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Spacetime nonmetricity can be studied experimentally through its couplings to fermions and
photons. We use recent high-precision searches for Lorentz violation to deduce first constraints
involving the 40 independent nonmetricity components down to levels of order 10−43 GeV.

Many theories of gravity, including our most successful
theory, General Relativity, associate gravitational phe-
nomena with the geometry of spacetime. In these theo-
ries, the notions of distances, angles, and parallelism are
essential physical ingredients in specifying the spacetime
geometry and the corresponding gravitational degrees of
freedom. Mathematically, these ingredients are fixed by
introducing a metric and a connection, and the geometry
of a general spacetime manifold is then characterized by
three tensors, the curvature, the torsion, and the non-
metricity [1]. From this perspective, General Relativity
is a comparatively simple and elegant construction based
on Riemann geometry with both zero torsion and zero
nonmetricity, leaving only curvature to describe gravity.

Numerous alternative theories of gravity make use
of more general geometries. One famous example is
the Weyl theory of gravitation and electrodynamics [2],
which has nonzero curvature and nonmetricity but zero
torsion. Another is Einstein-Cartan theory [3], which
is based on Riemann-Cartan geometry with dynamical
curvature and torsion but zero nonmetricity. Theories
of gravity in which all three tensors are nonzero, called
metric-affine theories, have also been formulated [4].

An intriguing and vital issue is the extent to which
current experimental techniques can constrain the three
tensors governing the geometry of our spacetime. While
nonzero curvature components in nature are readily as-
sociated to known features of gravity, even the exis-
tence of torsion and nonmetricity remain open to doubt.
The torsion tensor has 24 independent components, most
of which have recently been constrained in a model-
independent way down to about 10−31 GeV using data
from laboratory experiments [5, 6]. In constrast, the 40
independent components of the nonmetricity tensor re-
main unexplored in the laboratory to date.

In this work, we address this surprising lacuna in the
literature. We adapt the exceptional sensitivities at-
tained in precision tests of Lorentz symmetry [7] to de-
duce sharp first constraints for nonmetricity components.
The central point is that background nonmetricity in
the laboratory can affect a freely falling observer in an
orientation-dependent way, while the existence of pre-
ferred directions in free fall is the key characteristic of
local Lorentz violation [8]. It follows that a background
nonmetricity induces effective Lorentz violation in the
laboratory, even when the underlying gravitational the-
ory with nonmetricity is locally Lorentz invariant. Pre-
cision tests of Lorentz symmetry can thus also serve as

high-sensitivity searches for nonmetricity.
Studies of Lorentz symmetry have undergone a sub-

stantial revival in recent years following the discovery
that minuscule violations of the laws of relativity ac-
cessible in the laboratory may arise in theories unify-
ing gravity and quantum physics such as strings [9]. A
general and powerful tool to describe phenomena at en-
ergies well below the scale of new physics is effective field
theory [10]. For Lorentz violation, the general realis-
tic effective field theory is the Standard-Model Exten-
sion (SME) [11], which is built by adding all possible
coordinate-independent Lorentz-violating terms to the
Lorentz-invariant gravitational and matter actions [12].
In the SME, the size and nature of experimental signals
from Lorentz-violating operators are determined by co-
efficients for Lorentz violation, which are therefore ap-
propriate targets for experiments [7]. Here, we identify
the correspondence between components of background
nonmetricity and certain SME coefficients for Lorentz vi-
olation, thereby permitting the extraction of experimen-
tal constraints on nonmetricity from existing bounds on
Lorentz violation.
To proceed, we postulate that the complete theory

of gravity predicts a nonzero nonmetricity in the neigh-
borhood of the Earth, which is thus present as a back-
ground in the laboratory. For general couplings to the
background nonmetricity, studying the behavior of par-
ticles then provides an experimental route to constrain-
ing nonmetricity in a model-independent way. The back-
ground nonmetricity endows the spacetime with an orien-
tation, thereby inducing effective local Lorentz violation
in the particle properties. To extract constraints on non-
metricity, we disregard possible Lorentz-violating contri-
butions from other sources, including any background
torsion. Also, we take the primary effects as arising from
nonmetricity that is constant in the reference frame of
its source, neglecting possible smaller effects involving
spacetime derivatives of nonmetricity. In what follows,
we adopt the conventions of Ref. [8].
In General Relativity, the spacetime geometry is spec-

ified by the Riemann curvature tensor R̃µ
ναβ , which can

be constructed by commuting covariant derivatives D̃µ

defined using the Levi-Civita connection. In a theory
with both curvature and nonmetricity, the geometry is
determined by the generalized Riemann tensor Rµ

ναβ

constructed from a generalized covariant derivative Dµ,
together with the nonmetricity tensor Nµαβ ≡ Dµgαβ
given by the covariant derivative of the metric gαβ . The
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generalized tensor Rµ
ναβ is the sum of R̃µ

ναβ and terms
involving Nµαβ . For the laboratory experiments of inter-

est here, gravity and hence R̃µ
ναβ are negligible, so we

can safely proceed assuming only Nµαβ contributes.

The nonmetricity tensor Nµαβ can be decomposed in
Lorentz-irreducible components as

Nµαβ = 1
18 (5N1µgαβ −N1αgβµ −N1βgµα

−2N2µgαβ + 4N2αgβµ + 4N2βgµα)

+Sµαβ +Mµαβ , (1)

where

N1µ ≡ gαβNµαβ , N2µ ≡ gαβNαµβ ,

Sµαβ ≡ 1
3 (Nµαβ +Nαβµ +Nβµα)

− 1
18 (N1µgαβ +N1αgβµ +N1βgµα)

− 1
9 (N2µgαβ +N2αgβµ +N2βgµα),

Mµαβ ≡ 1
3 (2Nµαβ −Nαβµ −Nβµα)

− 1
9 (2N1µgαβ −N1αgβµ −N1βgαµ)

+ 1
9 (2N2µgαβ −N2αgβµ −N2βgαµ). (2)

Both traces N1µ and N2µ contain 4 independent compo-
nents, while the traceless symmetric piece Sµαβ and the
traceless mixed-symmetry piece Mµαβ each contain 16.

We focus here on experimental signals involving the be-
havior of a Dirac fermion with arbitrary linear nonmetric-
ity couplings. Neglecting possible couplings other than
to nonmetricity and approximating covariant derivatives
systematically, the hermitian effective Lagrange density
LN containing all independent constant-nonmetricity

couplings to a Dirac fermion is a series of terms L
(d)
N

with operators of increasing mass dimension d,

LN = L0 + L
(4)
N + L

(5)
N + L

(6)
N + . . . , (3)

where L0 = 1
2 iψγ

µ
↔

∂µ ψ − mψψ and where the other
terms are built from fermion bilinears, partial derivatives
acting on fermions, the irreducible nonmetricity compo-
nents, and the Lorentz-group invariants ηµν and ǫκλµν .
Each term is the product of one fermion bilinear and one
irreducible piece of the nonmetricity and is required to
be hermitian.

The terms with d = 4 have no derivatives,

L
(4)
N = ζ

(4)
1 N1µψγ

µψ + ζ
(4)
2 N1µψγ5γ

µψ

+ζ
(4)
3 N2µψγ

µψ + ζ
(4)
4 N2µψγ5γ

µψ. (4)

Analogously, the terms with d = 5 have one derivative

and take the form

L
(5)
N = 1

2 iζ
(5)
1 N1

µψ
↔

∂µψ + 1
2ζ

(5)
2 N1

µψγ5
↔

∂µψ

+ 1
2 iζ

(5)
3 N2

µψ
↔

∂µψ + 1
2ζ

(5)
4 N2

µψγ5
↔

∂µψ

+ 1
4 iζ

(5)
5 Mµν

ρψσµν
↔

∂ρψ

+ 1
8 iζ

(5)
6 ǫκλµνM

κλρψσµν
↔

∂ρψ

+ 1
2 iζ

(5)
7 N1µψσ

µν
↔

∂νψ + 1
2 iζ

(5)
8 N2µψσ

µν
↔

∂νψ

+ 1
4 iζ

(5)
9 ǫλµνρN1λψσµν

↔

∂ρψ

+ 1
4 iζ

(5)
10 ǫ

λµνρN2λψσµν
↔

∂ρψ. (5)

To access fermion couplings to the symmetric irreducible

piece Sλµν requires considering also operators in L
(6)
N ,

which have two derivatives. Since the other irreducible
pieces already appear coupled to operators in L

(4)
N and

L
(5)
N , we consider here only terms in L

(6)
N involving Sλµν ,

L
(6)
N ⊃ − 1

4ζ
(6)
1 Sλ

µνψγλ∂µ∂νψ + h.c.

− 1
4ζ

(6)
2 Sλ

µνψγ5γ
λ∂µ∂νψ + h.c. (6)

In the above expressions, the coupling constants ζ
(d)
j

depend on the details of the theory under consideration.
For the special case of Weyl gravity [2], which ties elec-
trodynamics with spacetime geometry, the nonmetricity
is determined by the electromagnetic 4-potential Aµ via
Nµαβ = Aµgαβ, with the only nonzero couplings at tree

level obeying 4ζ
(4)
1 + ζ

(4)
3 = 1 for a minimally coupled

unit-charge particle. We remark in passing that this the-
ory is known to be unphysical because it predicts that
generic spectral lines cannot exist [13]. Another special
case is minimal coupling with covariant derivative de-
fined via the Kosmann lift [14], for which all nonmetricity
couplings vanish at tree level. Other choices of minimal
and nonminimal couplings are possible, and also radiative
corrections generically induce nonminimal couplings, so
we proceed here without preconceived notions and retain
all couplings for our analysis.
Treating the nonmetricity as a background means that

its components behave as scalars under particle Lorentz
transformations [8], implying that LN describes effective
Lorentz violation and that the fermion follows a geodesic
in a pseudo-Finsler spacetime [15]. Since the nonmetric-
ity tensor has three indices, all effective couplings of this
type are also CPT violating [11]. It follows that the be-
haviors of particles and antiparticles differ in the presence
of background nonmetricity. For each term in LN , the
nonmetricity tensor and accompanying coupling constant
together play the role of a coefficient for Lorentz viola-
tion in the SME in Minkowski spacetime [8]. Matching
each term in LN to the corresponding term in the SME
yields the correspondences

bµ −mg(A)
µ =−(ζ

(4)
2 −mζ

(5)
9 )N1µ − (ζ

(4)
4 −mζ

(5)
10 )N2µ,

g(M)
µνα = − 1

2ζ
(5)
5 (Mµνα −Mνµα)−

1
2ζ

(5)
6 ǫµνρσM

ρσ
α,

a
(5)(S)
µαβ = − 1

2ζ
(6)
1 Sµαβ , b

(5)(S)
µαβ = − 1

2ζ
(6)
2 Sµαβ . (7)
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Here, the relevant minimal-SME coefficients governing
CPT-odd effects [8] include bµ and the irreducible com-

ponents g
(A)
µ and g

(M)
µνα of gµνα, while among the non-

minimal operators [16] only the totally symmetric and

traceless pieces a
(5)(S)
µαβ and b

(5)(S)
µαβ of the nonminimal co-

efficients a
(5)
µαβ and b

(5)
µαβ play a role.

Since nonmetricity produces effective Lorentz violation
in the laboratory, reporting constaints on nonmetricity
components requires also specifying an inertial frame.
The nonmetricity can reasonably be taken as approxi-
mately uniform throughout the solar system. A suitable
frame is then the Sun-centered celestial-equatorial frame
[17], which has cartesian coordinates (T,X, Y, Z) with Z
axis along the Earth rotation axis and X axis directed
towards the vernal equinox 2000. The rotation and revo-
lution of the Earth induces sidereal and annual variations
as signals of Lorentz violation [18], and bounds on the
SME coefficients in Eq. (7) from numerous experiments
have been reported in this frame [7].

The experimental results can be scrutinized indepen-
dent of fermion flavor because nonmetricity is part of
the spacetime geometry. The sharpest constraints on the
trace and mixed-symmetry pieces of the nonmetricity are
obtained from two experiments with He-Xe dual masers
[19, 20]. Using the match (7), the bounds obtained on
variations in the maser frequency at the Earth’s annual-
revolution frequency [19] yield the four conditions

| cos η[(ζ
(4)
2 −mnζ

(5)
9 )N1T + (ζ

(4)
4 −mnζ

(5)
10 )N2T

+ 1
2mnζ

(5)
5 (MZXY −MXY Z)−

3
4mnζ

(5)
6 MT Y Y ]

− 3
4mn sin η[ζ

(5)
5 (2MXTT −MXY Y )

+2ζ
(5)
6 (MT Y Z +MZT Y )]| < 2.0× 10−27 GeV,

3
4mn| cos η[ζ

(5)
5 (MZXX − 2MZT T ) + 2ζ

(5)
6 MXTY ]

− sin η[ζ
(5)
5 MY XX + 2ζ

(5)
6 (MT ZX +MZTX)]|

< 1.6× 10−27 GeV,

|(ζ
(4)
2 −mnζ

(5)
9 )N1T + (ζ

(4)
4 −mnζ

(5)
10 )N2T

− 1
2mnζ

(5)
5 (MXY Z + 2MZXY )−

3
4mnζ

(5)
6 MTXX |

< 3.8× 10−27 GeV,

3
4mn|ζ

(5)
5 (MZT T +MZXX)− 2ζ

(5)
6 (MTXY +MXT Y )|

< 3.6× 10−27 GeV, (8)

where mn is the neutron mass and η ≃ 23.4◦ is the angle
between the orbital plane of the Earth and theX-Y plane
in the Sun-centered frame, while the bounds obtained on
variations in the maser frequency at the Earth’s sidereal

frequency [20] translate into the two constraints

|(ζ
(4)
2 −mnζ

(5)
9 )N1X + (ζ

(4)
4 −mnζ

(5)
10 )N2X

− 1
2mnζ

(5)
5 (MT Y Z + 2MZT Y ) +

3
4mnζ

(5)
6 MXTT |

< 9.4× 10−34 GeV,

|(ζ
(4)
2 −mnζ

(5)
9 )N1Y + (ζ

(4)
4 −mnζ

(5)
10 )N2Y

+ 1
2mnζ

(5)
5 (MT ZX + 2MZTX) + 3

4mnζ
(5)
6 MY T T |

< 1.2× 10−33 GeV. (9)

A complementary constraint comes from bounds on
Lorentz violation using a Hg-Cs comagnetometer [21],

|(ζ
(4)
2 −mnζ

(5)
9 )N1Z + (ζ

(4)
4 −mnζ

(5)
10 )N2Z

+ 1
2mnζ

(5)
5 (MTXY + 2MXT Y ) +

3
4mnζ

(5)
6 MZT T |

< 7.0× 10−30 GeV. (10)

Two constraints on the symmetric piece of the nonmetric-
ity can be extracted from bounds on nonminimal SME
coefficients [22] obtained via sidereal-variation studies of
the hydrogen hyperfine transition [23],

√
π

6
m2

p|ζ
(6)
2 STTX | < 9.0× 10−27 GeV,

√
π

6
m2

p|ζ
(6)
2 STTY | < 9.0× 10−27 GeV, (11)

where mp is the proton mass. The absence of cosmic-ray

Čerenkov radiation [16, 24] provides the tight constraint

|ζ
(6)
1 STTT | < 1.0× 10−34 GeV−1. (12)

Finally, bounds on nonminimal SME coefficients [26] ex-
tracted using sidereal-variation studies at the muon g−2
experiment [25] correspond to the four constraints
√

π

21

(γ2 − 1)

10γ4mµ

|4ζ
(6)
2 STTX − 5ζ

(6)
2 SXXX − 5ζ

(6)
2 SXY Y |

< 4.3× 10−26 GeV−2,√
π

21

(γ2 − 1)

10γ4mµ

|4ζ
(6)
2 STTY − 5ζ

(6)
2 SY Y Y − 5ζ

(6)
2 SXXY |

< 4.3× 10−26 GeV−2,√
π

3

2

3mµ

|ζ
(6)
2 STTZ | < 5.0× 10−26 GeV−2,

√
π

7

(γ2 − 1)

15γ4mµ

|2ζ
(6)
2 STTZ − 5ζ

(6)
2 SXXZ − 5ζ

(6)
2 SY Y Z |

< 5.0× 10−26 GeV−2, (13)

where mµ is the muon mass and γ ≃ 29.3 is the muon
boost factor.
Some insight about the breadth and quality of the

above constraints can be obtained by collating their im-
plications under the assumption that only one nonmetric-
ity component is nonzero at a time. Selecting a canonical
set of 16+16 independent components of the mixed and
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TABLE I. Laboratory constraints on nonmetricity.

Quantity Constraint Quantity Constraint

ζ
(4)
2 N1T 10−27 GeV ζ

(5)
9 N1T 10−27

ζ
(4)
2 N1X 10−33 GeV ζ

(5)
9 N1X 10−33

ζ
(4)
2 N1Y 10−33 GeV ζ

(5)
9 N1Y 10−33

ζ
(4)
2 N1Z 10−29 GeV ζ

(5)
9 N1Z 10−29

ζ
(4)
4 N2T 10−27 GeV ζ

(5)
10 N2T 10−27

ζ
(4)
4 N2X 10−33 GeV ζ

(5)
10 N2X 10−33

ζ
(4)
4 N2Y 10−33 GeV ζ

(5)
10 N2Y 10−33

ζ
(4)
4 N2Z 10−29 GeV ζ

(5)
10 N2Z 10−29

ζ
(5)
5 MT XX ζ

(5)
6 MT XX 10−26

ζ
(5)
5 MT XY 10−29 ζ

(5)
6 MT XY 10−27

ζ
(5)
5 MT Y Y ζ

(5)
6 MT Y Y 10−27

ζ
(5)
5 MT Y Z 10−33 ζ

(5)
6 MT Y Z 10−27

ζ
(5)
5 MT ZX 10−33 ζ

(5)
6 MT ZX 10−27

ζ
(5)
5 MXT T 10−27 ζ

(5)
6 MXT T 10−33

ζ
(5)
5 MXT Y 10−29 ζ

(5)
6 MXT Y 10−27

ζ
(5)
5 MXY Y 10−27 ζ

(5)
6 MXY Y

ζ
(5)
5 MXY Z 10−26 ζ

(5)
6 MXY Z

ζ
(5)
5 MY T T ζ

(5)
6 MY T T 10−33

ζ
(5)
5 MY XX 10−26 ζ

(5)
6 MY XX

ζ
(5)
5 MZT T 10−26 ζ

(5)
6 MZT T 10−29

ζ
(5)
5 MZT X 10−33 ζ

(5)
6 MZTX 10−27

ζ
(5)
5 MZT Y 10−33 ζ

(5)
6 MZT Y 10−27

ζ
(5)
5 MZXX 10−26 ζ

(5)
6 MZXX

ζ
(5)
5 MZXY 10−27 ζ

(5)
6 MZXY

ζ
(6)
1 STTT 10−34 GeV−1 ζ

(6)
2 STTT

ζ
(6)
1 STTX ζ

(6)
2 STTX 10−26 GeV−1

ζ
(6)
1 STTY ζ

(6)
2 STTY 10−26 GeV−1

ζ
(6)
1 STTZ ζ

(6)
2 STTZ 10−26 GeV−1

ζ
(6)
1 SXXX ζ

(6)
2 SXXX 10−23 GeV−1

ζ
(6)
1 SXXY ζ

(6)
2 SXXY 10−23 GeV−1

ζ
(6)
1 SXXZ ζ

(6)
2 SXXZ 10−23 GeV−1

ζ
(6)
1 SXY Y ζ

(6)
2 SXY Y 10−23 GeV−1

ζ
(6)
1 SY Y Y ζ

(6)
2 SY Y Y 10−23 GeV−1

ζ
(6)
1 SY Y Z ζ

(6)
2 SY Y Z 10−23 GeV−1

symmetric pieces of the nonmetricity, we find the results
displayed in Table I, where the listed 2σ constraints are
understood to hold on the modulus of each quantity. This
reveals that the laboratory experiments discussed here
yield first sensitivities to 34 of the 40 independent non-
metricity components, with only STXX , STXY , STXZ ,
STY Y , STY Z , and SXY Z absent. On the surface of the
Earth, a nonmetricity modulus of about 10−27 GeV in the
modified Poisson equation would compete with conven-
tional gravity, so Table I reveals that experiments already
restrict realistic models to comparatively tiny nonmetric-
ity values.

The constraints in Table I are derived assuming uni-
form cartesian nonmetricity components in the vicinity of

the solar system. However, many of these constraints also
apply in other scenarios. For example, if the nonmetric-
ity is taken to be sourced by the Sun and so has approxi-
mately azimuthal symmetry around the vector normal to
the ecliptic plane and passing through the Sun, then the
anisotropic nonmetricity components appear roughly un-
changed in any laboratory throughout the year. In this
scenario, the constraints (8) no longer apply as they are
derived from studies of annual variations, but the oth-
ers remain in force. If instead the Earth is taken as the
nonmetricity source, then detecting direction-dependent
nonmetricity effects requires rotation of the apparatus
in the laboratory frame, so only the constraints (10)
and (12) hold. In all special scenarios, other bounds
on Lorentz violation obtained in suitable experiments [7]
could instead be used to place nonmetricity constraints,
albeit at somewhat lower sensitivities than those reported
in Table I.

The above analysis considers a single flavor of Dirac
fermion. Extending LN to include multiple fermion
species would generate nonmetricity couplings relevant to
experiments searching for Lorentz violation with meson
or neutrino oscillations, but the resulting constraints on
nonmetricity are weaker than the best sensitivities shown
in Table I. Laboratory experiments with various boson
species, including photons, also lack the necessary sen-
sitivity to Lorentz violation to achieve competitive con-
straints on nonmetricity. The results in Table I are thus
the sharpest currently attainable in the laboratory.

Astrophysical observations can provide additional non-
metricity constraints. With the comparatively strong as-
sumption that background nonmetricity is uniform on
cosmological scales in space and time, and recalling that
it violates CPT, then photons [27] and gravitons [28] ex-
perience nonmetricity-induced birefringence when prop-
agating over cosmological distances. Existing bounds on
cosmological birefringence from searches for Lorentz vio-
lation [7] can thus also be used to constrain nonmetricity.
The limits on CPT-violating birefringence of gravitons
are comparatively weak, so we focus here on photons.

To proceed, we construct the hermitian Lagrange den-
sity LN containing all effective gauge-invariant CPT-
violating contributions to the photon propagator coupled
to background nonmetricity. This can again be expanded
in the form (3), where now L0 = −FµνFµν/4 with Fµν

the electromagnetic field strength and where the leading-
order contributions from the irreducible pieces of the non-
metricity involve generalized Chern-Simons terms,

L
(4)
N = 1

2ǫ
κλµν(ζ(4)a N1κ + ζ

(4)
b N2κ)AλFµν ,

L
(6)
N ⊃ 1

2ǫ
κλµν(ζ(6)c Mκαβ + ζ

(6)
d Sκαβ)Aλ∂

α∂βFµν . (14)

Note that L
(d)
N vanishes for odd d. To extract non-

metricity constraints from bounds on Lorentz violation,
we match to the general effective field theory for photon
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propagation [27], which yields the correspondences

(k
(3)
AF )κ = −ζ(4)a N1κ − ζ

(4)
b N2κ,

(k
(5)
AF )

(S)
καβ = −ζ

(6)
d Sκαβ , (k

(5)
AF )

(M)
καβ = −ζ(6)c Mκαβ (15)

between nonmetricity, the SME coefficients (k
(3)
AF )κ, and

the traceless symmetric and mixed pieces of (k
(5)
AF )καβ .

Sharp bounds on all four components of (k
(3)
AF )κ have

been obtained from studies of birefringence in the cosmic

microwave background. The isotropic component (k
(3)
AF )T

has been extensively explored and constrained to below
about 10−43 GeV [27, 29–31]. The anisotropic compo-

nents (k
(3)
AF )J , J = X,Y, Z, may exhibit a weak signal

but can safely be taken as constrained below 10−42 GeV
[27, 29, 30]. Taking one nonmetricity component at a

time as before then yields the eight constraints

|ζ(4)a N1T | < 10−43 GeV, |ζ
(4)
b N2T | < 10−43 GeV,

|ζ(4)a N1J | < 10−42 GeV, |ζ
(4)
b N2J | < 10−42 GeV. (16)

Only the 16 components (k
(5)
AF )

(S)
καβ produce cosmologi-

cal birefringence [27], and all are bounded by studies of
gamma-ray bursts [27, 32–35]. Taking each nonmetricity
component in turn then yields the 16 constraints

ζ
(6)
d STTT < 10−35 GeV−1, ζ

(6)
d Sκαβ < 10−34 GeV−1,

(17)
where καβ spans the 15 anisotropic components. The
astrophysical constraints improve some laboratory ones
but involve different couplings and stronger assumptions.
In summary, we have obtained first constraints involv-

ing the 40 independent components of nonmetricity by
translating bounds on Lorentz violation from laboratory
experiments and astrophysical observations. Given the
rapid advances in the search for Lorentz and CPT viola-
tion, the prospects for future improvements are excellent.
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Indiana University Center for Spacetime Symmetries.

[1] See, e.g., J.A. Schouten, Ricci-Calculus, Springer-Verlag,
Berlin, 1954.

[2] H.B. Weyl, Sitzungsberichte der Preussichen Akademie
der Wissenschaften 26, 465 (1918).

[3] E. Cartan, C.R. Acad. Sci. (Paris) 174, 593 (1922).
[4] See, e.g., M. Blagojević and F.W. Hehl, eds., Gauge
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[17] V.A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005

(2002); R. Bluhm, V.A. Kostelecký, C.D. Lane, and N.
Russell, Phys. Rev. D 68, 125008 (2003); Phys. Rev. Lett.
88, 090801 (2002).
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