
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Simulating the cold dark matter-neutrino dipole with
TianNu

Derek Inman, Hao-Ran Yu, Hong-Ming Zhu, J. D. Emberson, Ue-Li Pen, Tong-Jie Zhang,
Shuo Yuan, Xuelei Chen, and Zhi-Zhong Xing

Phys. Rev. D 95, 083518 — Published 20 April 2017
DOI: 10.1103/PhysRevD.95.083518

http://dx.doi.org/10.1103/PhysRevD.95.083518


Simulating the cold dark matter-neutrino dipole with TianNu

Derek Inman,1, 2, ∗ Hao-Ran Yu,1, 3, 4 Hong-Ming Zhu,5 J.D. Emberson,6 Ue-Li Pen,1, 7, 8, 9, †

Tong-Jie Zhang,4, 10, 11, ‡ Shuo Yuan,12 Xuelei Chen,5 and Zhi-Zhong Xing13, 14

1Canadian Institute for Theoretical Astrophysics,
University of Toronto, M5S 3H8, Ontario, Canada

2Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
3Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China

4Department of Astronomy, Beijing Normal University, Beijing 100875, China
5Key Laboratory for Computational Astrophysics, National Astronomical Observatories,

Chinese Academy of Sciences, Beijing 100012, China
6ALCF Division, Argonne National Laboratory, Lemont, IL 60439, USA

7Dunlap Institute for Astronomy and Astrophysics,
University of Toronto, Toronto, ON M5S 3H4, Canada

8Canadian Institute for Advanced Research, CIFAR Program in
Gravitation and Cosmology, Toronto, Ontario, M5G 1Z8, Canada

9Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada
10Shandong Provincial Key Laboratory of Biophysics,

School of Physics and Electric Information, Dezhou University, Dezhou 253023, China
11National Supercomputer Center in Guangzhou, Sun Yat-Sen University, Guangzhou, 510275, China

12Department of Astronomy, Peking University, Beijing 100871, China
13School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

14Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Measurements of neutrino mass in cosmological observations rely on two point statistics that are
hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity
effect between cold dark matter and neutrinos induces a large scale dipole into the matter density
field and may be able to provide orthogonal constraints to standard techniques. We numerically
investigate this dipole in the TianNu Simulation, which contains cold dark matter and 50 meV
neutrinos. We first compute the dipole using a new linear response technique where we treat the
displacement caused by the relative velocity as a phase in Fourier space and then integrate the
matter power spectrum over redshift. Then, we compute the dipole numerically in real space using
the simulation density and velocity fields. We find excellent agreement between the linear response
and N-body methods. Utilizing the dipole as an observational tool will require two tracers of the
matter distribution that are differently biased with respect to the neutrino density.

I. INTRODUCTION

Terrestrial oscillation experiments have convincingly
demonstrated that neutrinos are massive, and the mea-
sured mass splittings provide a lower bound on the neu-
trino mass scale: Mν =

∑
mν & 0.06 eV [1]. The best

upper bounds currently come from cosmological observa-
tions. The typical signature of cosmological neutrinos is
a characteristic mass dependent suppression in the total
matter power spectrum on small scales. This provides a
conceptually simple way to infer the neutrino mass from
two-point statistics: measure the amplitude of fluctua-
tions on large scales using the cosmic microwave back-
ground (CMB) and compare it to the small scale ampli-
tude inferred from large scale structure observations. For
instance, Planck is sensitive to both the primary CMB
(which depends on the scalar amplitude, AS) and weak
lensing of the CMB (which comes from smaller scale mass
distributions), which yield a constraint of Mν < 0.23
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eV when combined [2]. Alternatively, the small scale
measurement can be taken from direct large scale struc-
ture observations. For example, combining Planck and
Lyman-Alpha measurements from BOSS yieldMν < 0.12
eV [3].

A number of upcoming experiments are aiming to im-
prove this measurement of Mν with the goal of resolving
all possible masses down to the minimal mass of ∼ 0.06
eV. The Dark Energy Spectroscopic Instrument (DESI)
is forecasted to have a mass resolution of ∼ 0.02 eV [4] as
does the next generation CMB Stage IV (CMB S4) ex-
periment when combined with DESI baryon acoustic os-
cillation (BAO) measurements [5]. However, significant
challenges remain in utilizing the two point function due
to a number of parameters that must be precisely con-
trolled. The well known degeneracy between AS and the
optical depth τ is still a consistent obstruction, and will
hinder neutrino mass sensitivity in CMB S4 if the cur-
rent measurement from Planck is not improved upon.
On small scales, the limiting factor is disentangling the
small neutrino effect from large and uncertain baryonic
physics. To reach 0.02 eV sensitivity, DESI must map its
well resolved galaxy power spectrum to the underlying
matter power spectrum which requires a highly precise
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knowledge of the galaxy bias. If this cannot be done, the
DESI sensitivity with only BAO and Lyman-Alpha falls
to 0.041 eV[4, 6].

There is therefore clear motivation to search for new
techniques beyond the two point function that may de-
pend less, or differently, on τ , the galaxy bias, or bary-
onic astrophysics. A recent example of such a technique
is differential neutrino condensation, which exploits fluc-
tuations of the neutrino to CDM density ratio [7]. In a
series of papers we have studied another probe of neu-
trino mass that utilizes the relative velocity between the
neutrinos and CDM. In [8], a large scale CDM-neutrino
dipole was predicted due to the displacement of initially
concurrent regions of CDM and neutrino density. In [9], a
second smaller scale effect was identified as arising due to
dynamical friction on CDM halos moving through a more
homogeneous neutrino background. Finally, [11] imple-
mented neutrinos in the N-body code CUBEP3M [12] and
measured the relative velocity under non-linear gravita-
tional evolution. This relative velocity was also shown to
be highly correlated with the underlying matter density
field and can therefore be accurately predicted. We note
that the effects of neutrino dynamical friction has been
further explored in [10] who studied the halo Doppler
shift induced by the cosmic neutrino background as an
alternative to the displacement.

In this paper we utilize the TianNu simulation, de-
scribed in §II, to compute the CDM-neutrino dipole in
two different ways. In §III A, we compute the dipole
via an integral over the non-linear CDM power spectrum
with the relative velocity contributing a phase shift in
Fourier space. In §III B, we perform the calculation in
real space by displacing hierarchically averaged density
and velocity fields. We find that the latter is signifi-
cantly larger on all scales compared to the predictions in
[8], but is well matched by the new response computa-
tion provided we take into account the relative velocity
correlation scale.

II. TIANNU SIMULATION

The TianNu simulation is an N-body simulation con-
taining both CDM and 50 meV neutrino particles per-
formed on the Tianhe-2 supercomputer [7, 13] using the
neutrino implementation described in [11]. Simulations
with neutrinos require compromise between two compet-
ing needs: sample variance and Poisson noise. On small
scales, the large thermal motion of neutrinos causes them
to be severely dominated by Poisson noise. This noise can
be reduced through the use of a large number of particles
and a smaller box size. On the other hand, the largest
modes in the box will be limited by sample variance so
the box cannot be too small. The TianNu simulation
uses 69123 CDM particles and 138243 neutrino particles
in a box of size 1200 Mpc/h. This choice allows for scales
0.05 < k/(h/Mpc) < 0.5 to be relatively unafflicted from
either form of noise.

In addition to the Poisson noise, the large thermal ve-
locities also make simulating neutrinos difficult at high
redshift. For our simulation, we evolve the CDM alone
from redshift 100 to 5 and then inject neutrinos. We
include the effects of neutrino evolution in this period
by initializing our CDM particles with a transfer func-
tion computed with CLASS [14] at redshift 5, linearly
propagated back to redshift 100. The simulation is then
evolved to redshift 0.01.

For the dipole computation, we are interested in the
CDM and neutrino density and velocity fields on rel-
atively large scales. We compute δc and δν via the
Nearest-Grid-Point method [15]. The relative velocity is
the difference between the CDM and neutrino velocities:
~vcν ≡ ~vc − ~vν computed by taking the average velocity
of the particles in each cell. We compute the fields with
only 5763 cells (∼ 2.1 Mpc/h per cell per dimension).
This both reduces the necessary computational time as
well as smoothes over small scale structure to improve
the accuracy of the average velocity method.
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FIG. 1. Top. Cold dark matter-neutrino relative velocity
power spectrum from the TianNu simulation (solid) and linear
theory (dashed) at redshift 0.01. TianNu fields are computed
on a reduced 5763 mesh using the average particle velocity in
each cell. Bottom. The corresponding correlation functions
obtained by integrating the relative velocity power spectrum.
The dotted vertical line is the simulation coherence length,
the scale at which the correlation function drops to half its
value.

In the top panel of Fig. 1 we show the CDM-neutrino
relative velocity power, ∆2

rel(k). We find the N-body rel-
ative velocity to be slightly larger than that in [11] (the
black curve in Fig. 10), especially on large scales. This is
likely due to the larger box size used (1200 Mpc/h versus
500) which should have reduced, but not negligible, sam-
ple variance on these scales. We compute the integrated
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relative velocity:

vr =

√∫
∆2

rel(k)
dk

k
= 392 km/s. (1)

We also compute the monopole correlation function:

ξ0(r) =

∫
d3kP (k)e(i

~k·~r)

=

∫
dkk2P (k)/(2π2)j0(kr)

ξ0(r)→ ξ0(r)/ξ0(0) (2)

with P (k) being the monopole power spectrum, ∆2(k) =
k3

2π2P (k) and j0 being the spherical Bessel function and
the last line indicates that we divide by the r = 0 value.
This result is shown in the bottom panel of Fig. 1.
The correlation length is defined as the scale at which
ξ(Rrel) = 0.5. We find Rrel = 18.7 Mpc/h in simula-
tion, which is slightly larger than the linear value of 13.4
Mpc/h.

III. DIPOLE CORRELATION FUNCTION

A. Linear Response Dipole

In [8], the calculation of the dipole Pcν1 was per-
formed using Moving Background Perturbation Theory
(MBPT). This approach, introduced in [16], solves the
hydrodynamic Continuity and Euler Equations for CDM
and neutrinos with the neutrinos having a constant sound
speed proportional to their Fermi-Dirac dispersion. Here,
we use a new technique for describing the relative veloc-
ity that uses the linear response solution for the neutrino
density field in a moving background. This allows for the
full Fermi-Dirac distribution information to be utilized.

Formally, neutrinos obey the non-linear collisionless
Vlasov equation although fluid approximations are also in
common use [17]. Once linearized, the Vlasov equations
has an integral solution (see e.g. [18–20] for additional
discussions) of the form:

δν =
3

2
H2

0Ωm

∫ s

si

ds′a(s− s′)δm(k, s′)V (k(s− s′)/β)

(3)

where s is a time-like variable (ds = a2dt), δm ' δc is
the dominant density contrast and β = m/(kBTc) en-
codes the relevant neutrino properties: mass m and tem-
perature T = (4/11)1/32.725 K. V (x) is a function that
encodes the neutrino’s initial relativistic Fermi-Dirac ve-
locity distribution:

V (x) =

∫
dvv2(exp(v) + 1)−1j0(xv)∫

dvv2(exp(v) + 1)−1
. (4)

The fluid approximation also has an integral solution
with the same Eq. 3 but V (x) = j0(xcs) where cs is

the sound speed [20]. We have verified that we are able
to qualitatively reproduce the results in [8] using the fluid
linear response method.

If neutrinos and CDM have a relative velocity ~vr(z)
that is coherent (i.e. independent of position ~x), then
the two species will flow past one another and become

displaced ~d =
∫
~vr(z)dη with η the conformal time. Since

the relative velocity does not change much between red-
shift 5 and 0 (vr(z = 5) ' 2

3vr(z = 0) and also see Fig.
1 of [8]), we simplify the displacement and take a con-

stant relative velocity ~vr(z) ' ~vr(z = 0) = ~vr → ~d(η) =
~vr(η − ηi). In Fourier space, such a displacement leads
to an additional phase, which we take to be in the CDM:

δc(~k)→ δc(~k)e−i
~k·~d. Hence, the cross power can be writ-

ten as Pcν = 〈δcδ̃ν〉 with

δ̃ν =
3

2
H2

0Ωm

∫ s

si

ds′a(s− s′)

δc(k, s
′)V (k(s− s′)/β)e−i

~k·(~d(η)−~d(η′)) (5)

with η′ corresponding to s′. If we define µ = ~k · ~d/(kd)
and expand the exponential factor e−ikdµ ' 1 − ikdµ
we obtain the dipole component of the power spectrum,
(−iµ)Pcν1(z, k, µ) = −iµkvr〈δcδ̃ν1〉:

δ̃ν1 =
3

2
H2

0Ωm

∫ s

si

ds′a(s− s′)

δc(k, s
′)V (k(s− s′)/β)(η − η′) (6)

where we have factored out the generic contributions of
µ, vr and k from the integral. For comparison with our
numerical computation, we look for the antisymmetric
combination: Pcν1(µ) − Pcν1(−µ) which is twice that of
Eq. 6.

We plot power spectra in Fig. 2. Solid lines are those
computed from the TianNu simulation: blue is CDM, red
is neutrino and green is the cross power. Dashed curves
are those from the linear response calculations described
before, taking δc to be the square root of the HaloFit
power spectrum PHF [21]. Dotted curves are computed

from the CLASS code [14] assuming Pij = PHF
TiTj

T 2
m

with

Ti being the linear transfer functions. The filled grey re-
gion surrounding the HALOFIT power shows the sample
variance of the simulation. The dark grey curve cross-
ing the neutrino spectrum is the Poisson noise (which we
have subtracted out from the simulation neutrino power).
We see that there is a relatively noise free region as dis-
cussed earlier in §II.

The dipole correlation function is given by the Fourier
transform of the dipole power spectrum:

ξ1(r) =

∫
d3k(−iµ)P1(k)ei

~k·~r

=

∫
dkk2P1(k)/(2π2)j1(kr) (7)

where j1(kr) is another spherical Bessel function. In
order to prevent ringing on large scales, we include a
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FIG. 2. Cold dark matter (blue) and neutrino (red) auto
and cross (green) power spectra in the TianNu simulation at
redshift 0.01. Solid curves are computed directly from the
density fields. Dotted curves are computed via the CLASS
Boltzmann code. Dashed curves utilize linear response. The
dipole cross power spectrum is shown in purple. The straight
line ∝ k3 and shown in dark grey is the neutrino Poisson
noise. The shaded grey region is the sample variance due to
the simulation box size.

Gaussian cutoff, exp[−(k/(0.75h/Mpc))2], in the inte-
gral; since this cutoff suppresses power on small scales,
we apply a high pass filter in r to smoothly turn the
cutoff on around r ∼ 7.5Mpc/h. We perform this inte-
gral numerically and show the results in Fig. 3. We find
significant enhancement on small scales compared to [8]
indicating that there is additional clustering that should
be taken into account.

B. Numerical Dipole

There are many ways to compute correlation func-
tions [22]; in this work we adopt the method of hier-
archical grids. To illustrate this approach and validate
our code, we first tackle the monopole correlation func-
tion ξij(r) = 〈δi(~x)δj(~x+~r)〉 which requires the following
steps to compute the correlation function:

1. Interpolate the density contrasts to Cartesian N ×
N ×N grids yielding δi and δj at each grid cell.

2. Shift δj by one cell in ±x̂,±ŷ or ±ẑ and multiply
element-wise δi by the shifted δj and then sum over
the result. Add this value with each of the other
5 directions and then average over the entire sum
(e.g. divide by 6N3). This yields ξ(r) where r is
the physical distance between cells: L/N .

3. Repeat step 2 except shift in two dimensions (+x̂+
ŷ,−x̂+ŷ,−x̂−ŷ,+x̂−ŷ and permutations with ẑ for
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FIG. 3. Correlation functions computed using the linear re-
sponse method at redshift 0.01. The green curve is the cold
dark matter-neutrino cross correlation. Red is the neutrino
auto correlation function. Purple is the dipole correlation
function. The black curve is reproduced from [8] which ap-
proximated neutrinos as a perfect fluid with constant sound
speed.

12 total displacements) and average appropriately

(divide by 12N3). This yields ξ(r =
√

2L/N).

4. Repeat step 2 except shift in three dimensions (the
four displacements discussed in step 3 with ±ẑ in-
cluded for 8 total) and average appropriately (di-

vide by 8N3). This yields ξ(r =
√

3L/N).

5. If possible, re-interpolate to grids with fewer cells
(e.g. N/2, N/3 etc.) and repeat from step 2. If
not, conclude the computation.

This algorithm is straightforward to parallelize which we
have done with MPI. We note that averaging the grid to
obtain larger displacements can cause a small amount of
artifacting (after every third point when the densities are
re-interpolated). In principle this can be resolved by dis-
placing the grids by more cells rather than averaging, but
this incurs significantly larger computational costs. We
show the results of this algorithm in Fig. 4 alongside the
linear response predictions. We find excellent agreement
at all scales as expected.

We now describe our adaptation of this method to
the computation of the dipole correlation function. For-
mally, the dipole is a three point function: ξcν1(~r1, ~r2) =
〈δi(~x)δj(~x+ ~r1)v̂rel(~x+ ~r2) · r̂2〉. However, computing all
possible displacements would be a significant computa-
tional challenge. Instead, we perform the computation in
the local moving background limit where we only consider
~r2 = 0 or ~r1. From here on, we drop the now redundant
subscript ~r1 → ~r. Furthermore, we can use our knowl-
edge that the relative velocity is coherent on scales r �
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FIG. 4. The monopole neutrino auto correlation function
(red) and CDM-neutrino cross correlation function (green) at
redshift 0.01. Dots are computed numerically in real space.
Lines are reproduced from Fig. 3 for comparison.

Rrel such that ~vrel(~x) ' ~vrel(~x + ~r) on these scales. We
therefore define ~vavg(~x, ~x + ~r) = 1

2 [~vrel(~x) + ~vrel(~x+ ~r)]
and use that to define the dipole correlation function:

ξcν1 = 〈δc(~x)δν(~x+ ~r)v̂avg(~x, ~x+ ~r) · r̂〉 (8)

This correlation function can be quite straightforwardly
computed using the same algorithm as for the monopole
with only minor changes to the first two steps:

1. Interpolate the density contrasts and relative ve-
locity to Cartesian N ×N ×N grids yielding δi, δj
and ~vrel at each grid cell.

2. Shift δj by one cell in ±x̂,±ŷ or ±ẑ. Create a
shifted ~vrel and compute its average value with the
unshifted value yielding ~vavg. Element-wise multi-
ply δi, δj and ~vavg and sum over all cells. Add this
value with each of the other 5 directions and then
average over the entire sum (e.g. divide by 6N3).
This yields ξij1(r) where r is the physical distance
between cells: L/N .

To see that Eq. 8 yields a dipole signal, con-
sider the trivial seeming decomposition: ξcν1(r) =
1
2 [ξcν1(|+ ~r|) + ξcν1(| − ~r|)]. Now, ξcν1(| − ~r|) =
〈δc(~x)δν(~x − ~r)v̂avg(~x, ~x − ~r) · (−r̂)〉 where the average
is over all ~x. If we now perform a coordinate trans-
form ~x′ = ~x − ~r we immediately find: ξcν1(| − ~r|) =
〈δc(~x′ + ~r)δν(~x′)v̂avg(~x′ + ~r, ~x′) · (−r̂)〉. Since we are av-
eraging over all space it doesn’t matter whether it is
over ~x or ~x′ and we can drop the ′ notation. Since
v̂avg(~x, ~x + ~r) = v̂avg(~x + ~r, ~x) by symmetry, we find an

alternate form of Eq. 8:

ξcν1(r) =

1

2
〈[δc(~x)δν(~x+ ~r)− δν(~x)δc(~x+ ~r)] v̂avg(~x, ~x+ ~r) · r̂〉.

This form illustrates a couple of facts about the dipole.
First, it is only sensitive to correlations in the direction
of the relative velocity, as desired. Second, it is antisym-
metric in the density fields (although not overall, since
the relative velocity, and hence ~vavg, will change sign if
we swap c and ν). This means that generic large fea-
tures in the CDM field will cancel, i.e. ξcc1 ≡ 0, in stark
contrast to the monopole.
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FIG. 5. Top. Cold dark matter-neutrino dipole correlation
functions at redshift 0.01. The dots are computed using hier-
archical grid displacements of density and velocity fields. The
dashed curve is computed using linear response. The solid
curve is the linear response multiplied by the velocity correla-
tion function (black curve in lower panel). Bottom. Relative
velocity correlation function. The dots are computed using
hierarchical grid displacements. The solid curve is computed
as the Fourier transform of the relative velocity power spec-
trum. Both are normalized by their r = 0 value. The dashed
vertical line indicates the half-max velocity correlation length
of 18.7 Mpc/h.

We show the CDM-neutrino dipole in the direction of
the relative velocity as the purple points in the upper
panel of Fig. 5. In addition we show the response dipole
of Fig. 3 in dashed purple. On the largest scales there
is some disagreement. This is not a surprise: the moving
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background approximation assumes a coherent flow over
the entire box. In reality, it is only coherent to scales
r . Rrel and we therefore expect a smaller signal at dis-
tances larger than the coherence length. This is captured
in the numerical computation by ~vavg whose two terms
will incoherently add on scales above Rrel, but is not
included in our analytic computation. Fortunately, the
information on the coherency of the relative velocity is
precisely the relative velocity correlation function, ξrel(r),
which we show in the lower panel of Fig. 5. Thus, by
multiplying the linear response prediction by ξrel(r) we
obtain the solid purple curve in the upper panel of Fig.
5 which matches simulations remarkably well.

IV. DISCUSSION AND CONCLUSION

We have demonstrated that the CDM-neutrino dipole
exists and is well predicted via linear response for 50
meV mass neutrinos. However, the real space computa-
tion performed here relies on knowing both the neutrino
density and relative velocity. In [11] it was demonstrated
that the relative velocity direction is predictable with ei-
ther a CDM or halo density field. In fact, the neutrino
density field is also predictable [7]. However, this is as-
suming you the know the correct transfer function to use
which requires knowledge of the neutrino mass. Hence,
observing a single tracer of large scale structure, predict-
ing the neutrino density and relative velocity and then
computing the dipole cannot give you the neutrino mass.

On the other hand, the bulk motion between halos
and neutrinos is dominated by the cold dark matter mo-
tions (neutrinos staying rather homogeneous even at late
times). It therefore seems reasonable to predict just the
relative velocity field and utilize a second tracer of the
matter density field to be sensitive to Mν . In [8], the
proposed observable was to use two populations of halos
above and below a certain mass. While halo positions
and their masses are not directly observable, they can

be inferred via measurements of galaxy positions and lu-
minosities. A second option would be the lensing field
(which depends on the linear sum of CDM and neutrino
densities) and a galaxy survey (which depends primarily
on CDM). We intend to investigate this in subsequent
works. Finally, the halo Doppler shift described in [10]
could be used as an alternative or in conjunction with
the dipole correlation function discussed here.
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