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If a small “particle” of mass µM (with µ ≪ 1) orbits a black hole of mass M , the leading-
order radiation-reaction effect is an O(µ2) “self-force” acting on the particle, with a corresponding
O(µ) “self-acceleration” of the particle away from a geodesic. Such “extreme–mass-ratio inspiral”
systems are likely to be important gravitational-wave sources for future space-based gravitational-
wave detectors. Here we consider the “toy model” problem of computing the self-force for a scalar-
field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-
Detweiler effective-source regularization with a 4th order puncture field, followed by an eimφ (“m-
mode”) Fourier decomposition and a separate time-domain numerical evolution in 2+1 dimensions
for each m. We introduce a finite worldtube that surrounds the particle worldline and define our
evolution equations in a piecewise manner so that the effective source is only used within the
worldtube. Viewed as a spatial region, the worldtube moves to follow the particle’s orbital motion.
We use slices of constant Boyer-Lindquist time in the region of the particle’s motion, deformed
to be asymptotically hyperboloidal and compactified near the horizon and J +. Our numerical
evolution uses Berger-Oliger mesh refinement with 4th order finite differencing in space and time.
Our computational scheme allows computation for highly eccentric orbits and should be generalizable
to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic
orbits, but this restriction is not fundamental. We present numerical results for a number of test
cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations (“wiggles”)
in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to
be caused by the passage of the orbit through the strong-field region close to the background Kerr
black hole.
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I. INTRODUCTION

Consider a small (compact) body of mass µM (with
0 < µ≪ 1) moving freely in an asymptotically flat back-
ground spacetime (e.g., Kerr spacetime) of massM . This
system emits gravitational radiation, and there is a corre-
sponding radiation-reaction influence on the small body’s
motion. Self-consistently calculating this motion and the
emitted gravitational radiation (and in general, the per-
turbed spacetime) is a long-standing research question in
general relativity.
There is also an astrophysical motivation for this cal-

culation: If a neutron star or stellar-mass black hole
of mass ∼ 1–100M⊙ orbits a massive black hole of
mass ∼ 105–107M⊙,

1 the resulting “extreme–mass-ratio
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1 M⊙ denotes the solar mass.

inspiral” (EMRI) system is expected to be a strong astro-
physical gravitational-wave (GW) source detectable by
the planned Laser Interferometer Space Array (LISA)
space-based gravitational-wave detector.2 LISA is ex-
pected to observe many such systems, some of them at
quite high signal/noise ratios ([1–4]). The data analysis
for, and indeed the detection of, such systems will gen-
erally require matched-filtering the detector data stream
against appropriate precomputed GW templates. The
problem of computing such templates provides the astro-
physical motivation for our calculation.
We are particularly concerned with the case where

the small body’s orbit is highly relativistic, so post-
Newtonian methods (see, for example, [5, section 6.10];
[6–9] and references therein) are not reliably accurate.
Since the timescale for radiation reaction to shrink the
orbit is very long (∼ µ−1M) while the required resolu-
tion near the small body is very high (∼ µM), a direct
“numerical relativity” integration of the Einstein equa-

2 The LISA proposal has had various design and name changes
during its lifetime. For a time it was known as the
New Gravitational-Wave Observatory (NGO) or evolved LISA
(eLISA), but recently it has returned to the original name LISA.
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tions (see, for example, [10–14] and references therein)
would be prohibitively expensive (and probably insuffi-
ciently accurate) for this problem.3

Instead, we use black hole perturbation theory, treat-
ing the small body as an O(µ) perturbation on the back-
ground spacetime. For this work we attempt to calculate
leading-order radiation-reaction effects, i.e., O(µ) field
perturbations and O(µ2) radiation-reaction “self-forces”
acting on the small body. Because of the technical diffi-
culty of controlling gauge effects in gravitational pertur-
bations, in this work we use a scalar-field “toy model”
system with the expectation that the techniques devel-
oped and discoveries made in the scalar case will carry
over to the gravitational case.

The obvious way to model the small body is as a small
black hole. While conceptually elegant, this approach
is technically somewhat complicated [21]. Instead, we
model the small body as a point particle. Although one
may be concerned about potential foundational issues
with this approach,4 in practice it works well and, im-
portantly, it agrees with rigorous derivations that do not
rely on the use of point particles.

The O(µ) “MiSaTaQuWa” equations of motion for
a gravitational point particle in a (strong-field) curved
spacetime were first derived by Mino, Sasaki, and
Tanaka [24] and Quinn and Wald [25] (also see De-
tweiler’s analysis [26]) and have recently been rederived
in a more rigorous manner by Gralla and Wald [27].5 See
[21, 29–35] for general reviews of gravitational radiation-
reaction dynamics.

The particle’s motion may be modelled as ei-
ther (i) non-geodesic motion in the background
Schwarzschild/Kerr spacetime under the influence of a
radiation-reaction “self-force”, or (ii) geodesic motion in
a perturbed spacetime. These two perspectives (which
are in some ways analogous to Eulerian versus La-
grangian formulations of fluid dynamics) are equiva-
lent [36]; in this work we use the formulation (i). The
MiSaTaQuWa equations then give the self-force in terms
of (the gradient of) the metric perturbation due to the
particle, which must be computed using black-hole per-
turbation theory.

3 A number of researchers have attempted direct numerical-
relativity binary black hole simulations for systems with “inter-
mediate” mass ratios up to 100 : 1 (µ = 0.01), (see, for example,
[15–20]). However, it has not (yet) been possible to extend these
results to the extreme-mass-ratio case nor to accurately evolve
even the 100 : 1 case for a radiation-reaction time scale.

4 Geroch and Traschen [22] have shown that point particles in
general relativity can not consistently be described by metrics
with δ-function stress-energy tensors. More general Colombeau-
algebra methods may be able to resolve this problem [23], but
the precise meaning of the phrase “point particle” in general
relativity remains a delicate question.

5 Gralla, Harte, and Wald [28] have also recently obtained a rigor-
ous derivation of the electromagnetic self-force in a curved space-
time.

The computation of the field perturbation due to a
point particle is particularly difficult because the “per-
turbation” is formally infinite at the particle and thus
must be regularized. There are several different, but
equivalent regularization schemes known for this prob-
lem, notably the “mode-sum” or “ℓ-mode” scheme de-
veloped by Barack and Ori [37–41], Detweiler, Messari-
taki, and Whiting [42, 43], and Haas and Poisson [44];
the Green-function approach [45–48]; and the “effective-
source” scheme of Barack and Golbourn [49] and Vega
and Detweiler [50].
For a detailed presentation of the different regular-

ization/computation schemes and their advantages and
disadvantages, see [51]. In the present context we ob-
serve that for a Kerr background the traditional mode-
sum scheme becomes less desirable because the mode
equations don’t separate: all the (infinite set of) modes
remain coupled. While the coupled modes can still
be treated numerically (see, e.g., [52]), here we adopt
a different approach, the effective-source regularization
scheme.
As discussed in detail in Sec. II A, the effective-

source scheme’s basic concept is to analytically com-
pute a “puncture field” which approximates the parti-
cle’s Detweiler-Whiting singular field [42], then numeri-
cally solve for the difference between the actual field per-
turbation and the puncture field. We have previously
described many of the details of the computation of the
puncture field [53]; in this work we focus on the appli-
cation of this scheme to a particular class of self-force
computations.
Depending on how the partial differential equations

(PDEs) are solved, there are two broad classes of self-
force computations: frequency-domain and time-domain.
Frequency-domain computations involve a Fourier trans-
form of the PDEs in time, reducing the numerical com-
putation to the solution of a set of ordinary differential
equations (ODEs) (see, for example, [43]). The result-
ing computations are typically very efficient and accurate
for circular or near-circular particle orbits,6 but degrade
rapidly in efficiency with increasing eccentricity of the
particle’s orbit, becoming impractical for highly eccen-
tric orbits [58, 59].7 In contrast, time-domain computa-

6 As notable examples of this accuracy, Blanchet et al. [54] and
Shah et al. [55] have both recently computed the gravitational
self-force for circular geodesic orbits in Schwarzschild spacetime
to a relative accuracy of approximately one part in 1013, and Hef-
fernan, Ottewill, and Wardell [56] (building on earlier work by
Detweiler, Messaritaki, and Whiting [43]) have extended this to
a few parts in 1017. Johnson-McDaniel, Shah, and Whiting [57]
describe an “experimental mathematics” approach to computing
post-Newtonian expansions of various invariants (again for cir-
cular geodesic orbits in Schwarzschild spacetime) by applying an
integer-relation algorithm to numerical results calculated using
up to 5000 decimal digits of precision.

7 Barack, Ori, and Sago [60] have found an elegant solution for
some other limitations which had previously affected frequency-
domain calculations.
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tions involve a direct numerical time-integration of the
PDEs and are generally less efficient and accurate than
frequency-domain computations. However, time-domain
computations can accommodate arbitrary particle orbits
with only modest penalties in performance and accuracy
[61], with some complications in the numerical schemes
(see, for example, [62, 63]).
In this work our goal is to consider highly eccentric

orbits,8, so we follow the time-domain approach. We use
standard Berger-Oliger mesh refinement techniques and
compactified hyperboloidal slices for improved accuracy
and efficiency.
The remainder of this paper is organized as follows:
Section IA summarizes our notation.
Section II gives a detailed description of our theoret-

ical and computational formalism for self-force compu-
tations, with subsections on the effective source regular-
ization (IIA), the m-mode Fourier decomposition (II B),
the worldtube (II C), moving the worldtube (IID), hy-
perboloidal slices and compactification (II E), our reduc-
tion to a 1st-order-in-time system of evolution equations
(II F), the computation of the puncture field and effec-
tive source (II G), the computation of the effective source
close to the particle (II H), boundary conditions (II I), ini-
tial data (II J), how the self-force is computed from our
evolved field variables (IIK), the large-m “tail series”
(II L), selecting the time interval for analysis within an
evolution (IIM), selecting a “low-noise” subset of times
within an evolution (IIN), how we split the self-force into
dissipative and conservative parts (II O), and a summary
of our computation and data analysis (II P).
Section III presents our numerical results and com-

pares them to values obtained by other authors, with
subsections on our test configurations and parameters
(III A), an example of our data analysis (III B), the con-
vergence of our results with numerical resolution (III C),
a numerical verification that our results are independent
of the choice of worldtube and other numerical parame-
ters (III D), comparison of our results with those of other
researchers (III E), an overview of our computed self-force
for each configuration (III F), our results for highly ec-
centric orbits (IIIG), our results for zoom-whirl orbits
(III H), and strong oscillations (“wiggles”) in the self-
force shortly after periastron (III I).
Section IV presents a general discussion of this work,

the conclusions to be drawn from it, and some directions
for future research.
Appendix A describes the transformation between φ̃

and φ derivatives, where φ̃ is the “untwisted” azimuthal
coordinate defined by (2.8).

8 Hopman and Alexander [64] find that LISA EMRIs are likely
to have eccentricities up to e ∼ 0.8. Intermediate–mass-ratio-
inspirals (where the small body has a mass 100M⊙ . µM .
104M⊙) are likely to have very high eccentricities 0.995 . e .
0.998; these systems are likely much rarer than EMRIs, but are
also much stronger GW sources.

Appendix B describes our computational scheme in
more detail, with subsections on the numerical compu-
tation of r(r∗) (B 1), the numerical integration of equa-
torial eccentric Kerr geodesics (B 2), gradual turnon of
the effective source (B 3), our algorithm for moving the
worldtube (B 4) constraints on moving the worldtube
early in the time evolution (B 5), finite differencing across
the worldtube boundary (B 6), computing the set of grid
points where adjusted finite differencing is needed (B 7),
computing the set of grid points where the puncture
field is needed (B 8), the numerical time-evolution us-
ing Berger-Oliger mesh refinement (B 9), finite differenc-
ing near the particle (B 10), and implicit-explicit (IMEX)
evolution schemes (B 11).

A. Notation

We generally follow the sign and notation conventions
of Wald [65], with G = c = 1 units and a (−,+,+,+)
metric signature. We use the Penrose abstract-index no-
tation, with indices abcd running over spacetime coordi-
nates, ijk running over the spatial coordinates, ℓ running
over only the m-mode coordinates (t, r, θ), and s running
over only the spatial m-mode coordinates (r, θ) (in both
of the latter cases, the coordinates are defined by (1.1) be-
low). ∇a is the (spacetime) covariant derivative operator.
X := Y means that X is defined to be Y . � := ∇a∇a is
the 4-dimensional (scalar) wave operator [66, 67]. conj [z]
is the complex conjugate of the complex number z. ∂S is
the boundary of the set S. (a)n denotes the Pochhammer
symbol Πa+n−1

k=a k.
We use Boyer-Lindquist coordinates (t, r, θ, φ) on Kerr

spacetime, defined by the line element

ds2 = −
(

1− 2Mr

Σ

)

dt2 − 4M2ã
r sin2 θ

Σ
dt dφ

+
Σ

∆
dr2 +Σ dθ2

+

(

r2 +M2ã2 + 2M3ã2
r sin2 θ

Σ

)

sin2 θ dφ2,

(1.1)

where M is the spacetime mass, ã = J/M2 is the di-
mensionless spin of the black hole (limited to |ã| < 1),
Σ = r2 + M2ã2 cos2 θ, and ∆ = r2 − 2Mr + M2ã2. In
Boyer-Lindquist coordinates the event horizon is the co-
ordinate sphere r = rh = r+ = M

(

1 +
√
1− ã2

)

and
the inner horizon is the coordinate sphere r = r− =
M
(

1−
√
1− ã2

)

.
We take the particle to orbit in the equatorial plane

in the dφ/dt > 0 direction, with ã > 0 for prograde
orbits and ã < 0 for retrograde orbits. We parameterize
the particle’s (bound equatorial geodesic) orbit by the
usual dimensionless semi-latus rectum p and eccentricity
e; these are defined in detail in Appendix B 2. We refer
to the combination of a spacetime and a particle orbit
as a “configuration”, and parameterize it with the triplet
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(ã, p, e). We define Tr to be the coordinate-time period
of the particle’s radial motion; we usually refer to Tr as
the particle’s “orbital period”. We define the “modulo
time” to be the coordinate time modulo Tr.
To aid in assessing the accuracy of our computed self-

forces, we define a positive-definite pointwise norm on
covariant or contravariant 4-vectors,

‖va‖+ :=
(

|vtvt|+ |vivi|
)1/2

(1.2a)

‖va‖+ :=
(

|vtvt|+ |vivi|
)1/2

, (1.2b)

where all indices are raised and lowered with the Boyer-
Lindquist 4-metric.
We use xa

particle(t) to denote the particle’s worldline,
which we consider to be known in advance, i.e., we do
not consider changes to the particle’s worldline induced
by the self-force. E and L are the particle’s specific en-
ergy and specific angular momentum (i.e., the particle’s
energy and angular momentum per unit mass).
When referring to finite difference molecules (stencils)

we use i and j as generic integer grid coordinates in the
radial (r) and angular (θ) directions, respectively. Con-
sidering a finite difference molecule evaluated at the grid
point (i, j), we define the molecule’s “radius” in a given
direction (i+, i−, j+, or j−) as the maximum integer
δ ≥ 0 such that the molecule has a nonzero coefficient at
i± δ or j± δ, respectively, and we refer to these as Ri+,
Ri−, Rj+, and Rj− respectively. For example, the usual
3-point centered 2nd-order molecule approximating the
radial partial derivative ∂R∗

has Ri+ = Ri− = 1 and
Rj+ = Rj− = 0.
We use a pseudocode notation to describe algorithms:

Lines are numbered for reference, but the line numbers
are not used in the algorithm itself. # marks comment
lines, while keywords are typeset in bold font. Pro-
cedures are marked with the keyword procedure and
have bodies delimited by “{” and “}”. Code layout and
indentation are solely for clarity and (unlike Python)
do not have any explicit semantics. Procedure names
are typeset in typewriter font. Value-returning proce-
dures (functions) have an explicitly-declared return type
(e.g., “boolean procedure”) and return a value with a
return statement. When referring to a procedure as a
noun in a figure caption or in the main text of this paper,
the procedure name is suffixed with “()”, as in “foo()”.
Variable names are either mathematical expressions,

such as “Ri+”, or are typeset in typewriter font.
“var← X” means that the variable var is assigned
the value of the expression X . Variables are always
declared before use. The declaration of a variable
explicitly states the variable’s type (integer, float-

ing point, interval, or region, the last of these being
a rectangular region in the integer plane Z×Z) and
may also be combined with the assignment of an initial
value, as in “region W ← worldtube region”. Condi-
tional expressions have C-style syntax and semantics,
condition ? expression-if-true : expression-if-false,
while conditional statements have explicit if, then, and

else keywords.
In Appendix B11 we use lower-case sans-serif letters

u, k, and k̃ for state vectors, and upper-case sans-serif
letters F and G for state-vector-valued functions.

II. THEORETICAL FORMALISM

Ignoring questions of divergence and regularization
near the particle, in general the (4-vector) radiation-
reaction self-force on a scalar particle moving in an arbi-
trary (specified) background spacetime is given by

Fa = q (∇aΦ)
∣

∣

particle
, (2.1)

where the particle’s scalar charge is q (which may vary
along the particle’s worldline), and the (real) scalar field
Φ satisfies the wave equation

�Φ = q δ
(

xa − xa
particle(t)

)

, (2.2)

where � is the curved-space wave operator in the back-
ground spacetime [66].
Because of the δ-function source in (2.2), Φ diverges

on the particle’s worldline, so that some type of regular-
ization is essential in order to obtain a finite self-force.

A. Effective source regularization

We use the “effective-source” or “puncture-field” reg-
ularization scheme introduced by Barack and Gol-
bourn [49] and Vega and Detweiler [50] (see [68] for
a recent review). This regularization is based on the
Detweiler-Whiting decomposition [42] of Φ into the sum
of a “singular” and a “regular” field, Φ = Φsingular +
Φregular, with the following properties:

• The singular field is divergent on the particle’s
worldline but is (in a suitable sense) spherically
symmetric at the particle and hence exerts no self-
force.

• The regular field is finite – in fact C∞ – at the
particle and exerts the entire self-force. That is, the
correct self-force may be obtained by applying (2.1)
to the regular field,

Fa = q (∇aΦregular)
∣

∣

particle
. (2.3)

Unfortunately, it is very difficult to compute the
exact Detweiler-Whiting singular or regular fields in
Schwarzschild or Kerr spacetime. The basic concept of
the effective-source regularization is to instead compute
a “puncture field” approximation Φpuncture ≈ Φsingular,
chosen (in a manner to be described in detail below) so
that the “residual field” Φresidual := Φ − Φpuncture is fi-
nite and “somewhat differentiable” (in our case C2) in a
neighborhood of the particle. We then have
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�Φresidual = �Φ−�Φpuncture

= q δ
(

x− xparticle(t)
)

−�Φpuncture

=







0 on the particle worldline
(our choice of Φpuncture will ensure this)

−�Φpuncture elsewhere

(2.4)

:= Seffective, (2.5)

where we define the “effective source” Seffective to be the
right hand side of (2.4).
In more detail, we choose Φpuncture so that for some

chosen integer n ≥ 3,

Φpuncture − Φsingular = O
(

‖x−xparticle(t)‖n−1
)

(2.6)

in a neighborhood of the particle. (This is equivalent to
choosing Φpuncture so that its Laurent series about the
particle position matches the first n terms of Φsingular’s

Laurent series; both series begin with
∥

∥x− xparticle(t)
∥

∥

−1

terms.) Since Φregular is C∞ at the particle and
Φresidual = Φregular + (Φsingular − Φpuncture) = Φregular +
O
(

‖x− xparticle(t)‖n−1
)

in a neighborhood of the par-

ticle, we have (∇Φresidual)
∣

∣

particle
= (∇Φregular)

∣

∣

particle
.

By virtue of (2.3) the radiation-reaction self-force is thus
given by

Fa = q (∇aΦresidual)
∣

∣

particle
. (2.7)

In this work we choose n = 4, so that Φresidual is C2

at the particle and Seffective is C0 at the particle. Note,
however, that the criterion (2.6) still leaves considerable
freedom in the choice (definition) of Φpuncture. We de-
scribe our choice in detail in section IIG.

B. m-mode Fourier decomposition

Given the basic effective-source formalism, some au-
thors (e.g., [50, 68–71]) choose to solve (2.5) via a direct
numerical integration in 3+1 dimensions. However, fol-
lowing [49, 72–75], we prefer to instead exploit the ax-
isymmetry of the background (Kerr) spacetime and in-
troduce an m-mode (Fourier) decomposition.
To avoid infinite twisting of the Boyer-Lindquist φ co-

ordinate at the event horizon, we follow [76] by introduc-
ing an “untwisted” azimuthal coordinate

φ̃ = φ+ f(r) (2.8)

with the function f chosen such that

dφ̃ = dφ+
Mã

∆
dr. (2.9)

It is straightforward to integrate this to give

f(r) =
ã

2
√
1− ã2

ln

∣

∣

∣

∣

r − r+
r − r−

∣

∣

∣

∣

+ constant. (2.10)

Using the φ̃-derivative transformations derived in Ap-
pendix A, �Φ can be written in (t, r, θ, φ̃) coordinates 9

as

Σ�Φ = −
[

(r2 +M2ã2)2

∆
−M2ã2 sin2 θ

]

∂ttΦ

− 4M2ãr

∆
∂tφ̃Φ+ ∂r

(

∆∂rΦ
)

+ 2Mã∂rφ̃Φ

+ ∂θθΦ + cot θ ∂θΦ +
1

sin2 θ
∂φ̃φ̃Φ. (2.11)

We Fourier-decompose the field in eimφ̃ modes, writing

Φ(t, r, θ, φ) =

∞
∑

m=−∞

eimφ̃Ψm(t, r, θ) (2.12)

and analogously for the other fields Φpuncture, Φresidual,
and Seffective. For each integer m, the (complex) m-mode
fields are given by

Ψm(t, r, θ) =
1

2π

∫ π

−π

Φ(t, r, θ, φ)e−imφ̃ dφ̃ (2.13)

and analogously for the other fields Ψpuncture,m,
Ψresidual,m, and Seffective,m. We then introduce the (com-
plex) radial-factored field

ϕm = rΨm (2.14)

9 In an early version of our theoretical formalism we wrote the
equations using η = cos θ as an angular variable. Provided that
Φ is a nonsingular function of η near the z axis, this automat-
ically enforces the boundary condition ∂θΦ = 0 there (cf. sec-
tion II I). However, ∂θθΦ = sin2 θ ∂ηηΦ − cos θ ∂ηΦ, so that on
the z axis ∂θθΦ = −∂ηΦ. This means that specifying ∂ηΦ on
the z axis (which should a priori be a reasonable boundary con-
dition) would implicitly also specify ∂θθΦ there, which should
actually be determined by the field (evolution) equations. In
other words, such a “boundary condition” would in fact over-
constrain the evolution system. To avoid the possibility of such
an over-constraint, we abandoned the η = cos θ scheme.
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(and analogously for ϕpuncture,m and ϕresidual,m) so that
the far-field falloffs around an asymptotically-flat system
are ϕm = O(1) when Ψm = O(1/r).
Following [77], we introduce the tortise coordinate r∗

defined (up to an arbitrary additive constant) by

dr∗
dr

=
r2 +M2ã2

∆
. (2.15)

Again following [77], we fix the additive constant by
choosing

r∗ = r + 2M
r+

r+ − r−
ln

(

r − r+
2M

)

− 2M
r−

r+ − r−
ln

(

r − r−
2M

)

. (2.16)

We describe the numerical computation of r(r∗) in Ap-
pendix B1. For any scalar quantity Q we have (using the
chain rule)

∂Q

∂r
=

r2 +M2ã2

∆

∂Q

∂r∗
. (2.17)

The scalar wave operator �Φ then becomes

�Φ =
∞
∑

m=−∞

eimφ̃

r
�mϕm (2.18)

and each m-mode of the residual field satisfies

�mϕresidual,m = Seffective,m , (2.19)

where

�mϕ= −
1

rΣ

[

(r2 +M2ã2)2

∆
−M2ã2 sin2 θ

]

∂ttϕ− 4im
M2ã

∆Σ
∂tϕ

+
(r2 +M2ã2)2

r∆Σ
∂r∗r∗ϕ+

[

−2M
2ã2

r2Σ
+ 2imMã

r2 +M2ã2

r∆Σ

]

∂r∗ϕ

+
1

rΣ
∂θθϕ+

cot θ

rΣ
∂θϕ−

[

2

r2Σ

(

M − M2ã2

r

)

+
m2

rΣ sin2 θ
+ 2im

Mã

r2Σ

]

ϕ. (2.20)

C. The worldtube

Our construction of the puncture field and effective
source ([53] and Sec. IIG) is only valid in an finite
(r, θ) neighborhood of the particle. Moreover, it is not
clear what far-field boundary conditions the residual field
should satisfy. Therefore, rather than solving (2.19) di-
rectly, for each m we introduce a finite worldtube Wm

chosen so that its interior contains the particle worldline,
and the puncture field and effective source are defined
everywhere in the worldtube. (Notice that Wm logically
“lives” in the m-mode (t, r, θ) space, not in spacetime.)

For each m we define the piecewise “numerical field”

ϕnum,m =

{

ϕresidual,m in the worldtube

ϕm outside the worldtube
. (2.21)

This field has a jump discontinuity across the worldtube
boundary,

lim
xℓ→bℓ

xℓ∈Wm

ϕnum,m(xℓ) =

[

lim
xℓ→bℓ

xℓ 6∈Wm

ϕnum,m(xℓ)

]

−ϕpuncture,m(bℓ)

(2.22)
for any worldtube-boundary point bℓ ∈ ∂Wm, and it also

satisfies

�mϕnum,m =

{

Seffective,m inside the worldtube

0 outside the worldtube.

(2.23)
We numerically solve (2.23) via a separate Cauchy

time-evolution for each m. The form of (2.23) ensures
that the effective source only needs to be computed inside
the worldtube, and (as discussed in detail in Sec. II D and
Appendices B 6 and B8) the puncture field only needs to
be computed within a small neighborhood of the world-
tube boundary.
The precise choice of the worldtube may be made

for computational convenience; by construction, the
computed self-force is independent of this choice (see
Sec. III D for a numerical verification of this indepen-
dence). The worldtube’s size should reflect a tradeoff
between numerical cost and accuracy:

• A larger worldtube requires computing Seffective,m

(which is expensive) at a larger set of events.

• A smaller worldtube (more precisely, one whose
complement includes points closer to the particle)
requires numerically computing – and hence finite
differencing – ϕm closer to its singularity at the
particle, leading to larger numerical errors.

For a given worldtube shape and size, the best accuracy
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is generally obtained by choosing the worldtube to be
approximately centered on the particle.
In practice we typically choose a worldtube which is a

rectangle in (r∗, θ) of half-width 5M in r∗ and approxi-
mately π/8 in θ.
Since we use Berger-Oliger mesh refinement (Ap-

pendix B 9), the question arises of how the worldtube
should interact with the mesh refinement. In partic-
ular, should the worldtube differ from one refinement
level to another? For simplicity we have chosen a com-
putational scheme where this is not the case – in our
scheme the worldtube is the same at all refinement lev-
els. This means that the Berger-Oliger mesh-refinement
algorithm does not need to make the adjustment (2.24)
when copying or interpolating data between different re-
finement levels. The worldtube boundary is effectively
quantized to the coarsest (base) grid, but we do not find
this to be a problem in practice.

D. Moving the worldtube

If the particle’s orbit has a sufficiently small eccentric-
ity then a reasonably-sized time-independent worldtube
in (r∗, θ) can encompass the particle’s entire orbital mo-
tion. However, our main interest is in the case where
the particle’s orbit is highly eccentric. This requires the
worldtube to be time-dependent in order to enclose the
particle throughout the particle’s entire orbital motion.
In our computational scheme we move the worldtube
in (r∗, θ) in discontinuous jumps so as to always keep
the worldtube’s coordinate center within a small distance
(typically ∼ 0.5M) of the particle position. (More pre-
cisely, this is the case after the startup phase of the com-
putation; we discuss this in detail in Sec. B 5.)
When the worldtube moves, those “transition” grid

points which were formerly inside the worldtube and are
now outside, or vice versa, essentially have the computa-
tion of �ϕpuncture switched between being done analyti-
cally versus via finite differencing. In the continuum limit
these two computations agree, but at finite resolutions
they differ slightly. Therefore, moving the worldtube in-
troduces numerical noise into the evolved field ϕnum,m.
Our actual worldtube-moving algorithm (described in

detail in Appendix B4) incorporates a number of refine-
ments to help mitigate this numerical noise and achieve
the most accurate numerical evolutions possible:

• Basically, the algorithm moves the worldtube any
time the particle position is “too far” from the
worldtube center.

• When moving the worldtube, the algorithm places
the new worldtube center somewhat ahead of the
particle in the direction of the particle’s motion.
The algorithm includes a small amount of hystere-
sis so as to avoid unnecessary back-and-forth world-
tube moves.

• The algorithm limits the maximum distance the
worldtube can be moved at any one time.

• The algorithm imposes a minimum time interval
between worldtube moves.

Because ϕnum,m has the jump discontinuity (2.22)
across the worldtube boundary, each time the worldtube
is moved the evolved fields ϕnum,m and Πnum,m must be
adjusted at transition grid points:

ϕnum,m ← ϕnum,m ± ϕpuncture,m (2.24a)

Πnum,m ← Πnum,m ± ∂tϕpuncture,m , (2.24b)

where the “+” applies to grid points which were formerly
inside the worldtube and are now outside it, and the
“−” applies to grid points which were formerly outside
the worldtube and are now inside it.

E. Hyperboloidal slices and compactification

Conceptually, (2.23) should be solved on the entire
spacetime slice, with outflow boundary conditions on the
event horizon and null infinity (J +). To accomplish this
computationally, we use a hyperboloidal compactification
scheme developed by Zenginoğlu [78–85]. This scheme
has a number of desirable properties, including:

1. The hyperboloidal slices reach the event horizon
and J+, allowing pure-outflow boundary condi-
tions to be posed there.

2. The transformed evolution equations do not suf-
fer the “infinite blue-shifting” problem (cf. the dis-
cussion of [80]) in the compactification region –
they have finite and nonzero propagation speeds
throughout the computational domain, and outgo-
ing waves suffer at most O(1) compression (blue-
shifting) or expansion (red-shifting) as they prop-
agate from the region of the particle to the event
horizon and to J+.

3. The transformed evolution equations can be formu-
lated to be nonsingular everywhere, with all coef-
ficients having finite limiting values for R∗ ≪ 0,
R∗ ≫ 0, on the event horizon, and at J+.

4. The (time-independent) compactification transfor-
mation can be chosen to be the identity transforma-
tion throughout a neighborhood of the entire range
of the particle’s orbital motion. This means that
the computation of the effective source and punc-
ture field, the various adjustments to the compu-
tations when crossing the worldtube boundary or
when moving the worldtube, and the computation
of the self-force from the evolved field ϕm, are all
unaffected by the compactification.

5. The scheme is easy to implement, requiring only
relatively modest modifications to our previous
(non-compactified) numerical code.
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We primarily follow the version of Zenginoğlu’s com-
pactification scheme described in [81], although with
slightly different notation to more conveniently allow a
unified treatment of compactification near the event hori-
zon and near J +.
For purposes of compactification, it is convenient to

rewrite the evolution equation (2.23) and (2.20) in the
generic form

C[∂ttϕ]∂ttϕ+ C[∂tr∗ϕ]∂tr∗ϕ+ C[∂r∗r∗ϕ]∂r∗r∗ϕ

+C[∂tϕ]∂tϕ+ C[∂r∗ϕ]∂r∗ϕ

+C[∂θθϕ]∂θθϕ+ C[∂θϕ]∂θϕ

+C[ϕ]ϕ+ C[1] = 0,
(2.25)

where we have dropped the subscript on ϕm, and where
the C[·] coefficients can be read off from the evolution
equations. (C[∂tr∗ϕ] = 0 for our evolution equations,
but is included for generality.)
To make the equations nonsingular in the limit R∗ ≪

0, we multiply (2.23) through by a factor of rΣ∆. It
is also useful for the coefficients to be finite in the limit
R∗ ≫ 0, so we further multiply through by a factor of
(r2 +M2ã2)−2. The resulting coefficients are

C[∂ttϕ] =
M2ã2∆sin2 θ

(r2 +M2ã2)2
− 1, (2.26a)

C[∂tϕ] = −i
4mM2ãr

(r2 +M2ã2)2
, (2.26b)

C[∂r∗r∗ϕ] = 1, (2.26c)

C[∂r∗ϕ] = −
2M2ã2∆

r(r2 +M2ã2)2
+ i

2mMã

r2 +M2ã2
, (2.26d)

C[∂θθϕ] =
∆

(r2 +M2ã2)2
, (2.26e)

C[∂θϕ] =
∆cot θ

(r2 +M2ã2)2
, (2.26f)

C[ϕ] = − 2∆

r(r2 +M2ã2)2

(

M − M2ã2

r

)

− m2∆

(r2 +M2ã2)2 sin2 θ
− i

2mMã∆

r(r2 +M2ã2)2
,

(2.26g)

C[1] =







− rΣ∆

(r2 +M2ã2)2
Seffective,m inside

0 outside.

(2.26h)

We define the compactified radial coordinate R∗ by

r∗ =
R∗

Ω(R∗)
, (2.27)

where we choose the (time-independent) conformal fac-
tor Ω so that the event horizon and J + are at the (finite)

R∗ coordinates R
h
∗ and RJ+

∗ respectively. More precisely,
we introduce the four parameters Rh

∗ < R−
∗ < 0 < R+

∗ <

RJ+

∗ , chosen such that the particle and worldtube al-
ways lie within the interior of the region R−

∗ < R∗ < R+
∗

(where we will choose the compactification transforma-
tion to be the identity transformation). We define

Ω(R∗) =



























1−
(

R−
∗ −R∗

R−
∗ −Rh

∗

)4

if R∗ < R−
∗

1 if R−
∗ ≤ R∗ ≤ R+

∗

1−
(

R∗ −R+
∗

RJ+

∗ −R+
∗

)4

if R∗ > R+
∗

(2.28)
so that the compactification transformation is indeed the
identity transformation (Ω = 1 and r∗ = R∗) throughout
the region R−

∗ < R∗ < R+
∗ . We refer to R−

∗ and R+
∗ as

the inner and outer compactification radii, respectively.

Our numerical grid spans the full range Rh
∗ ≤ R∗ ≤ RJ+

∗ .
To ensure the absence of infinite blue-shifting (“desir-

able property” 2), the time coordinate must also be trans-
formed. We define the transformed time coordinate T by

T = t− h(R∗), (2.29)

where the “height” function h is given by

h(R∗) =











R∗ − r∗ if R∗ < R−
∗

0 if R−
∗ ≤ R∗ ≤ R+

∗

r∗ −R∗ if R∗ > R+
∗

=























R∗

(

1− 1

Ω

)

if R∗ < R−
∗

0 if R−
∗ ≤ R∗ ≤ R+

∗

R∗

(

1

Ω
− 1

)

if R∗ > R+
∗

. (2.30)

In order to express the equations in a simple form, it
is convenient to define the “generalized boost” function

H =
dR∗

dr∗
=

Ω2

Ω−R∗Ω′
, (2.31)

where X ′ := dX/dR∗ for any quantity X , so that

H
′
=

2ΩΩ′

Ω−R∗Ω′
+

R∗Ω
2Ω′′

(Ω−R∗Ω′)2
(2.32)

We define the “boost” function H by

H =
dh

dr∗
=











H − 1 if R∗ < R−
∗

0 if R−
∗ ≤ R∗ ≤ R+

∗

1−H if R∗ > R+
∗

(2.33)

so that

H ′ =











H
′

if R∗ < R−
∗

0 if R−
∗ ≤ R∗ ≤ R+

∗

−H ′
if R∗ > R+

∗

. (2.34)

Figure 1 shows an example of these quantities and the
resultant compactification.
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Transforming the generic evolution equations (2.25)
from (t, r∗, θ, φ) coordinates to (T,R∗, θ, φ) coordinates,
we see immediately that the coefficients C[∂θθϕ], C[∂θϕ],
C[ϕ], and C[1] are all unchanged by the transformation.

-1.0

-0.5

+0.0

+0.5

+1.0

-100 -50 0 +50 +100
R* (M)

Ω
H
–

H

-100

-50

0

50

100

-100 -50 0 +50 +100
R* (M)

h
r
r*

FIG. 1. This figure shows an example of the compactification
for a Kerr spacetime with dimensionless spin ã = 0.6. The
compactification parameters (here chosen for visual clarity
rather than optimum computational efficiency/accuracy) are

(Rh
∗ , R

−
∗ , R+

∗ , R
J+

∗ ) = (−100,−50,+50,+100)M . The upper

subfigure shows Ω, H , and H , and the lower subfigure shows
h, r, and r∗, all as functions of R∗. The compactification
transformation is only nontrivial outside the shaded region
R−

∗ ≤ R∗ ≤ R+
∗ ; the transformation is the identity transfor-

mation (Ω = H = 1, H = h = 0, and r∗ = R∗) in the shaded
region. For R∗ ≪ 0, r → rh (= 1.8M).

At all points other than the event horizon or J +, the
nontrivially-transformed coefficients are

C[∂TTϕ] =
1

H
C[∂ttϕ]−

H

H
C[∂tr∗ϕ] +

H2

H
C[∂r∗r∗ϕ],

(2.35a)

C[∂TR∗
ϕ] = C[∂tr∗ϕ]− 2HC[∂r∗r∗ϕ], (2.35b)

C[∂R∗R∗
ϕ] = HC[∂r∗r∗ϕ], (2.35c)

C[∂Tϕ] = −H ′C[∂r∗r∗ϕ] +
1

H
C[∂tϕ]−

H

H
C[∂r∗ϕ],

(2.35d)

C[∂R∗
ϕ] = H

′
C[∂r∗r∗ϕ] + C[∂r∗ϕ]. (2.35e)

On the event horizon the limiting values of these (trans-
formed) coefficients are

C[∂TTϕ] = −2, (2.36a)

C[∂TR∗
ϕ] = +2 (2.36b)

C[∂R∗R∗
ϕ] = 0, (2.36c)

C[∂Tϕ] = −i
mã

rh
, (2.36d)

C[∂R∗
ϕ] = i

2mMã

r2h +M2ã2
, (2.36e)

C[∂θθϕ] = C[∂θϕ] = 0, (2.36f)

C[ϕ] = C[1] = 0, (2.36g)

while at J+ the limiting values are

C[∂TTϕ] = 2
M2ã2

H
′′J+

(

Ω′J+

RJ+

∗

)2

sin2 θ − 2, (2.37a)

C[∂TR∗
ϕ] = −2, (2.37b)

C[∂R∗R∗
ϕ] = 0, (2.37c)

C[∂Tϕ] = −i
4mMã

H
′′J+

(

Ω′J+

RJ+

∗

)2

, (2.37d)

C[∂R∗
ϕ] = 0, (2.37e)

C[∂θθϕ] =
2

H
′′J+

(

Ω′J+

RJ+

∗

)2

, (2.37f)

C[∂θϕ] =
2

H
′′J+

(

Ω′J+

RJ+

∗

)2
1

tan θ
, (2.37g)

C[ϕ] = − 2m2

H
′′J+

(

Ω′J+

RJ+

∗

)2
1

sin2 θ
, (2.37h)

C[1] = 0, (2.37i)

where

Ω′J+

:= lim
R∗→RJ+

∗

Ω′ =
4

RJ+

∗ −R+
∗

, (2.38a)

H
′′J+

:= lim
R∗→RJ+

∗

H
′′
=

2Ω′J+

RJ+

∗

. (2.38b)
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While conceptually straightforward, the calculation of

H
′′J+

is somewhat lengthy; we used the Maple symbolic
algebra system (Version 18 for x86-64 Linux, [86]) to ob-
tain the result given here.

F. 1st-order-in-time equations

To numerically solve the evolution equation (2.23) it is
convenient to introduce the auxiliary variable

Πnum,m = ∂tϕnum,m (2.39)

so as to obtain a 1st-order-in-time evolution system. The
compactified evolution equation then becomes

C[∂TTϕ]∂TΠ+ C[∂TR∗
ϕ]∂R∗

Π+ C[∂R∗R∗
ϕ]∂R∗R∗

ϕ

+C[∂Tϕ]Π + C[∂R∗
ϕ]∂R∗

ϕ

+C[∂θθϕ]∂θθϕ+ C[∂θϕ]∂θϕ

+C[ϕ]ϕ+ C[1] = 0,
(2.40)

where we have dropped the subscripts on ϕnum,m and
Πnum,m.
Our final evolution system comprises (2.39) and (2.40)

using the coefficients (2.35), (2.36), and (2.37), modi-
fied by applying L’Hopital’s rule on the z axis, applying
boundary conditions (Sec. II I), the gradual turnon of the
effective source (Appendix B 3), the adjustment of ϕ and
Π when the worldtube is moved (Sec. II D), and the ad-
dition of numerical dissipation (Appendix B 9).

G. Computing the puncture field and effective
source

There is considerable freedom in the particular choice
of puncture field used to construct an effective source.
As mentioned in Sec. II A, we work with a puncture field
which agrees with the Detweiler-Whiting singular field in
the first four orders in its expansion about the worldline.
This ensures that the computed self-force is finite and
uniquely determined, and that the numerical methods
used to compute it converge reasonably well. Other than
that, we shall exploit the freedom to modify the higher-
order terms in the expansion to adapt it to the m-mode
scheme.
We begin with a coordinate series approximation for

the Detweiler-Whiting singular field of a scalar charge on
an eccentric equatorial geodesic of the Kerr spacetime,
as can be obtained using, e.g., the methods of [56, 87].
Our starting point is thus a coordinate series expansion
of the form

Φ
[n]
singular(x;xparticle) =

n
∑

i=1

Ba(3i−3)

ρ2i−1
ǫi−2 +O(ǫn−1),

(2.41)

where

Ba(k) ≡ baa1a2···ak
(xparticle)∆xa1∆xa2 · · ·∆xak , (2.42)

ρ2 = (gab + uaub)∆xa∆xb, (2.43)

and gab and ua are evaluated on xparticle. Here, we in-
troduce ǫ := 1 as a formal power-counting parameter
used to keep track of powers of distance from the parti-
cle; this amounts to inserting a factor of ǫ for each power
of ∆xa = [0, r − rparticle(t), θ − π/2, φ− φparticle(t)]

a ap-
pearing either explicitly or implicitly (through powers of
ρ). Since we are choosing to include the first four orders
in the expansion of the Detweiler-Whiting singular field,
we take n = 4 and our approximation neglects terms of
order ǫ3 and higher.
We next make two crucial modifications that make the

puncture more amenable to analytic m-mode decomposi-
tion. To motivate these modifications, consider the gen-
eral form of the function ρ in the case of equatorial orbits
in Kerr spacetime, which in Boyer-Lindquist coordinates
is given by

ρ2 = (grr + urur)∆r2 + gθθ∆θ2

+ (gφφ + uφuφ)∆φ2 + uruφ∆r∆φ. (2.44)

Now, the integration involved in the m-mode decom-
position of the m = 0 mode of the leading-order 1/ρ
term in the expansion of the singular field almost has
the form of a complete elliptic integral of the first kind,

K(k) ≡
∫ π/2

0
(1 − k sin2 φ)−1/2dφ, where the argument

k is a function of xa
particle, ua, ∆r and ∆θ. It would

be desirable to have it in the exact form of an elliptic
integral, as then it can be efficiently evaluated without
having to resort to numerical quadrature. Fortunately,
the only modifications required to turn it into elliptic-
integral form are to rewrite ∆φ2 in terms of sin2 ∆φ (or

equivalently sin2 ∆φ
2 up to an overall factor of 2 in the re-

sulting integral), and to eliminate the ∆r∆φ cross term.
Both of these can be done using methods previously used
in self-force calculations; the former can be achieved us-
ing the “Q-R” scheme described in [88], and the latter
by combining this with a radially-dependent change of

variable, ∆φ→ ∆φ̂− c∆r, where

c =
Lr30u

r

[a2 + r0(r0 − 2M)][a2(2M + r0) + r0 (L2 + r20)]
(2.45)

is chosen such that the cross term vanishes. This second
trick was first used by Mino, Nakano and Sasaki [89] and
later also employed by Haas and Poisson [44].
Given these two modifications to ρ, we are then left

with an expression for ρ̂ = ρ+O(ǫ2) that is of the form

ρ̂2 = A(r0, u
a,∆r,∆θ) +B(r0, u

a) sin2(∆φ̂/2), (2.46)

where A(r0, u
a,∆r,∆θ) is a quadratic polynomial in ∆r

and ∆θ. Note that our manipulations introduce an addi-
tional r and t dependence hidden inside the definition of
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∆φ̂; it is important to take this into account when com-
puting derivatives of the puncture field, and also when
evaluating it for ∆r 6= 0. The advantage of working with
ρ̂ instead of ρ is that the m = 0 mode of 1/ρ̂ is ana-
lytically given by a complete elliptic integral of the first
kind,

1

2π

∫ π

−π

ρ̂−1 dφ̂ =
2

π
√
A+B

K
(

B
A+B

)

, (2.47)

and similarly the m = 0 mode of ρ̂ is analytically given
by a complete elliptic integral of the second kind,

1

2π

∫ π

−π

ρ̂ dφ̂ =
2
√
A+B

π
E
(

B
A+B

)

. (2.48)

Returning to the problem of obtaining an m-mode de-
composed puncture field, we have to generalize this in
three ways: (i) We need to handle other integer powers
of ρ̂; (ii) We need to handle the additional dependence of

Φsingular on ∆φ̂ other than that appearing in ρ̂; (iii) We
need to handle all m ≥ 0 modes (the fact that the full
4-dimensional scalar field is real means that the m < 0
modes are trivially related to the m > 0 modes). To
make things explicit, we use the two previously described
modifications to rewrite our approximation to the singu-
lar field, (2.41), in the form

Φsingular(x;xparticle) =
1

ρ̂2n−1

[

3n−3
∑

i=0

i even

Cn,i sin
i(∆φ̂/2) + 2

3n−3
∑

i=0

i odd

Cn,i sin
i(∆φ̂/2) cos(∆φ̂/2)

]

+O(ǫn−1), (2.49)

where the coefficients Cn,i are functions of r0, u
a, ∆r and ∆θ, and where we have replaced R = sin∆φ̂ with the

equivalent expression 2 sin(∆φ̂/2) cos(∆φ̂/2). To define our puncture field, we truncate this expansion at order n = 4
and decompose into m-modes,

Ψpuncture,m =
1

2π

∫ π

−π

Φ
[4]
singulare

−imφ̂ dφ̂. (2.50)

Writing

e−imφ̂ =e−imφ̂0×
2m
∑

k=0

(

2m

k

)

(−1)k/2 cos2m−k(∆φ̂/2) sink(∆φ̂/2), (2.51)

and inspecting the form of the integrals, we see that (apart from a trivial phase factor) the real part of the puncture
is determined purely by the first term in (2.49), while the imaginary part is determined purely by the second term.

Furthermore, in all cases we are left with integrals involving only even powers of sin(∆φ̂/2) and cos(∆φ̂/2). Then,
the three generalisations listed previously can be handled through the application of two sets of identities,

∫ π

−π

sin2i(∆φ̂/2) cos2j(∆φ̂/2)ρ̂k dφ̂ =

∫ π

−π

[

ρ̂2 −A

B

]i [
A+B − ρ̂2

B

]j

ρ̂k dφ̂ (2.52)

and
∫ π

−π

ρ̂k dφ̂ =

∫ π

−π

1

A(k + 2)(A+B)

[

(k + 3)(2A+B)ρ̂k+2 − (k + 4)ρ̂k+4
]

dφ̂ for k < −1, (2.53a)

∫ π

−π

ρ̂k dφ̂ =

∫ π

−π

1

k

[

A(2− k)(A+B)ρ̂k−4 + (k − 1)(2A+B)ρ̂k−2
]

dφ̂ for k > 1. (2.53b)

The first of these is a direct consequence of the defini-
tion of ρ̂, while the second pair can be obtained from,
e.g., equation (1) of [90, section 1.5.27]. The first iden-

tity eliminates all powers of sin(∆φ̂/2) and cos(∆φ̂/2)
not appearing inside ρ̂, while the second pair of identi-

ties may be recursively applied to rewrite arbitrary (odd
integer) powers of ρ̂ in terms of ρ̂−1 and ρ̂. Thus we can
reduce all cases to elliptic-integral form and obtain an-
alytic expressions for the puncture field modes in terms
of these easily evaluated elliptic integrals. In practice,
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the expressions take the form of an m-dependent polyno-
mial in A

B multiplied by K plus a second polynomial in
A
B multiplied by E .
Given the puncture field Φpuncture, we compute the ef-

fective source Seffective via (2.5) and then the m-mode ef-
fective source Seffective,m via the Fourier integral (2.13).
Note that the � operator (2.11) must be applied ana-

lytically to the series expansion for the puncture field
in order to correctly cancel all divergent terms; a nu-
merical calculation of the � operator would be insuffi-
ciently accurate. The entire computation of Φpuncture,m

and Seffective,m takes approximately 500 lines of Math-
ematica code. The Mathematica notebook is included
in the online supplemental materials accompanying this
paper.
Our final expressions for Φpuncture,m and Seffective,m in-

volve multivariate polynomials in ∆r and ∆θ, the E and
K elliptic integrals (and their derivatives for Seffective,m)
and trigonometric polynomials. The coefficients in these
expressions are functions (only) of the particle posi-
tion and 4-velocity, so we precompute these coefficients
once per RHS-evaluation time. This precomputation is
done using C code and numerical coefficients which are
machine-generated (once) by the Mathematica program.
The machine-generated C code is large (∼ 10 megabytes)
and involves very lengthly arithmetic expressions (it con-
tains ∼ 1.5× 106 arithmetic operations); compiling it is
slow and requires large amounts of memory. Fortunately,
the execution of the code (to actually precompute the
coefficients) uses only a small fraction of our code’s to-
tal CPU time, so this (machine-generated) code may be
compiled without optimization.
The actual evaluation of Φpuncture,m and Seffective,m at

each grid point is done using hand-written C code. In to-
tal (i.e., summed over all grid points and RHS-evaluation
times where this evaluation is needed) this evaluation
uses the majority of our code’s total CPU time; the finite
differencing and numerical time-integration are relatively
minor contributors.

H. Computing the effective source close to the
particle

As we have noted previously [88, section III.C.3], our
series expressions for the effective source suffer from se-
vere cancellations when evaluated close to the particle.
Because of the Fourier integral (2.13), Seffective,m need
not – and typically does not – vanish at the particle, so
the “interpolate along a ray” scheme scheme we described
in [88, section III.C.3] is not valid here.
Instead, we use the following scheme. We define

a minimum-distance parameter Dmin (typically set to
0.01M), and if (∆r)2 + (r∆θ)2 < D2

min, then we in-
terpolate Seffective,m at (∆r,∆θ) using a 4th order La-
grange interpolating polynomial defined by the values of
Seffective,m at the 5 points (−2Dmin,∆θ), (−Dmin,∆θ),
(+Dmin,∆θ), (+2Dmin,∆θ), and (+3Dmin,∆θ). As

shown in Fig. 2, with this scheme the source is never
evaluated closer than a Euclidean distance Dmin from
the particle. The interpolation is only needed at at most
a few points per slice, so the computational cost is neg-
ligible.
While this scheme has proved adequate for our pur-

poses, it does have the weakness that if the evalua-
tion point lies in (or very close to) the equatorial plane
θ = π/2, then the interpolation molecule crosses (or al-
most crosses) the particle position, leading to reduced
accuracy because ϕnum,m is only C2 there.

I. Boundary conditions

1. Physical boundary conditions

We use pure outflow boundary conditions at the event
horizon and J+, i.e., we apply the interior evolution
equations at these grid points, using (conceptually) 1-
sided finite difference molecules for radial derivatives.10

Seffective,m at these

input points

δr

rδθ

particle
evaluation point
interpolation uses

FIG. 2. This figure shows our interpolation scheme for com-
puting the 2-dimensional effective source Seffective,m near the
particle. We never evaluate Seffective,m at a Euclidean dis-
tance < Dmin from the particle, i.e., within the region shown
as the shaded disk. Instead, for an evaluation point within
this region we interpolate Seffective,m using Seffective,m values
computed at more distant points.

10 For ease of implementation and code organization, we actually
implement this by first extrapolating ϕ and Π into the radial
ghost zones using 5th-order Lagrange polynomial extrapolation,
then applying the interior evolution equations using our usual
centered finite difference scheme.
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2. z axis symmetry boundary conditions

As discussed by [49, section IV.C], the z axis symmetry
boundary conditions for ϕnum,m (and hence also Πnum,m)
depend on m.

m = 0: In this case ϕnum,m is even across the z axis,

i.e., ∂θϕnum,m = ∂θΠnum,m = 0. The m2/ sin2 θ
term in (2.40) vanishes identically because m = 0,
and L’Hopital’s rule gives the other singular term
as limθ→0 cot θ ∂θϕnum,m = ∂θθϕnum,m.

m 6= 0: In this case ϕnum,m is odd across the z axis
so that ϕnum,m = Πnum,m = 0 there. To imple-
ment this we specify zero initial data on the z axis
and replace our evolution equations by ∂tϕnum,m =
∂tΠnum,m = 0 there.

3. Equatorial reflection symmetry boundary conditions

If the particle orbit is equatorial (as is the case for all
the numerical computations discussed here), then the en-
tire physical system has equatorial reflection symmetry,
i.e., all fields must be even across the equator (θ = π/2).

J. Initial data

The correct initial data for (2.23) are unknown
(they would represent the equilibrium field configura-
tion around the particle, which is what we are trying
to compute). Instead, we follow the usual practice in
time-domain self-force computations (e.g., [73]) and spec-
ify arbitrary (zero) initial data ϕnum,m = Πnum,m = 0
on our initial slice. This initial data is not a solution
of the sourced evolution equation (2.23), but we find
that the “junk” (the deviation of the field configuration
from (2.23)) quickly radiates away towards the inner and
outer boundaries, so that after sufficient time ϕnum,m re-
laxes to a solution of (2.23) throughout an (expanding)
neighborhood of the worldtube. We see no sign of the
persistent (non-radiative) “Jost junk solutions” described
by [91, 92]. This is to be expected for at least two reasons:
(i) the source for our field equations does not contain the
derivative of a Dirac delta function, and (ii) we are using
a second-order-in-space, rather than first-order-in-space
formulation of the field equations.

K. Computing the self-force from the evolved fields

Because the physical scalar fields Φ, Φpuncture, and
Φresidual are real, the Fourier inversion (2.13) implies that
ϕ−m = conj [ϕm], and similarly for the other m-mode
fields. Hence we only need to (numerically) compute the
m-modes m ≥ 0.

We thus have

Φresidual(t, r, θ, φ) =

∞
∑

m=0

Υ
(Φ)
residual,m(t, r, θ, φ), (2.54)

where the (real) field Υ
(Φ)
residual,m is given in a neighbor-

hood of the particle by

Υ
(Φ)
residual,m(t, r, θ, φ) :=















2 Re

[

eimφ̃

r
ϕnum,m(t, r, θ)

]

if m 6= 0

1

r
ϕnum,m(t, r, θ) if m = 0.

(2.55)

We compute the self-force by substituting (2.54)
into (2.7) and differentiating at the particle position. A
straightforward calculation gives

Fa = q

∞
∑

m=0

(

Υ
(∂aΦ)
residual,m

)

∣

∣

∣

∣

particle

, (2.56)

where the “self-force modes” Υ
(∂aΦ)
residual,m =

Υ
(∂aΦ)
residual,m(t, r, θ) are defined in a neighborhood of

the particle by

Υ
(∂tΦ)
residual,m =















2 Re

[

eimφ̃

r
Πnum,m

]

if m 6= 0

1

r
Πnum,m if m = 0,

(2.57a)

Υ
(∂sΦ)
residual,m = ∂sΥ

(Φ)
residual,m, (2.57b)

Υ
(∂φΦ)
residual,m =











−2m Im

[

eimφ̃

r
ϕnum,m

]

if m > 0

0 if m = 0.

(2.57c)

We compute each self-force mode at the particle by first
computing it in a finite-difference-molecule–sized region
about the particle, then interpolating it to the particle
position using the “C2” interpolating function described

in Appendix B 10. (For Υ
(∂sΦ)
residual,m, an alternative would

be to apply a “differentiating interpolator”11 directly to

11 An interpolator generally works by (conceptually) locally fitting
a fitting function (in our case the C2 interpolant (B14)) to the
data points in a neighbourhood of the interpolation point, then
evaluating the fitting function at the interpolation point. A dif-
ferentiating interpolator instead evaluates a derivative of the fit-
ting function at the interpolation point. This has the effect of
interpolating the corresponding derivative of the input data to
the interpolation point without ever needing to form a grid func-
tion of that derivative.
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Υ
(Φ)
residual,m. This would be more elegant and efficient than

interpolating a molecule-sized Υ
(∂sΦ)
residual,m grid function.

However, the cost of even the interpolate-a-molecule-size-
grid-function scheme is still only a minute fraction of the
overall self-force computation, so we did not bother with
the additional software complexity of the differentiating
interpolator.)

L. The tail series

In practice we can only numerically compute a finite
number of m-modes 0 ≤ m ≤ mnum,max. We thus parti-
tion each of the infinite sums in (2.54) and (2.56) into a
finite “numerical sum” plus an infinite “tail sum”,

∞
∑

m=0

=

mnum,max
∑

m=0

+

∞
∑

m=mnum,max+1

, (2.58)

and account for the tail sum in much the same way as is
done in the mode-sum regularization scheme.

To estimate the tail sum for the self-force computa-
tion (2.56),12 we use the fact that the modes have a
known power-law behavior that can be attributed to the
non-smoothness of the residual field. Explicitly, the be-
havior of the modes of the residual field is given by

(

Υ
(Φ)
residual,m

)

∣

∣

∣

∣

particle

=

∑

α≥n
α even

k(Φ)
α f (Φ)

α,m +
(

Υ
(Φ)
regular,m

)

∣

∣

∣

∣

particle

,

(2.59)

where Υ
(Φ)
regular,m comes from the C∞ regular field and

falls off faster than any power of m; it can therefore be
ignored for mnum,max sufficiently large. The remaining
piece of the tail sum is effectively an even power series in
1/m, starting at an order, m−n, that is determined by
the order of the puncture field. In our case n = 4, the
basis functions f for the m-dependence are given by

f
(Φ)
4,m =

1

(m− 3
2 )(m− 1

2 )(m+ 1
2 )(m+ 3

2 )

f
(Φ)
6,m =

1

(m− 5
2 )(m− 3

2 )(m− 1
2 )(m+ 1

2 )(m+ 3
2 )(m+ 5

2 )

f
(Φ)
8,m =

1

(m− 7
2 )(m− 5

2 )(m− 3
2 )(m− 1

2 )(m+ 1
2 )(m+ 3

2 )(m+ 5
2 )(m+ 7

2 )

...

f (Φ)
α,m =

1
(

m− α−1
2

)

α

, (2.60)

and the coefficient functions, k, are given by the m-mode
decomposition of higher-order terms (i.e., those that have
not been included in the definition of the puncture field)
in the series expansion of the Detweiler-Whiting singular
field [87].
Derivatives of the field behave in a similar manner, so

that in addition to using this approach for Υ
(Φ)
residual,m,

we may also use it for the fields Υ
(X)
residual,m, where X is

one of ∂sΦ, ∂tΦ or ∂φΦ. The only caveat is that the
m-dependence is slightly modified: the φ derivative in-

troduces a factor of m2, so f
(∂φΦ)
α,m = m2f

(Φ)
α,m. The t

derivative of the Detweiler-Whiting singular field can be

written in terms of r and φ derivatives, so f
(∂tΦ)
α,m has both

12 The physical scalar field Φ at the particle can also be computed
by applying similar techniques to the infinite sum (2.54).

kinds of terms present.

For any given X , α and mnum,max, the infinite sum

S
(X)
α,mnum,max+1 :=

∞
∑

m=mnum,max+1

f (X)
α,m (2.61)

can be computed exactly. Using the facts that

∞
∑

m=−∞

(

m− α−1
2

)

α
= 0 for even α ≥ 2, (2.62)

∞
∑

m=−∞

m2
(

m− α−1
2

)

α
= 0 for even α ≥ 4, (2.63)
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we obtain

S
(Φ)
α,mnum,max+1 =

1

(α− 1)
(

mnum,max − α−3
2

)

α−1

, (2.64)

S
(∂φΦ)
α,mnum,max+1 =

mnum,max(mnum,max + 1)

(α− 3)
(

mnum,max − α−3
2

)

α−1

. (2.65)

Analytical expressions for the k
(X)
4 coefficients (in this

context known as “m-mode regularization parameters”)
compatible with our choice of puncture field were given
in [87]. As they are extremely lengthly we will not repeat
them here; a Mathematica notebook for computing them
is included in the online supplemental materials which
accompany this paper.
While the higher-order coefficients could be analyt-

ically determined in a similar manner, we choose in-
stead an alternative approach. To estimate some finite

set α ∈ αtail-set of the remaining k
(X)
α coefficients, we first

truncate the series (2.59) to only the terms α = 4 and
α ∈ αtail-set,
(

Υ
(X)
residual,m

)

∣

∣

∣

∣

particle

≈ k
(X)
4 f

(X)
4,m +

∑

α even
α∈αtail-set

k(X)
α f (X)

α,m.

(2.66)
For a specified particle position, we then estimate

the corresponding set of k
(X)
α by least-squares fit-

ting the numerically-computed
(

Υ
(X)
residual,m

)

∣

∣

∣

∣

particle

with

mfit,min ≤ m ≤ mfit,max to the truncated series (2.66).13

For all analyses reported in this paper we take αtail-set

to be either empty (no tail fit) or {6, 8}. Table III gives
mfit,min and mfit,max for each of our configurations where
a tail fit is done.
Finally, we compute (estimate) each self-force compo-

nent Fa at each of these times by substituting (2.58),
(2.59), and (2.61) into (2.56), giving

Fa

q
=

mnum,max
∑

m=0

(

Υ
(X)
residual,m

)

∣

∣

∣

∣

particle

+ k
(X)
4 S

(X)
4,mnum,max+1

+
∑

α even
α∈αtail-set

k(X)
α S

(X)
α,mnum,max+1. (2.67)

M. Selecting the time interval for analysis within
an evolution

Our discussion in sections IIK and II L assumed that a
time series of the self-force modes Υ

(∂aΦ)
residual,m is available

13 For each α, we normalize f
(X)
α,m to have unit magnitude at the

mean m in αtail-set. This reduces to a tolerable level what would
otherwise be severe numerical ill-conditioning in the least-squares
fit [93].

at a suitable set of points around the orbit for eachm = 0,
1, 2, . . . , mnum,max. However, as described in section II J,
the initial part of each such time series is contaminated
by “junk” radiation. Here we describe how we determine
when this junk radiation has decayed to a negligible level
(below our numerical noise level).
The key fact which underlies our algorithm for making

this determination is that since the particle orbit is peri-
odic,14 the self-force modes should also be periodic with
the orbital period Tr..
Given a time series of some numerically-computed self-

force mode Υ
(∂aΦ)
residual,m, we define its “orbit difference”

time series by

∆
[

Υ
(∂aΦ)
residual,m

]

(t) :=
∣

∣

∣
Υ

(∂aΦ)
residual,m(t+ Tr)−Υ

(∂aΦ)
residual,m(t)

∣

∣

∣
.

(2.68)
The orbit-difference time series is one orbit shorter in
duration than the original time series.
Because of the initial junk radiation, the orbit differ-

ence is initially large. As the junk radiation radiates away
from the particle and worldtube, the orbit difference de-
cays until it eventually becomes roughly constant (at a
nonzero value due to finite differencing and other numer-
ical errors) or, in some cases, varying with the orbital
period (since the numerical errors are similarly periodic).
(This behavior can be seen in Fig. 3.)
It is thus quite easy to determine the time when the

junk radiation has decayed to a negligible level by visually
inspecting a graph of the orbit difference as a function
of time. Although this process could probably be au-
tomated by searching backwards in the orbit-difference
time series for a sustained rise (in fact, we implemented
such an algorithm), we find that the visual inspection is
valuable for detecting a variety of other numerical prob-
lems which might occur, so we have chosen not to rou-
tinely use an automated algorithm here.

N. Selecting a “low-noise” subset of times within
an evolution

Because of the interaction between finite differencing
and the limited differentiability of ϕnum at the particle,
as well as other numerical errors, there is numerical noise

in the self-force modes Υ
(∂aΦ)
residual,m. For highly eccentric

orbits, we find that the higher-m modes may be com-
pletely dominated by numerical noise in the outer parts
of the orbit. (This can be seen in, for example, Figs. 4
and 5.)
Including these modes in the self-force sum (2.67)

would add significant numerical noise to the computed
self-force while (in many cases) not adding any significant

14 More precisely, the particle orbit is periodic modulo an overall
rotation in φ, which is ignorable because Kerr spacetime is ax-
isymmetric.
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“signal”. Therefore, it is useful (again, in many although
not all cases) to omit the noisy modes from the self-
force sum (2.67), effectively treating these modes/times
as missing data.

To estimate the noise level at any point in an

Υ
(∂aΦ)
residual,m time series, we first define a smoothed time se-

ries S
[

Υ
(∂aΦ)
residual,m

]

using Savitzky-Golay moving-window

smoothing [94], [95, section 14.8]. For all analyses re-
ported in this paper we use a 6th-degree polynomial over
a current position±10-sample moving window in the time
series.

We then define the (absolute) noise time series as

noise
[

Υ
(∂aΦ)
residual,m

]

(t) :=

RMS
SG window(t)

{

Υ
(∂aΦ)
residual,m − S

[

Υ
(∂aΦ)
residual,m

]

}

(2.69)

and the “relative noise” time series as

relative noise
[

Υ
(∂aΦ)
residual,m

]

(t) :=

noise
[

Υ
(∂aΦ)
residual,m

]

(t)

/

RMS
SG window(t)

{

Υ
(∂aΦ)
residual,m

}

,

(2.70)

where RMS
SG window(t)

{

· · ·
}

is the root-mean-square value

over the Savitzky-Golay smoothing window.

Using these definitions we select a “low-noise” sub-
set of the time samples by omitting those samples from

the Υ
(∂aΦ)
residual,m time series which have m ≥ mnoise,min

and relative noise
[

Υ
(∂aΦ)
residual,m

]

> εrelative,max, where

mnoise,min is a parameter chosen so that time intervals
immediately around zero-crossings in lower-m modes are
not falsely excluded, and where εrelative,max is a parame-
ter chosen to tune the tolerable level of numerical noise.
Table III gives mnoise,min and εrelative,max for each of our
configurations where smoothing is done.

O. Dissipative and conservative parts of the
self-force

As well as calculating the overall self-force, it is use-
ful to split the self-force into dissipative and conservative
contributions [71, 96–99]: the dissipative part affects the
O(µ) orbital evolution while the conservative part only
affects the orbital evolution at O(µ2). As discussed by
[30, section 8.1], for equatorial orbits these can be com-
puted from the even-in-time and odd-in-time parts of the

self-force,15

Fdiss,t = Feven,t Fcons,t = Fodd,t (2.71a)

Fdiss,r = Fodd,r Fcons,r = Feven,r (2.71b)

Fdiss,φ = Feven,φ Fcons,φ = Fodd,φ (2.71c)

where

Feven,a(t) =
1
2

[

Fa(t) + Fa(Tr − t)
]

(2.72a)

Fodd,a(t) =
1
2

[

Fa(t)− Fa(Tr − t)
]

(2.72b)

with t being the modulo time.
To allow this computation without requiring time in-

terpolation, we always choose our self-force computation
times to be uniformly spaced in coordinate time t, with
a spacing ∆tsample which integrally divides the orbital
period Tr.

P. Summary of computation and data analysis

To summarize, our overall computational and data-
analysis scheme involves a sequence of operations:

• For each m, we perform a numerical evolution of
the 1st-order-in-time evolution system described in
section II F. Our evolution code writes out time
series of each self-force mode Υ

(∂aΦ)
residual,m, sampled

at uniform coordinate-time intervals. We always
choose the sampling time ∆tsample to be the same
for each m and (as noted in section II O) to inte-
grally divide the period Tr of the particle’s radial
motion.

• For each m, we use the orbit-differences algorithm
described in section IIM to select a point in each
of the self-force modes’ time series when the initial
junk radiation has decayed to a level below our nu-
merical noise level. For all our further data analysis
we use only the modes from times ≥ this “self-force
computation start time” for each m.

• For most configurations, for each m we use
the noise-estimation and low-noise–selection algo-
rithms described in section IIN to select a subset
of the self-force mode Υ

(∂aΦ)
residual,m time series which

has relatively low numerical noise.

15 It would be possible to similarly compute the dissipative and
conservative parts of each individual self-force mode in the
sums (2.56). This would have the advantage that the dissipa-
tive part of the self-force could be computed very accurately (its
tail sums should converge exponentially fast), with only the con-
servative part requiring the full tail-sum computation described
in section II L. However, for historical reasons we have not taken
this approach.
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• For each modulo time for which we have self-force
modes (at times ≥ the self-force computation start
time, and with sufficiently low estimated noise), we
compute the t, r, and φ components of the self-
force using the mode summation and tail-fitting al-
gorithms described in sections IIK and II L.

III. NUMERICAL RESULTS

A. Configurations and parameters

Tables I–VIII summarize the main physical and com-
putational parameters for the configurations presented
here.1617 These configurations fall into four (overlap-
ping) families:

• The ns5, n-55, n95, ze4, and e8b configurations are
ones which have also been calculated by other re-
searchers, allowing us to validate our code against
their results (both published and unpublished).

• The e8, e8b, e9, and e95 configurations are (non–
zoom-whirl) highly eccentric orbits.

• The ze4, ze9, zze9, and ze98 configurations are
zoom-whirl orbits; of these the ze4 configuration
is of moderate eccentricity while the ze9, zze9, and
ze98 configurations are highly eccentric.

• The circ-ze4, circ-ze9, circ-zze9, and circ-ze98 con-
figurations are circular-orbit configurations with or-
bital radii matching the periastrons of the corre-
sponding zoom-whirl configurations.

B. Example of data analysis

Here we give an example of the data analysis “pipeline”
described in section II P, for the e8 configuration, which
has (ã, p, e) = (0.6, 8, 0.8).

Figure 3 shows a selection of the modes Υ
(∂rΦ)
residual,m and

their orbit differences ∆
[

Υ
(∂rΦ)
residual,m

]

for the entire time

span of each m’s evolution. Figure 4 shows all of the

Υ
(∂rΦ)
residual,m for the last 2.85 orbital periods for each m ∈

[0, 20] for the e8 configuration. Figure 5 shows a selection

of the modes Υ
(∂aΦ)
residual,m in more detail as a function of

modulo time.

16 The input parameter files and data analysis scripts for the
highest-resolution evolutions for each configuration, as well as
for the variant-grid dro6-48 evolutions for the e9 configuration,
are included in the online supplemental materials accompanying
this paper.

17 These simulations all used the Karst cluster at Indiana Univer-
sity.

After applying the “low-noise” selection criteria de-
scribed in section IIN, Fig. 6 shows the resulting “low-

noise” subset of the Υ
(∂rΦ)
residual,m for the last 2.6 orbital

periods for each m ∈ [0, 20] for the e8 configuration, and

Fig. 7 shows a selection of the low-noise modes Υ
(∂aΦ)
residual,m

in more detail as a function of modulo time. We use these
modes to compute the self-force using the mode summa-
tion and tail-fitting algorithms described in sections II K
and II L.
Figure 8 shows some example tail fits of the low-noise

modes Υ
(∂rΦ)
residual,m to the tail series (2.67) for the n95 and

e8 configurations.

C. Convergence of results with numerical
resolution

When numerically solving partial differential equa-
tions, the results should (must!) converge to a continuum
limit. More precisely (for finite-difference computations),
as the grid is refined, at each event the results should in
general be convergent with the correct convergence or-
der for the finite differencing scheme [100]. However, our
numerical scheme is an exception: as the particle moves
through the grid, the limited differentiability of our nu-
merical fields at the particle position introduces finite
differencing errors which fluctuate in a “bump function”
manner [101, appendix F] from one particle position to
another. Moreover, these fluctuations are typically not
coherent between different-resolution evolutions. Corre-
spondingly, we expect the convergence of our numerical
results to fluctuate from one modulo-time (orbital posi-
tion) sample to the next.
Figure 9 illustrates this fluctuating convergence for the

n95 and e9 configurations. As expected, the self-force dif-

ference norms
∥

∥F
(low)
a −F

(high)
a

∥

∥

+
and the convergence

ratio
∥

∥F
(low)
a −F

(medium)
a

∥

∥

+

/

∥

∥F
(medium)
a −F

(high)
a

∥

∥

+

fluctuate strongly (typically by an order of magnitude
or more) from one sample to the next. This makes
it difficult to accurately estimate an overall order of
convergence. However, several conclusions can be drawn:

• For both configurations there is no systematic dif-
ference in the convergence ratio between the ingo-
ing and outgoing legs of the orbit at any given ra-
dius r.

• For the n95 configuration the convergence order is
roughly similar everywhere in the orbit, averaging
somewhat better than 2nd order.

• For the e9 configuration the convergence averages
much better than 4th order for r . 10M , some-
what worse than 2nd order for 10M . r . 20M ,
and roughly 4th order for r & 25M .

We have not yet been able to determine the rea-
son for this somewhat peculiar convergence behav-
ior. However, since our overall finite differencing



18

10-14
10-12
10-10
10-8
10-6
10-4
10-2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
|ϒ(∂

r Φ
)

re
si

du
al

,m
|, ∆

[ϒ
(∂

r Φ
)

re
si

du
al

,m
]

t (M)

m=0

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
] m=1

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
] m=2

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
] m=8

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

10-14
10-12
10-10
10-8
10-6
10-4
10-2

 0  1000  2000  3000  4000  5000  6000

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
]

t (M)

m=16

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
]m=4

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
]m=12

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

 0  1000  2000  3000  4000  5000  6000

10-14
10-12
10-10
10-8
10-6
10-4
10-2

|ϒ(∂
r Φ

)
re

si
du

al
,m

|, ∆
[ϒ

(∂
r Φ

)
re

si
du

al
,m
]

t (M)

m=20

|ϒ(∂r Φ)
residual,m|

∆[ϒ(∂r Φ)
residual,m]

FIG. 3. This figure shows some of the self-force modes Υ
(∂rΦ)
residual,m and their orbit differences ∆

[

Υ
(∂rΦ)
residual,m

]

for the e8 configu-

ration, which has (ã, p, e) = (0.6, 8, 0.8). In each subplot the green vertical line marks the self-force computation starting time
(when the orbit differences have decayed to the numerical noise level). For each m the orbit differences are only defined for a
time interval that is one orbital period shorter than the self-force mode. As m increases the initial junk decays faster, so the
self-force computation starting time can be earlier in the evolution. Correspondingly, we choose shorter numerical evolutions
for larger m.
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Orbital period δφ per
min r max r Radial Azimuthal orbit

Name ã p e E (M) L (M2) (M) (M) Tr (M) τr (M) Tφ (M) (orbits)
ns5 0.0 7.2 0.5 0.956 876 3.622 713 4.8 14.4 405.662 317.366 134.285 3.021
n-55 −0.5 10.0 0.5 0.967 896 4.100 631 6.667 20.0 505.428 434.465 249.488 2.026
n95 0.9 10.0 0.5 0.963 778 3.489 553 6.667 20.0 378.408 333.027 293.070 1.291
e8 0.6 8.0 0.8 0.978 270 3.405 897 4.444 40.000 771.968 709.796 502.435 1.536
e8b 0.8 8.0 0.8 0.978 056 3.292 113 4.444 40.000 756.641 697.570 527.812 1.434
e9 0.99 7.0 0.9 0.986 565 3.052 860 3.684 70.000 1513.855 1442.724 1060.526 1.427
e95 0.99 5.0 0.95 0.990 315 2.699 644 2.564 100.000 2436.050 2349.870 1445.400 1.685
ze4 0.2 6.15 0.4 0.945 536 3.366 468 4.393 10.25 354.628 255.966 95.799 3.702
ze9 0.0 7.800 1 0.9 0.988 333 3.904 885 4.105 78.001 2112.079 1913.402 339.855 6.215
zze9 0.0 7.800 001 0.9 0.988 332 3.904 884 4.105 78.000 2224.815 1971.883 265.734 8.372
ze98 0.99 2.4 0.98 0.991 798 2.180 959 1.212 120.000 3304.620 3021.480 215.851 15.310
circ-ze4 0.2 4.392 857 0.0 0.943 384 3.346 263 4.392 857 4.392 857 59.106
circ-ze9 0.0 4.105 316 0.0 0.988 327 3.904 841 4.105 316 4.105 316 52.264
circ-zze9 0.0 4.105 264 0.0 0.988 332 3.904 884 4.105 264 4.105 264 52.263
circ-ze98 0.99 1.212 121 0.0 0.984 732 2.164 538 1.212 121 1.212 121 14.605

TABLE I. This table summarizes the main physical parameters for the configurations presented in this paper. (ã, p, e) uniquely
characterize the spacetime and the particle orbit. E and L are the particle’s specific energy and angular momentum, respectively.
“min r” and “max r” are the particle’s periastron and apoastron coordinate radii, respectively. The orbital period is given
in three forms: the coordinate time Tr and proper time along the particle orbit τr of the radial motion, and the long-term
mean coordinate-time period Tφ of the azimuthal (φ) motion (i.e., the mean coordinate time t during which φ advances by 2π).
“δφ per orbit” denotes the advance in φ (in units of 2π) during one period of the orbit’s radial motion (i.e., during a coordinate
time Tr); this is given by Tr/Tφ and is ≫ 1 orbit for a zoom-whirl orbit.

Self-force computation start time Evolution end time
∆tsample tinitial m = 0 m = 1 m = 2 m = 3 m ≥ 4 m = 0 m = 1 m = 2 m = 3 m ≥ 4

Name Nsample (M) mnum,max (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M)
ns5 406 0.999 20 143 8 000 2 000 700 365 310 11 990 6 994 3 997 1 349 1 349a

n-55 506 0.999 20 183 7 200 2 700 900 480 420 10 291 5 237 3 721 1 348 1 348
n95 378 1.001 20 116 5 115 2 850 890 400 350 12 013 8 009 4 004 1 251 1 251
e8 770 1.003 20 324 7 000 2 600 1 300 800 650 11 903 6 500 4 184 2 506 2 506
e8b 760 0.996 20 289 8 700 4 200 1 900 1 025 820 11 728 7 945 5 675 3 405 3 405

e9 1 514 1.000 20 680 10 000 5 300 2 450 1 300 1 180b 15 818 8 249 5 221 3 300 3 300
e95 2 436 1.000 20 1 090 7 000 4 700 2 550 2 200 1 950 13 270 8 398 5 962 5 400 5 400
ze4 360 0.985 20 111 8 000 2 000 550 400 360 11 821 6 896 3 940 1 182 1 182
ze9 2 112 1.000 20 920 12 888 7 888 2 500 1 600 1 600 15 001 10 000 8 000 4 800 4 800a

zze9 2 224 1.000 20 1 005 10 000 5 550 3 350 1 700 1 575 22 361 14 461 12 236 7 787 7 787a

ze98 13 216 0.250 12 1 448 11 600 8 250 4 950 4 950 4 950b 18 093 14 871 14 871 13 218 10 623a

circ-ze4 60 0.982 20 0 6 000 2 000 450 315 300b 6 154 4 000 940 700 600a

circ-ze9 52 1.005 20 0 10 000 1 630 410 325 335b 10 453 1 980 950 685 425a

circ-zze9 52 1.005 20 0 10 000 1 630 410 325 335b 10 453 1 980 950 685 425a

a Some large-m evolutions end earlier.
b Some large-m evolutions start the self-force computation earlier.

TABLE II. For each configuration, this table gives the number of self-force output samples per orbit (more precisely, per radial
orbital period for the eccentric-orbit configurations, and per azimuthal orbital period for the circular-orbit configurations), the
sampling interval, the maximum m of the numerically-computed modes in the self-force sum (2.67), the time at which the
self-force computation begins (after the initial transients have decayed), and the time at which the numerical evolution ends
(or at which the self-force computation ends, if this is earlier). All times are coordinate times in units of M and (except for
∆tsample) are rounded to the nearest integer. For some configurations (footnoted), some large-m evolutions use earlier starting
and/or ending times (chosen to select low–numerical-noise sections of data and/or limited by machine failures or queue-time
limits). For the eccentric-orbit configurations there is always at least one orbital period between the starting and ending times;
for the circular-orbit configurations the self-force is time-independent so there is no need for an extended self-force computation
interval. The circ-ze98 configuration is omitted because we were unable to obtain stable evolutions for it for m ≥ 6.
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scheme is 4th order accurate (in both space and
time) in the bulk, achieving an average convergence
higher than this implies that one or more of the (e9)
evolutions must have insufficient resolution to be in
the asymptotic-convergence regime.

Our grid structure for these evolutions (Tab. VI)
moves the finest 3 refinement levels with the world-
tube, which in turn moves so that its center is al-
ways very close to the particle. Thus, if the parti-
cle is at a sufficiently large radius the strong-field
region close to the black hole will not be covered
by the finest grid. For example, if the particle
is at r=R=10M (R∗ = 12.8M) then the finest
grid extends inward only as far as r=R=4.4M
(R∗ =4.8M). For phenomena nearer the black
hole than this, the local grid resolution is lower.
As we discuss in section IVB3, an adaptive mesh-
refinement scheme might well provide improved ac-
curacy – and convergence – in this situation.

On a more qualitative level, figure 23 shows visually
that the difference between our highest and 2nd-highest
resolution results is very small for the near-periastron
parts of the ze4, ze9, and zze9 orbits.

D. Verification that results are independent of the
choice of worldtube and other numerical parameters

As discussed in section II C, our numerically computed
self-force should be independent of the choice of the
worldtube. To test this independence numerically, we
compare results for the e9 configuration computed using
the normal and variant dro6-48 numerical grids (these are

low-noise selection
parameters tail-fit parameters

Name mnoise,min εrelative,max mfit,min mfit,max

ns5 10 0.05 9 18
n-55 10 0.05 9 18
n95 10 0.05 9 18
e8 4 0.3 12 20
e8b 4 0.3 12 20
e9 3 0.3 12 20
e95 2 0.3 12 20
ze4 10 0.05 8 18
ze9 2 0.3 12 20
zze9 2 0.3 12 20
ze98 no low-noise selection — no tail fit —
circ-ze4 no low-noise selection 12 20
circ-ze9 no low-noise selection 12 20
circ-zze9 no low-noise selection 12 20

TABLE III. This table shows the low-noise–selection and tail-
fit parameters used for computing the self-force for each con-
figuration presented in this paper. The circ-ze98 configuration
is omitted because we were unable to obtain stable evolutions
for it for m ≥ 6.

described in detail in tables V and VI). As well as varying
the sizes and positions of each refined grid, these compu-
tations also use different ∆R∗

/

∆θ grid aspect ratios (ta-
ble V), different worldtube sizes, and different worldtube-
moving parameters fmove and max move distance (these
parameters are defined in figure 26). Figure 10 shows
a numerical comparison of the self-force between these
computations. It is apparent that changing these pa-
rameters changes the computed self-force by only a very
small amount (similar in size to the change induced by a
factor-of-1.5 change in numerical resolution).

E. Comparison with other researchers’ results

As an external check on the accuracy of our results,
we compare these against results computed using War-
burton and Barack’s frequency-domain code [52]. Fig-
ure 11 shows this comparison for the ns5, n-55, n95, ze4,
and e8b configurations. These span a considerable range
of of black hole spins and particle orbits, including both
prograde and retrograde orbits, eccentricities ranging up
to e = 0.8 (the e8b configuration), a zoom-whirl orbit
(the ze4 configuration), and an occurrence of “wiggles”
(the e8b configuration).

For all but the e8b configuration, the two codes agree
everywhere around the orbit to within approximately one
part in 105 (dissipative part) or one part in 104 (conser-
vative part). The e8b configuration has a highly eccentric
orbit (e = 0.8) that is difficult for the frequency-domain
code to compute accurately, so the somewhat lower accu-
racy is expected. The strong peaks in the e8b difference

Numerical grid
dro4-32 dro6-48 dro6-48 dro8-64 dro10-80

Name normal normal variant normal normal
ns5 X X X
n-55 X X
n95 X X X

e8 X X X
e8b X X
e9 X X X X Xa

e95 X X Xb

ze4 X X
ze9 X X
zze9 X X X
ze98 X X X X

circ-ze4 X X
circ-ze9 X X
circ-zze9 X X
circ-ze98 X X

a m ≤ 15 only
b m = 0, 1, and 2 only

TABLE IV. This table shows which numerical grids were used
in simulating the configurations presented in this paper. See
tables V and VI for details of these grids.
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FIG. 4. This figure shows all of our numerically-computed self-force modes Υ
(∂rΦ)
residual,m for the last 2.6 orbital periods for each

m ∈ [0, 20] for the e8 configuration, which has (ã, p, e) = (0.6, 8, 0.8). Compare these with the “low-noise” subset of modes
shown in Fig. 6.
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FIG. 5. This figure shows some of the self-force modes Υ
(∂aΦ)
residual,m for the e8 configuration, which has (ã, p, e) = (0.6, 8, 0.8).

The figure shows only data for the final orbit simulated for each m. Compare these modes with the “low-noise” subset of modes
shown in Fig. 7.
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FIG. 7. This figure shows some of the “low-noise” self-force modes Υ
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residual,m for the final orbit for each m for the e8 configu-

ration, which has (ã, p, e) = (0.6, 8, 0.8). Compare these modes with the full set of modes shown in Fig. 5.
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FIG. 8. This figure shows sample fits of the numerically computed Υ
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for the low-noise modes. For this difference, N or H means Υ
(∂aΦ)
residual,m − tail series > 0 or < 0, respectively.



26

0

100

200

r3  ||F
a||

+
  (

10
−

3  q
2 /M

)
n95 configuration: (ã,p,e) = (0.9, 10, 0.5)

outgoing
ingoing

0

200

400

600

r3  ||F
a||

+
  (

10
−

3  q
2 /M

)

e9 configuration: (ã,p,e) = (0.99, 7, 0.9)

outgoing
ingoing

10−4

10−2

100

102

||F
a||

+
, |

|F a(lo
w

) −F
a(h

ig
h)
|| +

  (
10

−
6  q

2 /M
)

||Fa||+ (outgoing)

||Fa||+ (ingoing)

||Fa
(M/32)−Fa

(M/48)||+
||Fa

(M/48)−Fa
(M/64)||+

10−4

10−2

100

102

104

||F
a||

+
, |

|F a(lo
w

) −F
a(h

ig
h)
|| +

  (
10

−
6  q

2 /M
)

||Fa||+ (outgoing)

||Fa||+ (ingoing)

||Fa
(M/48)−Fa

(M/64)||+
||Fa

(M/64)−Fa
(M/80)||+

10−1

100

101

102

 6  8  10  12  14  16  18  20

||F
a(M

/3
2)

−F
a(M

/4
8)
|| +

 / |
|F a(M

/4
8)

−F
a(M

/6
4)
|| +

r (M)

ratio (outgoing)
ratio (ingoing)
4th  order
2nd order
0th  order

 4  6  8  10  15  20  30  40  60
10−1

100

101

102

||F
a(M

/4
8)

−F
a(M

/6
4)
|| +

 / |
|F a(M

/6
4)

−F
a(M

/8
0)
|| +

r (M)

ratio (outgoing)
ratio (ingoing)
4th  order
2nd order
0th  order
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norms in the region 8M . r . 15M , and also the similar
but less prominent peaks in the ns5 and ze4 configura-
tions near r = 9M and 7M . r . 8M respectively, are
probably due to the frequency-domain code switching be-
tween “inner” and “outer” approximants [102].
Overall, the agreement between the two codes is excel-

lent, particularly given that that they use different regu-
larizations (effective-source versus mode-sum), different
evolution formulations (time-domain versus frequency-
domain), and were/are independently programmed by
disjoint sets of researchers. This agreement gives quite
high confidence that both codes are in fact computing
correct solutions to the O(µ)-perturbed scalar-field equa-
tions.

F. Overview of self-forces

Figures 12–22 give an overview of the computed self-
forces for all our configurations. To facilitate comparison
between the different configurations, these figures all use
a common format (with one exception noted below):

• The top row of each figure shows auxiliary informa-
tion; the lower three rows show (respectively) Ft,
Fr, and Fφ.

• In the top row, the left plot shows r and φ as func-
tions of the coordinate time t, while the right plot
shows a plan view of the orbit, i.e., a parametric
plot with x = r(t) cos

(

φ(t)
)

and y = r(t) sin
(

φ(t)
)

.

• The coordinate-time scale always runs from − 1
2Tr

to + 1
2Tr, with t = 0 corresponding to periastron.

(That is, this “coordinate time” is in fact identical
to the modulo time.)

• In the lower three rows of each figure, the left col-
umn of plots shows each Fi (in units of 10−6q2/M)
as a function of coordinate time t. For the ze4, ze9,
and zze9 zoom-whirl configurations, these plots also
show the self-force for the circular-orbit configura-
tions (circ-ze4, circ-ze9, and circ-zze9, respectively)

base grid finest grid
R∗ θ R∗ θ
(M) (radians) (M) (radians)

dro4-32 normal 1/4 π/72 1/32 π/576
dro6-48 normal 1/6 π/108 1/48 π/864
dro6-48 variant 1/6 π/96 1/48 π/768
dro8-64 normal 1/8 π/144 1/64 π/1152
dro10-80 normal 1/10 π/180 1/80 π/1440

TABLE V. This table shows the range of grid resolutions used
for each of our standard grid structures. Each grid structure
has a base grid and 3 refined grids, with a 2:1 refinement ratio
between adjacent refinement levels. See table VI for the sizes
and shapes of each refinement level.

with orbital radius equal to the zoom-whirl config-
urations’ periastron radius.

• In the lower three rows of each figure, the center
and right columns of plots each show the scaled
self-force (r/M)3Fi (in units of 10−3q2/M). The
center column of plots show (r/M)3Fi as a a func-
tion of coordinate time t. The right column of plots
show (r/M)3Fi as a function of r, forming self-force
“loops” plots of the type introduced by [71].

• In each self-force plot (except the ze98 r3Fi plots)
the total self-force is shown in black and labeled
“total”, the dissipative part of the self-force is
shown in red and labeled “diss”, and the conser-
vative part of the self-force is shown in green and
labeled “cons”. The dissipative and conservative
parts are omitted in the ze98 r3Fi plots to reduce
clutter.

• In each self-force plot the outgoing half of the orbit
(t ≥ 0) is shown in fully-saturated color (black, red,
or green), while the ingoing half of the orbit (t ≤ 0)
is shown in partially-saturated color (grey, red, or
green).

• In the self-force loop plots (the right column) the
loops are labelled with arrows to show the particle’s
direction of motion. The dissipative part of Ft, the
conservative part of Fr, and the dissipative part of
Fφ are each independent of the direction of motion.
The conservative part of Ft, the dissipative part of
Fr, and the conservative part of Fφ typically differ
between ingoing (pre-periastron, t < 0) and outgo-
ing (post-periastron, t > 0) motion, forming visible
loops.

G. High-eccentricity orbits

Figures 15–18 show our computed self-force for the e8,
e8b, e9, and e95 high-eccentricity configurations, respec-
tively.
For these configurations the self-force is strongly local-

ized around the periastron passage. Even though the par-
ticle spends most of its time at large radii, the ∼ r−3 far-
field scaling of the self-force with radius implies that the
orbital evolution will also be dominated by the periastron
passage.
These configurations also show strong oscillations

(“wiggles”) in the self-force shortly after the periastron
passage; we discuss these in section III I.

H. Zoom-whirl orbits

Figures 19–22 give an overview of our computed self-
force for the ze4, ze9, zze9, and ze98 zoom-whirl con-
figurations, respectively. Figures 23 and 24 show the
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the conservative part is compared with data for χ = 0 and χ = π/2 from [52, table II]; all other comparisons are with
unpublished results kindly provided by Warburton.
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R∗ θ
refinement moves with min max min max

grid type level worldtube? (radians) (radians)

normal 0 no Rh
∗ RJ+

∗ 0 π/2
1 yes WT center − 30M WT center+ 30M 0 π/2
2 yes WT center − 15M WT center+ 15M π/4 π/2
3 yes WT center − 8M WT center+ 8M π/3 π/2

variant 0 no Rh
∗ RJ+

∗ 0 π/2
1 yes WT center − 35 M WT center+ 40 M 0 π/2
2 yes WT center − 18 M WT center+ 18 M 5π/24 π/2
3 yes WT center − 6.5M WT center+ 7.5M 5π/16 π/2

TABLE VI. This table shows the size and shape of each refinement level in our numerical grids. WT center is the R∗ coordinate
of the worldtube center. See table V for the grid resolutions.

Initial startup
initial time (tinitial) 323.825M
particle R∗ at initial time 45.016M
particle apoastron time 385.984M
particle R∗ at apoastron 45.889M
time of first worldtube move (m = 2) 448.706M
particle R∗ at time of first worldtube move 45.000M
time interval from initial time to first worldtube move (m = 2) 124.881M

Worldtube
R∗ (radial) radius (WT radius) 5.0 M
θ (angular) radius π/8 radians
initial value of worldtube center R∗ (WT center) 45.5 M
worldtube center θ π/2 radians
move worldtube if

∣

∣particle R∗ − WT center
∣

∣ > fmove × WT radius, where fmove = . . .
initial startup 0.10
main evolution 0.05

when moving worldtube, place new worldtube center ahead of particle R∗

(where “ahead” is defined based on sign of particle R∗ 3-velocity)
by fahead × fmove × WT radius, where fahead = . . . 0.9

maximum R∗ distance to move worldtube at any one time = fmax-move × WT radius, where fmax-move = . . . 0.1
minimum time interval between worldtube moves 1.0 M

Overall evolution
number of worldtube moves per orbit 164

TABLE VII. This table summarizes miscellaneous computational parameters for the e8 runs.
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FIG. 12. This figure shows the self-force for the ns5 configuration, which has (ã, p, e) = (0, 7.2, 0.5).
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FIG. 13. This figure shows the self-force for the n-55 configuration, which has (ã, p, e) = (−0.5, 10, 0.5).
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FIG. 14. This figure shows the self-force for the n95 configuration, which has (ã, p, e) = (0.9, 10, 0.5).
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FIG. 15. This figure shows the self-force for the e8 configuration, which has (ã, p, e) = (0.6, 8, 0.8). The self-force loops (right
column) are plotted using a logarithmic radial scale. Notice the wiggle in the self-force on the outgoing leg of the orbit, near
t = 100M past periastron, at r ≈ 16M ; we discuss this in section III I. Because the dissipative-conservative decomposition (2.71)
and (2.72) is non-local, the dissipative and conservative parts of the self-force also show wiggles before periastron.
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FIG. 16. This figure shows the self-force for the e8b configuration, which has (ã, p, e) = (0.8, 8, 0.8). The self-force loops (right
column) are plotted using a logarithmic radial scale. Notice the wiggles in the self-force on the outgoing leg of the orbit,
between t ≈ 50M and 100M past periastron, at r ≈ 15M ; we discuss this in section III I. Because the dissipative-conservative
decomposition (2.71) and (2.72) is non-local, the dissipative and conservative parts of the self-force also show wiggles before
periastron.
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FIG. 17. This figure shows the self-force for the e9 configuration, which has (ã, p, e) = (0.99, 7, 0.9). In the time-domain
plots (left and center columns) the central |t| ≤ 175M around periastron (marked by the vertical lines) is plotted at an
expanded horizontal scale. The self-force loops (right column) are plotted using a logarithmic radial scale. Notice the many
wiggles in the self-force on the outgoing leg of the orbit; we discuss these in section III I. Because the dissipative-conservative
decomposition (2.71) and (2.72) is non-local, the dissipative and conservative parts of the self-force also show wiggles before
periastron.
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FIG. 18. This figure shows the self-force for the e95 configuration, which has (ã, p, e) = (0.99, 5, 0.95). In the time-domain plots
(left and center columns) the central |t| ≤ 275M (marked by the vertical lines) is plotted at an expanded horizontal scale. The
self-force loops (right column) are plotted using a logarithmic radial scale. Notice the many wiggles in the self-force on the
outgoing leg of the orbit; we discuss these in section III I. Because the dissipative-conservative decomposition (2.71) and (2.72)
is non-local, the dissipative and conservative parts of the self-force also show wiggles before periastron.
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FIG. 19. This figure shows the self-force for the ze4 configuration, which has (ã, p, e) = (0.2, 6.15, 0.4). This is a mild zoom-
whirl orbit; the particle completes about 2 orbits at r ≈ 4.5M during the approximately 125M of the whirl phase. In the left
column, the horizontal blue line in each self-force subplot shows the self-force for the circ-ze4 circular-orbit configuration; this
configuration has the same orbital radius as the ze4 configuration’s periastron radius. The self-force near to and during the
whirl phase is shown at an expanded scale in Fig 23.
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FIG. 20. This figure shows the self-force for the ze9 configuration, which has (ã, p, e) = (0.0, 7.8001, 0.9). This is an strong
zoom-whirl orbit; the particle completes about 5 1

3
orbits at r ≈ 4.1M during the approximately 300M of the whirl phase.

During the whirl phase the self-force is large and nearly constant; there are also “spikes” in Fr at this phase’s entry and
exit. In the left column, the horizontal blue line in each self-force subplot shows the self-force for the circ-ze9 circular-orbit
configuration; this configuration has the same orbital radius as the ze9 configuration’s periastron radius. The self-force loops
(right column) are plotted using a logarithmic radial scale. The self-force near to and during the whirl phase is shown at an
expanded scale in Fig. 23.
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FIG. 21. This figure shows the self-force for the zze9 configuration, which has (ã, p, e) = (0.0, 7.800 001, 0.9). This is a very
strong zoom-whirl orbit; the particle completes about 7 3

4
orbits at r ≈ 4.1M during the approximately 450M of the whirl

phase. During the whirl phase the self-force is large and nearly constant; there are also “spikes” in Fr at this phase’s entry and
exit. In the left column, the horizontal blue line in each self-force subplot shows the self-force for the circ-zze9 circular-orbit
configuration; this configuration has the same orbital radius as the zze9 configuration’s periastron radius. The self-force loops
(right column) are plotted using a logarithmic radial scale. The self-force near to and during the whirl phase is shown at an
expanded scale in Fig. 23.
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FIG. 22. This figure shows the self-force for the ze98 configuration, which has (ã, p, e) = (0.99, 2.4, 0.98). This is an extreme
zoom-whirl orbit; the particle completes about 15 orbits at r ≈ 1.2M during the approximately 220M of the whirl phase.
The self-force loops (right column) are plotted using a logarithmic radial scale. During the whirl phase the self-force is very
large (more than 40 times the peak self-force of any other configuration in this study) and shows a variety of complicated
phenomenology; we discuss this in section IIIH. Notice the many wiggles in the self-force on the outgoing leg of the orbit; we
discuss these in section III I. The self-force near to and during the whirl phase is shown at an expanded scale in Fig. 24.
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self-force during the whirl phase in more detail for these
configurations.
Although the self-force is strictly speaking non-local,

influenced by the particle’s entire past trajectory, in prac-
tice the influence of distant times is usually small, i.e.,
the self-force is usually dominated by the effects of the
particle’s immediate past. We thus expect that if the
whirl phase of a zoom-whirl orbit is sufficiently long, the
self-force should be very close to that of a circular orbit
at the same radius. Figure 23 shows a numerical test of
this hypothesis for the ze4, ze9, and zze9 configurations,
comparing their whirl-phase self-forces to those of the
corresponding circ-ze4, circ-ze9, and circ-zze9 circular-
orbit configurations, respectively.18 For the ze4 configu-
ration the agreement is only modest, presumably because
of the relatively short whirl phase. For the ze9 and zze9
configurations the agreement is excellent.
A close examination of Figs. 20 and 21 shows small

“spikes” in Fr at the entry/exit to the ze9 and zze9 con-
figurations’ whirl phases. These can be seen at an ex-
panded scale in Fig. 23. At the zoom-whirl entry these
configurations’ Fr first becomes slightly negative, then
rises to slightly overshoot its whirl-phase value (this is
the “spike” visible in Figs. 20 and 21), then decreases
slightly to reach the whirl-phase value. At the zoom-
whirl exit Fr decreases smoothly to a slightly negative
value, then rises slightly to its post-whirl (near-zero)
value.19 Haas [62, figure 17] has calculated the self-force

particle motion compactification

Name min R∗ max R∗ Rh
∗ R−

∗ R+
∗ RJ+

∗

(M) (M) (M) (M) (M) (M)
ns5 4.8 14.4 -70 -45 +70 +95
n-55 8.370 24.395 -70 -45 +75 +100
n95 8.390 24.397 -70 -45 +75 +100
e8 4.884 45.889 -75 -50 +125 +150
e8b 4.884 45.889 -75 -50 +125 +150
e9 3.524 77.053 -75 -50 +160 +185
e95 0.782 107.784 -75 -50 +190 +215
ze4 4.756 13.085 -70 -45 +65 +90
ze9 4.208 85.276 -75 -50 +135 +160
zze9 4.208 85.275 -75 -50 +135 +160
ze98 −15.227 120.000 -90 -65 +180 +205
circ-ze4 4.756 4.756 -70 -45 +55 +80
circ-ze9 4.208 4.208 -70 -45 +55 +80
circ-zze9 4.208 4.208 -70 -45 +55 +80
circ-ze98 −15.227 −15.227 -90 -65 +50 +75

TABLE VIII. This table summarizes the compactification pa-
rameters for the configurations presented in this paper.

18 We were unable to calculate the self-force for the circ-ze98 con-
figuration due to numerical instabilities in our evolution code for
m ≥ 6.

19 The visual appearance of these Fr curves in Fig. 23 somewhat re-
sembles a step function passed through a low-pass filter, although

for our ze9 configuration and finds similar overshoot-
ing behavior. Barack [103] suggests that the underlying
cause of this behavior is the particle’s strong radial ac-
celeration when entering/leaving the whirl phase, but so
far as we know no quantitative explanation is known.
For the ze98 configuration (an extreme zoom-whirl or-

bit), Fig. 24 shows quite complicated phenomenology.

• At the entrance to the whirl phase (times
−110M . t . −40M), Fr shows small high-
frequency oscillations superimposed on a larger
lower-frequency oscillation; these oscillations last
for approximately 60M (about 1/4 of the entire
whirl phase’s duration). Ft and Fφ show small over-
shoots of their whirl-phase values, but no visible
high-frequency oscillations.

• Well before the exit from the whirl phase (times
30M . t . 75M), while the particle is still very
close to a circular orbit, Fr increases in amplitude
by ∼ 5% (becoming more negative). Unfortunately,
while our highest and 2nd-highest-resolution results
agree on the overall sign of this change, they differ
by roughly a factor of 2 in its magnitude. (This is
the only time at which these results differ signifi-
cantly.) This suggests that higher-resolution data
is needed to reliably quantify this feature.

• In this same time period (times 30M . t . 75M)
Ft and Fφ both decrease in amplitude.

• Shortly before the exit from the whirl phase (times
75M . t . 110M), when the particle is signifi-
cantly departing from a near-circular orbit, all com-
ponents of Fa decrease in magnitude towards their
post-whirl (small) values. None of the components
shows any visible overshoot.

• All components of Fa are significantly time-
asymmetric about the periastron passage.

This phenomenology is generally consistent between
the dro10-80 and dro8-64 numerical resolutions. How-
ever, this configuration is a very difficult one for our nu-
merical evolution scheme20 and it remains possible that
some of these features are numerical numerical artifacts.
We will need to obtain higher-resolution data to resolve
this question.

I. Wiggles

In the configurations which combine a highly-spinning
black hole and a prograde high-eccentricity orbit (the

we make no claim that this is in any way the actual mechanism
involved.

20 At lower resolutions we see numerical instabilities in the ze98
evolutions at times close to periastron. Our numerical evolutions
are unstable for m ≥ 6 for the circ-ze98 configuration (a circular
orbit at the ze98 configuration’s periastron radius).
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FIG. 23. This figure shows the self-force during the whirl phase for the ze4, ze9, and zze9 zoom-whirl configurations. For each
configuration the solid lines show the highest-resolution data, while the dots show the lower-resolution data (sampled approx-
imately every 10M); these are visually identical. The horizontal short-dashed lines show the self-force for the corresponding
circular-orbit configurations (circ-ze4, circ-ze9, and circ-zze9, respectively); these have the same orbit radii as the zoom-whirl
configurations’ periastrons.
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e9, e95, and ze98 configurations, shown in Figs. 17, 18,
and 22 respectively) there are prominent and rapid os-
cillations (“wiggles”) in r3Fa shortly after periastron.
These oscillations are also visible to a lesser extent in
the configurations with moderate black hole spins and
prograde moderate-eccentricity orbits, the e8 and e8b
configurations (shown in Figs. 15 and 16 respectively).
Figure 25 shows the wiggles for the e9, e95, and ze98
configurations at an expanded scale.
Notice that (except for the ze98 configuration, dis-

cussed in section IIIH) the self-force varies relatively
smoothly prior to periastron – wiggles occur only after

the particle’s periastron passage (t = 0). This suggests
that the wiggles are in some way caused by the particle’s
close passage by the large black hole. We will discuss
wiggles’ phenomenology and causal mechanisms in a fol-
lowing publication.

IV. DISCUSSION

A. Overall assessment

Our computational scheme combines a number of in-
gredients:

• the initial formulation of the scalar-field toy model
for the O(µ)-perturbed scalar-field equations, using
a point-particle source,

• the Barack-Golbourn-Vega-Detweiler effective-
source regularization,

• our specific choice for the puncture field,

• the m-mode Fourier decomposition, and the cor-
responding formulation of the puncture field and
effective source in terms of elliptic integrals,

• the introduction of a worldtube, which moves in
(r, θ) to follow the particle’s motion around the or-
bit,

• the Zenginoğlu compactification and hyperboloidal
slices, and

• a finite-difference numerical evolution using Berger-
Oliger mesh refinement and OpenMP-based paral-
lelization.

The initial O(µ) perturbation formulation with a
point-particle source is clearly a reasonable starting point
for the scalar–self-force problem. We discuss possible ex-
tensions to this in section IVB4.
The Barack-Golbourn-Vega-Detweiler effective-source

regularization scheme works well. It involves no approxi-
mations (a solution of the regularized equation (2.5) is an
exact solution of the O(µ) field equations), the analytical
computation of the singular field and effective source can
be done with symbolic algebra software, and the resulting
regularized equation is computationally tractable.

In this work, we used a 4th order puncture for equa-
torial orbits in Kerr spacetime. While higher-order,
smoother punctures are available [56, 87], we (like other
researchers [69, 71, 74, 88]) find that 4th order represents
a good “sweet spot” compromise between a high-order
puncture — which enables high numerical accuracy and
fast convergence at the cost of a having a complicated and
expensive-to-evaluate source — and a low-order punc-
ture, which is simple and fast to evaluate, but yields
poor convergence and numerical accuracy. However, the
computation of the effective source is still computation-
ally expensive. Further optimization of this computation
would be very useful.

The m-mode Fourier decomposition works very well: it
provides some parallelism “for free” (each m-mode evo-
lution can be performed independently), it reduces the
dimensionality and hence the maximum CPU and mem-
ory usage of each individual evolution, and – perhaps
most importantly – it allows different numerical tech-
niques and/or parameters to be used for different modes’
evolutions. This last advantage may be of great impor-
tance in extending our work to the gravitational case,
where Dolan and Barack [75] found that the m = 0 and
m = 1 modes suffer from gauge instabilities (they were
able to control the m = 0 gauge modes, but not the
m = 1 modes), while the m ≥ 2 modes are stable.

The moving-worldtube scheme works well, allowing
highly eccentric orbits to be simulated while only requir-
ing the (expensive) effective source computation in a rel-
atively small region of spacetime. We found the imple-
mentation of the worldtube at a finite-differencing level to
be straightforward (cf. Appendix B 6) once the Boolean
predicates for where to use adjusted finite differencing
and where to (pre)compute the puncture field were de-
fined correctly (cf. appendices B 7 and B 8). For orbits
of low to moderate eccentricity, the alternative of us-
ing a smooth blending “window” function [68, 71] is also
known to work well. However, extending this to highly
eccentric orbits may require making the window function
time-dependent, which would introduce additional terms
into the evolution equations.

Like other researchers (e.g., [68]), we find the
Zenginoğlu compactification and hyperboloidal slices to
work very well. They are easy to implement and provide
slices which span the entire spacetime outside the event
horizon, allowing stable and highly accurate horizon and
J+ outgoing boundary conditions. Slices which reach
J+ also allow a direct computation of the emitted radi-
ation reaching J +, although for simplicity we have not
done so here.

Our numerical evolution uses finite-differencing and
Berger-Oliger mesh refinement techniques which are now
standard in numerical relativity. However, there are
three main complications which combine to make the use
of standard adaptive-mesh-refinement frameworks such
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FIG. 25. This figure shows the “wiggle” oscillations in (r/M)3Fa for the e9, e95, and ze98 configurations. Notice that wiggles
are present only after the particle’s periastron passage (t = 0). Notice also that for the e95 and ze98 configurations the
individual wiggles are often non-sinusoidal, with shapes differing between different wiggles (this is particularly evident in the
e95 (r/M)3Fφ wiggles). The wiggles’ shapes also differ between different Fa components.
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as Cactus [104–106]21 more difficult and less advanta-
geous than would be the case in many other numerical-
relativity calculations:

• Our use of a worldtube, and the associated (time-
dependent) jump discontinuity in the evolved field
ϕm, means that interpolation and restriction opera-
tors must “adjust” the field variables when crossing
the worldtube boundary (cf. Appendix B 6). This
means that standard mesh-refinement software re-
quires modification to accommodate the worldtube
scheme.

• The effective source is expensive to compute, but
is only needed inside the worldtube, so the over-
all cost of integrating our equations at a single
grid point is much larger inside the worldtube than
outside. The default domain-decomposition par-
allelization heuristics used by Cactus and many
other adaptive-mesh-refinement toolkits assume a
roughly uniform level of computational cost per
grid point across the problem domain, and thus
would give relatively poor parallel performance on
our computation.

• The non-smoothness of the evolved field ϕm at
the puncture (particle) position limits the finite-
differencing order of accuracy attainable there. For
our 4th order puncture, the accuracy is limited
to at best O

(

(∆R∗)
2, (∆θ)2

)

because our evolu-
tion equation (2.23) is 2nd order in space. This
reduces the benefits gained from high-order finite
differencing schemes (which are now provided by
many mesh-refinement software libraries).

B. Possible improvements

There are a number of ways in which our results
might plausibly be improved. While there is an ac-
curacy/performance tradeoff in almost any finite differ-
ence computation, computational improvements can still
usefully be categorized into those which would improve
the accuracy of the self-force computation for a given
finest-grid-resolution, versus those which would improve
the efficiency of computing results using essentially the
same numerical scheme, versus those which would im-
prove both accuracy and efficiency.

1. Computational improvements: accuracy

There are several ways in which our computational
scheme might be improved so as to provide more accurate
results for the same finest-grid-resolution.

21 See [107] for a survey of other such frameworks.

As noted in section IIH, our interpolation scheme for
computing the effective source close to the particle uses
an interpolation molecule which crosses the particle po-
sition in some cases, reducing the interpolation accuracy.
An improved interpolation scheme might improve the
overall accuracy of the computation.
As the particle moves through the grid, the limited dif-

ferentiability of ϕm at the puncture effectively introduces
noise into the evolution and prevents us from obtaining
proper (in our case 4th order) finite differencing conver-
gence of our results with grid resolution [100]. One way to
eliminate this noise and obtain proper finite differencing
convergence would be to use finite difference operators
which specifically “know” the actual functional form of
ϕm near the puncture. We have experimented with sev-
eral finite differencing schemes of this type, but so far
with only limited success. At present our code uses the
“C2” scheme described in Appendix B 10. We find that
this lowers the noise level in the computed self-force by
roughly a factor of 3, but our results remain quite noisy
and their overall convergence order with respect to grid
resolution is still much lower than we would like. Further
research on finite difference operators which incorporate
more of the puncture’s actual singularity structure would
be useful. (We mention one possible finite differencing
scheme of this type in Appendix B 10, but we were not
able to obtain stable evolutions with this scheme.)
As noted in section III C, for the e9 configuration we

find poor convergence at small radii (r . 10M). We
do not yet know the cause of this poor convergence, but
fixing it would obviously be highly desirable.
Another possible route to more accurate finite differ-

encing near the puncture might be to use many mesh-
refinement levels of small grids in the puncture’s imme-
diate neighborhood, so as to obtain very high resolu-
tions at the puncture. Given a Berger-Oliger–style mesh-
refinement infrastructure, this is not difficult. However,
the interpolations of the fine-grid boundary values from
the coarser grids might limit the accuracy improvement,
even if buffer zones [108] are used. Further experimenta-
tion with this type of grid structure would be useful.
Raising the order of the puncture would improve the

smoothness of ϕm at the puncture, improving the finite-
differencing accuracy there. However, a higher-order
puncture would also yield a much more complicated
and expensive-to-compute effective source. Our current
choice of a 4th order puncture seems to be a good com-
promise between smoothness and computational expense.

2. Computational improvements: efficiency

There are a number of ways in which our computa-
tional scheme might be made more efficient.
At present our code computes the puncture field and

effective source anew at each right-hand-side evaluation
whose time coordinate differs from that of the previous
evaluation (this happens 50% of the time for the classi-
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cal 4th-order Runge-Kutta time integration scheme we
currently use). For periodic orbits (including all equa-
torial orbits) the puncture field and effective source are
the same (at a given time-past-periastron) from one or-
bit to the next, so a much more efficient choice would be
to cache the effective source in memory, reusing cached
values for all of the evolution after the first orbit. How-
ever, such a cache would give no benefit for non-periodic
orbits (including almost all non-equatorial orbits).
Simulations of this type are computationally expen-

sive. Our code is currently only partially parallelized,
using OpenMP to spread the computation of the singular
field, effective source, and evolution-equation right-hand-
side across multiple cores of a single processor. This
is easy to implement and typically gives a wall-clock
speedup of a factor of 12 to 13 using 16 cores. Grid-based
parallelism (ultimately based on message-passing) is an
obvious and widely used way of achieving higher paral-
lelism, and is now well-supported by numerical-relativity
adaptive-mesh-refinement toolkits such as Cactus [104–
106] and the Einstein toolkit [109, 110]. However, Cactus
and many other adaptive-mesh-refinement toolkits gen-
erally assume that the cost of computing a grid point is
roughly constant across the problem domain. Our world-
tube scheme strongly violates that assumption: points in-
side the worldtube require computing the effective source
and thus cost much more than points outside the world-
tube. This means that without significant changes to
the domain-decomposition heuristics, standard toolkits
would give only limited parallel speedup for our world-
tube scheme. One possible way to sidestep this issue is
to use a domain decomposition for the calculation of the
effective source that is independent of the normal do-
main decomposition of the full computational grid; such
a method was used (without mesh refinement), for exam-
ple, in [71]. Similarly, it might be that other paralleliza-
tion techniques such as the task-based model used by the
SpECTRE code [111] would yield better parallel speedup.

3. Computational improvements: accuracy and efficiency

At present our computational scheme uses finite dif-
ferencing with Berger-Oliger mesh refinement. A discon-
tinuous Galerkin method [112] might give spectral (i.e.,
much better) accuracy/efficiency even with the limited
differentiability of ϕnum at the particle. These methods
have been successfully used in other numerical-relativity
and self-force computations by a number of researchers,
e.g., [113–115], as well as in other areas of computational
physics involving non-smooth solutions, e.g., [111, 116].
Within the general framework of finite differencing and

Berger-Oliger mesh refinement, there are a number of
ways in which our computational scheme might be en-
hanced to better adjust the computations to the solution
dynamics, yielding both improved accuracy (higher effec-
tive grid resolution) and efficiency (fewer high-resolution
grid points “wasted” on regions of spacetime where ϕm

is relatively slowly-varying):

• At present our mesh-refinement scheme moves the
finer grids with the worldtube but does not oth-
erwise adapt to the solution’s dynamics. For an
orbit with substantial eccentricity, the field dynam-
ics near the particle are quite different between
the particle’s periastron and apoastron. It seems
likely that an adaptive mesh-refinement scheme (of
the type now widely used in fully-nonlinear binary-
black-hole simulations) for varying the grid struc-
ture around the orbit would substantially improve
the computation’s overall accuracy/efficiency.

• At present our computational scheme keeps the
worldtube size and shape fixed throughout the evo-
lution. An adaptive scheme to adjust (optimize)
these around the orbit could significantly improve
the code’s accuracy and efficiency. However, unlike
the case for adaptive mesh-refinement, there are
no existing algorithms for making this adjustment.
Further research in this area would be valuable.

• For a highly eccentric orbit, many of the higher-
m self-force modes are below our code’s noise level
during much of the orbit. (This can be seen, for
example, in Figs. 4 and 5.) The overall efficiency
of the computation could be greatly improved by
not computing these modes at times when they are
essentially purely noise. This would require some
means of estimating the time intervals in ques-
tion, and changes to our initial-worldtube-setup
scheme (described in section B 5) to accommodate
(re)starting the computation of these modes at a
time when the particle is moving much faster than
near apoastron.

4. Extensions to more general physical systems

In this work we focus on computing the instanta-
neous scalar self-force acting on the small body. One
straightforward extension to this is to also compute the
scalar field at the particle, using the method suggested
in footnote 12. Another straightforward extension would
be to also compute the scalar field radiated to infinity
(J +). Given our use of asymptotically hyperboloidal
slices which reach J +, this information is readily avail-
able. We have preliminary implementations of both of
these extensions; we will discuss their results in a follow-
ing publication.
Our present results are limited to (bound, geodesic)

equatorial particle orbits. Apart from the computational
complexity of computing the effective source (which is
probably manageable with some reorganization of the
Mathematica-generated C code),22 there appears to be

22 Our preliminary experiments with generalizing our current sin-
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no fundamental obstacle to allowing non-equatorial or-
bits, and this would be a very useful extension. In par-
ticular, this would allow direct exploration of transient
θ-φ resonances [117, 118].
Our present results are limited to the “toy model”

of a scalar-field particle. Extending these results to
a point mass and its gravitational field perturbations
would be very interesting but also challenging. While
the basic effective-source regularization scheme is already
known to be valid for the gravitational case, Dolan and
Barack [75] found that them = 1 evolutions suffered from
linearly-growing-in-time Lorenz gauge modes which they
were not able to control. Stabilizing these modes, and
more generally achieving long-time-stable evolutions for
all m, is an important area for further research.
Our present results are also limited to O(µ) perturba-

tions of the (Kerr) background spacetime. LISA could
benefit from EMRI waveform templates with ∼ 10−8 or
better fractional orbital-phase accuracy [119, section 4],
which would require the inclusion of both O(µ2) terms
and “extended-body” effects caused by the finite size and
(in general) nonzero spin of the small body (see, for ex-
ample, [120] and references therein).
In the longer term, it will also be essential to ex-

tend self-force calculations to include orbital evolution.
This is conceptually straightforward (though computa-
tionally demanding) if the osculating-geodesic approxi-
mation is retained (as was done by Warburton et al. [121]
in their pioneering calculation of gravitational inspi-
ral in Schwarzschild spacetime over a time span of
more than 75 000 orbits). However, going beyond the
osculating-geodesic approximation is more difficult. Di-
ener et al. [70] have demonstrated that this can be done
for a scalar-field particle in Schwarzschild spacetime, but
they were only able to attain relatively modest accura-
cies and integration time spans (∼ 20 orbits). Extending
their work to higher accuracies and longer integrations is
an important area for further research.
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Appendix A: φ̃ derivatives

Clearly dφ̃ = dφ if dr = 0, so for any scalar quantity Q
we have
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i.e., (since Q is arbitrary),
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To relate ∂
/

∂r
∣

∣

φ
and ∂

/

∂r
∣

∣

φ̃
, consider two

infinitesimally-separated events X and Y , with co-
ordinates

X : r = rX , φ = φX , φ̃ = φ̃X ;
Y : r = rX + dr, φ = φX .

(A3)

Since φ is the same for events X and Y , the defini-
tion (2.9) of φ̃ implies that φ̃Y = φ̃X + dφ̃ with

dφ̃ =
Mã

∆
dr. (A4)
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Thus for any scalar quantity Q we have (using the chain
rule in (r, φ) coordinates)

QY −QX = dr · ∂Q
∂r

∣

∣

∣

∣

φ

since dφ = 0. (A5)

Using the chain rule in (r, φ̃) coordinates, we also have

QY −QX = dr · ∂Q
∂r

∣

∣

∣

∣

φ̃

+ dφ̃ · ∂Q
∂φ̃

∣

∣

∣

∣

r

(A6)

= dr · ∂Q
∂r

∣

∣

∣

∣

φ̃

+
Mã
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so that (comparing (A5) and (A7)) we have
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i.e., (since Q is arbitrary),
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Appendix B: Details of our computational scheme

1. Computing r(r∗)

Our computational scheme uses grids which are locally
uniform in (R∗, θ). However, the coefficients in many
of our equations are given as explicit functions of r, so
the code needs to know the r coordinate of each grid
point. Since r∗(R) is given explicitly by the compact-
ification (2.27) and (2.28), it only remains to compute
r(r∗).

Given an input value r
(input)
∗ , the corresponding r(input)

could be found by using Newton’s method to solve the

equation r∗(r) = r
(input)
∗ using the definition (2.16).

However, for positions just outside the event horizon
(r∗ ≪ 0) the near-cancellation in computing r−r+ would
make this algorithm numerically inaccurate.
Instead, we define a new radial coordinate y by

y = ln

(

r − r+
2M

)

(B1)

so that

r = r+ + 2Mey. (B2)

The definition (2.16) can then be rewritten as

r∗ = r + 2M
r+

r+ − r−
y − 2M

r−
r+ − r−

ln

(

r+ − r−
2M

+ ey
)

. (B3)

Given an input value r
(input)
∗ , we first find the corre-

sponding y(input) by using Newton’s method to solve the
equation

r∗(y) = r
(input)
∗ (B4)

for y = y(input), then computing r(input) via (B2).

Newton’s method requires an initial guess y(initial). If

r
(input)
∗ > r+ we guess r(initial) = r∗ and use (B1) to
compute y(initial). Otherwise, we approximate the right
hand side of (B3) by its first two terms only, so that

y(initial) =
r+ − r−
2M

(

r
(input)
∗

r+
− 1

)

. (B5)

The Newton’s-method solution is moderately expen-
sive for a computation which (logically) is needed at each
grid point: it typically requires 3–10 iterations, with each
iteration needing an exp() and a log() computation as well
as ∼ 10 floating-point arithmetic operations. Our code
therefore precomputes and caches r for each radial grid
point.

2. Integrating Kerr geodesics

We use the Glampedakis-Kennefick formulation [58] to
integrate the Kerr geodesic equations.23 This parameter-
izes the radial motion as

r =
pM

1 + e cosχ
, (B6)

where p is the dimensionless semi-latus rectum and e the
eccentricity. To solve for the particle position we numer-
ically integrate the ODEs

dt

dχ
= RHS t(χ) (B7a)

dφ

dχ
= RHS φ(χ) (B7b)

dτ

dχ
=

(dr/dχ)
/

(e sinχ)

(dr/dτ)
/

(e sinχ)
(B7c)

23 Note that we differ slightly from [58] in that we use a dimension-
less definition for p.
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using χ is the independent variable. The right-hand-side
functions RHS t and RHS φ are given by Glampedakis
and Kennefick’s equations (17) and (16) respectively,
while the right hand side of (B7c) is computed using

dr/dχ

e sinχ
=

pM

(1 + e cosχ)2
(B8a)

dr/dτ

e sinχ
=

1

p

√

Ṽr(χ) (B8b)

with Ṽr(χ) given by Glampedakis and Kennefick’s equa-
tion (18). With this formalism the equations are non-
singular at the radial turning points, and all square roots
have their principal values (i.e., there are no ± sign am-
biguities). However, integrating to a specified coordinate
time t requires either an explicit root-finding loop around
the ODE integration or using an ODE integrator with
built-in root-finding capabilities.
We use the ODEPACK ODE integrator [122, 123],

whose DLSODAR subroutine provides ODE integration
with built-in root-finding. We typically set both the DL-
SODAR relative and absolute error tolerances to 100ε,
where ε is the floating-point “machine epsilon”.24 We set
the DLSODAR MXSTEP parameter (the maximum number
of internal integration steps per DLSODAR call) to 105.
This allows DLSODAR to integrat a full orbit (and hence
determine the orbital period) of an extreme zoom-whirl
orbit like our ze98 configuration in a single call.
The ODEPACK library is written in Fortran 77, which

makes its use somewhat awkward in our context. No-
tably, ODEPACK keeps internal state in static storage
arrays and Fortran common blocks. In the context of
Berger-Oliger mesh refinement it is natural to use a sep-
arate (concurrent) integration for each refinement level;
in our code this requires explicitly saving and restoring
the integrator state to multiplex the multiple concurrent
integrations onto the single-threaded ODEPACK.
The next-generation version of ODEPACK, now known

as SUNDIALS [125],25 is written in C and (along with
other algorithmic and computational improvements) di-
rectly supports multiple concurrent integrations. This
should make it easier to use than the Fortran version.

3. Gradual turnon of the effective source

Because of the jump discontinuity in the right hand
side of (2.23), the process of radiating away the initial
junk generates high-spatial-frequency noise in ϕnum,m in
and near to the worldtube, leading to high noise levels in
the computed self-force time series. Therefore, we use a

24 ε is the difference between 1.0 and the next larger floating-point
number, approximately 1.1× 10−16 for IEEE-standard double-
precision floating-point arithmetic [124].

25 SUNDIALS is available at no cost from
https://computation.llnl.gov/casc/sundials/main.html.

gradual turn-on of the effective source, replacing (2.23)
with

�mϕnum,m =

{

f(t)Seffective,m inside the worldtube

0 outside the worldtube
,

(B9)
where f is a smooth function which is very small (ide-
ally 0) at the initial time of an evolution and increases
to asymptote to 1 at late times. We use

f(x) = 1
2

(

1 + erf(x)
)

, (B10a)

where the scaled time coordinate x is defined by

x(t) = A+
t− tinitial

B
, (B10b)

where tinitial is the initial time of the time evolution,
and A = −5, and B = 10M .26 This gives f(tinitial) ≈
8× 10−13 (sufficiently small that the noise due to f be-
ing nonzero is below our code’s overall numerical noise
level from other sources) and f > 0.999999 for t >
tinitial + 83.6M (so that our evolution equation (B9) ap-
proximates (2.23) to within one part per million for all
later times).

Using the gradual turnon of the effective source, we
find that ϕnum,m is smooth throughout a neighborhood
of the worldtube (apart from being only C2 at the par-
ticle and having the jump discontinuity (2.22) across the
worldtube boundary) once the gradual turnon is com-
plete and the field configuration has had time to adjust.
In practice this initial startup phase has a duration of
δtstartup ∼ 100M to 150M .

4. Moving the worldtube

Figure 26 gives our worldtube-moving algorithm in de-
tail. The algorithm is run at each base-grid time step,
and has two parts: determining whether or not the world-
tube should be moved at the current time and, if it should
be moved, determining the new worldtube position. Ta-
ble VII gives the parameters for this algorithm (among
others). In practice, we find that our computed results
are quite insensitive to the precise values of these param-
eters (cf. Sec. III D).

26 Note that the expression (B10a) suffers from severe numerical
cancellations for x ≪ 0 (i.e., early in the evolution). Instead, we
use the equivalent expression

f(t) =

{

1− 1
2
erfc(x) if x ≥ 0

1
2
erfc(−x) if x < 0

(B10c)

which is almost entirely free of numerical cancellation.

https://computation.llnl.gov/casc/sundials/main.html
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1 # overall algorithm parameters
2 floating point fmove ← maximum fraction of worldtube radius that particle may be off-centered
3 (typically 0.05 to 0.1)
4 floating point fmax-move ← maximum fraction of worldtube radius that worldtube may move
5 (typically 0.1)
6 floating point fahead ← hysteresis factor when moving worldtube (typically 0.9)
7
8 # should the worldtube be moved at the current time?
9 # procedure arguments:
10 # particle Rstar = current particle R∗ position
11 # WT center = current worldtube center R∗

12 # WT radius = worldtube radius in the R∗ direction
13 # previous WT move time = most recent previous coordinate time that the worldtube was moved,
14 # or −∞ if the worldtube hasn’t (yet) been moved in this evolution
15 # t = current coordinate time
16 boolean procedure should worldtube be moved (floating point particle Rstar,
17 floating point WT center,
18 floating point WT radius,
19 floating point previous WT move time,
20 floating point t)
21 {
22 floating point ∆tmin ← minimum time interval between worldtube moves
23
24 if (t− previous WT move time < ∆tmin)
25 then return false # don’t move the worldtube
26 if (|particle Rstar− WT center| > fmove × WT radius)
27 then return true # move the worldtube
28 return false # don’t move the worldtube
29 }
30
31 # if the worldtube is being moved, this procedure returns the new worldtube center R∗

32 # procedure arguments:
33 # old WT center = worldtube center R∗ before the move
34 # WT radius = worldtube radius in the R∗ direction
35 # particle Rstar = current particle R∗ position
36 # particle direction = direction of the particle’s 3-velocity:
37 # −1 if particle dR∗/dt < 0
38 # 0 if particle dR∗/dt = 0
39 # +1 if particle dR∗/dt > 0
40 floating point procedure choose worldtube center(floating point old WT center,
41 floating point WT radius,

floating point particle Rstar,
42 floating point particle direction)
43 {
44 floating point trial offset← particle direction× fahead × fmove × WT radius

45 floating point trial position← particle Rstar+ trial offset

46
47 floating point max move distance← fmax-move × WT radius

48 interval I ← [old WT center− max move distance, old WT center+ max move distance]
49 floating point clamped position← (trial position ∈ I)
50 ? trial position

51 : whichever endpoint of I is closer to trial position

52
53 return closest base-grid grid point to clamped position

54 }

FIG. 26. This figure shows our algorithm for moving the worldtube. The procedure should worldtube be moved() is run
at each base-grid time step to determine whether or not the worldtube should be moved at the current time, and if so, the
procedure choose worldtube center() determines the new worldtube position.
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5. Constraints on moving the worldtube early in
the evolution

When moving the worldtube, the grid-function ad-
justments (2.24) implicitly assume that ϕnum has the
jump discontinuity (2.22) across the worldtube bound-
ary. While this is true once the field is in its equilibrium
configuration, it is not true for our initial data (ϕnum,m =
Πnum,m = 0, cf. section II J). When the evolution be-
gins, it takes some time (in practice ∼ 100 to 150M) for
the gradual turnon of the effective source (section B 3)
to be essentially complete and for the field to relax to an
equilibrium configuration where the worldtube-boundary
jump condition (2.22) is satisfied.

During this initial “startup” phase of the computation
we do not know the actual jump conditions satisfied by
ϕnum, so the worldtube can not be moved. This in turn
means that the initial worldtube must encompass the en-
tire range of motion of the particle in (r∗, θ) during the
startup phase. We use the following strategy to ensure
this (for a equatorial geodesic or near-geodesic particle
orbit) without requiring an excessively-large worldtube:

• We first choose a particle apoastron time tapoastron.
Notice that the particle radius r = r(t) is locally
symmetric about an (any) apoastron time.

• We then choose the startup time interval to be sym-
metric about tapoastron. That is, given an estimate
for the startup time interval’s duration δtstartup
(typically 100M to 150M), we begin the nu-
merical evolution at t = tinitial = tapoastron −
1
2δtstartup, so that the startup phase lasts until

t = tstartup→main = tapoastron + 1
2δtstartup. During

the startup time interval the particle first moves
outwards, then moves back inwards, reaching its
initial radius again at tstartup→main.

• We initially center the worldtube in (R∗, θ) at
(the base-grid point nearest) the average of
xi
particle(tinitial) and xi

particle(tapoastron), and choose
the worldtube-moving parameters so that the
worldtube will not be moved during the startup
phase.

• At the end of the startup phase at tstartup→main

(when the particle returns to its initial position,
now moving inwards), we change the worldtube-
moving parameters to values which keep the world-
tube’s coordinate center within approximately half
a coarse-grid spacing of the particle for the remain-
der of the evolution. The first worldtube move gen-
erally occurs immediately after the new parameters
take effect.

6. Finite differencing across the worldtube
boundary

We numerically implement the jump condition (2.22)
on the worldtube boundary in the same manner as
Barack and Golbourn [49] and Dolan and Barack [73].
That is, suppose we are finite differencing the equa-

tions at an “evaluation” grid point which is

{

inside
outside

}

the worldtube, using a finite difference molecule which
has a non-empty set S of input grid points which are
{

outside
inside

}

the worldtube. Then instead of applying

the finite difference molecule to the ϕnum,m grid func-
tion in the usual manner, we instead copy ϕnum,m at all
the molecule input points to a (molecule-sized) tempo-
rary grid function ϕtemp

num,m, then adjust the values of that
temporary grid function to have the same inside/outside-
the-worldtube semantics as the evaluation point via

ϕtemp
num,m ← ϕtemp

num,m ∓ ϕpuncture,m (B11)

at each grid point in the set S, then finally apply the
usual finite difference molecule to the adjusted values.
Notice that this “adjusted finite differencing” need

only be used for (roughly) those grid points which are
within a finite-difference molecule radius of the world-
tube boundary. (We discuss the precise choice of those
grid points in the following section.) Because these com-
prise only a tiny fraction of all grid points, the adjusted
finite differencing does not itself significantly slow the
code. Rather, its main computational cost is the test –
at each spatial grid point at each time the evolution equa-
tions are evaluated by the time integrator27 – for whether
or not adjusted finite differencing should be used. As
discussed further in the following section, this tests costs
only ∼ 10 arithmetic and logical operations, which is eas-
ily tolerable.

7. Computing the set of grid points where adjusted
finite differencing is needed

In developing our numerical code we found that it was
(is) much more difficult than might be expected to com-
pute the precise set of grid points where adjusted finite
differencing should be done. As noted in the previous
section, this is approximately the set of all grid points
within a finite-difference molecule radius of the world-
tube boundary. However, in the presence of equatorial
reflection symmetry (cf. section II I 3) this set is not quite
correct: there are certain grid points points near the in-
tersection of the worldtube boundary with the θ = π/2
equatorial-reflection symmetry plane which are within a

27 This evaluation typically happens several times per time step;
we discuss our time-evolution algorithms in detail in section B9.
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finite-difference molecule radius of the worldtube bound-
ary, but where adjusted finite differencing should (must)
not be used. Figure 27 shows an example of this.

The technique we eventually adopted involves two
parts:

1. We build up the “should this finite difference op-
erator be adjusted via (B11) at this grid point?”
predicate in stages via Boolean and set operations
on sets of grid points. Figure 28 shows the result-
ing algorithm. With this approach, the semantics
of each individual function are very clear, which al-
lowed us to develop an extensive test suite to help
validate the algorithm.

R*

θ

θ = π/2

worldtube

equatorial plane

grid points

grid points in worldtube

grid points in equatorial-reflection
 symmetry ghost zone

molecule evaluation point

molecule input points

FIG. 27. This figure shows an example where the naive algo-
rithm “use adjusted finite differencing at all grid points within
a finite-difference molecule radius of the worldtube bound-
ary” would give incorrect results. The worldtube is shown
by the shaded region; the worldtube boundary of interest is
the “equator” θ = π/2 (shown by the dashed line). The
molecules being considered are 5-point centered molecules
in the θ direction, as would be used to approximate ∂θ or
∂θθ; these molecules have radius 2 in the ±θ directions. The
molecule evaluation point shown as × is only 1 grid point
away from the worldtube boundary, so the naive algorithm
would say that adjusted finite differencing should be used for
this molecule. However, the arrowed point is actually within
the equatorial-reflection symmetry ghost zone’s “reflection” of
the worldtube, so in terms of the adjustment (B11) this point
has inside-the-worldtube semantics, and hence adjusted finite
differencing should not be used for this molecule.

2. When using equatorial-reflection symmetry, we use
a numerical grid which spans only the “northern
hemisphere” 0 ≤ θ ≤ π/2 radians, but we still con-
sider the worldtube to be the full region that it
would have occupied in the absence of equatorial-
reflection symmetry, i.e., (assuming an equatorial
particle orbit) we take the worldtube to be sym-
metric about the equatorial plane.

8. Computing the set of grid points where the
puncture field is needed

Given that the adjustment (B11) is to be applied, there
remains the problem of computing ϕpuncture,m at each
finite difference molecule input point.
In our evolution scheme there are (for 5-point cen-

tered molecules) typically 9 molecule input points per
evaluation point,28 so there is a significant performance
boost from computing ϕpuncture,m only once at each grid
point where it is needed, rather than 9 times if it were
(re)computed each time it is used at a molecule input
point.
[Notice that – even apart from any performance cost –

we can not simply compute ϕpuncture,m at all spatial grid
points (at each evaluation time), because (a) ϕpuncture,m

diverges at the particle, and (b) our series expansions for
ϕpuncture,m may be ill-behaved (e.g., they may involve
division by zero) sufficiently far from the particle (outside
the worldtube).]
There are two plausible ways of ensuring that

ϕpuncture,m is computed at the desired set of grid points
without trying to compute it at any point where the com-
putation would blow up:

• ϕpuncture,m could be stored as a “smart grid func-
tion”, comprising a standard grid function of com-
plex numbers (ϕpuncture,m values) together with
an auxiliary grid function of Boolean “valid” flags
recording whether or not ϕpuncture,m has already
been computed at the corresponding grid point
at the current time. On each access to the grid
function, the Boolean flag would be checked, and
if ϕpuncture,m had not already been computed at
that grid point at the current time, it would be
computed, stored (cached) in the corresponding
grid function, and the corresponding Boolean flag
would be set to record that that grid-function value
was now valid, so that future access could use the
cached value.

• Alternately, we could use a standard complex grid
function to store ϕpuncture,m and precompute (i.e.,

28 There are no ∂R∗θ terms in our evolution equations; if there were,
then (again assuming 5-point centered molecules) there would be
25 molecule input points per evaluation point.
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1 # does adjusted finite differencing need to be used for a radial molecule
2 # (with radia (Ri−, Ri+)) evaluated at (i,j)?
3 boolean procedure adjusted FD used for radial molecule (integer Ri−, integer Ri+,
4 integer i, integer j)
5 {
6 region W ← worldtube region
7 return

(

(i, j) ∈ W
)

? radial molecule has input outside region (W , Ri−, Ri+, i, j)
8 : radial molecule has input in region (W , Ri−, Ri+, i, j)
9 }
10
11 # does a radial molecule (with radia (Ri−, Ri+)) evaluated at (i, j)
12 # have any input points which are outside the region input R?
13 boolean procedure radial molecule has input outside region (region input R,
14 integer Ri−, integer Ri+,
15 integer i, integer j)
16 {
17 return not radial molecule has all inputs in region (input R, Ri−, Ri+, i, j)
18 }
19
20 # does a radial molecule (with radia (Ri−, Ri+)) evaluated at (i, j)
21 # have all of its input points in the region input R?
22 boolean procedure radial molecule has all inputs in region (region input R,
23 integer Ri−, integer Ri+,
24 integer i, integer j)
25 {
26 region molecule input region← [i−Ri−, i+Ri+]× {j}
27 return molecule input region ⊆ input R

28 }
29
30 # does a radial molecule (with radia (Ri−, Ri+)) evaluated at (i, j)
31 # have any input points in the region input R?
32 boolean procedure radial molecule has input in region (region input R,
33 integer Ri−, integer Ri+,
34 integer i, integer j)
35 {
36 region molecule input region← [i−Ri−, i+Ri+]× {j}
37 return molecule input region∩ input R 6= ∅
38 }

FIG. 28. This figure shows our algorithm for computing the “should this finite difference operator be adjusted via (B11) at
this grid point?” predicate. Only the procedures for radial finite difference molecules are shown; those for angular molecules
are analogous.
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compute before starting to compute the adjust-
ment (B11)) ϕpuncture,m at all the grid points where
it will be needed, storing it in the grid function. (At
grid points where ϕpuncture,m will not be needed,
the grid function can either be left uninitialized or
be set to dummy values – these will not affect the
result of any finite differencing operation.) The ad-
justment (B11) can then use the stored ϕpuncture,m

values with no further validity checking needed.

We have chosen the second option as likely being simpler
and more efficient.

The precomputation algorithm does not actually re-
quire an exact computation of the “is ϕpuncture,m needed
at this grid point?” predicate: no harm is done if we
precompute ϕpuncture,m at some points where it will not
actually be used, so the predicate need only return true
at a (possibly proper) superset of the actual set of grid
points where ϕpuncture,m is needed. This suggests that
the naive algorithm of precomputing ϕpuncture,m at every
grid point that is within a finite-difference molecule ra-
dius of the worldtube boundary might well yield correct
results.
However, for consistency and to maximize our confi-

dence that equatorial-reflection symmetry cases like the
one shown in Fig. 27 are handled correctly, we choose in-
stead to build up the “is ϕpuncture,m needed at this grid
point?” predicate in stages using Boolean and set oper-
ations on sets of grid points, in a manner very similar
to our construction of the “should adjusted finite differ-
encing be used at this grid point?” algorithm (Fig. 28).
Figure 29 shows the resulting algorithm for determining
where ϕpuncture,m is needed. Like the adjusted–finite-

differencing algorithm, this algorithm has very clear se-
mantics for each individual function, which allowed us
to develop an extensive test suite to help validate the
algorithm.

9. Numerical time-evolution

We numerically solve the evolution system (2.39)
and (2.40) using the method of lines, with locally-uniform
spatial grids in (R∗, θ). We discretize all spatial deriva-
tives using (5-point) 4th-order centered finite differenc-
ing, except that within a few grid points of the particle
we use the “C2” finite differencing scheme described in
Appendix B 10. For all results reported here, we use
the classical 4th-order Runge-Kutta method for the time
evolution.
We use Berger-Oliger mesh refinement ([126–129]) with

a 2:1 refinement ratio, full subcycling in time, and buffer
zones [108]. We use 5th-order (6-point) Lagrange poly-
nomial interpolation in space and time for the coarse-to-
fine Berger-Oliger interpolations. (This requires keeping
6 time levels for all but the finest refinement level which
only needs a single time level.) For the results reported
here we use 4 refinement levels. with the finest 3 refine-
ment levels moved to follow the worldtube (section IID
and table VI). In the terminology of Berger-Oliger mesh
refinement our grid placement is “non-adaptive”, in that
it does not depend on the values of the field variables.
While our evolution scheme is stable on moderate time

scales, we find that long-time evolutions can be made
much less noisy by adding 6th-order Kreiss-Oliger dissi-
pation in the form

∂tϕnum,m → ∂tϕnum,m + ε
(

DR∗
(ϕnum,m) + Dθ(ϕnum,m)

)

, (B12a)

∂tΠnum,m → ∂tΠnum,m + ε
(

DR∗
(Πnum,m) + Dθ(Πnum,m)

)

, (B12b)

where

(

D(g)
)

i
=

1

64
(∆x)5

(

D3
+D

3
−g
)

i

=
1

64∆x
(gi−3 − 6gi−2 + 15gi−1 − 20gi + 15gi+1 − 6gi+2 + gi+3). (B13)

To obtain stable evolutions we found it crucial to add
dissipation only at those grid points where the following
3 conditions are satisfied:

• The dissipation molecule does not cross the parti-
cle, i.e., the the closest grid point to the particle is
not one of the points i−3 through i+3 inclusive in
the expression B13.

• The dissipation molecule does not cross the world-
tube boundary, i.e., it does not have input points

both inside and outside the worldtube.

• The dissipation molecule does not have any input
points outside the union of the nominal grid and
any symmetry ghost zones. In practice this pre-
vents dissipation from being added close to mesh-
refinement boundaries or close to the horizon or J +

grid boundaries.

We use ε = 0.1 for the evolutions reported here.
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1 # does the puncture function need to be computed at the position (i,j)?
2 boolean procedure puncture fn used at ij (integer i, integer j)
3 {
4 integer Rmax

i− ← maximum radius of any molecule in the i− direction
5 integer Rmax

i+ ← maximum radius of any molecule in the i+ direction
6 integer Rmax

j− ← maximum radius of any molecule in the j− direction
7 integer Rmax

j+ ← maximum radius of any molecule in the j+ direction

8 return puncture fn used by radial molecule (Rmax
i− , Rmax

i+ , i,j)
9 or puncture fn used by angular molecule (Rmax

j− , Rmax
j+ , i,j)

10 }
11
12 # is the puncture function used by a radial molecule
13 # (with radia (Ri−, Ri+)) with the input point (i,j)?
14 boolean procedure puncture fn used by radial molecule (integer Ri−, integer Ri+,
15 integer i, integer j)
16 {
17 region W ← worldtube region
18 return

(

(i, j) ∈ W
)

? radial molecule outside region has input ij (W , Ri−, Ri+, i, j)
19 : radial molecule in region has input ij (W , Ri−, Ri+, i, j)
20 }
21
22 # does any radial molecule (with radia (Ri−, Ri+)) evaluated at a point
23 # that’s outside the region eval R have the input point (i, j)?
24 boolean procedure radial molecule outside region has input ij (region eval R,
25 integer Ri−, integer Ri+,
26 integer i, integer j)
27 {
28 # region of evaluation points where a molecule would have the input point (i, j)
29 region eval region with input ij← [i−Ri+, i+Ri−]× {j}
30
31 boolean all eval points in eval R← eval region with input ij ⊆ eval R

32 return not all eval points in eval R

33 }
34
35 # does any radial molecule (with radia (Ri−, Ri+)) evaluated at a point
36 # in the region eval R have the input point (i, j)?
37 boolean procedure radial molecule in region has input ij (region eval R,
38 integer Ri−, integer Ri+,
39 integer i, integer j)
40 {
41 # region of evaluation points where a molecule would have the input point (i, j)
42 region eval region with input ij← [i−Ri+, i+Ri−]× {j}
43
44 return eval region with input ij ∩ eval R 6= ∅
45 }

FIG. 29. This figure shows our algorithm for computing the “is ϕpuncture,m needed at this grid point?” predicate. Apart from
puncture fn used at ij(), only the procedures for radial finite difference molecules are shown; those for angular molecules are
analogous.
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Table IX shows the empirically determined Courant-
Friedrichs-Lewy (CFL) stability limit νmax [130, 131] of
our evolution scheme as a function of m. Our code
chooses the base-grid time step ∆t by first computing
∆t(preliminary) = κνmax∆R∗ (where κ = 0.9 is a safety-
factor parameter), then choosing ∆t to be the largest
value ≤ ∆t(preliminary) which integrally divides the out-
put sampling time. The time steps for all refined grids
are defined by the Berger-Oliger mesh refinement scheme.
It is clear from table IX that at large m our evolu-

tion scheme has a very restrictive CFL stability limit
(small νmax and hence small ∆t), making the evolution
quite inefficient. As discussed in Appendix B 11, we have
experimented with an implicit-explicit (IMEX) time evo-
lution scheme in an attempt to alleviate the large-m
CFL restriction, but thus far these experiments have not
yielded larger stable Courant numbers. This remains a
topic for further research.

10. Finite differencing near the particle

Because ϕm is only C2 at the particle, standard finite
difference molecules do not attain their full order of accu-
racy near (within roughly a molecule radius of) the par-
ticle. One way to view this problem is to conceptualize a
finite difference molecule as being derived by fitting a lo-
cal (sliding-window) Lagrange interpolating polynomial

m νmax

0 0.63
1 0.65
2 0.59
3 0.48
4 0.39
5 0.33
6 0.283
7 0.246
8 0.217
9 0.195

10 0.176
11 0.160
12 0.147
13 0.136
14 0.127
15 0.118
16 0.111
17 0.105
18 0.099
19 0.094
20 0.089

TABLE IX. For each m ∈ [0, 20], this table shows the largest
Courant number ν = ∆t/∆R∗ for which we obtain a stable
evolution. For these stability tests we use a dissipation coeffi-
cient of ε = 0.01 and a 2-refinement-level grid with base res-
olution ∆R∗ = M/4; the stability limit depends only weakly
on these parameters.

to the operand grid function, then differentiating that

interpolating polynomial. This suggests that one way to
obtain more accurate finite differencing near the parti-
cle might be to use a more general interpolating function
that better represents the actual behavior of ϕm near the
particle.
To this end, without loss of generality, we consider

the finite differencing of a (real or complex) function g
which is defined on a suitable neighborhood of the origin
on the real line, using a 1-dimensional numerical grid
with grid points at integer coordinates. Without loss of
generality, we assume the particle to be at the (known)
position p ∈ [0, 1

2 ]. We consider the piecewise-polynomial
interpolating function

I(x) = a0 + a1(x− p) + a2(x− p)2

+



















b3(x− p)3 + b4(x− p)4 + b5(x − p)5

if x ≤ 0

c3(x− p)3 + c4(x− p)4 + c5(x− p)5

if x > 0.

(B14)

The 9 coefficients {a0, a1, a2, b3, b4, b5, c3, c4, c5} can be
uniquely determined (as functions of the parameter p) by
requiring I to match the specified function g at the 9 ad-
jacent grid points in the range−4 ≤ x ≤ 4. I, dI/dx, and
d2I/dx2 can then be evaluated at any desired position to
obtain finite difference approximations to g, dg/dx, and
d2g/dx2 respectively. Using a symbolic algebra system,
these finite-difference operators can be written as linear
combinations of the values of g at the grid points, with
coefficients depending only on p and the evaluation posi-
tion.
Figure 30 shows how we use these “C2” finite-difference

operators at various grid points near the particle. In the
present work the particle is always in the background
Kerr spacetime’s equatorial plane, and we always place
a θ = constant row of grid points on the equatorial
plane. Considering the numerical grid in 2 dimensions
(R∗, θ), with corresponding integer grid coordinates (i, j),
suppose that the closest grid point to the particle is at
(iparticle, jequator). Then we use the C2 scheme for ∂R∗

and
∂R∗R∗

derivatives evaluated at grid points on the equator
(i.e., for grid points with j = jequator) and i near iparticle, in
the manner shown in the figure. We also use this scheme
in the j direction for ∂θ and ∂θθ derivatives evaluated at
grid points with i = iparticle and j near the equator. We
use standard (5-point) centered 4th-order molecules at
all other grid points.
As discussed in section IIK, we also use the interpo-

lating function I directly in computing the self-force.
Overall, we find that switching from using 4th-order

centered spatial finite differencing everywhere to using
the C2 finite-difference operators near the particle re-
duces the noise level in the computed self-force by about
a factor of 2 to 3.
We also experimented with a more general interpolat-

ing function
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grid point

particle

molecule point

evaluation point

evaluate
at k= 0

evaluate
at k=+1

evaluate
at k=-1

evaluate
at k=+2

evaluate
at k=-2
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at k=+3
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at k=-3
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at k=+4
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at k=-4

0 +1-1 +2-2 +3-3 +4-4 +5-5 +6-6 +7-7

FIG. 30. This figure shows our “C2” spatial finite differencing scheme for use near the particle. Each row of the diagram shows
the finite difference molecule used for a different evaluation point. “k” refers to the integer grid coordinate in the x direction,
with the origin set so that k=0 is the grid point closest to the particle. We use molecules based on the piecewise-polynomial
interpolating function (B14) for evaluations points −2 ≤ k ≤ +2 and standard (5-point) centered 4th-order molecules at all
other evaluation points.
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I(x) = a0 + a1(x − p) + a2(x− p)2 +







































b3(x − p)3 + b3ℓ(x− p)3 log
(

K(x− p)2
)

+b4(x − p)4 + b4ℓ(x− p)4 log
(

K(x− p)2
)

+b5(x − p)5 + b5ℓ(x− p)5 log
(

K(x− p)2
)

if x ≤ 0

c3(x− p)3 + c3ℓ(x− p)3 log
(

K(x− p)2
)

+c4(x− p)4 + c4ℓ(x− p)4 log
(

K(x− p)2
)

+c5(x− p)5 + c5ℓ(x− p)5 log
(

K(x− p)2
)

if x > 0,

(B15)

where K is a scaling constant and the 15 coefficients
{ai, bi, biℓ, ci, ciℓ} are determined by solving a system of
15 linear equations using the values of g at 15 adjacent
grid points. (A purely symbolic solution to this linear
system proved impractical, but it is easy to solve nu-
merically. This needs to be done once for each choice of
the grid spacing and K.) However, we were not able to
obtain stable evolutions with this scheme.

11. Implicit-explicit (IMEX) evolution schemes

As discussed in Appendix B 9, when using an ex-
plicit (Runge-Kutta) time evolution scheme we find that
the CFL stability limit [130, 131] is very restrictive for
large m, with the largest stable Courant number be-
ing approximately ∼ 1/m. Examination of the deriva-
tive structure of our evolution system, together with an
eigenvalue analysis kindly performed by I. Hinder, sug-
gests that m2 coefficient in the ϕ term in the scalar wave
operator (2.20) may be a major contributor to the large-
m time-step restriction.
We thus consider the use of an implicit time evolution

scheme. More precisely, we consider the the use of an
implicit-explicit (IMEX) time evolution scheme. There
is a large literature on these schemes; see, for exam-
ple, [132–138]. The basic concept of an IMEX scheme
is to partition the right-hand-side function into explicit
and explicit parts,

u̇ = F(u, t) + G(u, t), (B16)

where u is the state vector, then treat F explicitly and
G implicitly. For our application, we will place all the
spatial derivatives into the explicit term, thus avoiding
having to solve an elliptic system at each time step.
We have chosen the scheme proposed by

Boscarino [137] (in particular, his BHR(5,5,3) scheme,
variant 2) as being efficient, relatively easy to imple-
ment, and having good accuracy (3rd order overall)
without the “order reduction” problems of many other
schemes.29

We write a generic implicit-explicit Runge-Kutta

29 We warn the reader of the following typographical errors in [137]:

scheme for the ODE (B16) as30

u(n+1) = u(n) + h

s
∑

i=1

biki + h

s̃
∑

i=1

b̃ik̃i, (B18)

where h is the time step, superscripts (n) and (n+1) re-
fer to time levels, subscripts refer to Runge-Kutta stages
numbered 1, . . . , s, and the Runge-Kutta stages are given
by

ki = F (ui, t
(n) + hci), (B19a)

k̃i = G(ui, t
(n) + hci), (B19b)

ui = u(n) + h
∑

j<i

dijkj + h
∑

j≤i

d̃ij k̃j , (B19c)

with the coefficients {bi}, {b̃i}, {ci}, {dij}, and {d̃ij}
For example (eliding the evaluation times for clarity),

the first few stages are

u1 = u(n) + hd̃11G(u1), (B20a)

u2 = u(n) + hd21F(u1) + hd̃21G(u1) + hd̃22G(u2),
(B20b)

u3 = u(n) + hd31F(u1) + hd32F(u2)

+ hd̃31G(u1) + hd̃32G(u2) + hd̃33G(u3). (B20c)

To solve the implicit equations (B19), we observe that
our state vector u is of the form

u =

(

ϕ
Π

)

, (B21)

• Equation (4) should read

U i = Un + h

i−1
∑

j=1

ãijF
(

tn + c̃jh,U
j
)

+ h

i
∑

j=1

aij
1

ε
G

(

tn + cjh,U
j
)

(B17)

• In the appendix, in the left (explicit) Butcher tableau, the
b coefficients should read [b1 0 b3 b4 γ].

• In the appendix, in the right (implicit) Butcher tableau, the
coefficients for the last stage (the 5th row of the matrix)
should be identical to the b coefficients, i.e., they should
read [b1 0 b3 b4 γ].

30 Our notation in the remainder of this appendix is somewhat
different from Boscarino’s; notably, we swap the tilde and non-
tilde coefficients.
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so we can write

F

(

ϕ
Π

)

=

(

y(ϕ,Π)
z(ϕ,Π)

)

(B22)

and

G

(

ϕ
Π

)

=

(

0
z̃(ϕ,Π)

)

=

(

0
αϕ+ βΠ

)

(B23)

with known coefficients α and β. (This use of α is unre-
lated to its use as a tail-series exponent in section II L.)

The 2-component F function (B22) includes all the
main evolution equations (2.39), (2.40), and (B12), as
well as all spatial boundary conditions. Evaluating F
requires computing (or retrieving from a cache) the 2-D
puncture field and effective source.31

We have considered a number of possible choices for
precisely which terms from the main evolution equa-
tion (2.40) should be treated implicitly (i.e., put into G).
Conceptually, we have α = α1 + α2 + α3, where

α1 = 0 or − 2∆

r(r2 +M2ã2)2

(

M − M2ã2

r

)

, (B24a)

α2 = 0 or − m2∆

(r2 +M2ã2)2 sin2 θ
, (B24b)

α3 = 0 or −i 2mMã∆

r(r2 +M2ã2)2
, (B24c)

and

β = 0 or −i 4mM2ãr

(r2 +M2ã2)2
(B24d)

modified by the compactification transformation (2.35),
together with the spatial boundary conditions. This gives
16 possible variant schemes, depending on which subset
of {α1, α2, α3, β} is nonzero (treated implicitly). For each
of these variants,

• G is linear in ϕ and Π at each grid point,

• G may be evaluated independently at each grid
point, and

• this evaluation does not require computing the 2-D
puncture field or effective source.

Together, these properties make the scheme efficient and
relatively easy to implement.
Substituting the 2-component u, F, and G func-

tions (B21), (B22), and (B23) into the implicit Runge-
Kutta equations (B19), we have

ui =

(

ϕi

Πi

)

=

(

ϕ(n)

Π(n)

)

+ h
∑

j<i

dij

(

yj
zj

)

+ h
∑

j<i

d̃ij

(

0
z̃j

)

+ hd̃ii

(

0
αϕi + βΠi

)

.

(B25)

We solve this equation at each Runge-Kutta stage by first
computing

ϕi = ϕ(n) + h
∑

j<i

dijyj (B26a)

and then computing

Πi =

Π(n) + h
∑

j<i

dijzj + h
∑

j<i

d̃ij z̃j + hd̃iiαϕi

1− hd̃iiβ
.

(B26b)
We have implemented these 16 variant schemes, but

unfortunately we find that all of them have CFL stability
limits which are (to within the ∼ 1% accuracy of our
trial-and-error estimation of the stability limit on test
problems) identical to those of the classical RK4 scheme
(table IX). Since the RK4 scheme is simpler and offers a
factor-of-two overall speedup by caching and reusing the
effective source at repated evaluation times, we use it for
all the computations presented in this paper. We hope
to further investigate different partitionings of the right-
hand-side function between F and G in the future in the
hopes of alleviating the large-m time-step restriction.
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