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Spontaneous collapse models are phenomological theories formulated to address major difficulties
in macroscopic quantum mechanics. We place significant bounds on the parameters of the leading
collapse models, the Continuous Spontaneous Localization (CSL) model and the Diosi-Penrose (DP)
model, by using LISA Pathfinder’s measurement, at a record accuracy, of the relative acceleration
noise between two free-falling macroscopic test masses. In particular, we bound the CSL collapse
rate to be at most (2.96 ± 0.12) × 10−8 s−1. This competitive bound explores a new frequency
regime, 0.7 mHz to 20 mHz, and overlaps with the lower bound 10−8±2 s−1 proposed by Adler in
order for the CSL collapse noise to be substantial enough to explain the phenomenology of quantum
measurement. Moreover, we bound the regularization cut-off scale used in the DP model to prevent
divergences to be at least 40.1 ± 0.5 fm, which is larger than the size of any nucleus. Thus, we rule
out the DP model if the cut-off is the size of a fundamental particle.

Introduction.— Spontaneous collapse models are mod-
ifications of quantum mechanics which have been pro-
posed to explain why macroscopic objects behave clas-
sically, and to address the measurement problem. The
most widely studied collapse models are the Continuous
Spontaneous Localization (CSL) and the Diosi-Penrose
(DP) models.

The CSL model is parametrized by two scales: λCSL,
which sets the strength of the collapse noise, and rCSL,
which sets the correlation length of the noise. For a nu-
cleon in a spatial superposition of two locations separated
by a distance much greater than rCSL, λCSL is the aver-
age localization rate [1]. The quantity rCSL has usually
been phenomenologically taken to be 100 nm [2], and we
will follow this convention.

The DP model adds stochastic fluctuations to the grav-
itational field, and is mathematically equivalent to the
gravitational field being continuously measured [2–4].
The latter statement leaves the DP model with no free
parameters, but a regularization parameter, σDP, is usu-
ally introduced to prevent divergences for point masses.

Nimmrichter et al., in [5], show that the effect of these
models on an optomechanical setup, where the center
of mass position of a macroscopic object is probed, can
be summarized by an additional white noise force, F (t),
acting on the system, and with a correlation function of

〈F (t)F (t′)〉 = DCδ (t− t′) . (1)

For CSL, DC is given by

DCSL = λCSL

(
~

rCSL

)2

α (2)

with α a geometric factor [5]. LISA pathfinder has quasi-
cubic test masses, which we will approximate as perfect
cubes. For a cube with length b� rCSL,

α ≈ 8πρ2r4CSLb
2

m2
0

(3)

where ρ is the material density, and m0 the mass of a

TABLE I. LISA pathfinder test mass parameters (Ref. [8]).
We estimated ρ and a with weighted averages of the densities
and lattice constants, respectively, of the materials in the alloy
that the test masses are made out of. The composition of this
alloy is 73% Au and 27% Pt.

Quantity Description Value
M Mass 1.928 kg
ρ Density 19881 kg/m3

a Lattice constant 4.0 Å
b Side length 46 mm

nucleon. For the DP model, DC is given by

DDP ≈
G~

6
√
π

(
a

σDP

)3

Mρ (4)

with M the test mass’ mass, and a the lattice constant
of the material composing the test mass [5].

An optomechanics experiment would need to have very
low force noise to significantly constrain collapse models.
LISA pathfinder measures the relative acceleration noise
between two free-falling test masses at a record accuracy
of
√
Sa = 5.2± 0.1 fm s−2/

√
Hz for frequencies between

0.7 mHz and 20 mHz [6], and so is a promising platform to
test collapse models. We will use Sa, and relevant details
on the LISA pathfinder test mass which we present in
table I, to provide an upper bound on λCSL and a lower
bound on σDP.

We note that Sa has steadily decreased by about a
factor of 1.5 since the start of science operations in LISA
pathfinder [6], and has continued to significantly decrease
since the results were published in June 2016 [7]. For
the remainder of this article, we will use the conservative
value of 5.2 fm s−2/

√
Hz for

√
Sa, but we will also present

bounds obtained from a postulated sensitivity level of√
Spos
a = 3.5 fm s−2/

√
Hz,

which is about 1.5 times smaller than
√
Sa.
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Constraining the collapse models.— We can bound the
parameters of collapse models by measuring the force
noise of a test mass in an experiment, and attributing
unknown noise to the stochastic force F (t).

In LISA pathfinder, Brownian thermal noise provides
the dominant contribution to the differential acceleration
noise at frequencies between 1 mHz and 20 mHz. How-
ever, the value of this contribution is not precisely known.
As a result, we follow a simple and uncontroversial anal-
ysis which attributes all acceleration noise to the collapse
models’ stochastic forces:

Sa = 2SF /M
2, (5)

where SF = 2DC is the single sided spectrum of the
collapse force. The factor of 2 in Eq. (5) follows from the
collapse noise on each test mass adding up, because the
spontaneous collapse force acts independently on each of
the two test masses, which are separated by about 38 cm,
a distance much larger than rCSL and σDP. Therefore,
we can place an upper bound on DC of:

DC ≤ Dmax
C = M2Sa/4. (6)

Using Eq. (2), we can then bound λCSL to

λCSL ≤ λmax
CSL, (7)

with

λmax
CSL =

m2
0

32π~2r2CSL

(
M

ρ

)2
1

b2
Sa (8)

= 2.96× 10−8 s−1, (9)

where we have substituted in the values shown in table
I for ρ, M and b. If we use Spos

a instead of Sa, then we
reduce λmax

CSL to 1.34× 10−8 s−1.
In addition, using Eq. (4), we can bound σDP to

σDP ≥ σmin
DP , (10)

with

σmin
DP =

(
2~G
3
√
π

ρ

m

1

Sa

)1/3

a = 40.1 fm, (11)

where we have substituted in the values shown in table
I for ρ, M and a. If we use Spos

a instead of Sa, then we
increase σmin

DP to 52.2 fm.
Discussion.— LISA pathfinder provides a competitive

bound on λCSL. λmax
CSL is three orders of magnitude lower

than the bound 10−5 s−1, which Feldmann and Tumulka
[9] calculated from Gerlich et al.’s matter wave inte-
ferometry experiment of organic compounds up to 430
atoms large [10]. Another matter wave interferometry
experiment from the same group [11] places a bound of
5× 10−6 s−1, as calculated in [12].

Moreover, λmax
CSL is comparable to bounds on λCSL ob-

tained from measuring spontaneous heating from the col-
lapse noise. Bilardello et al. place a bound of 5×10−8 s−1

[13], by analyzing the heating rate of a cloud of Rb atoms
cooled down to picokelvins [14]. Note that Bilardello et
al.’s bound depends on the temperature of the CSL noise
field, and on the reference frame with respect to which
the CSL noise field is at rest with [13]. The standard
formulation of CSL has the collapse noise field at a tem-
perature of infinity, but the theory could be modified
to include different temperatures. The incorporation of
dissipation within CSL is based on the dissipative CSL
(dCSL) theory proposed by Smirne and Bassi [15].

Other competitive upper bounds have been obtained
from cosmological data, the lowest of which, 10−9 s−1, is
from the heating of the intergalactic medium [1]. How-
ever, this bound is also sensitive to the temperature of
the collapse noise field [15]. Moreover, our interest in this
article is for controlled experiments.

In addition to providing an aggressive upper bound,
LISA pathfinder explores the low frequency regime of
0.7 mHz to 20 mHz. In Fig. 1, we compare λmax

CSL to
bounds obtained from experiments operating in different
frequency regimes. If Spos

a is used instead of Sa, then
LISA pathfinder provides the smallest upper bound of
all experiments operating below a THz scale.

LIGO’s measurement of the differential displacement
noise between two test masses in the frequency regime
10 Hz to 10 kHz places upper bounds of at most about
10−5 s−1. In [16], an upper bound of about 2× 10−8 s−1

is obtained by analyzing the excess heating of a nanocan-
tilever’s fundamental mode at about 3.1 kHz. A record
upper bound of 10−11 s−1 is placed in [17, 18] by exam-
ining the spontaneous x-ray emission rate from Ge. This
bound could be greatly reduced if the collapse noise is
non-white at the very high frequency of 1018 s−1 [2].

Furthermore, the bound λmax
CSL appreciably constrains

the CSL model because it overlaps with some of the pro-
posed lower bounds on λCSL. Adler investigates the mea-
surement process of latent image formation in photogra-
phy and places a lower bound of λCSL ' 2.2×10−8±2 s−1

[1]. Moreover, Bassi et al. place a lower bound of
λCSL ' 10−10±2 s−1 by investigating the measurement-
like process of human vision of six photons in a super-
position state [19]. Note that a lower bound of about
10−17 s−1, proposed by Ghirardi, Pearle and Rimini [20],
is also sometimes considered. Its justification comes from
the requirement that an apparatus composed of about
1015 nucleons settle to a definite outcome in about 10−7 s
or less [21].

LISA pathfinder also provides a competitive bound on
σDP. The nanocantilever experiment [16] places a lower
bound on σDP of about 1.5 fm, which is much lower than
σmin
DP . More importantly, the calculated value for σmin

DP of
40.1± 0.5 fm is larger than the size of any nucleus. Con-
sequently, σmin

DP rules out the DP model if the regulariza-
tion scale σDP is chosen to be the size of a fundamental
particle such as a nucleon.
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FIG. 1. Upper and lower bounds on the CSL collapse rate
λCSL obtained from laboratory experiments operating at dif-
ferent frequencies. Blue, green, black and gray regions:
exclusion regions obtained from LISA pathfinder, LIGO, a
millikelvin-cooled nanocantilever [16] and spontaneous emis-
sion from Ge [17, 18], respectively. Our calculation of the
bounds obtained from LIGO follow that of [22]. The dashed
blue line is the upper bound limit obtained from the LISA
pathfinder results if Spos

a were used instead of Sa. The red
and orange domains are regions in which the collapse rate
is too slow to explain the lack of macroscopic superpositions
and measurements, respectively. The red region is below the
lower bound of 10−17 s−1 proposed by Ghirardi, Pearle and
Rimini [20]. The orange region’s boundary is the Adler lower
bound 10−8±2 s−1, below which latent image formation on a
photographic emulsion consisting of silver halide suspended
in gelatine wouldn’t occur fast enough [1]. The orange error
bars reflect the uncertainty in this lower bound.

and DP160100760, and from the Institute for Quantum
Information and Matter, a Physics Frontier Center.
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