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We discuss the propagation of electromagnetic (EM) waves in the post-Newtonian approximation
of the general theory of relativity. We consider diffraction of EM waves in the static gravitational
field of a massive monopole. We develop a wave-theoretical description of the solar gravitational
lens (SGL) and show that with its enormous magnifying power of ∼ 1011 (for λ = 1 µm) and angular
resolution of . 10−10 arcsec, the SGL may be used for direct megapixel imaging of an exoplanet.

Nature has presented us with a powerful “instrument” that we have yet to explore and learn how to use. The
instrument is the Solar Gravitational Lens (SGL), which takes advantage of the ability of the Sun’s gravitational field
to focus light from faint, distant sources of significant scientific interest [1], such as a habitable exoplanet. According to
Einstein’s general theory of relativity (GR), gravitation induces refractive properties on spacetime, causing a massive
object to act as a lens by bending photon trajectories [2]. To show this, we begin by considering the gravitational
field of a static spherically symmetric distribution of matter in the post-Newtonian approximation of GR. In the
harmonic gauge [3], ∂m(

√−ggmn) = 0, the line element representing the static field of a gravitational monopole with
a Schwarzschild radius of rg = 2GM/c2 may be given in spherical coordinates (r, θ, φ) as below:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

, u = 1 +
rg
2r

+O(r2g , r
−3). (1)

To study light ray propagation in the metric (1), one usually [4] takes the trajectory of a photon to be x(t) =
x0+kc(t− t0)+xG(t)+O(G2), where x0 is the initial position, k is the unperturbed wave vector, and xG(t) is the yet
unknown post-Newtonian term. We define the wave vectorKm = dxm/dλ = K0(1, dx/dx0), withK0 = dx0/dλ, where
λ is the affine parameter along the ray’s path. The wave vector obeys the geodesic equation: dKm/dλ+ΓmklK

mK l = 0.
Limiting discussion to the gravitational monopole, we obtain the solution for xG(t) and, thus, to the geodesic equation:

x(t) = b0 + kℓ− rg

(

k ln
r + (k · x)
r0 + (k · x0)

+
b0

b20

(

r + (k · x)− r0 − (k · x0)
)

)

+O(r2g), (2)

where ℓ = (k ·x0)+c(t− t0) and b0 = [k× [x0×k]]+O(rg) is the ray’s impact parameter. Eq. (2) yields the deflection

angle, δ, which, for a distant source, r = |x| =
√

b20 + ℓ2 ≫ rg , is given by δ = |[k× (dx/cdt)]| = 2rg/|b0|+O(r2g).
As a result, the gravitationally deflected rays of light passing from two sides of the lensing mass converge at a

focus. Of the solar system bodies, only the Sun is massive enough that the focus of its gravitational lens is within
range of a realistic space mission. The effect is achromatic and, depending on the impact parameter, the SGL’s focus
is a semi-infinite line that begins at ∼547 astronomical units (AU) [5]. Eq. (2) describe the trajectory of the light,
but it tells nothing about its intensity. Although this topic has been discussed earlier (see [5] for review), the usual
description is based on the geometric optics approximation, which, as expected, yields results that are divergent on
the optical axis. To investigate intensity changes due to the gravitational amplification of light, one needs to develop
a wave-theoretical treatment of light propagation in gravity. In this paper, we provide such a description of the SGL.
Following [6], in the spacetime (1), Maxwell’s equations, ∂lFik + ∂iFkl + ∂kFli = 0, ∂k

(√−gF ik
)

= −(4π/c)
√−gji,

describing the light propagation in a vacuum, reduce to the following set of equations for physical fields (D,B):

[∇×D] = −u2 1
c

∂B

∂t
+O(r2g), [∇×B] = u2

1

c

∂D

∂t
+O(r2g), ∇ · (u2D) = O(r2g), ∇ · (u2B) = O(r2g), (3)

where ∇ is the ordinary differential operator with respect to flat space coordinates, and ∆ = ∇2. For a static metric,
gα0 = 0, and the electro-magnetic (EM) fields are related by D = uE and B = uH (see Problem in §90 of [6]).
Solution to Eqs. (3) may be given in the form of the Debye potentials [7]. In the case of a static monopole, the electric

and magnetic Debye potentials, (eΠ,mΠ), are reduced to just one potential, Π, [8, 9]: (eΠ,mΠ) = Π(cosφ, sinφ). As
a result, the solution for the vectors D = D(t,x) and B = B(t,x) may be given in the following compact form:

(

Dr

Br

)

=

(

cosφ

sinφ

)

e−iωtα(r, θ),

(

Dθ

Bθ

)

=

(

cosφ

sinφ

)

e−iωtβ(r, θ),

(

Dφ

Bφ

)

=

(

sinφ

− cosφ

)

e−iωtγ(r, θ), (4)

where the quantities α, β and γ are given as below:

{

α;β; γ
}

=
{

− 1

u2r2
∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θ (rΠ)
]

]

;
1

u2r

∂2
(

rΠ
)

∂r∂θ
+
ik
(

rΠ
)

r sin θ
; − 1

u2r sin θ

∂
(

rΠ
)

∂r
− ik

r

∂
(

rΠ
)

∂θ

}

, (5)
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and the Debye potential, Π = Π(r, θ), satisfies the following wave equation (denoting ′ = d/dr):

(

∆+
(

k2u4 − u
(1

u

)′′)
)[

(

cosφ

sinφ

)

Π

u

]

= 0 or, equivalently,
(

∆+ k2
(

1 +
2rg
r

)

+
rg
r3

)[

(

cosφ

sinφ

)

Π

u

]

= O(r2g). (6)

Eqs. (4)–(6) provide a complete solution for the diffraction problem. If the incident wave is known, by using the
approach developed in the Mie theory [7], one can find the scaterred wave. To find the solution for the incident wave,
we use (3) to see that, for instance, D has to obey the following wave equation (equation for B has an identical form):

∆D = u4
∂2D

c2∂t2
+ [[∇ ×D]×∇ lnu2]−∇

(

D ·∇ lnu2
)

+O(r2g). (7)

We look for a solution to (7) in the form D = ψde−iωt, where ψ ≡ ψ(r) is some scalar function, d ≡ d(r) is a unit
vector specifying the direction of the wave’s propagation and its polarization, and ω is the frequency of the wave. One
can see that, for a compact source of a static weak gravitational field described by (1) and for the case of propagation
of the high frequency EM waves (i.e., k = ω/c→ ∞), Eq. (7) yields two equations:

∆ψ + k2
(

1 +
2rg
r

)

ψ = O(r2g), (∇ψ ·∇)d =
rg
r3

{

(d · x)∇ψ − 1
2 (∇ψ · x)d

}

+O(r2g). (8)

Eqs. (8) provide a complete description of an EM wave propagating in weak, static gravity. The left of Eq. (8)
determines the change in the intensity of the EM radiation, while the one on the right determines the change in the
direction of the wave propagation and describes the polarization changes of the EM wave along the path.
To establish the wave properties of light, we need to go beyond (2), which describes light as a massless particle

traveling along a geodesic, and solve equations (8). Thus, the problem of image formation by the SGL amounts to
solving (8) for astronomically relevant conditions. We begin with the left of Eq. (8), which is formally similar to the
time-independent Schrödinger equation [10]. This equation has a solution regular at the origin in the form of

ψ(r) = ψ0e
ikz

1F1

(

ikrg, 1, ik(r − z)
)

, (9)

where 1F1(α, β, z) is the confluent hypergeometric function of the first kind, ψ0 = e
π

2
krgΓ(1− ikrg) is the normalization

constant, such that ψ2 → 1, while |r − z| → ∞. This solution is for a wave coming from a large distance along the z
axis. It generalizes the plane wave solution ψ0(r) = eikz that is used to describe EM wave propagation in Euclidean
spacetime. All the important corrections to ψ due to weak gravity are contained in the 1F1 function. For large
distances from the deflector, (9) has the following asymptotic form (see [10] and with the help of [11]):

ψ = eik(z−rg ln k(r−z)) +
rg
r − z

Γ(1 − ikrg)

Γ(1 + ikrg)
eik

(

r+rg ln k(r−z)
)

+O(r2g), (10)

where the first term represents an incident Coulomb-modified wave [10], while the second term is the scattered wave.
Given the solution for the amplitude of the incident wave from (10), we can proceed to solve the second of (8). The

parameter ℓ introduced in (2) along the unperturbed direction of the ray’s path allows to represent this equation as

dd

dℓ
=

rg
r3

{

(d · x)k− 1
2 (k · x)d

}

+O(r2g). (11)

Similarly to (2), we write d = d|| k+ d⊥0 + dG +O(r2g), where d||0 = (d · k) +O(rg) and d⊥0 = [k× [d× k]] +O(rg)
and dG is the post-Newtonian part of vector d. As a result, equation (11) takes the form:

ddG

dℓ
=

rg
(b20 + ℓ2)3/2

{(

1
2d||0ℓ+ (d⊥0 · b0)

)

k− 1
2ℓd⊥0

}

+O(r2g). (12)

We introduce a heliocentric Cartesian coordinate system (x, y, z) with unit vectors (ex, ey, ez). We take the z-axis to
be directed along the vector k, while the x and y axes directed along the vectors e = [[k× n]× k] and p = [k × n],
correspondingly, where n = x/r, in other words (ex, ey, ez) ≡ (e,p,k). In this coordinate system, d||0 = dz0,
d⊥0 = (dx0, dy0, 0), b0 = [k× [x×k]] = (x, y, 0)+O(rg), and, thus, (d⊥0 ·b0) = dx0x+ dy0y+O(rg). We choose the
components of the incident wave so that it represents a transverse-electric wave requiring: dz0 = dy0 = 0 and dx0 = 1.
We determine the components of the incident D field in the heliocentric spherical coordinate system (r, θ, φ):

{

Dinc

r ;Dinc

θ ;Dinc

φ

}

=
{

− cosφ

iukr

∂ψi
∂θ

; u−1 cosφ
(

cos θ − rg
r

)

ψi; − u sinφψi

}

e−iωt +O(r2g), (13)



3

where ψi = eik(r cos θ−rg lnkr(1−cos θ)) is the incident wave from (10). We can obtain a similar TM solution for Binc.
We now need to find the EM field, which for r → ∞, θ ∼ π has the same asymptotic behavior as the incident field

(13), but which is regular everywhere, for all values of θ and r. As the wave function (9) gives the correct asymptotic
expression at small angles, the required field may be constructed using (9). To determine Π, we use the expressions
for the incident wave (13) and relate them to (4). One of Eqs. (4) needs to be solved, e.g., Dr. To find the solution in
all regions we extend (13) by taking, instead of ψi, the entire solution for ψ from (9). The exact solution (9) should
differ from the incident wave (13) only for the outgoing waves. The amplitudes of incident waves should be equal.

(13) indicate that Dr = −e−iωt cosφ
iukr

∂ψ
∂θ is a suitable definition of the wanted regular field. From (4), (13), this yields

Dr = −e−iωt cosφ
u2r2

∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θ (rΠ)
]

]

= −e−iωt cosφ
iukr

∂ψ

∂θ
, (14)

where ψ has the form (9). As a result, (14) yields an equation to determine the Debye potential Π:

∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θΠ
]

]

= − iu
k

∂ψ

∂θ
+O(r2g). (15)

After integrating this equation with respect to θ, we obtain the solution for the Debye potential as

Π(r) = −ψ0
iu

k

1− cos θ

sin θ
eikz

(

1F1[1 + ikrg, 2, ikr(1− cos θ)]− 1F1[1 + ikrg, 2, 2ikr]
)

+O(r2g), (16)

which gives the Debye potential in terms of the Coulomb wave function ψ (9), i.e., essentially in terms of the confluent
hypergeometric series. It can be shown that the second term in (16) is negligible. The EM field and the Poynting
vector due to this term are orders of magnitude (factor 1/

√

krg) smaller than those originating from the first term.
This term makes it possible to avoid singular behavior of Π at the axis θ = π and is important only near this axis [9].
Using the solution for Π from (16), one can now compute all the quantities in (5). To discuss the relevant results,

it is convenient to introduce another, cylindrical coordinate system (ρ, φ, z). In the far field, r ≫ rg, we do this by

introducing ρ = R sin θ, φ = φ, z = R cos θ, with R =
√

ρ2 + z2, θ = arctan(ρ/z), and the corresponding line element

ds2 = u−2c2dt2 −
(

dρ2 + ρ2dφ2 + u2dz2
)

+O(r2g). (17)

In this coordinate system, the components of the EM field are:

(

Dρ

Bρ

)

=

(

cosφ

sinφ

)

e−iωta(r, θ),

(

Dz

Bz

)

=

(

cosφ

sinφ

)

e−iωtb(r, θ),

(

Dφ

Bφ

)

=

(

sinφ

− cosφ

)

e−iωtγ(r, θ), (18)

with a(r, θ) = u−1 sin θ α(r, θ) + cos θ β(r, θ), b(r, θ) = cos θ α(r, θ)− u sin θ β(r, θ). Using (5) and (16) and referring to
[11] for the properties of the confluent hypergeometric functions, the solutions for functions a, b, γ take the form:

a(r, θ) =
1

u
ψ0e

ikz
{

F [1]
(

1− rg
2r

sin2 θ
)

+ F [2]
(1− cos θ

sin2 θ
cos θ

(

1− cos θ +
rg
r

)

− ikrg
(

1− cos θ
)

}

+O(r2g), (19)

b(r, θ) = − 1

u
ψ0e

ikz sin θ
{

F [1]
rg
2r

cos θ + F [2]
(1− cos θ

sin2 θ
u
(

1− cos θ +
rg
r

)

+ ikrg

)}

+O(r2g), (20)

γ(r, θ) = −uψ0e
ikz

{

F [1] + F [2]
1− cos θ

sin2 θ

(

1− cos θ − rg
r

)}

+O(r2g), (21)

where we defined F [1] ≡ 1F1[ikrg, 1, ikr(1− cos θ)] and F [2] ≡ 1F1[1 + ikrg, 2, ikr(1− cos θ)].
The components of the Poynting vector, S = [E×H] = u−2[Re(D)× Re(B)], in cylindrical coordinates are

Sρ = u−2Re(e−iωtγ)Re(e−iωtb), Sz = −u−2Re(e−iωtγ)Re(e−iωta), Sφ = 0. (22)

Using (19)–(21), after time averaging, we get the Poynting vector (22) for high frequencies, kr → ∞, as

S̄ρ = u−2 1

2
ψ2
0 sin θ

{

F [1]F ∗[1]
rg
2r

cos θ + F [2]F ∗[2]
(1− cos θ

sin2 θ

)2

u
(

1− cos θ
)2

+

+ 1
2

(

F [1]F ∗[2] + F ∗[1]F [2]
)1− cos θ

sin2 θ

(

1− cos θ +
rg
2r

sin2 θ
)

− 1
2 i
(

F [1]F ∗[2]− F ∗[1]F [2]
)

krg

}

, (23)

S̄z = u−2 1

2
ψ2
0

{

F [1]F ∗[1]
(

1− rg
2r

sin2 θ
)

+ F [2]F ∗[2]
(1− cos θ

sin2 θ

)2
(

1− cos θ
)2

cos θ +
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+ 1
2

(

F [1]F ∗[2] + F ∗[1]F [2]
)

(

1− rg
2r

(1− cos θ)
)(

1− cos θ
)

+ 1
2 i
(

F [1]F ∗[2]− F ∗[1]F [2]
)

krg(1 − cos θ)
}

, (24)

where S̄z, S̄ρ, and S̄φ = 0 are the time-averaged components of the Poynting vector in the coordinate system (17) and
are all accurate to O(r2g , (kr)

−1); also F ∗ denotes complex conjugate of F .
All properties of the diffraction field are contained in the formulae (23)–(24), covering all distances and angles

around the Sun. Extracting these properties is somewhat complicated, because too many parameters enter into the
structure of this interference pattern: the radial distance r ∼ z, the distance ρ = r sin θ from the axis θ = 0 in the
image plane, the frequency ω, and, if we ask for the visual image of an exoplanet, the aperture of our telescope. We
therefore confine ourselves to the most interesting results in the interference region in the vicinity of the optical axis.
Consider the hypergeometric series F [1] at small angles θ ≈ ρ/z ≪ 1: for kr ≫ 1, from [11] we have F [1] =

J0(2
√
x) +O((krg)

−1) and F [2] = (1/
√
x)J1(2

√
x) +O((krg)

−1), where J0 and J1 are the Bessel-functions of order
zero and one, respectively, and x = k2rrg(1−cos θ). To evaluate ψ0 = e

π

2
krgΓ(1− ikrg), from [11], we use the identity

Γ(1 − ikrg)Γ(1 + ikrg) = πkrg/sinhπkrg, yielding ψ
2
0 = 2πkrg/(1− e−2πkrg ). Next, we express the argument x in

cylindrical coordinates (17) as
√
x = (πρ/λ)

√

2rg/z+O(r2g , ρ
3). For all practical purposes rg/r ≪ 1, thus, neglecting

the corresponding terms and taking into account krg ≫ 1, we present (23)–(24) in the most relevant form:

S̄z = 2π2 rg
λ
J2
0

(

2π
ρ

λ

√

2rg
z

)

+O(r2g , (kr)
−1), S̄ρ = S̄φ = O(r2g , (kr)

−1). (25)

As the Poynting vector of a plane EM wave is S̄0 = 1
2 [7], we may introduce the magnification factor of the SGL as

µ = S̄/S̄0 = 4π2(rg/λ)J
2
0

(

(2πρ/λ)
√

2rg/z
)

, which is valid for small angles θ .
√

2rg/z, i.e., in the immediate vicinity
of the optical axis [2]. This result represents the SGL’s point spread function (PSF), which is a sharply falling and
rapidly oscillating function of ρ [5, 9]. As such, it extends the earlier derivations (e.g., [1]) valid only at the optical
axis, where ρ = 0, and provides important details on the structure of the PSF in the interference region of the SGL.
The wave-optical treatment of the SGL may now be used to consider practical aspects of designing a solar gravita-

tional telescope. Eq. (25) suggests that, by naturally focusing light from a distant source, the SGL provides a major
brightness amplification (µ ∼ 1.2×1011 at λ = 1 µm) and extreme angular resolution (. 1×10−10 arcsec) in a narrow
field of view (. 3.5 arcsec) [5]. In fact, starting at 547 AU, the SGL forms a folded caustic, where, in the pencil-sharp
region along the optical axis [9], its amplification and angular resolution stay almost unchanged well beyond 103 AU.
An Earth-like planet at 30 parsecs (pc) has an angular diameter of 1.4× 10−11 rad. A diffraction-limited telescope

comparable in magnifying power to a 1-m telescope placed on the optical axis of the SGL at 750 AU from the Sun
would have a diameter of ∼ 80 km. But even this telescope would resolve the disk of the planet only barely. To resolve
the planet with 103 pixels across its diameter, one needs a telescope array with a diameter of ∼ 4× 105 km (∼ 16R⊕),
which is impractical. Building an imaging optical interferometer with a set of such baselines is not feasible. The SGL
holds the promise of providing the conditions necessary for a direct megapixel imaging of an exo-Earth.
A modest telescope equipped with a coronagraph could operate at the SGL’s focus to provide a direct high-resolution

image and spectroscopy of an exoplanet. The image of an exo-Earth is compressed by the SGL into a small region
with diameter of . 5 km in the immediate vicinity of the focal line. While all currently envisioned NASA exoplanetary
concepts (see https://exoplanets.nasa.gov/) aim at getting just a single pixel to study an exoplanet, a mission
to the SGL focus opens up the breathtaking possibility of direct imaging (at 103 × 103 linear pixels, or ∼ 10 km in
resolution) and spectroscopy of an Earth-like planet up to 30 pc away, enough to see its surface features and signs of
habitability. Such a possibility is truly unique and should be studied in the context of a realistic deep space mission.
Concluding, a mission to the deep outer regions of the solar system may be able to exploit the remarkable optical

properties of the SGL and provide direct megapixel-resolution imaging and spectroscopy of a potentially habitable
exoplanet. Although the technical challenges are formidable and have not yet been addressed, the theoretical feasibility
of such a mission shall serve as strong motivation to consider the engineering aspects of developing such a mission.
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