p(τ) for a fixed τ

vanishes. Under generic conditions, this horizon is always at a finite distance

r =
1

√

ȧ2(t∗) + κ
≡ rAH(t∗) <∞, (12)

where t∗ is the FRW time on the horizon. Note that the symmetry of the setup makes the FRW

time the same everywhere on the apparent horizon, and for an open universe, ȧ(t∗) >
√
−κ is

satisfied for values of τ before p(τ) hits the big crunch. For flat and open universes, we find that

this surface is always marginally anti-trapped, i.e. a leaf of a past holographic screen, as long as

the universe is initially expanding. On the other hand, for a closed universe the surface can change

from marginally anti-trapped to marginally trapped as τ increases, implying that the holographic

screen may be a past holographic screen only until certain time τ . In this section, we focus our

attention on initially expanding flat and open universes. Closed universes will be discussed in

Section 5.

Below, we study entanglement entropies for subregions in the holographic theory—screen entan-

glement entropies—adopting the conjecture of Ref. [28]. Here we focus on studying the properties

of these entropies, leaving their detailed interpretation for later. We first discuss “stationary”

aspects of screen entanglement entropies, concentrating on states representing spacetime in which

the expansion of the universe is dominated by a single component in the Friedmann equation. We

study how screen entanglement entropies encode the information about the spacetime the state

represents. We then analyze dynamics of screen entanglement entropies during a transition period

in which the dominant component changes. Implications of these results in the broader context of

the holographic description of quantum gravity will be discussed in the next section.
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Figure 3: Various FRW universes, I, II, III, · · · , have the same boundary area A∗ at different times,
t∗(I), t∗(II), t∗(III), · · · . Quantum states representing universes at these moments belong to Hilbert space
H∗ specified by the value of the boundary area.

3.1 Holographic dictionary for FRW universes

Consider a Hilbert space HB spanned by a set of quantum states living in the same codimension-2

boundary surface B. As mentioned in footnote 4, the definition of the boundary surface being

the same has an ambiguity. For our analysis of states representing FRW spacetimes, we take the

boundary B to be specified by its area AB (within some precision δAB that is not exponentially

small in AB). In this subsection, we focus on a single Hilbert space H∗ ∈ {HB} specified by a

fixed (though arbitrary) boundary area A∗.

Consider FRW universes with κ ≤ 0 having vacuum energy ρΛ and filled with varying ideal

fluid components.6 For every universe with

ρΛ <
3

2A∗
, (13)

there is an FRW time t∗ at which the area of the leaf of the past holographic screen is A∗; see Fig. 3.

This is because the area of the leaf of the past holographic screen is monotonically increasing [18],

and the final (asymptotic) value of the area is given by

A∞ =

{

3
2ρΛ

, for ρΛ > 0,

+∞, for ρΛ ≤ 0.
(14)

Any quantum state representing the system at any such moment is an element of H∗. A question

is what features of the holographic state encode information about the universe it represents.

6The ρΛ here represents the energy density of a (local) minimum of the potential near which fields in the FRW
universe in question take values. In fact, string theory suggests that there is no absolutely stable de Sitter vacuum
in full quantum gravity; it must decay, at least, before the Poincaré recurrence time [43].
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Figure 4: A region L(γ) of the leaf σ∗ is parameterized by an angle γ : [0, π]. The extremal surface
E(γ) anchored to its boundary, ∂L(γ), is also depicted schematically. (In fact, E(γ) bulges into the time
direction.)

To study this problem, we perform the following analysis. First, given an FRW universe

specified by the history of the energy density of the universe, ρ(t), we determine the FRW time t∗

at which the apparent horizon σ∗, identified as a leaf of the past holographic screen, has the area

A∗:
ρ(t)
A∗

→ t∗, (15)

where we assume Eq. (13). We then consider a spherical cap region of the leaf σ∗ specified by an

angle γ (0 ≤ γ ≤ π):

L(γ) : t = t∗, r = rAH(t∗), 0 ≤ ψ ≤ γ, (16)

where rAH(t∗) is given by Eq. (12) (see Fig. 4), and determine the extremal surface E(γ) which

is codimension-2 in spacetime, anchored on the boundary of L(γ), and fully contained inside the

causal region Dσ∗
associated with σ∗. According to Ref. [28], we interpret the quantity

S(γ) =
1

4
‖E(γ)‖, (17)

to represent von Neumann entropy of the holographic state representing the region L(γ), obtained

after tracing out the complementary region on σ∗.

To determine the extremal surface E(γ), it is useful to introduce cylindrical coordinates

ξ = r sinψ, z = r cosψ. (18)

We find that the isometry of the FRW metric, Eq. (10), allows us to move the boundary on which

the extremal surface is anchored, ∂L(γ), on the z = 0 plane:

∂L(γ) : t = t∗, ξ = rAH(t∗) sin γ ≡ ξAH, z = 0. (19)
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The surface to be extremized is then parameterized by functions t(ξ) and z(ξ) with the boundary

conditions

t(ξAH) = t∗, z(ξAH) = 0, (20)

and the area functional to be extremized is given by

2π

∫ ξAH

0

a(t) ξ

√

−
(

dt

dξ

)2

+
a2(t)

1− κ(ξ2 + z2)

{

(1− κz2) + (1− κξ2)

(

dz

dξ

)2

+ 2κξz
dz

dξ

}

dξ. (21)

In all the examples we study (in this and next subsections), we find that the extremal surface does

not bulge into the z direction. In this case, we can set z = 0 in Eq. (21) and find

‖E(γ)‖ = ext
t(ξ)



2π

∫ rAH(t∗) sin γ

0

a(t) ξ

√

−
(

dt

dξ

)2

+
a2(t)

1− κξ2
dξ



 . (22)

The analysis described above is greatly simplified if the expansion of the universe is determined

by a single component in the Friedmann equation, i.e. a single fluid component with the equation

of state parameter w or negative spacetime curvature. We thus focus on the case in which the

expansion is dominated by a single component in (most of) the region probed by the extremal

surfaces. In realistic FRW universes this holds for almost all t, except for a few Hubble times

around when the dominant component changes from one to another. Discussion about a transition

period in which the dominant component changes will be given in the next subsection.

A flat FRW universe filled with a single fluid component

Suppose the expansion of the universe is determined dominantly by a single ideal fluid component

with w. The scale factor is then given by

a(t) = c t
2

3(1+w) , (23)

where c is a constant, and the metric in the region r ≤ rAH takes the form

ds2 = −dt2 + c2 t
4

3(1+w)
[

dr2 + r2(dψ2 + sin2ψ dφ2)
]

, (24)

where we have used the fact that |κ r2AH| ≪ 1. In this case, we find that the A∗ dependence of

screen entanglement entropy SΓ for an arbitrary shaped region Γ on σ∗—specified as a region on

the ψ-φ plane—is given by

SΓ = S̃ΓA∗, (25)

where S̃Γ does not depend on A∗. This can be seen in the following way.
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Consider the causal region Dσ∗
associated with σ∗. For certain values of w (i.e. w ≥ 1/3), Dσ∗

hits the big bang singularity. It is thus more convenient to discuss the “upper half” of the region:

D+
σ∗

= {p ∈ Dσ∗
| t(p) ≥ t∗}. (26)

In an expanding universe, the extremal surface anchored on the boundary of a region Γ on σ∗ is

fully contained in this region. Now, by performing t∗-dependent coordinate transformation

ρ =
2

3(1 + w)
c t

− 1+3w
3(1+w)

∗ r, (27)

η =
2

3(1 + w)

[

(

t

t∗

)
1+3w
3(1+w)

− 1

]

, (28)

the region D+
σ∗

is mapped into

0 ≤ η ≤ 1, 0 ≤ ρ ≤ 1− η, (29)

and the metric in D+
σ∗

is given by

ds2
∣

∣

D+
σ∗

=
A∗

4π

(

1 + 3w

2
η + 1

)
4

1+3w
[

−dη2 + dρ2 + ρ2(dψ2 + sin2ψ dφ2)
]

, (30)

where

A∗ = 9π(1 + w)2t2∗. (31)

Since A∗ appears only as an overall factor of the metric in Eqs. (29, 30), we conclude that the A∗

dependence of SΓ ∝ ‖EΓ‖ is only through an overall proportionality factor, as in Eq. (25).

Due to the scaling in Eq. (25), it is useful to consider an object obtained by dividing SΓ by a

quantity that is also proportional to A∗. We find it convenient to define the quantity

QΓ ≡ SΓ

VΓ/4
, (32)

where VΓ is the (2-dimensional) “volume” of the region Γ or its complement Γ̄ on the boundary

surface σ∗, whichever is smaller. This quantity is independent of A∗, and hence t∗. Applying to

the spherical region of Eq. (16), we find

Q(γ) =
S(γ)

V (γ)/4
=

‖E(γ)‖
V (γ)

, (33)

where

V (γ) =
1

2

{

1− sgn
(π

2
− γ
)

cos γ
}

A∗. (34)
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Figure 5: The value of Q(γ) as a function of γ (0 ≤ γ ≤ π/2) for w = −1 (vacuum energy), −0.98, −0.8,
0 (matter), 1/3 (radiation), and 1. The dotted line indicates the lower bound given by the flat space
geometry, which can be realized in a curvature dominated open FRW universe.

An explicit expression for Q(γ) is given by

Q(γ) =
1

1− sgn(π
2
− γ) cos γ

ext
f(x)

[

∫ sinγ

0

x f
4

1+3w

√

1−
( 2

1 + 3w

)2( df

dx

)2

dx

]

, (35)

where the extremization with respect to function f(x) is performed with the boundary condition

f(sin γ) = 1, (36)

and we have used the fact that the extremal surface does not bulge into the z direction in the

cylindrical coordinates of Eq. (18). From the point of view of the holographic theory, QΓ represents

the amount of entanglement entropy per degree of freedom as viewed from the smaller of Γ and

Γ̄. As we will discuss in Section 4.1, the fact that this is a physically significant quantity has

important implications for the structure of the holographic theory.

In Fig. 5, we plot Q(γ) as a function of γ (0 ≤ γ ≤ π/2) for various values of w: −1 (vacuum

energy), −0.98, −0.8, 0 (matter), 1/3 (radiation), and 1. The value of Q(γ) for π/2 ≤ γ ≤ π is

given by Q(γ) = Q(π − γ). We find the following features:

• In the limit of a small boundary region, γ ≪ 1, the value of Q(γ) approaches unity regardless

of the value of w:

Qw(γ)
γ≪1−−→ 1. (37)

This implies that for a small boundary region, the entanglement entropy of the region is given

by its volume in the holographic theory in Planck units:

Sw(γ)
γ≪1−−→ 1

4
V (γ). (38)
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For larger γ (≤ π/2), Q(γ) becomes monotonically small as γ increases:

d

dγ
Qw(γ) < 0. (39)

The deviation of Q(γ) from 1 near γ = 0 is given by

Qw(γ)
γ≪1
= 1− c (1 + w)γ4 + · · · , (40)

where c > 0 is a constant that does not depend on w.

• For any fixed boundary region, γ, the value of Q(γ) decreases monotonically in w:

d

dw
Qw(γ) < 0. (41)

In particular, when w approaches −1 (from above), Q(γ) becomes unity:

lim
w→−1

Qw(γ) = 1. (42)

This implies that in the limit of de Sitter FRW (w → −1), the state in the holographic theory

becomes “randomly entangled” (i.e. saturates the Page curve [52]):7

lim
w→−1

Sw(γ) =
1

4
V (γ). (43)

Note that V (γ) is the smaller of the volume of L(γ) and that of its complement on the leaf.

The value of Q(π/2) (the case in which L(γ) is a half of the leaf) is plotted as a function of

w in Fig. 6.

We will discuss further implications of these findings in Section 4.

We note that there are simple geometric bounds on the values of Qw(γ). This can be seen by

adopting the maximin construction [28,53]: the extremal surface is the one having the maximal area

among all possible codimension-2 surfaces each of which is anchored on ∂L(γ) and has minimal

area on some interior achronal hypersurface bounded by σ. This implies that the area of the

extremal surface, ‖E(γ)‖, cannot be larger than the boundary volume V (γ), giving Q(γ) ≤ 1.

Also, the extremal surface cannot have a smaller area than the codimension-2 surface that has the

minimal area on a constant time hypersurface t = t∗: ‖E(γ)‖ ≥ π{a(t∗)rAH(t∗) sin γ}2. Together,

we obtain
sin2γ

2
{

1− sgn(π
2
− γ) cos γ

} ≤ Qw(γ) ≤ 1. (44)

7In the case of an exactly single component with w = −1, the expansion of light rays emanating from p0, i.e.
θk, becomes 0 only at infinite affine parameter λ. We view this as a result of mathematical idealization. A realistic
de Sitter FRW universe is obtained by introducing an infinitesimally small amount of matter in addition to the
w = −1 component, which avoids the above issue. The results obtained in this way agree with those by first taking
w > −1 and then the limit w → −1.

15



Figure 6: The value of Q(π/2) as a function of w.

The lower edge of this range is depicted by the dashed line in Fig. 5. We find that the upper

bound of Eq. (44) can be saturated with w → −1, while the lower bound cannot with |w| ≤ 1. If

we formally take w → +∞, the lower bound can be reached. A fluid with w > 1, however, does

not satisfy the causal energy condition (although it satisfies the null energy condition), so we do

not consider such a component.

As a final remark, we show in Fig. 7 the shape of the extremal surface for γ = π/2 for the same

values of w as in Fig. 5: −1, −0.98, −0.8, 0, 1/3, and 1. The horizontal axis is the cylindrical

radial coordinate normalized by the apparent horizon radius, ξ/ξAH, and the vertical axis is taken

to be the Hubble time defined by

tH =

∫ t

t∗

ȧ(t)

a(t)
dt =

2

3(1 + w)
ln

t

t∗
, (45)

which reduces in the w → −1 limit to the usual Hubble time tH = H(t − t∗), where H = ȧ/a.

We find that the extremal surface bulges into the future direction for any w. In fact, this occurs

generally in an expanding universe and can be understood from the maximin construction: the scale

factor increases toward the future, so that the area of the minimal area surface on an achronal

hypersurface increases when the hypersurface bulges into the future direction in time. The amount

of the bulge is tH ≈ O(1), except when w ≈ −1. For w → −1, the extremal surface probes

tH → +∞ as ξ/ξAH → +0, but its area is still finite, ‖E(π/2)‖ → A∗/2, as the surface becomes

almost null in this limit.
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Figure 7: The shape of the extremal surfaces E(π/2) for w = −1, −0.98, −0.8, 0, 1/3, and 1. The
horizontal axis is the cylindrical radial coordinate normalized by the apparent horizon radius, ξ/ξAH, and
the vertical axis is the Hubble time, tH.

An open FRW universe dominated by curvature

We now consider an open FRW universe dominated by curvature, i.e. the case in which the ex-

pansion of the universe is determined by the second term in the left-hand side of Eq. (11). This

implies that the distance to the apparent horizon is much larger than the curvature length scale

−κ
a2(t)

≫ 8π

3
ρ(t) ⇐⇒ rAH(t) ≫

1√
−κ ≡ rcurv. (46)

(Note that κ < 0 for an open universe.) As seen in Eqs. (11, 12), the value of rAH(t) is determined

by ρ(t), which gives only a minor contribution to the expansion of the universe. The scale factor

is given by

a(t) =
√
−κ t. (47)

The extremal surface can be found easily by noticing that the universe in this limit is a hyper-

bolic foliation of a portion of the Minkowski space: the coordinate transformation

t̃ = t

√

1 +
(√

−κ r
)2
, (48)

r̃ =
√
−κ t r, (49)

leads to the Minkowski metric ds2 = −dt̃2 + dr̃2 + r̃2(dψ2 + sin2ψ dφ2). The extremal surface is

thus a plane on a constant t̃ hypersurface, which in the FRW (cylindrical) coordinates is given by

tH ≈ ln
1

ξ/ξAH

(0 ≤ ξ/ξAH ≤ 1), (50)
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where ξAH = rAH(t∗) sin γ, and tH is the Hubble time

tH =

∫ t

t∗

ȧ(t)

a(t)
dt = ln

t

t∗
. (51)

The resulting Q(γ) is

Q(γ) ≈ sin2γ

2
{

1− sgn(π
2
− γ) cos γ

} . (52)

This, in fact, saturates the lower bound in Eq. (44), plotted as the dashed line in Fig. 5.

3.2 Dynamics of screen entanglement entropies in a transition

Let us consider the evolution of an FRW universe. From the holographic theory point of view,

it is described by a time-dependent state |Ψ(τ)〉 living on σ(τ). Because of the area theorem of

Refs. [18, 19], we can take τ to be a monotonic function of the leaf area, leading to

d

dτ
A(τ) > 0, (53)

where A(τ) ≡ ‖σ(τ)‖. This evolution involves a change in the number of (effective) degrees of

freedom, A(τ)/4, as well as that of the structure of entanglement on the boundary, QΓ(τ). For

the latter, we mostly consider Q(γ, τ) associated with a spherical cap region Γ = L(γ). A natural

question is if a statement similar to Eq. (53) applies for screen entanglement entropies:

d

dτ
S(γ, τ)

?
> 0. (54)

Here,

S(γ, τ) = Q(γ, τ)
V (γ, τ)

4
, (55)

with

V (γ, τ) =
1

2

{

1− sgn
(π

2
− γ
)

cos γ
}

A(τ), (56)

being the smaller of the boundary volumes of L(γ) and its complement.

There are some cases in which we can show that the relation in Eq. (54) is indeed satisfied.

Consider, for example, a flat FRW universe filled with various fluid components having differing

equations of states: wi (i = 1, 2, · · · ). As time passes, the dominant component of the universe

changes from one having larger w to one having smaller w successively. This implies that Q(γ, τ)

monotonically increases in time, so that Eq. (53) indeed implies Eq. (54) in this case. Another

interesting case is when the holographic screen is spacelike. In this case, we can prove that the

time dependence of S(γ, τ) is monotonic; see Appendix A. In particular, if we have a spacelike past

holographic screen (which occurs for w > 1/3 in a single-component dominated flat FRW universe),

then the screen entanglement entropy for an arbitrary region increases in time: dSΓ(τ)/dτ > 0.
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Figure 8: An FRW universe whose dominant component changes from w to w′ at time t0. Two surfaces
depicted by orange lines are the latest extremal surface fully contained in the w region (bottom) and the
earliest extremal surface fully contained in the w′ region (top), each anchored to the leaves at t∗ and t0.

What happens if the holographic screen is timelike? One might think that there is an obvious

argument against the inequality in Eq. (54). Suppose the expansion of the early universe is

dominated by a fluid component with w. Suppose at some FRW time t0 this component is converted

into another fluid component having a different equation of state parameter w′, e.g. by reheating

associated with the decay of a scalar condensate. If w′ > w, then the Q value after the transition

is smaller than that before

Qw′(γ)−Qw(γ) < 0. (57)

One may think that this can easily overpower the increase of S(γ, τ) from the increase of the area:

dA(γ, τ)/dτ > 0 [20]. In particular, if w is close to −1, then the increase of the area before the

transition is very slow, so that the effect of Eq. (57) would win over that of the area increase.

However, as depicted in Fig. 7, when w ≈ −1 the extremal surface bulges into larger t by many

Hubble times. Hence the time between the moments in which Eq. (55) can be used before and after

the transition becomes long, opening the possibility that the relevant area increase is non-negligible.

To make the above discussion more explicit, let us compare the values of the screen entanglement

entropy S(γ) corresponding to two extremal surfaces depicted in Fig. 8: the “latest” extremal

surface that is fully contained in the w region and the “earliest” extremal surface fully contained

in the w′ region, each anchored to the leaves at FRW times t∗ and t0. This provides the most

stringent test of the inequality in Eq. (54) that can be performed using the expression of Eq. (55)

for fixed w’s. The ratio of the entanglement entropies is given by

Rw′w(γ) ≡
Safter(γ)

Sbefore(γ)
=
Qw′(γ)

Qw(γ)

t20
t2∗

=
Qw′(γ)

Qw(γ)
e3(1+w)tH,w , (58)
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Figure 9: The ratio of the screen entanglement entropies, Rw = R1w(π/2), before and after the transition
from a universe with the equation of state parameter w to that with w′ = 1, obtained from Figs. 6 and 7
using Eq. (58). The dot at w = −1 represents R−1 = R1−1(π/2) obtained in Eq. (59).

where tH,w is the Hubble time between t∗ and t0, given by Eq. (45) with t→ t0. In Fig. 9, we plot

Rw ≡ R1w(π/2); setting w
′ = 1 minimizes the ratio. We find that this ratio can be smaller than

1 for w ≈ −1. In fact, for w → −1 we find the value obtained naively by assuming that the area

does not change before the transition:

R−1 =
Q1

(

π
2

)

Q−1

(

π
2

) = Q1

(π

2

)

, (59)

although for w = −1 there is no such thing as the latest extremal surface that is fully contained

in the region before the transition (since tH,−1 = +∞).

This analysis suggests that screen entanglement entropies can in fact drop if the system ex-

periences a rapid transition induced by some dynamics, although the instantaneous transition

approximation adopted above is not fully realistic. Of course, such a drop is expected to be only

a temporary phenomenon—because of the area increase after the transition, the entropy generally

returns back to the value before the transition in a characteristic dynamical timescale and then

continues to increase afterward. We expect that the relation in Eq. (54) is valid in a coarse-grained

sense
d

dτ
S̄(γ, τ) > 0; S̄(γ, τ) =

1

τc

∫ τ+τc

τ

S(γ, τ ′) dτ ′, (60)

but not “microscopically” in general. Here, τc must be taken sufficiently larger than the charac-

teristic dynamical timescale, the Hubble time for an FRW universe.

For further illustration, we perform numerical calculations for how the area of a leaf hemi-

sphere, ‖L(π/2, t)‖, and the associated screen entanglement entropy, calculated using S(π/2, t) =
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‖E(π/2, t)‖/4, evolve in time during transitions from a w = −1 to a w′ = 0 flat FRW universe.

Here, we take the FRW time t as the time parameter. For this purpose, we consider a scalar field

φ having a potential V (φ) that has a flat portion and a well, with the initial value of φ being in

the flat portion. We first note that a transformation of the potential of the form

V (φ) → V ′(φ) = ǫ2V (φ), (61)

leads to rescalings of the scalar field, φ(t), and the scale factor, a(t), obtained as the solutions to

the equations of motion:

φ′(t) = φ(ǫt), a′(t) = a(ǫt). (62)

Plugging these in Eq. (22), we find that the area functionals before and after the transformation

Eq. (61) are related by simple rescaling t→ t/ǫ and ξ → ξ/ǫ, so that

∥

∥

∥
E ′
(π

2
, t
)
∥

∥

∥
=

1

ǫ2

∥

∥

∥
E
(π

2
,
t

ǫ

)
∥

∥

∥
. (63)

These imply that the leaf hemisphere area and the screen entanglement entropy for the transformed

potential are read off from those for the untransformed one by

∥

∥

∥
L′
(π

2
, t
)
∥

∥

∥
=

1

ǫ2

∥

∥

∥
L
(π

2
,
t

ǫ

)
∥

∥

∥
,

∥

∥

∥
S ′
(π

2
, t
)
∥

∥

∥
=

1

ǫ2

∥

∥

∥
S
(π

2
,
t

ǫ

)
∥

∥

∥
. (64)

We therefore need to be concerned only with the shape of the potential, not its overall scale.

In particular, we can always be in the semiclassical regime by performing a transformation with

ǫ≪ 1.

In Fig. 10, we show the results of our calculations for “steep” and “broad” potentials. The

explicit forms of the potentials are given by

V (φ) = 1− e−k(φ−φ0)2 + s(φ− φ0) tanh(p(φ− φ0)), (65)

with

Steep : k = 5000, s = 0.01, p = 20, φ0 = 0.045, (66)

Broad : k = 25, s = 0.01, p = 2, φ0 = 0.5, (67)

although their detailed forms are unimportant. For the steep potential, plotted in Fig. 10(a),

we show the time evolutions of φ(t), ‖L(π/2, t)‖, and S(π/2, t) in Figs. 10(b)–(d) for the initial

conditions of φ(0) = φ̇(0) = 0 and a(0) = 0.01. The same are shown for the broad potential,

Fig. 10(e), in Figs. 10(f)–(h) for the initial conditions of φ(0) = φ̇(0) = 0 and a(0) = 10−11.

In either cases, the leaf hemisphere area increases monotonically while the screen entanglement

entropy experiences drops as the field oscillates around the minimum. The fractional drops from
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(a) Steep potential. (e) Broad potential.

(b) φ(t) for the steep potential. (f) φ(t) for the broad potential.

(c) ‖L(π/2, t)‖ for the steep potential. (g) ‖L(π/2, t)‖ for the broad potential.

(d) S(π/2, t) for the steep potential. (h) S(π/2, t) for the broad potential.

Figure 10: A steep potential (a) leading to the time evolution of the scalar field (b), the area of a leaf
hemisphere (c), and the screen entanglement entropy (d). The same for a broad potential (e)–(h).
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the first, second, and third peaks are ≃ 1.3%, 0.9%, and 0.6%, respectively, for the steep potential

and ≃ 2.5%, 1.6%, and 1.2%, respectively, for the broad potential.

We thus find that screen entanglement entropies may decrease in a transition period. The

interpretation of this result, however, needs care. Since the system is far from being in a “vacuum”

during a transition, true entanglement entropies for subregions in the holographic theory may

have contributions beyond that captured by the simple formula of Eq. (17). This would require

corrections of the formula, possibly along the lines of Refs. [54–56], and with such corrections the

drop of the entanglement entropy we have found here might disappear. We leave a detailed study

of this issue to future work.

4 Interpretation: Beyond AdS/CFT

The entanglement entropies in the holographic theory of FRW universes seen so far show features

different from those in CFTs of the AdS/CFT correspondence. Here we highlight these differences

and see how properties characteristic to local CFTs are reproduced when bulk spacetime becomes

asymptotically AdS. We also discuss implications of our findings for the structure of the holographic

theory. In particular, we discuss the structure of the Hilbert space for quantum gravity applicable to

general spacetimes. While we cannot determine the structure uniquely, we can classify possibilities

under certain general assumptions. The issues discussed include bulk reconstruction, the interior

and exterior regions of the leaf, and time evolution in the holographic theory.

4.1 Volume/area law for screen entanglement entropies

One can immediately see that holographic entanglement entropies for FRW universes have two

features that are distinct from those in AdS/CFT. First, unlike entanglement entropies in CFTs,

the holographic entanglement entropies for FRW universes are finite for a finite value of A∗.

Second, as seen in Section 3.1, e.g. Eq. (25), these entropies obey a volume law, rather than an

area law.8 (Note that A∗ is a volume from the viewpoint of the holographic theory.) In particular,

in the limit that the region Γ in the holographic theory becomes small, the entanglement entropy

SΓ becomes proportional to the volume VΓ with a universal coefficient, which we identified as 1/4

to match the conventional results in Refs. [1–6]. (For a small enough subsystem, we expect that

the entanglement entropy agrees with the thermal entropy.) From the bulk point of view, this is

because the extremal surface EΓ approaches Γ itself, so that ‖EΓ‖ → VΓ.

What do these features mean for the holographic theory? The finiteness of the entanglement

entropies implies that the cutoff length of the holographic theory is finite, i.e. the number of degrees

of freedom in the holographic theory is finite, at least effectively. In particular, our identification

8A similar property was argued for holographic entropies for Euclidean flat spacetime in Ref. [57].
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implies that the holographic theory effectively has a qubit degree of freedom per volume of 4 ln 2

(in Planck units), although it does not mean that the cutoff length of the theory is necessarily

≃
√
4 ln 2. It is possible that the cutoff length is lc >

√
4 ln 2 and that each cutoff size cell has

N = l2c/4 ln 2 (> 1) degrees of freedom. In fact, since the string length ls and the Planck length

are related as l2s ∼ n, where n is the number of species in the low energy theory (including the

moduli fields parameterizing the extra dimensions) [58], it seems natural to identify lc and N as ls

and n, respectively.

The volume law of the entangled entropies implies that a holographic state corresponding to

an FRW universe is not a ground state of local field theory, which is known to satisfy an area

law [59, 60]. This does not necessarily mean that the holographic theory for FRW universes must

be nonlocal at lengthscales larger than the cutoff lc; it might simply be that the relevant states are

highly excited ones. In fact, the dynamics of the holographic theory is expected to respect some

aspects of locality as suggested by the fact that the area theorem applies locally on a holographic

screen [20]. Of course, it is also possible that the holographic states for FRW universes are states

of some special class of nonlocal theories.

The features of screen entangled entropies described here are not specific to FRW universes but

appear in more general “cosmological” spacetimes, spacetimes in which the holographic screen is

at finite distances and the gravitational dynamics is not frozen there. If the interior region of the

holographic screen is (asymptotically) AdS, these features change. In this case, the same procedure

as in Section 2 puts the holographic screen at spatial infinity (the AdS boundary), and the AdS

geometry makes the area of the extremal surface anchored to the boundary ∂Γ of a small region Γ

on a leaf proportional to the area of ∂Γ with a diverging coefficient: ‖EΓ‖ ∼ ‖∂Γ‖/ǫ (ǫ→ 0). This

makes the screen entanglement entropies obey an area law, so that the holographic theory can now

be a ground state of a local field theory. In fact, the theory is a CFT [10, 61, 62], consistent with

the fact that we could take the cutoff length to zero, lc ∼ ǫ→ 0.

4.2 The structure of holographic Hilbert space

We now discuss implications of our analysis for the structure of the Hilbert space of quantum

gravity for general spacetimes. We work in the framework of Section 2; in particular, we assume

that when a holographic state represents a semiclassical spacetime, the area of the extremal surface

contained in Dσ and anchored to the boundary of a region Γ on a leaf represents the entanglement

entropy of the region Γ in the holographic theory, Eq. (9). Note that this does not necessarily

mean that the converse is true; there may be a holographic state in which entanglement entropies

for subregions do not correspond to the areas of extremal surfaces in a semiclassical spacetime.

Consider a holographic state representing an FRW spacetime. The fact that for a small enough

region Γ the area of the extremal surface anchored to its boundary approaches the volume of the
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region on the leaf, ‖EΓ‖ → VΓ, implies that the degrees of freedom in the holographic theory are

localized and that their density is, at least effectively, one qubit per 4 ln 2 (although the cutoff

length of the theory may be larger than
√
4 ln 2). We take these for granted as anticipated in the

original holographic picture [7, 8]. This is also consonant with the fact that after the coordinate

transformation

dt̃ =

√
1− κr2

1− κr2 − ȧ2(t)r
dt +

1√
1− κr2

a(t)ȧ(t)r

1− κr2 − ȧ2(t)r
dr, (68)

dr̃ = a(t) dr + ȧ(t)r dt, (69)

the FRW metric, Eq. (10), can be rewritten in the “quasi-static” form as

ds2 = −
(

1− 4π

A(t)
r̃2
)

dt̃2 +
1

1− 4π
A(t)

r̃2
dr̃2 + r̃2dΩ. (70)

Here, we have used the integrated form of Eq. (69), r̃ = a(t)r, and

A(t) = 4πa2(t)r2AH(t) =
4πa2(t)

ȧ(t)2 + κ
, (71)

is the area of the apparent horizon at the FRW time t, with t being the implicit function of t̃ and

r̃. This implies that the spacetime structure near a leaf of the holographic screen is similar to that

of de Sitter space, which is believed to have the thermodynamic entropy of one qubit per 4 ln 2 on

the horizon [6]. This discussion suggests that the number of holographic degrees of freedom which

comprise FRW states on the leaf σ∗ with area A∗ is A∗/4 for any value of w.

Given these assumptions, there are still a few possibilities for the structure of the Hilbert space

of the holographic theory. Below we enumerate these possibilities and discuss their salient features.

4.2.1 Direct sum structure

Let us first assume that state vectors representing FRW universes with different w’s are independent

of each other, as indicated in the left portion of Fig. 11. This implies that the Hilbert space

H∗ ∈ {HB}, which contains holographic states for FRW universes at times when the leaf area is

A∗, has a direct sum structure

H∗ =
⊕

w

H∗,w. (72)

Here, we regard universes with the equation of state parameters falling in a range δw ≪ 1 to be

macroscopically identical, where δw is a small number that does not scale with A∗.
9 This is the

structure envisioned originally in Ref. [17].

9If we consider FRW universes with multiple fluid components, the corresponding spaces must be added in the
right-hand side of Eq. (72).
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Figure 11: Possible structures of the Hilbert space H∗ for a fixed boundary space B. In the direct sum
structure (left), each semiclassical spacetime in Dσ∗

has its own Hilbert space H∗,w. The Russian doll
structure (right) corresponds to the scenario of “spacetime equals entanglement,” i.e. the entanglement
entropies of the holographic degrees of freedom determine spacetime in Dσ∗

. This implies that a super-
position of exponentially many semiclassical spacetimes can lead to a different semiclassical spacetime.

What is the structure of H∗,w? A natural possibility is that each of these subspaces has

dimension

ln dimH∗,w =
A∗

4
. (73)

This is motivated by the fact that arbitrary unitary transformations acting in each cutoff size cell do

not change the structure of screen entanglement entropies, and they can lead to eA∗/4 independent

holographic states that have the screen entanglement entropies corresponding to the FRW universe

with the equation of state parameter w. If we regard all of these states as microstates for the FRW

universe with w, then we obtain Eq. (73). This, however, does not mean that the holographic

states representing the FRW universe with w comprise the Hilbert space H∗,w. Since these states

form a basis of H∗,w, their superposition can lead to a state which has entanglement entropies far

from those corresponding to the FRW universe with w. In fact, we can even form a state in which

degrees of freedom in different cells are not entangled at all. This is a manifestation of the fact

that entanglement cannot be represented by a linear operator.

This implies that states representing the semiclassical FRW universe are “preferred basis states”

inH∗,w, and their arbitrary linear combinations may lead to states that do not admit a semiclassical

interpretation. We expect that these preferred axes are “fat”: we have to superpose a large number

of basis states, in fact exponentially many in A∗, to obtain a state that is not semiclassical (because

we need that many states to appreciably change the entanglement structure, as illustrated in a toy

qubit model in Appendix B). It is, however, true that most of the states in H∗,w, including those

having the entanglement entropy structure corresponding to a universe with another w, are states

26



that do not admit a semiclassical spacetime interpretation. Drawing an analogy with the work in

Refs. [33–35], we may call them “firewall” states. In Section 4.5, we argue that these states are

unlikely to be produced by standard semiclassical time evolution.

The dimension of H∗ is given by

ln dimH∗ = ln
∑

w

e
A∗
4 ≈ A∗

4
− ln δw ≃ A∗

4
, (74)

as expected from the covariant entropy bound (unless δw is exponentially small in A∗, which

we assume not to be the case). Small excitations over the FRW universes may be represented

in suitably extended spaces H∗,w. Since entropies associated with the excitations are typically

subdominant in A∗ [7,63], they have only minor effects on the overall picture, e.g. Eq. (74). (Note

that the excitations here do not contain the degrees of freedom attributed to gravitational, e.g.

Gibbons-Hawking, radiation. These degrees of freedom are identified as the microscopic degrees

of freedom of spacetimes, i.e. the vacuum degrees of freedom [64–66], which are already included

in Eq. (73).) The operators representing the excitations can be standard linear operators acting

on the Hilbert space H∗, at least in principle.

We also mention the possibility that the logarithm of the number of independent states Nw

representing the FRW universe with w is smaller than A∗/4. For example, it might be given

approximately by twice the entanglement entropy for a leaf hemisphere Sw(π/2) = Qw(π/2)A∗/8:

lnNw ≈ Qw

(π

2

) A∗

4
. (75)

The basic picture in this case is not much different from that discussed above; for example, the

difference of the values of ln dimH∗ is higher order in 1/A∗ (although this possibility makes the

issue of the equivalence condition for the boundary space label B nontrivial). We will not consider

this case separately below.

4.2.2 Russian doll structure: spacetime equals entanglement

In the picture described above, the structures of H∗,w’s are all very similar. Each of these spaces

has the dimension of A∗/4 and has eA∗/4 independent states that represent the FRW universe with

a fixed value of w. An arbitrary linear combination of these states, however, is not necessarily a

state representing the FRW universe with w. In the previous picture, we identified all such states

as the firewall (or unphysical) states, but is it possible that some of these states, in fact, represent

other FRW universes? In particular, is it possible that all the H∗,w spaces are actually the same

space, i.e. H∗,w1 = H∗,w2 for all w1 6= w2?

A motivation to consider this possibility comes from the fact that if w does not by itself provide

an independent label for states, then the eA∗/4 independent microstates for the FRW universe with
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a fixed w can form a basis for the configuration space of the A∗/4 holographic degrees of freedom.

This implies that we can superpose these states to obtain many—in fact eA∗/4—independent states

that have the entanglement entropies corresponding to the FRW universe with any w′ 6= w, which

we can identify as the states representing the FRW universe with w′.10 In essence, this amounts to

saying that the converse of the statement made at the beginning of this subsection is true: when

a holographic state has the form of entanglement entropies corresponding to a certain spacetime,

then the state indeed represents that spacetime. This scenario was proposed in Ref. [31] and called

“spacetime equals entanglement.” It is depicted in the right portion of Fig. 11.

One might think that the scenario does not make sense, since it implies that a superposition

of classical universes can lead to a different classical universe. Wouldn’t it make any reasonable

many worlds interpretation of spacetime impossible? In Ref. [31], it was argued that this is not

the case. First, for a given FRW universe, we expect that the space of its microstates is “fat”;

namely, a superposition of less than eO(δwA∗) microstates representing a classical universe leads

only to another microstate representing the same universe. This implies that the eA∗/4 microstates

of a classical universe generate an “effective vector space,” unless we consider a superposition of

an exponentially large, & eO(δwA∗), number of states.

What about a superposition of different classical universes? In particular, if states representing

universes with w1 and w2 ( 6= w1) are superposed, then how does the theory know that the re-

sulting state represents a superposition of two classical universes, and not another—perhaps even

non-classical—universe? A key point is that the Hilbert space we consider has a special basis,

determined by the A∗/4 local degrees of freedom in the holographic space:11

H∗ = (C2)⊗
A∗
4 . (76)

From the result in Section 3.1, we know that a state representing the FRW universe with w1 is

more entangled than that representing the FRW universe with w2 (> w1). This implies that when

expanded in the natural basis {|Ψi〉} for the structure of Eq. (76), i.e. the product state basis for

the A∗/4 local holographic degrees of freedom, then a state |Ψw1〉 representing the universe with

w1 effectively has exponentially more terms than a state |Ψw2〉 representing the universe with w2.

Namely, we expect that

|Ψw〉 ≈
ef(w)

A∗
4

∑

i=1

ai |Ψi〉, (77)

10The same argument applies to the FRW universes with multiple fluid components, so that the states representing
these universes also live in the same Hilbert space as the single component universes.

11For simplicity, here we have assumed that the degrees of freedom are qubits, but the subsequent argument
persists as long as the number of independent states for each degree of freedom does not scale with A∗. In
particular, it persists if the correct structure of H∗ appears as (CN )⊗A∗/l

2

c as discussed in Section 4.1.
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where f(w) is a monotonically decreasing function of w taking values of O(1), and ai are coefficients

taking generic random values. The normalization condition for |Ψw〉 then implies

|ai| ≈ O
(

e−f(w)A∗
8

)

, (78)

i.e. the size of the coefficients in product basis expansion is exponentially different for states with

different w’s. This, in particular, leads to

〈Ψw1|Ψw2〉 . O
(

e−{f(w1)−f(w2)}
A∗
8

)

, (79)

i.e. microstates for different universes are orthogonal up to exponentially suppressed corrections.

Now consider a superposition state

|Ψ〉 = c1|Ψw1〉+ c2|Ψw2〉, (80)

where |c1|2 + |c2|2 = 1 up to the correction from exponentially small overlap 〈Ψw1|Ψw2〉. We are

interested in the reduced density matrix for a subregion Γ in the holographic theory

ρΓ = TrΓ̄ |Ψ〉〈Ψ|, (81)

where Γ occupies less than a half of the leaf volume. The property of Eq. (79) then ensures that

ρΓ = |c1|2ρ(1)Γ + |c2|2ρ(2)Γ , (82)

up to corrections exponentially suppressed in A∗. Here, ρ
(1)
Γ (ρ

(2)
Γ ) are the reduced density matrices

we would obtain if the state were genuinely |Ψw1〉 (|Ψw2〉). The matrix ρΓ thus takes the form of

an incoherent classical mixture for the two universes. Similarly, the entanglement entropy for the

region Γ is also incoherently added

SΓ = |c1|2S(1)
Γ + |c2|2S(2)

Γ + SΓ,mix, (83)

where S
(1,2)
Γ are the entanglement entropies obtained if the state were |Ψw1,2〉, and

SΓ,mix = −|c1|2 ln |c1|2 − |c2|2 ln |c2|2, (84)

is the entropy of mixing (classical Shannon entropy), suppressed by factors of O(A∗) compared

with S
(1,2)
Γ . The features in Eqs. (82, 83) indicate that unless |c1| or |c2| is suppressed exponentially

in A∗, the state |Ψ〉 admits the usual interpretation of a superposition of macroscopically different

universes with w1,2.

In fact, unless a superposition involves exponentially many microstates, we find

|Ψ〉 =
∑

i

ci|Ψwi
〉 ⇒ ρΓ =

∑

i |ci|2ρ
(i)
Γ ,

SΓ =
∑

i |ci|2S
(i)
Γ + SΓ,mix,

(85)
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with exponential accuracy. Here, SΓ,mix = −
∑

i |ci|2 ln |ci|2 and is suppressed by a factor of O(A∗)

compared with the first term in SΓ. This indicates that the standard many worlds interpretation

applies to classical spacetimes under any reasonable measurements (only) in the limit that e−A∗ is

regarded as zero, i.e. unless a superposition involves exponentially many terms or an exponentially

small coefficient. This is consonant with the observation that classical spacetime has an intrinsically

thermodynamic nature [67], supporting the idea that it consists of a large number of degrees of

freedom. In Ref. [31], the features described above were discussed using a qubit model in which the

states representing the FRW universes exhibit a “Russian doll” structure as illustrated in Fig 11.

We summarize this model in Appendix B for completeness.

We conclude that the states representing FRW universes with a leaf area A∗ can all be elements

of a single Hilbert space H∗ with dimension

ln dimH∗ =
A∗

4
. (86)

Any such universe has eA∗/4 independent microstates, which form a basis of H∗. This implies that

matter and spacetime must have a sort of unified origin in this picture, since a superposition that

changes the spacetime geometry must also change the matter content filling the universe. How

could this be the case?

Consider, as discussed in Section 4.1, that the cutoff length of the holographic theory is of order

ls ∼
√
n, where n (> 1) is the number of species at energies below 1/ls. This implies that the A∗/4

degrees of freedom can be decomposed as

A∗

4
∼ n

A∗

l2s
, (87)

representing n fields living in the holographic space of cutoff length ls. Now, to obtain the eA∗/4

microstates for an FRW universe we need to consider rotations for all the n degrees of freedom in

each cutoff size cell. This may suggest that the identity of a matter species at the fundamental

level may not be as adamant as in low energy semiclassical field theories. The reason why all the

n degrees of freedom can be involved could be because the “local effective temperature,” defined

analogously to de Sitter space using the quasi-static form of the metric in Eq. (70), diverges at the

holographic screen.

Finally, we expect that small excitations over FRW universes in this picture are represented

by non-linear/state-dependent operators in the (suitably extended) H∗ space, along the lines of

Ref. [36] (see Refs. [37–39] for earlier work). This is because a superposition of background space-

times may lead to another background spacetime, so that operators representing excitations should

know the entire quantum state they are acting on.
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Figure 12: If a black hole forms inside the holographic screen, future-directed ingoing light rays emanating
orthogonally from the leaf σ∗ at an intermediate time may hit the singularity before reaching a caustic.
While the diagram here assumes spherical symmetry for simplicity, the phenomenon can occur more
generally.

4.3 Bulk reconstruction from holographic states

We have seen that the entanglement entropies of the A∗/4 local holographic degrees of freedom in

the holographic space σ∗ encode information about spacetime in the causal region Dσ∗
. Here we

discuss in more detail how this encoding may work in general.

While we have focused on the case in which the future-directed ingoing light rays emanating

orthogonally from σ∗ (i.e. in the ka directions in Fig. 2) meet at a point p0, our discussion can

be naturally extended to the case in which the light rays encounter a spacetime singularity before

reaching a caustic. This may occur, for example, if a black hole forms in a universe as depicted in

Fig. 12, where we have assumed spherical symmetry for collapsing matter and taken p(τ) to follow

its center. We see that at intermediate times, the future-directed ingoing light rays emanating from

leaves encounter the black hole singularity before reaching a caustic.12 Our interpretation in this

case is similar to the case without a singularity. The entanglement entropies of the holographic

degrees of freedom encode information about Dσ∗
.

In what sense does a holographic state on σ∗ contain information about Dσ∗
? We assume that

the theory allows for the reconstruction of Dσ∗
from the data in the state on σ∗. On the other hand,

it is not the case that the collection of extremal surfaces for all possible subregions on σ∗ probes

the entire Dσ∗
. This suggests that the full reconstruction of Dσ∗

may need bulk time evolution.

12At these times, the specific construction of the holographic screen in Section 2 cannot be applied exactly. This
is not a problem as the fundamental object is the state in the holographic space, and not p(τ). The purpose of the
discussion in Section 2 is to illustrate our observer centric choice of fixing the holographic redundancy in formulating
the holographic theory.
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There is, however, no a priori guarantee that the operation corresponding to bulk time evolution

is complete within H∗. This means that there may be no arrangement of operators defined in H∗

that represents certain operators in Dσ∗
. For these subsets of Dσ∗

, bulk reconstruction would

involve operators defined on other boundary spaces. In other words, the operators supported

purely in H∗ may allow for a direct spacetime interpretation only for a portion of Dσ∗
, e.g. the

outside of the black hole horizon in the example of Fig. 12 (in which case some of the operators

would represent the stretched horizon degrees of freedom). Our assumption merely says that the

operators in H∗ acting on the state contain data equivalent to specifying the system on a Cauchy

surface for Dσ∗
.

The consideration above implies that the information in a holographic state on σ∗, when inter-

preted through operators in H∗, may only be partly semiclassical. We expect that this becomes

important when the spacetime has a horizon. In particular, for the w = −1 FRW universe, the

leaf σ∗ is formally beyond the stretched de Sitter horizon as viewed from p(τ). This may mean

that some of the degrees of freedom represented by operators defined in H∗ can only be viewed as

non-semiclassical stretched horizon degrees of freedom.

4.4 Information about the “exterior” region

The information about Dσ∗
, contained in the screen entanglement entropies, is not sufficient to

determine future states obtained by time evolution. This information corresponds to that on the

“interior” light sheet, i.e. the light sheet generated by light rays emanating in the +ka directions

from σ∗.
13 However, even barring the possibility of information sent into the system from a past

singularity or past null infinity (which we will discuss in Section 5), determining a future state

requires information about the “exterior” light sheet, i.e. the one generated by light rays emanating

in the −ka directions; see Fig. 13.14 How is this information encoded in the holographic state?

Does it require additional holographic degrees of freedom beyond the A∗/4 degrees of freedom

considered so far?

The simplest possibility is that the eA∗/4 microstates for each interior geometry (i.e. a fixed

screen entanglement entropy structure) contain all the information associated with both the interior

and exterior light sheets. If this is indeed the case, then we do not need any other degrees of freedom

in the holographic space σ∗ beyond the A∗/4 ones discussed earlier. It also implies the following

properties for the holographic theory:

• Autonomous time evolution — Assuming the absence of a signal sent in from a past

13If the light sheet encounters a singularity before reaching a caustic, then the information about the singularity
must also be contained.

14This light sheet is terminated at a singularity or a caustic. Note that the information beyond a caustic is not
needed to specify the state [47], since it is timelike related with the information on the interior light sheet [68] so
that the two do not provide independent information.
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Figure 13: To determine a state in the future, we need information on the “exterior” light sheet, the
light sheet generated by light rays emanating from σ∗ in the −ka directions, in addition to that on the
“interior” light sheet, i.e. the one generated by light rays emanating in the +ka directions.

singularity or past null infinity (see Section 5), the evolution of the state is autonomous. In

particular, an initial pure state evolves into a pure state.

• S-matrix description for a dynamical black hole — As a special case, a pure state

representing initial collapsing matter to form a black hole will evolve into a pure state repre-

senting final Hawking radiation, even if p(τ) hits the singularity at an intermediate stage (at

least if the leaf stays outside the black hole); see Fig. 12.

• Strengthened covariant entropy bound — According to the original proposal of the

covariant entropy bound [9, 12], the entropy on each of the interior and exterior light sheets

is bounded by A∗/4, implying that

ln dimH∗ = 2× A∗

4
=

A∗

2
, (88)

where H∗ is the Hilbert space associated with σ∗. The present picture instead says

ln dimH∗ =
A∗

4
, (89)

implying that the entropy on the union of the interior and exterior light sheets is bounded

by A∗/4:
15 Note that the bound does not say that the entropy on each of the interior and

exterior light sheets is separately bounded by A∗/8, and so is profoundly holographic. This

bound is consistent with the fact that in any known realistic examples the covariant entropy

bound is saturated only in one side of a leaf [69].

15This bound was anticipated earlier [63] based on more phenomenological considerations.
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The picture described here is, of course, a conjecture, which needs to be tested. For example, if

a realistic case is found in which the A∗/4 bound is violated by the contributions from both the

interior and exterior light sheets, then we would have to modify the framework, e.g., by adding an

extra A∗/4 degrees of freedom on the holographic space. It is interesting that there is no known

system that requires such a modification.

We finally discuss the connection with AdS/CFT. In the limit that the spacetime becomes

asymptotically AdS, the location of the holographic screen is sent to spatial infinity, so that A∗ →
∞. This implies that there are N∗ = eA∗/4 → ∞ microstates for any spacetime configuration in

Dσ∗
for a leaf σ∗, including the case that it is a portion of the empty AdS space. Wouldn’t this

contradict the statement that the vacuum of a CFT is unique?

As we will discuss in Section 5, the degrees of freedom associated with N∗ correspond to a

freedom of sending information into the system at a later stage of time evolution, i.e. that of

inserting operators at locations other than the point x−∞ corresponding to τ = −∞ on the

conformally compactified AdS boundary. It is with this freedom that the CFT corresponds to the

AdS limit of our theory including the N∗ degrees of freedom:

CFT ⇐⇒ lim
M→asymptotic AdS

T , (90)

where M is the spacetime inside the holographic screen, and T represents the theory under con-

sideration. Here, we have taken the holographic screen to stay outside the cutoff surface (corre-

sponding to the ultraviolet cutoff of the CFT) which is also sent to infinity.

This implies that if we want to consider a setup in which the evolution of the state is “au-

tonomous” within the bulk, then we need to fix a configuration of operators at x 6= x−∞, i.e. we

need to fully fix a boundary condition at the AdS boundary. The correspondence to our theory in

this case is written as

autonomous CFT ⇐⇒ lim
M→asymptoticAdS

T /N∗. (91)

The conventional vacuum state of the CFT corresponds to a special configuration of the N∗ de-

grees of freedom that does not send in any signal to the system at later times (the simple reflective

boundary conditions at the AdS boundary). Given the correspondence between the N∗ degrees

of freedom and boundary operators, we expect that this configuration is unique. The state corre-

sponding to the CFT vacuum in our theory is then unique: the vacuum state of the theory T /N∗

with the configuration of the N∗ degrees of freedom chosen uniquely as discussed above.

4.5 Time evolution

Another feature of the holographic theory of general spacetimes beyond AdS/CFT is that the

boundary space changes in time. This implies that we need to consider the theory in a large
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Hilbert space containing states living in different boundary spaces, Eq. (5). For states representing

FRW universes, the relevant space can be written as

H =
∑

A

HA, (92)

where A is the area of the leaf, and the sum of the Hilbert spaces is defined by Eq. (6).16 While the

microscopic theory involving time evolution is not yet available, we can derive its salient features

by assuming that it reproduces the semiclassical time evolution in appropriate regimes. Here we

discuss this issue for both direct sum and Russian doll structures. In particular, we consider a

semiclassical time evolution in which a state having the leaf area A1 evolves into that having the

leaf area A2 (> A1).

Direct sum structure

In this case there is a priori no need to introduce non-linearity in the algebra of observables, so

we may assume that time evolution is described by a standard unitary operator acting on H. In

particular, time evolution of a state in HA1 into that in HA2 is given by a linear map from elements

of HA1 to those in HA2 .

Consider microstates |Ψw
i 〉 (i = 1, · · · , eA1/4) representing the FRW universe with w when the

leaf area is A1, |Ψw
i 〉 ∈ HA1,w ⊂ HA1 ; see Eq. (72). Assuming that all these states follow the

standard semiclassical time evolution,17 their evolution is given by

|Ψw
i 〉 → |Φw

i 〉, (93)

where {|Φw
i 〉} is a subset of the microstates |Φw

j 〉 (j = 1, · · · , eA2/4) representing the FRW universe

with w when the leaf area is A2, |Φw
j 〉 ∈ HA2,w ⊂ HA2 . This has an important implication. Suppose

that the initial state of the universe is given by

|Ψ〉 =
∑

i

ai|Ψw
i 〉. (94)

As we discussed before, if the effective number of terms in the sum is of order eA1/4, namely if there

are eA1/4 nonzero ai’s with size |ai| ∼ e−A1/8, then the state |Ψ〉 is not semiclassical, i.e. a firewall

state (because a superposition of that many microstates changes the structure of the entanglement

entropies). After the time evolution, however, this state becomes

|Ψ〉 → |Φ〉 =
∑

i

ai|Φw
i 〉, (95)

16More precisely, HA contains states whose leaf areas fall in the range between A and A+ δA. The precise choice
of δA is unimportant unless it is exponentially small in A. For example, the dimension of HA is eA/4δA, so that
the entropy associated with it is A/4 + ln δA, which is A/4 at the leading order in 1/A expansion.

17Here we ignore the possibility that the equation of state changes between the two times, e.g., by a conversion
of the matter content or vacuum decay. This does not affect our discussion below.
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where the number of terms in the sum is eA1/4 because of the linearity of the map. This implies that

the state |Φ〉 is not a firewall state, since the number of terms is much (exponentially) smaller than

the dimensionality of HA2,w: e
A1/4 ≪ eA2/4. In particular, the state |Φ〉 represents the standard

semiclassical FRW universe with the equation of state parameter w.

This shows that this picture has a “built-in” mechanism of eliminating firewalls through time

evolution, at least when the leaf area increases in time as we focus on here. This process happens

very quickly—any macroscopic increase of the leaf area makes the state semiclassical regardless of

the initial state.

Spacetime equals entanglement

In this case, time evolution from states in HA1 to those in HA2 is expected to be non-linear.

Consider microstates |Ψw
i 〉 (i = 1, · · · , eA1/4) representing the FRW universe with w when the

leaf area is A1, |Ψw
i 〉 ∈ HA1 . As before, requiring the standard semiclassical evolution for all the

microstates, we obtain

|Ψw
i 〉 → |Φw

i 〉, (96)

where {|Φw
i 〉} is a subset of the microstates |Φw

j 〉 (j = 1, · · · , eA2/4) representing the FRW universe

with w when the leaf area is A2, |Φw
j 〉 ∈ HA2 . Suppose the initial state

|Ψ〉 =
∑

i

ai|Ψw
i 〉 ≡ |Ψw′〉, (97)

represents the FRW universe with w′ < w. This is possible if the effective number of terms in the

sum is of order eA1/4, i.e. if there are eA1/4 nonzero ai’s with size |ai| ∼ e−A1/8. Now, if the time

evolution map were linear, then this state would evolve into

|Ψw′〉 → |Φ〉 =
∑

i

ai|Φw
i 〉. (98)

This state, however, is not a state representing the FRW universe with w′, since the effective

number of terms in the sum, eA1/4, is exponentially smaller than eA2/4, the required number to

obtain a state with w′ from the microstates |Φw
i 〉. To avoid this problem, the map from HA1 into

HA2 must be non-linear so that |Ψw′〉 evolves into |Φw′〉 containing eA2/4 terms when expanded in

terms of |Φw
i 〉.

Here we make two comments. First, the non-linearity of the map described above does not

necessarily mean that the time evolution of semiclassical degrees of freedom (given as excitations

on the background states considered here) is non-linear, since the definition of these degrees of

freedom would also be non-linear at the fundamental level. In fact, from observation this evolution

must be linear, at least with high accuracy. This requirement gives a strong constraint on the

structure of the theory. Second, the non-linearity seen above arises when the area of the boundary
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space changes, A1 → A2 6= A1. Since the area of the boundary is fixed in the AdS/CFT limit

(with the standard regularization and renormalization procedure), this non-linearity does not show

up in the CFT time evolution, generated by the dilatation operator with respect to the t = −∞
point in the compactified Euclidean space.18

We finally discuss relations between different HB’s. While we do not know how they are related,

for example they could simply exist as a direct sum in the full Hilbert space H =
⊕

B HB, an

interesting possibility is that their structure is analogous to the Russian doll structure within a

single HB. Specifically, let us introduce the notation to represent the Russian doll structure as

{|Ψw〉} ≺ {|Ψw′〉} for w′ < w, (99)

meaning that the left-hand side is a measure zero subset of the closure of the right-hand side.

We may imagine that states |ΨB〉 representing spacetimes with boundary B and states |ΨB′〉
representing those with boundary B′ are related similarly as

{|ΨB〉} ≺ {|ΨB′〉} for ‖B‖ < ‖B′‖. (100)

(The relation may be more complicated; for example, some of the |ΨB〉’s are related with |ΨB′〉’s
and some with |ΨB′′〉’s with B′′ 6= B′.) Ultimately, all states in realistic (cosmological) spacetimes

may be related with those in asymptotically Minkowski space as

{|ΨB〉} ≺ {|ΨB′〉} · · · ≺ {|ΨMinkowski〉}, (101)

since the boundary area for asymptotically Minkowski space is infinity, AMinkowski = ∞. Does

string theory formulated in an asymptotically Minkowski background (using S-matrix elements)

correspond to the present theory as

String theory ⇐⇒ lim
M→asymptotic Minkowski

T ? (102)

Here, the T /NMinkowski portion is described by the scattering dynamics, and the NMinkowski degrees

of freedom are responsible for the initial conditions, where NMinkowski = eAMinkowski/4; see the next

section. If this is indeed the case, then it would be difficult to obtain a useful description of

cosmological spacetimes directly in that formulation, since they would correspond to a special

measure zero subset of the possible asymptotic states.

5 Discussion

In this final section, we discuss some of the issues that have not been addressed in the construction

so far. This includes the possibility of sending signals from a past singularity or past null infinity

18This does not mean that the interior of a black hole is described by state-independent operators in the CFT.
It is possible that the CFT does not provide a description of the black hole interior; see discussion in Section 4.3.
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Figure 14: In a universe beginning with a big bang, obtaining a future state requires a specification of
signals from the big bang singularity, in addition to the information contained in the original state. In an
FRW universe this is done by imposing spatial homogeneity and isotropy, which corresponds to selecting
a fine-tuned state from the viewpoint of the big bang universe.

(in the course of time evolution) and the interpretation of a closed universe in which the area of

the leaf changes from increasing to decreasing once the scale factor at the leaf starts decreasing.

We argue that these issues are related to that of “selecting a state”—even if the theory is specified

we still need to provide selection conditions on a state, usually given in the form of boundary

conditions (e.g. initial conditions). Our discussion here is schematic, but it allows us to develop

intuition about how quantum gravity in general spacetimes might work at the fundamental level.

Signals from a past singularity or past null infinity

As mentioned in Section 4.4, the evolution of a state in the present framework is not fully au-

tonomous. Consistent with the covariant entropy bound, we may view a holographic state to carry

the information on the two (future-directed ingoing and past-directed outgoing) light sheets asso-

ciated with the leaf it represents. However, this is not enough to determine a future state because

there may be signals sent into the system from a past singularity or past null infinity (signals

originating from the lower right direction between the two 45◦ lines in Fig. 13).

To be specific, let us consider a (not necessarily FRW) universe beginning with a big bang. As

shown in Fig. 14, obtaining a future state (represented by the upper 45◦ line) in general requires a

specification of signals from the big bang singularity, in addition to the information contained in

the original state (the lower 45◦ line). We usually avoid this issue by requiring the “cosmological

principle,” i.e. spatial homogeneity and isotropy, which determines what conditions one must put at

the singularity—with this requirement, the state of the universe is determined by the energy density
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content in the universe at a time. Imposing this principle, however, corresponds to choosing a very

special state. This is because there is no reason to expect that signals sent from the singularity at

different times τ (defined holographically) are correlated in such a way that the system appears as

homogeneous and isotropic in some time slicing. In fact, this was one of the original motivations

for inflationary cosmology [70–72].

In some cases, appropriate conditions can be obtained by assuming that the spacetime under

consideration is a portion of larger spacetime. For example, if the universe is dominated by

negative curvature at an early stage, it may arise from bubble nucleation [73], in which case the

homogeneity and isotropy would result from the dynamics of the bubble nucleation [74]. Even in

this case, however, we would still need to specify similar conditions in the ambient space in which

our bubble forms, and so on. More generally, the analysis here says that to obtain a future state,

we need to specify the information coming from the directions tangent to the past-directed light

rays. This, however, is morally the same as the usual situation in physics in which we need to

specify boundary (e.g. initial) conditions beyond the dynamical laws the system obeys.

The situation is essentially the same in the limit of AdS/CFT; we only need to consider the AdS

boundary instead of the big bang singularity. To obtain future states, it is not enough to specify

the initial state, given by a local operator inserted at the point x−∞ corresponding to τ = −∞ on

the conformally compactified AdS boundary. We also have to specify other (possible) boundary

operators inserted at points other than x−∞.

String theory formulated in terms of the S-matrix deals with this issue by adopting an asymp-

totically Minkowski time slice in which all the necessary information is viewed as being in the

initial state. This, however, does not change the amount of information needed to specify the

state, which is infinite in asymptotically Minkowski space (because one can in principle send an

infinite amount of information into the system from past null infinity).

Closed universes—time in quantum gravity

Consider a closed universe in which the vacuum energy is negligible throughout its history. In

such a universe, the area of the leaf changes from increasing to decreasing in the middle of its

evolution. On the other hand, we expect that the area of the leaf for a “generic” state increases

monotonically, since the number of independent states representing spacetime with the leaf area

A goes as eA/4. What does this imply?

We interpret that states representing universes like these are “fine-tuned,” so that they do not

obey the usual second law of thermodynamics as applied to the Hilbert space of quantum gravity.

This does not mean that they are meaningless states to consider. Rather, it means that we need

to scrutinize carefully the concept of time in quantum gravity.

There are at least three different views of time in quantum gravity; see, e.g., Ref. [75]. First,
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since time parameterization in quantum gravity is nothing other than a gauge choice, the state

|Ψ̃〉 of the full system—whatever its interpretation—satisfies the constraint [40, 41]

H|Ψ̃〉 = 0, (103)

where H is the time evolution operator, in our context the generator of a shift in τ . In this

sense, the concept of time evolution does not apply to the full state |Ψ̃〉.19 However, this of course

does not mean that physical time we perceive is nonexistent. Time we observe can be defined

as correlations between subsystems (e.g. between an object playing the role of a clock and the

rest) [40, 76], at least in some branch of |Ψ̃〉. Another way to define time is through probability

flow in |Ψ̃〉. Suppose |Ψ̃〉 is expanded in a set of states |Ψi〉 each of which represents a well-defined

semiclassical spacetime when such an interpretation is applicable:

|Ψ̃〉 =
∑

i

ci|Ψi〉. (104)

According to the discussion in Section 4, |Ψi〉’s are approximately orthogonal in the appropriate

limit, and the constraint in Eq. (103) implies
∑

j

cjUij = ci, Uij ≡ 〈Ψi|e−iHδτ |Ψj〉, (105)

where Uij is (effectively) unitary
∑

j

UijU
∗
kj =

∑

j

UjiU
∗
jk = δik. (106)

Multiplying Eq. (105) with its conjugate and using Eq. (106), we obtain

0 =− |ci|2
∑

j 6=i

|Uji|2 +
∑

j 6=i

|cj|2|Uij |2

+
∑

j 6=i

cic
∗
jUiiU

∗
ij +

∑

j 6=i

cjc
∗
iUijU

∗
ii +

∑

j,k 6=i
j 6=k

cjc
∗
kUijU

∗
ik. (107)

In the regime where the WKB approximation is applicable, the terms in the second line are

negligible compared with those in the first line because of a rapid oscillation of the phases of cj,k’s,

so that

|ci|2
∑

j 6=i

|Uji|2 =
∑

j 6=i

|cj |2|Uij|2, (108)

19Reference [40] states that Eq. (103) need not apply in an infinite world; for example, the state of the system
|Ψ∞〉 may depend on time in asymptotically Minkowski space. We view that Eq. (103) still applies in this case by
interpreting |Ψ̃〉 to represent the full system, including the “exterior” degrees of freedom discussed in Section 4.4
(the degrees of freedom corresponding to NMinkowski below Eq. (102)) as well as the “interior” degrees of freedom
represented by |Ψ∞〉. The time evolution of |Ψ∞〉 is then understood as correlations between the interior and
exterior degrees of freedom, as described below.
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implying that the “current of probability” is conserved. We may regard this current as time flow.

The time defined in this way—which we call current time—need not be the same as the physical

time defined through correlations, although in many cases the former agrees approximately with

the latter or the negative of it (up to a trivial shift and rescaling).

In a closed universe (with a negligible vacuum energy), it is customary to impose the boundary

condition

ci = 0 for {|Ψi〉 | a = 0}, (109)

i.e. the wavefunction vanishes when the scale factor goes to zero [40]. With this boundary condition,

current time τ flows in a closed circuit. The direction of the flow agrees with that of physical time

in the branches where da/dτ > 0, while the two are exactly the opposite in the branches where

da/dτ < 0. (The latter statement follows, e.g., from the analysis in Ref. [77], which shows that

given a lower entropy final condition the most likely history of a system is the CPT conjugate of the

standard time evolution.) Our time evolution in earlier sections concerns the flow of current time.

The (apparent) violation of the second law of thermodynamics then arises because the condition of

Eq. (109) selects a special, “standing wave” solution from the viewpoint of the current time flow.

This is, however, not a fine-tuning from the point of view of the quantum theory in a similar way

as the electron energy levels of the hydrogen atom are not regarded as fine-tuned states.

The fact that current time flows toward lower entropy states does not mean that a physical

observer living in the da/dτ < 0 phase sees a violation of the second law of thermodynamics.

Since the whole system evolves as time reversal of a standard entropy increasing process, including

memory states of the observer, a physical observer always finds the evolution of the system to be

the standard one [17, 77]; in particular, he/she always finds that the universe is expanding.

Static quantum multiverse—selecting the state in the landscape

The analysis of string theory suggests that the theory has a multitude of metastable vacua each

of which leads to a distinct low energy effective theory [42–45]. Combining this with the fact that

many of these vacua lead to inflation (which is future eternal at the semiclassical level) leads to

the picture of the inflationary multiverse [78–81]. The picture suggests that our universe is one of

many bubble universes, and it cannot be a closed universe that will eventually collapse as the one

discussed above. How is the state of the multiverse selected then?

A naive semiclassical picture implies that the state of the multiverse evolves asymptotically into

a superposition of supersymmetric Minkowski worlds and (possibly) “singularity worlds” resulting

from the big crunches of AdS bubble universes [17]. This is because any other universe is expected

to decay eventually. There are basically two possibilities for the situation in a full quantum theory.

The first possibility is that the multiverse is in a “scattering state.” This essentially preserves

the semiclassical intuition. From the viewpoint of the current time flow, the multiverse begins as
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an asymptotic state, experiences nontrivial cosmology at an intermediate stage, and then dissipates

again into the asymptotic Minkowski and singularity worlds. In the earlier stage of the evolution

in which the coarse-grained entropy decreases in τ , the directions of current and physical time

flows are opposite, while in the later stage of increasing entropy, the flows of the two times are

in the same direction. The resulting picture is similar to that of Ref. [82]: the multiverse evolves

asymptotically into both forward and backward in (current) time. This, however, does not mean

that a physical observer, who is a part of the system, sees an entropy decreasing universe; the

observer always finds that his/her world obeys the second law of thermodynamics.

A problem with this possibility is that specifying the theory of quantum gravity, e.g. the struc-

ture of the Hilbert space and Hamiltonian, is not enough to obtain the state of the multiverse

and hence make predictions. We would need a separate theory to specify initial conditions. Fur-

thermore, having a lower course-grained entropy at the turn-around point (the point at which

the coarse-grained entropy changes from decreasing to increasing in the current time evolution)

requires a more carefully chosen initial condition. This leads to the issue of understanding why

we are “ordinary observers,” carrying course-grained entropies (much) smaller than that needed

to have any consciousness—a variant of the well-known Boltzmann brain problem [83–85] (the

argument applied to space of initial conditions, rather than to a thermal system).

The alternative, and perhaps more attractive, possibility is that the multiverse is in a “bound

state” [46]. Specifically, the multiverse is in a normalizable state satisfying the constraint of

Eq. (103) (as well as any other constraints):

|Ψ̃〉 =
∑

i

ci|Ψi〉;
∑

i

|ci|2 <∞. (110)

This is a normalization condition in spacetime, rather than in space as in usual quantum mechanics,

and it allows us to determine, in principle, the state of the multiverse once the theory is given.20

As in the case of a collapsing closed universe, current time flows in a closed circuit(s) to the extent

that this concept is applicable. This suggests that the multiverse does not probe an asymptotic

supersymmetric Minkowski region or the big crunch singularity of an AdS bubble. The origin of

this phenomenon must be intrinsically quantum mechanical as it contradicts the naive semiclassical

picture. In fact, such a situation is not new in physics. As is well known, the hydrogen atom

cannot be correctly described using classical mechanics: any orbit of the electron is unstable with

respect to the emission of synchrotron radiation. The situation in the quantum multiverse may be

similar—quantum mechanics is responsible for the very existence of the system.

Once the state of the multiverse is determined, we should be able to use it to give predictions

or explanations. This requires us to develop a prescription for extracting answers to physical

20If there are multiple solutions |Ψ̃I〉, it is natural to assume that the multiverse is in the maximally mixed state

ρ = 1

N

∑N
I=1

|Ψ̃I〉〈Ψ̃I | (in the absence of more information). Here, we have taken |Ψ̃I〉’s to be orthonormal.
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questions about the state. The prescription would certainly involve coarse-graining (as one cannot

even store the information of all possible microstates of the multiverse within the multiverse),

and it should reproduce the standard Born rule giving probabilistic predictions in the appropriate

regime. Perhaps, the normalization condition of Eq. (110) is required in order for this prescription

to be well-defined.
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A Spacelike Monotonicity Theorem

Let H be a past holographic screen, foliated by compact marginally anti-trapped surfaces i.e.

leaves, {σr}. Here, r is a (non-unique) real parameter taken to be a monotonically increasing

function of the leaf area. For each leaf we can construct the two future-directed null vector fields

(up to overall normalization) and denote them ka and la, which satisfy

θk = 0, θl > 0. (111)

Now let ha a leaf-orthogonal vector field tangent to H and normalized by the condition ha∂ar = 1.

Note that ha must point in the direction of increasing area. We can always put ha = αla + βka for

some smooth real-valued functions α and β on H . The Bousso-Engelhardt area theorem implies

that α > 0 everywhere. There is no restriction on the sign of β: it can even have indefinite sign

on a single leaf.

Let Ar be a d − 2 dimensional region in a leaf σr and let ∂Ar denote its boundary, where d

is the spacetime dimension. This region can be transported to a region Ar′ in a nearby leaf σr′

by following the integral curves of the leaf-orthogonal vector field ha. While Ref. [20] pointed out

that ‖Ar‖ is an increasing function of r, this by itself does not guarantee that S(Ar) monotonically

increases. Nonetheless, we now show that S(Ar) indeed monotonically increases if ha is spacelike.
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Theorem 1. Suppose that H is a past holographic screen foliated by leaves {σr} and assume that

the parameter r is oriented to increase as leaf area increases. Assume that H is spacelike on some

particular leaf which we take to be σ0 by shifting r if necessary. Let A0 be a subregion of σ0 and

define Ar ⊂ σr by transporting points in A0 along the integral curves of the leaf-orthogonal vector

field in H . Then, S(Ar) is a monotonically increasing function of r.

Proof. Let ha be the leaf-orthogonal vector field tangent to H with ha∂ar = 1 and note that ha
∣

∣

σ0

is spacelike. The compactness of σ0 now allows us to find r0 > 0 such that ha
∣

∣

H[−r0,r0]
is spacelike.

Here we have introduced the convenient notation

H [r1, r2] =
⋃

r1≤r≤r2

σr. (112)

In what follows, we will assume that the extremal surface E(Ar) anchored to ∂Ar deforms

smoothly as a function of r at r = 0. If this is not the case, a phase transition occurs at r = 0

which will give rise to a discontinuity in the derivative of S(Ar). However, we can then note

that our theorem applies at r slightly greater than zero (where H is still spacelike and where

no phase transition occurs) and also at r slightly smaller than zero. This implies that S(Ar) is

monotonically increasing at r = 0 even if E(Ar) “jumps” at r = 0 so that the derivative of ‖E(Ar)‖
has a discontinuity.

The maximin construction of E(A0) ensures that there exists Σ0 ∈ Cσ0 such that E(A0) =

min(A0,Σ0). Here, Cσ denotes the collection of all complete codimension-1 achronal surfaces lying

in Dσ that are anchored to σ, and min(A,Σ) denote the d− 2 dimensional surface of minimal area

lying in Σ that is homologous to A. If 0 < ǫ < r0, let

Σǫ = Σ0 ∪H [0, ǫ]. (113)

We claim that Σǫ ∈ Cσǫ
for small ǫ. First we check that Σǫ is achronal. Since Σ0 and H [0, ǫ] are

achronal independently, we focus on their intersection at σ0. The definition of Cσ0 requires that

Σ0 lies in Dσ0 so that a vector pointing from σ0 to Σ0 has the form c1k
a − c2l

a with c1, c2 > 0.

Meanwhile, a vector pointing from σ0 to H [0, ǫ] is proportional to ha
∣

∣

σ0
= |α|la − |β|ka. Here we

have made use of the fact that α > 0 and β < 0 for a spacelike past holographic screen. We see

now that Σ0 lies “inside” σ0 while h
a points toward the “outside.” This ensures that Σǫ is achronal

for sufficiently small ǫ. All that is left to check is that Σǫ lies inside of Dσǫ
. But this is clear

because a vector pointing from σǫ toward Σǫ is proportional to −ha
∣

∣

σǫ
= −|α|la + |β|ka which is

indeed directed into Dσǫ
. That Σǫ ∈ Cσǫ

is now clear for small ǫ.

We now construct an ǫ-dependent family of d − 2 dimensional surfaces lying on Σ0 that are

anchored to ∂A0, which we will denote by Ξǫ. Begin by fixing a small ǫ with 0 < ǫ < r0 and defining

a projection function πǫ : H [0, ǫ] → σ0 in the natural way: if p ∈ H [0, ǫ], follow the integral curves
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of ha, starting from p, until a point in σ0 is reached. The result is πǫ(p). We can now define Ξǫ:

Ξǫ =
(

min(Aǫ,Σǫ) ∩ Σ0

)

⋃

πǫ

(

min(Aǫ,Σǫ) ∩H [0, ǫ]
)

. (114)

If ǫ is sufficiently small, the fact that H [0, ǫ] has a positive definite metric, along with the fact that

E(A0) is not tangent to σ0 anywhere, ensures that ‖πǫ
(

min(Aǫ,Σǫ) ∩ H [0, ǫ]
)

‖ < ‖min(Aǫ,Σǫ) ∩
H [0, ǫ]‖. From this it follows that

‖Ξǫ‖ < ‖min(Aǫ,Σǫ)‖. (115)

On the other hand, because πǫ(∂Aǫ) = ∂A0, we know that Ξǫ is a codimension-2 surface anchored

to ∂A0 that lies only on Σ0. Thus,

4S(A0) = ‖min(A0,Σ0)‖ ≤ ‖Ξǫ‖. (116)

Noting that the maximin construction of E(Aǫ) requires

‖min(Aǫ,Σǫ)‖ ≤ 4S(Aǫ), (117)

we find S(A0) < S(Aǫ).

B Qubit Model

B.1 Model and applications to quantum gravity

Here we describe a toy model for holographic states representing FRW universes, presented origi-

nally in Ref. [31]. We consider a Hilbert space for N (≫ 1) qubits H = (C2)⊗N . Let ∆ (≤ N) be

a nonnegative integer and consider a typical superposition of 2∆ product states

|Ψ〉 =
2∆
∑

i=1

ai |xi1xi2 · · ·xiN〉, (118)

where {ai} is a normalized complex vector, and xi1,··· ,N ∈ {0, 1}. Given an integer n with 1 ≤ n <

N , we can break the Hilbert space into a subsystem Γ for the first n qubits and its complement

Γ̄. We are interested in computing the entanglement entropy SΓ of Γ.

Suppose n ≤ N/2. If ∆ ≥ n, then i in Eq. (118) runs over an index that takes many more

values than the dimension of the Hilbert space for Γ, so that Page’s argument [52] tells us that Γ

has maximal entanglement entropy: SΓ = n ln 2. On the other hand, if ∆ < n then the number of

terms in Eq. (118) is much less than both the dimension of the Hilbert space of Γ and that of Γ̄,

which limits the entanglement entropy: SΓ = ∆ ln 2. We therefore obtain

SΓ =

{

n n ≤ ∆,

∆ n > ∆,
(119)
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for ∆ < N/2, while

SΓ = n, (120)

for ∆ ≥ N/2. Here and below, we drop the irrelevant factor of ln 2. The value of SΓ for n > N/2

is obtained from SΓ = SΓ̄ since |Ψ〉 is pure.
The behavior of SΓ in Eqs. (119, 120) models that of S(γ) in Section 3.1. The correspondence

is given by

n

N
↔ ‖Γ‖

A∗
, (121)

∆

N
↔ 1

2
Qw

(π

2

)

, (122)

for ∆ ≤ N/2.21 The identification of Eq. (121) is natural if we regard the N = A∗/4 qubits as

distributing over a leaf σ∗ with each qubit occupying a volume of 4 in Planck units. The quantity

∆ controls what universe a state represents. For fixed ∆, different choices of the product states

|xi1xi2 · · ·xiN〉 and the coefficients ai give e
N independent microstates for the FRW universe with

w = f(∆/N). The function f is determined by Eq. (122); in particular, f = −1 (> −1) for

∆/N = 1/2 (< 1/2).

This model can be used to argue for features of the holographic theories discussed in Section 4.2.

We consider two cases:

Direct sum structure— In this case, each of the subspaces H∗,w is modeled by the N qubit

system described here. Consider H∗,w with a fixed w. States representing the FRW universe

with w then encompass eN independent microstates in this space. These microstates form

“effective vector space” in that a superposition involving less than eO(δwN) of them leads only

to another microstate representing the same FRW universe with w. (We say that these states

comprise “fat” preferred axes.) Most of the states in H∗,w, containing more than eO(δwN) of

the w microstates, are regarded as non-semiclassical, i.e. firewall or unphysical, states.

Russian doll structure — In this case, the entire H∗ space is modeled by the N qubits,

and the states representing various FRW universes are all elements of this single Hilbert space

of dimension eN . An important point is that the set of states with any fixed ∆w provide a

complete basis for the whole Hilbert space, where ∆w ≡ Nf−1(w). This implies that we can

obtain a state with any w′ < w by superposing e∆w′−∆w states with ∆w, and we can also

obtain a state with w′ > w as a superposition of carefully chosen e∆w states with ∆w. We

call this the “Russian doll” structure, which is depicted schematically in Fig. 11.

21States with ∆ > N/2 cannot be discriminated from those with ∆ = N/2 using SΓ alone. Below, we only
consider the states with N/4 ≤ ∆ ≤ N/2.
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B.2 Effective incoherence of superpositions

We now focus on the latter case and consider a normalized superposition

|Ψ〉 = c1|Ψ1〉+ c2|Ψ2〉, (123)

of two states

|Ψ1〉 =
2∆1
∑

i=1

ai |xi1xi2 · · ·xiN〉
(

2∆1
∑

i=1

|ai|2 = 1

)

, (124)

|Ψ2〉 =
2∆2
∑

i=1

bi |yi1yi2 · · · yiN〉
(

2∆2
∑

i=1

|bi|2 = 1

)

, (125)

with ∆1 6= ∆2 and

∆1,∆2 ≤
N

2
. (126)

Here, the coefficients ai and bi are random, as are the binary values xi1,··· ,N and yi1,··· ,N , and |c1|2 +
|c2|2 = 1 up to an exponentially suppressed correction arising from 〈Ψ1|Ψ2〉 6= 0 . O(2−|∆1−∆2|/2).

We are interested in the reduced density matrix

ρ1···n = Trn+1···N ρ, (127)

obtained by performing a partial trace on

ρ = |Ψ〉〈Ψ| = |c1|2|Ψ1〉〈Ψ1|+ |c2|2|Ψ2〉〈Ψ2|+ c1c
∗
2|Ψ1〉〈Ψ2|+ c2c

∗
1|Ψ2〉〈Ψ1|, (128)

over the subsystem consisting of the first n qubits. We will only consider the case where n < N/2.

We begin our analysis by considering Trn+1···N |Ψ1〉〈Ψ1|. It is convenient to write

|Ψ1〉〈Ψ1| =
2∆1
∑

i=1

|ai|2 |xi1 · · ·xiN 〉〈xi1 · · ·xiN |+
2∆1
∑

i,j=1
i 6=j

aia
∗
j |xi1 · · ·xiN〉〈xj1 · · ·xjN |. (129)

Upon performing the partial trace over |Ψ1〉〈Ψ1|, the first sum gives a diagonal contribution to the

reduced density matrix

D11 =
2∆1
∑

i=1

|ai|2 |xi1 · · ·xin〉〈xi1 · · ·xin|. (130)

The second sum gives a correction

D̃11 =
2∆1
∑

i,j=1
i 6=j

aia
∗
j |xi1 · · ·xin〉〈xj1 · · ·xjn| δxi

n+1,x
j
n+1

· · · δxi
N
,xj

N
. (131)

We now consider two cases:
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(i) ∆1 > n.

Because 2∆1 ≫ 2n, it is clear that D11 is a 2n × 2n diagonal matrix with every diagonal entry

approximately given by
2∆1

2n
〈

|ai|2
〉

= 2−n. (132)

(Note that 〈|ai|2〉 = 2−∆1 because |Ψ1〉 is normalized and random.) Thus, D11 is a fully

mixed state. Now observe that D̃11 consists of almost all zeros. In fact, looking at Eq. (131)

we see that there are 22∆1−N+n nonzero entries of average absolute value 2−∆1. Given that

∆1 ≤ N/2, we conclude that D̃11 has exponentially fewer nonzero entries than D11, and that

each nonzero entry has exponentially smaller size than the entries of D11.

(ii) ∆1 ≤ n.

In this case, D11 is a diagonal matrix having 2∆1 nonzero entries of order 2−∆1 . The number

of nonzero entries in D̃11 is, again, 22∆1−N+n, each having the average absolute value 2−∆1.

The effect of D̃11 is highly suppressed because its number of nonzero entries is exponentially

smaller than that of D11. In fact, for the number of nonzero entries in D̃11 to compete with

that in D11, we would need 2∆1 −N + n ≥ ∆1, which, however, mean

∆1 ≥ N − n >
N

2
, (133)

a contradiction.

Summarizing, Trn+1···N |Ψ1〉〈Ψ1| = D11+ D̃11 is a diagonal matrix having 2min{∆1,n} nonzero entries

of order 2−min{∆1,n}, up to exponentially suppressed effects. The same analysis obviously applies

to Trn+1···N |Ψ2〉〈Ψ2| = D22 + D̃22 with ∆1 → ∆2.

We now turn our attention to the matrix Trn+1···N |Ψ1〉〈Ψ2|, which we denote as D̃12:

D̃12 =
2∆1
∑

i=1

2∆2
∑

j=1

aib
∗
j |xi1 · · ·xin〉〈yj1 · · · yjn|δxi

n+1,y
j
n+1

· · · δxi
N
,yj

N
. (134)

We argue, along similar lines to the above, that D̃12 is exponentially smaller than |c1|2D11+|c2|2D22,

unless |c1| or |c2| is exponentially suppressed. Once again, we have several cases:

(i) ∆1,∆2 ≤ n.

In this case, |c1|2D11 + |c2|2D22 is a diagonal matrix having 2∆1 nonzero entries of order 2−∆1

and 2∆2 nonzero entries of order 2−∆2. Considering Eq. (134), D̃12 consists of zeros except

for 2∆1+∆2−N+n nonzero entries with the average absolute value
〈

|aib∗j |
〉

= 2−(∆1+∆2)/2. The

number of these entries, however, is exponentially smaller than 2∆1, since having ∆1 +∆2 −
N +n ≥ ∆1 would require ∆2 ≥ N −n > N/2; similarly, it is also exponentially smaller than

2∆2 . Moreover the changes of the exponentially rare eigenvalues affected are at most of O(1).

We conclude that the effect of D̃12 is exponentially suppressed.
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(ii) ∆1,∆2 > n.

In this case, the condition that |c1|2 + |c2|2 = 1 ensures that |c1|2D11 + |c2|2D22 is a 2n × 2n

unit matrix multiplied by 2−n. Meanwhile, D̃12 consists of zeros except for 2
∆1+∆2−N+n ≪ 2n

nonzero entries of size 2−(∆1+∆2)/2 ≪ 2−n.

(iii) ∆1 ≤ n < ∆2.

In this case, D22 is a 2n × 2n unit matrix multiplied by 2−n while D11 is a diagonal matrix

having 2∆1 nonzero entries of order 2−∆1 . Once again, the number of nonzero entries in D̃12 is

exponentially smaller than 2∆1 , since ∆1+∆2−N+n ≥ ∆1 would require ∆2 ≥ N−n > N/2,

and the fractional corrections to eigenvalues from these entries are of order 2−(∆2−n). This

implies that the effect of D̃12 is negligible. The same argument also applies to the case that

∆2 ≤ n < ∆1.

We conclude that for n < N/2, we find

ρ1···n = |c1|2D11 + |c2|2D22 =

2∆1
∑

i=1

|ai|2 |xi1 · · ·xin〉〈xi1 · · ·xin|+
2∆2
∑

i=1

|bi|2 |yi1 · · · yin〉〈yi1 · · · yin|, (135)

up to effects exponentially suppressed in N ≈ O(A∗). This implies that the reduced density matrix

for the state |Ψ〉 takes the form of an incoherent classical mixture

ρ1···n = |c1|2ρ(1)1···n + |c2|2ρ(2)1···n, (136)

where ρ
(k)
1···n = Trn+1···N |Ψk〉〈Ψk| (k = 1, 2) are the reduced density matrices we would obtain if the

state were |Ψk〉.
The form of Eq. (135) also implies that the entanglement entropy

S1···n = −Tr1···n(ρ1···n ln ρ1···n), (137)

obeys a similar linear relation

S1···n = |c1|2S(1)
1···n + |c2|2S(2)

1···n +O(1), (138)

unless |c1| or |c2| is exponentially small. Here, S
(k)
1···n = −Tr1···n(ρ

(k)
1···n ln ρ

(k)
1···n). This can be seen by

considering the same three cases as above. If ∆1,∆2 ≤ n, ρ1···n is a diagonal matrix having 2∆1

nonzero entries with average value |c1|22−∆1 and 2∆2 nonzero entries with average value |c2|22−∆2.

In this case,

S1···n = −|c1|2 ln
|c1|2
2∆1

− |c2|2 ln
|c2|2
2∆2

= |c1|2∆1 ln 2 + |c2|2∆2 ln 2 +O(1), (139)

while we have S
(k)
1···n = ∆k ln 2. The O(1) correction from linearity is the entropy of mixing, given

by

S1···n,mix = −|c1|2 ln |c1|2 − |c2|2 ln |c2|2. (140)
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If ∆1,∆2 > n, then ρ1···n is a unit matrix multiplied by 2−n. From this it follows that S1···n =

n ln 2 = |c1|2n ln 2 + |c2|2n ln 2, which is desirable given that S
(k)
1···n = n ln 2 for ∆k > n.22 Finally,

if ∆1 < n < ∆2, ρ
(1)
1···n has 2∆1 nonzero entries of mean value 2−∆1 while ρ

(2)
1···n is a unit matrix

multiplied by 2−n. Because 2−∆1 ≫ 2−n the total density matrix ρ1···n given by Eq. (135) is

diagonal and has 2∆1 entries of size |c1|22−∆1 and 2n entries of size |c2|22−n. We thus find that

S1···n = |c1|2∆1 ln 2+ |c2|2n ln 2 + S1···n,mix = |c1|2S(1)
1···n + |c2|2S(2)

1···n +O(1). (This expression is valid

for ∆1 = n < ∆2 as well.)
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