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We propose to use pulsar scintillation measurements to test predictions of alternative theories of
gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can
achieve a part in a thousand accuracy within one wave period, which means pico-second scale res-
olution in time, due to the effect of multi-path interference. Previous scintillation measurements of
PSR B0834+06 have data acquisition for hours, making this approach sensitive to mHz gravitational
waves. Therefore it has unique advantages in measuring gravitational effect or other mechanisms
on light propagation. We illustrate its application in constraining scalar gravitational-wave back-
ground, in which case the sensitivities can be greatly improved with respect to previous limits. We
expect much broader applications in testing gravity with existing and future pulsar scintillation
observations.

I. INTRODUCTION

Pulsar scintillation happens when pulsed radio sig-
nals from pulsars follow different paths of propagation
to reach the Earth, and exists for almost all known pul-
sars. It is generally known that structures in interstellar
plasma along the propagation path plays the role of an
effective “lens” and generates necessary lensing for pulses
along different paths to meet at the Earth. Upon arrivals,
these radio signals interfere with each other and generate
a spatially and frequency varying interference pattern.
As the Earth is moving, an telescope observer experiences
time-dependent intensity variation corresponding to dif-
ferent fringes in the interference pattern. The nature of
these lenses is not fully understood, but appears to be
dominated by rare, isolated coherent plasma structures.
Quantitative models have been proposed to provide pre-
cision templates using a small number of optical caustic
parameters[1, 2].

As the illustration in Fig. 1, the spatial separation
between fringes is approximately λe/α (λe is the radio
wavelength, α is the path opening angle) and the tempo-
ral separation is ∼ λe/(αVe), where Ve is the projected
Earth-lens-pulsar velocity, generally dominated by the
pulsar proper velocity. With α assumed to be ∼ arcsec,
one typically observes a scintillation time scale of sec-
onds, typically longer than the pulsar period. By statis-
tically (see the discussion in the next section) averaging
over time shift of the fringes, it is possible to achieve
phase accuracy that is equivalent to pico-second resolu-
tion in time. This is a factor of 105 higher than the
accuracy in single-path pulsar timing [3]. It is worth to
note, however, scintillation measurement is fundamen-
tally different from traditional pulsar timing measure-
ments, where the relevant physical quantity in the formal

scenario is the radio wave phase differences, and in the
latter case it is the pulse arriving time. Therefore it is
important to bear in mind that the “timing precision”
in this paper actually refers to the phase accuracies in
phase.

This unprecedented phase accuracy (and equivalent
timing precision) allows one to apply the scintillation to
probing the physics of plasma structures in an interstel-
lar medium [4, 5] and constraining the size of emission
regions in the pulsar magnetospheres [6]. Although high-
precision pulsar timing has been discussed extensively in
literature to test alternative theories of gravity, little was
known in relating scintillation measurements to testing
gravity. In this paper, we propose to use pulsar scin-
tillation measurements as a laboratory for gravitational
physics, in particular, as a detector of scalar gravitational
waves (GWs), which appear in alternative theory of grav-
ity. Similar analysis can be applied to test other physical
effects that affect the propagation of radio waves.

A. Scintillation Modulation

Propagating gravitational distortions modulate the
plasma lensing effects. The plasma lenses can change
shape on a sound crossing time, which is typically four
orders of magnitude longer than the gravitational time
scales. This allows precise measurements of space-time
variations that are unlikely to be mimicked by plasma
effects. If there exists the GW large enough to be de-
tected, it would lead to an irreducible scintillation model
residual.

In the absence of GWs, the variation of the plasma
propagation Green’s function is dominated by the Earth-
lens-pulsar relative motion. Interstellar holography re-
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trieves the time dependent Green’s functions, and has
been demonstrated to reproduce observed scintillation
patterns to parts per million [7]. These authors are able
to decompose the dynamic spectrum as a sum of Green’s
functions kernel lying approximately on a parabolic set of
loci. These lenses are located at a distance of 389pc from
earth, with a pulsar distance of 640pc[2]. The parabolic
relationship arises from the collinearity of lensing points:
the time delay through is lens is proportionate to the
square of its transverse separation angle. The doppler
frequency is the time derivative of this delay due to the
pulsar’s apparent motion relative to the screen, and is lin-
ear in transverse separation, thus resulting in a parabolic
relationship of delay and doppler rate of the lensing im-
ages. As a result, plasma lensing induces a modulation
frequency proportional to image separation, whereas the
change induced by GWs is independent of the separa-
tion. Such a pattern is not observed. We interpret that
achieved dynamic range of 63dB that no modulation of
more than a part in a thousand in the dynamic spectrum
can be due to gravitational waves moving at the speed
of light. The observing frequency was approximately 300
MHz, corresponding to wave period ∼ 3ns and a Nyquist
voltage sampling rate of 1.5ns. We thus estimate the
maximum contribution of gravitational waves at most a
part per thousand, or about a picosecond as the limit
on the allowed inverse delay-doppler power. The lower
bound of measurable frequency is constraint by the total
observation time tobs (for the work in [7], 1/tobs ∼ mHz).
The upper bound of frequency is related to the separation
between pulses 1/tsep, as the pulse sequence determines
a natural sampling frequency. A more precise analysis
would require access to the data and holography algo-
rithm.

The accuracy of this model is limited only by thermal
noise, and not by pulsar self-noise. A typical ∆t ∼ hour
long observation with ∆ν ∼ 100 MHz bandwidth leads
to a flux uncertainty of SEFD/

√
∆t δν, where SEFD is

the system equivalent flux density. For large telescopes
such as FAST or Arecibo, SEFD is about 5 Jy. There
are further subtleties which could affect the sensitivity of
scintillation measurement for gravitational waves. First,
the 63dB in power or factor of 103 in signal-to noise-
ratio (SNR) is achieved mainly near the bottom of the
parabola in the decay time-doppler shift curve, where
the signal is the strongest and the effect of GW vanishes.
At larger opening angle the data could encode the infor-
mation GWs but the SNR is lower. Therefore for each
specific data set one should try to find the optimum open-
ing delay that balances these two effects. Secondly, it is
possible that following the treatment in [7], part of the
noise is absorbed in the model. Therefore it is unclear
what fraction of the GW power remains in the residuals.
Such fraction may also vary depending on the types of
GWs: i.e., single source, continuous/burst sources, GW
background, etc.
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FIG. 1: (Color Online). The illustration for pulsed signals
that arrive on the Earth following two distinctive paths, where
the wave following C′ is deflected by the interstellar medium
at location “D”. Here L1 = r/(1 + r)L and L2 = L/(1 + r).
When the radio waves from these two directions reach the
observer on the Earth, they interfere and produce very fine
interference pattern based on the radio wavelength λe and
the path opening angle α. As the Earth moves at a speed
Ve ∼ 30 km/s, there are many fringes within the timescale
of a single pulse (for illustration purpose we only show a few
fringes within each pulse).

II. PROBING NONTENSORIAL COMPONENTS
OF GWS

According to the theory of General Relativity, GWs
have only two tensor polarizations that are transverse to
the wave propagation direction. However, in general met-
ric theory of gravitation [8], since the metric perturbation
hµν has 10 components, 4 of which are purely gauge and
eliminated by imposing the condition h0µ = 0, there are
6 degrees of freedom left in hij (1 ≤ i, j ≤ 3). There-
fore gravitational wave emissions with scalar and vector
polarizations are predicted in many alternative theories
of gravity, such as scalar-tensor theory, f(R) theory, bi-
metric theory, etc. (For the summary about GW polar-
ization prediction in various alternative gravity models,
see [9] and reference therein). Measuring and/or con-
straining GWs with nontensorial polarizations are a vi-
able approach to test the theories of gravity and search
for possible new physics.

We follow the convention in [9, 10] to label these 6
polarizations (2 tensor modes: + and ×, 2 vector modes:
x and y, and 2 scalar modes: b, l). In the case that GW
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is propagating along z-axis, the tensor bases are

ẽ+ =

 1 0 0
0 −1 0
0 0 0

 , ẽ× =

 0 1 0
1 0 0
0 0 0

 ,

ẽb =

 1 0 0
0 1 0
0 0 0

 , ẽl =

 0 0 0
0 0 0
0 0 1

 ,

ẽx =

 0 0 1
0 0 0
1 0 0

 , ẽy =

 0 0 0
0 0 1
0 1 0

 , (1)

so that hij can be decomposed as

hij =
∑
A

hAẽ
A
ij . (2)

As an illustration for applications of pulsar scintillation
observations to testing gravity, we show that the existing
data provide the best constraint on scalar GWB at mHz
band, which beats the previous constraint by four orders
of magnitude and might be improved by future space-
based GW missions such as eLISA [11].

As shown in Fig. 1, we consider a train of radio waves
emitted from Pulsar (“P”) propagates along two differ-
ent paths (C and C′) and eventually reaches the Earth.
For simplicity, we consider only one-time deflection by
the turbulent plasma at location ”D”(which is straight-
forward to generalize to cases with multiple deflections),
and assume both paths are on the x − z plane, with C
being along x axis. The coordinate of “P”, “D”,and “O”

on the x−z plane is [0, 0], [Lr/(1+r), Lrα/(1+r)], [L, 0]
respectively, where r ≡ L1/L2 in Fig. 1.

In order to obtain the sensitivity curve to GWs, we
derive the transfer functions from GWs with frequency
ωg in such a system. Based on the standard pulsar tim-
ing analysis, the GW-induced phase shift of radio waves
propagating along C is (hereafter we adopt the geometric
unit that the speed of light c = 1)

HC =
πnihijn

j

ωgλe

sin[ωgLξ + ψ]− sinψ

ξ
, (3)

where ψ is the initial phase of that particular GW, ξ ≡
1−k·n, with k being the unit direction vector of the GW
and n = ex being the unit direction vector of P → O.

Following the same principle, the phase shift (due to
the same GW train) of radio waves propagating along C′
is

HC′ =
πni1hijn

j
1

ωgλe

sin[ωgrLξ1 + ψ]− sinψ

ξ1

+
πni2hijn

j
2

ωgλe

sin[ωgLξ + ψ]− sin[ωgrLξ1 + ψ]

ξ2
,

(4)

where n1 = ex + α ez, n2 = ex − rα ez and ξ1,2 = 1 −
n1,2 ·k. With HC and HC′ , we can derive the phase shift
after averaging over sky directions of the GWs and their
initial phases. For example, considering the longitudinal
mode, we have

H ′C −HC =
πhl
ωgλe

{
(sin[ωgL1(1− n1 · k) + ψ]− sinψ)

(
1

1− n1 · k
− 1

1− n2 · k

)
+(sin[ωgL(1− k · n + ψ]− sinψ)

(
1

1− n2 · k
− 1

1− k · n

)}
. (5)

The expression of (H ′C−HC)2 follows obviously. After averaging over the random initial phase ψ, and then perform
an average over the azimuthal angle around n direction, we arrive at

(H ′C −HC)2 ≈
π2h2l α

2(2− ξ)
2ω2

gλ
2
eξ

3

{
(1− cos[ωL1ξ])

1

1 + r
− (1− cos[ωLξ])

r

(1 + r)2
+ (1− cos[ωL2ξ])

r

1 + r

}
. (6)

At last the above expression is averaged for ξ (from 0 to
2) and that gives the corresponding δΦ2 or

δΦ =
πhlαL

λe

√
r

2(1 + r)

√
log(1 + r) + r log

1 + r

r
. (7)

In fact, for other polarizations, we can follow similar
procedure to compute the transfer functions. Their scal-

ings are like

δΦ2 ≡ 〈(HC −HC′)2〉

∝ h2mα
2

ω2
gλ

2
e

×


log(ωgL) , A = +,× b,

ωgL , A = x, y ,

ω2
gL

2 , A = l ,

(8)

assuming ωgL � 1 (at mHz band it is greater than 108
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FIG. 2: (Color Online). The constraint on dimensionless am-
plitude of longitudinal scalar GWs. The lines correspond to
sensitivity curves given by previous Doppler tracking of space-
craft [12, 13] (blue dotted), GPS satellites [14] (magenta dot-
ted), pulsar scintillation from PSR B0834 + 06 (r ∼ 0.64, α ∼
20mas/r ∼ 31mas , and L ∼ 640 pc [2, 15], black solid), and
future eLISA measurements (red dashed), respectively. No-
tice that with the triangular geometry of eLISA, it is difficult
to separate out different polarizations of GWs.

for typical pulsars). In particular, we find that the lon-
gitudinal mode (“l”) receives the largest amplification
factor (∝ ω2

gL
2), while the amplitudes of all other polar-

izations are suppressed due to the transverse nature of
GW propagation. From this reason, here we focus on the
longitudinal mode.

Combining the longitudinal transfer function with the
timing noise estimate given in the previous section, we
can obtain the sensitivity of pulsar scintillation mea-
surement on longitudinal scalar GWs, by making δΦ =
2πc δtf/λe. Take r ∼ 1, this gives the sensitivity on hl
(dimensionless GW amplitude) as

hl = 6.8× 10−18
δtmHz

1 ps

( α

arcsec

)−1( L

kpc

)−1
. (9)

In Fig. 2, we compare the sensitivity to longitudinal
scalar GWs based on scintillation measurements of PSR
B0834+06 (from [7, 15]) with the current best constraint
from Doppler tracking of the Cassini spacecraft in [12, 13]
and timing measurement of the GPS system in [14] and
the proposed sensitivity of eLISA at the same frequency
band. As discussed earlier, the SNR of scintillation mea-
surement varies for different opening angle, and in prac-
tise the optimal opening angle could be different from the
25mas limit obtained in [15]. These sensitivities are com-
puted by considering the transfer functions of the scalar
longitudinal mode, which give approximately the same
responses as the tensor mode for Doppler timings and
eLISA below 0.1 Hz [16] but better sensitivity of eLISA
above 0.1 Hz. We can see that scintillation measurement
from PSR B0834+06 already improves the previous sen-

sitivity by a factor of 10 - 106 (greater improvement com-
paring to the GPS limit). By choosing more distant pul-
sars, larger opening angles, and/or the ones with better
scintillation timing accuracy, as well as statistically aver-
aging data for different scintillating pulsars, it is possible
to dramatically improve this limit.

III. CONSTRAINT ON SCALAR-TENSOR
RATIO OF GWS

It would be convenient to define the ratio of GW
amplitude in scalar mode to that in tensor mode as
RST ≡ hS/hT and useful to show the upper limit in terms
of RST. The advantage to use RST is that it can be in-
terpreted as the relative strength of scalar coupling in a
gravity theory to that of the ordinary gravitational (ten-
sor) coupling, because the ratio is irrespective of com-
mon factors between the scalar and tensor modes, e.g.
distance to the source and the way of propagation in
the interstellar space. It should be emphasized that in
general in modified gravity theory, the scalar coupling
strength depends on an environment in the Universe,
so called the screening mechanism, e.g. the Chameleon
mechanism, the Vainshtein mechanism, and etc. [17, 18].
Our constraint is obtained in a low-density and weak-
gravity region (in cosmological sense). In a high-density
and stronger-gravity region such as near a GW source
or on the Earth, relatively large deviation from general
relativity is allowed where screening mechanism is also
likely to operate. However, that part of contribution is
highly model-dependent.

To derive the upper limit on RST, what we need is
the upper limit on the scalar amplitude in Eq. (9) and
the amplitude in the tensor mode. The latter is source-
dependent and has large uncertainty, depending on as-
trophysical scenarios. Thus we take into account this un-
certainty, adopting the lowest, intermediate, and highest
event rates among predictions in literature when we de-
rive the power spectrum densities Sh of each GW source.
For white dwarf (WD) binaries, the extragalactic com-
ponent dominates at f > 1 mHz and the spectrum has
been estimated in [19] as SWD

h (f) = {0.37, 1.4, 2.3} ×
10−46 (f/Hz)

−7/3
exp [−f/0.01 Hz] Hz−1, each corre-

sponding to the lowest, intermediate, and highest event
rates. For neutron star (NS) binaries, compiling the
present merger rate [20] and its redshift evolution [21]

gives SNS
h (f) = {0.016, 1.6, 16} × 10−47 (f/1 Hz)

−7/3
be-

low a kHz band. For black hole (BH) binaries, the re-
cent detection of a massive BH binary indicates that
the merger rate of BH binaries may be higher than the
previous expectations [22]. Although the power spec-
trum of the GWB depends on models of BH binary
formation, the fiducial model in [22] gives SBH

h (f) =

{0.86, 4.7, 16} × 10−47 (f/1 Hz)
−7/3

without a high fre-
quency cutoff in our interest frequency band.

In Fig. 3, the constraints on RST for each GW source
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FIG. 3: (Color Online). Upper limit on the scalar-to-tensor
ratio RST for each GWB source with uncertainties of merger
rates: WD binaries (red), NS binaries (green), and BH bina-
ries (blue). The dashed lines correspond to the intermediate
merger rates and the solid lines are the lowest and highest
merger rates.

are shown. The upper bound is tighter at lower frequen-
cies, which are at 1 mHz, 3.9×105, 1.1×106, and 6.4×105

for the intermediate merger rates of WD, NS, and BH
binaries, respectively. Although the numerical values
appear to be much larger than one, they are the first
constraints on RST obtained in the frequency band from
1 mHz to 1 Hz in the low-density and weak-gravity re-
gion of space, and they connect the physics of GW emis-
sion of a source and a screening mechanism in a model-
independent way. There have been the constraints at dif-
ferent frequencies from other observations. The observa-
tion of the orbital-period derivative from PSR B1913+16
agrees well with predicted values of GR, conservatively,
at a level of 1 % error [23]. This fact indicates that the
contribution of scalar GWs to the energy loss is less than
1 %, that is, RST . 10−1 at 7.2 × 10−5 Hz at the source
position of the NS binary. On the other hand, the recent
detection of GWs (GW150914) [24] gives no constraint
on the scalar component, as at least three detectors are
needed to break the degeneracy of the polarization modes
[25].

IV. DISCUSSION AND CONCLUSION

Comparing to single path pulsar timing measurements,
the scintillation measurements have better timing accura-
cies, and the phase-comparison geometry which naturally
removes intrinsic noise from the source. These are the key
factors which ensures its ultra precision and enables its
application to studying ISM physics, pulsar physics, and
our proposal in this paper - testing alternative gravity
models.

We have illustrated an example in this proposal: mea-
suring a longitudinal scalar GWB. It is also possible to
apply to other tests which do not involve GWs - for ex-
ample, the spacetime quantum fluctuations [26, 27] or
the holographic noise [28]. They would contribute dis-
tinctive phase noise for photon traveling along different
scintillation paths, and hence can be measured by ob-
serving anomalous scintillation phase shift or degrading
of the interference pattern.
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