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We propose to use degree-scale angular clustering of fast radio bursts (FRBs) to identify their
origin and the host galaxy population. We study the information content in auto-correlation of
the angular positions and dispersion measures (DM) and in cross-correlation with galaxies. We
show that the cross-correlation with Sloan Digital Sky Survey (SDSS) galaxies will place stringent
constraints on the mean physical quantities associated with FRBs. If ∼10,000 FRBs are detected
with <∼ deg resolution in the SDSS field, the clustering analysis with the intrinsic DM scatter of

100 pc/cm3 can constrain the global abundance of free electrons at z <∼ 1 and the large-scale bias
of FRB host galaxies (the statistical relation between the distribution of host galaxies and cosmic
matter density field) with fractional errors (with a 68% confidence level) of ∼ 10% and ∼ 20%,
respectively. The mean near-source dispersion measure and the delay time distribution of FRB
rates relative to the global star forming rate can be also determined by combining the clustering
and the probability distribution function of DM. Our approach will be complementary to high-
resolution (� deg) event localization using e.g., VLA and VLBI for identifying the origin of FRBs
and the source environment. We strongly encourage future observational programs such as CHIME,
UTMOST, HIRAX to survey FRBs in the SDSS field.

I. INTRODUCTION

Fast radio bursts (FRBs) are millisecond transients at
∼ GHz frequencies characterized by their large dispersion
measure (DM) of an order of 1000 pc cm−3 [1–9]. If the
DMs are mainly due to intergalactic propagation [10, 11],
FRBs are cosmological events at redshifts of 0.3 − 1.3.
Although various models have been proposed, e.g., [2, 12–
16], the origin is still uncertain.

Recently, Refs [17, 18] succeeded to localize a repeat-
ing FRB 121102 with a sub-milliarcsecond resolution us-
ing the Karl G. Jansky Very Large Array (VLA) and
the European Very Long Baseline Array Interferometry
(VLBI). The host galaxy was identified as a dwarf star-
forming galaxy at z = 0.19 [19], confirming that the FRB
source is at a cosmological distance. Furthermore, a pos-
sible persistent radio counterpart was identified for FRB
121102 [17, 18]. Such a precise localization is a direct
way to probe the physical properties of FRB sources and
their environment, and will be effective especially for re-
peating bursts. As for non-repeating FRB, a blind survey
using VLA will be time consuming to localize one event
(see Ref [20]).
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Upcoming FRB surveys with e.g., CHIME, UTMOST
[21], and HIRAX [22] will be able to detect ∼ 10, 000
FRBs per decade. Although the host galaxies cannot
be directly identified with the ∼ arcmin angular resolu-
tion, such a large number of FRBs can be used to probe
the global abundance and spatial distribution of missing
baryons [10, 11, 23, 24], physical properties of intergalac-
tic medium (IGM) [25], and three-dimensional clustering
of large-scale structure [26]. It is important to develop
frameworks for statistical analyses.

In this paper, we propose to use large-scale (∼ deg)
clustering of FRBs to study the statistical information
of the host environment. In addition to auto-correlation
analysis of FRB observables such as sky locations and
DMs [26], we consider cross-correlation analysis with
Sloan Digital Sky Survey (SDSS) galaxies. By doing this,
properties of FRB host galaxies, e.g., redshift distribu-
tion and clustering bias, can be statistically determined.
Furthermore, the cross correlation can be used to infer
the mean value and scatter of the DM contribution from
FRB host galaxies, which can then be used to distinguish
different models for FRBs.

The rest of the paper is organized as follows. In Sec-
tion II, we summarize FRB observables and their possi-
ble clustering properties. We present a theoretical model
of the FRB auto correlation in Section II B, and the
cross-correlation with galaxies in Section II C. The ex-
pected signal-to-noise ratio (S/N) of the correlations are
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derived in Section II D. In Section III, we perform a
Fisher analysis to study possible constraints obtained
from the clustering analyses. We also study how the con-
straints can be improved by combining another statistic
of FRBs, i.e., probability distribution function of DM, in
Section III A. Concluding remarks and discussions are
given in Section IV. Throughout the paper, we adopt
the standard ΛCDM model with the following parame-
ters; Ωm0 = 0.315, ΩΛ = 0.685, σ8 = 0.831, w0 = −1,
h = 0.672 and ns = 0.964, which are consistent with the
PLANCK 2015 results [27].

II. LARGE-SCALE CLUSTERING

A. FRB Observables

In this paper, we consider the dispersion measure
DMobs and angular position θ as observables of FRB1.

Angular number density of sources

For a given three-dimensional source distribution
ns(θ, z), the angular number density ns,2D(θ) can be
computed as

ns,2D(θ) =

∫ ∞
0

dz
χ2(z)

H(z)(1 + z)
ns(θ, z), (1)

where z is the redshift, χ(z) is the comoving distance,
and H(z) is the Hubble parameter. The factor of 1 + z
in Eq. (1) accounts for the effect of cosmological time
dilation. The average projected number density is then
given by

n̄s,2D =

∫ ∞
0

dz
χ2(z)

H(z)(1 + z)
n̄s(z), (2)

where n̄s(z) is the average comovimg number density of
sources at the redshift of z. From Eqs. (1) and (2), one
can define the angular over-density field as

δs,2D(θ) ≡ ns,2D(θ)

n̄s,2D
− 1,

=

∫ ∞
0

dzWs(z) δs(θ, z), (3)

Ws(z) =
1

n̄s,2D

χ2(z)

H(z)(1 + z)
n̄s(z). (4)

1 We note that the polarization and pulse profile are also important
observables, from which the magnetic field and turbulent motion
of gas in the line-of-sight can be inferred, respectively [8]. To this
end, however, the signal-to-noise ratio (S/N) of the FRB should
be high, and detection rate of such events will be limited.

As a fiducial model, we assume that n̄s(z) follows the
star-formation history ρ̇∗(z) as

n̄s(z) = Aρ̇∗(z) exp

[
− d2

L(z)

2d2
L(zcut)

]
, (5)

where dL(z) is the luminosity distance, the exponential
form represents an instrumental S/N threshold, and A is
determined by the normalization of Eq. (2). The star-
formation history can be parametrized as [28, 29]

ρ̇∗(z) ∝
α0 + α1z

1 + (z/α2)α3
, (6)

with α0 = 0.0170, α1 = 0.13, α2 = 3.3, and α3 = 5.3.
Our fiducial model (Eq. 5) is consistent with an esti-
mated redshift distribution of the observed FRBs [30] if
the redshift cutoff is set to be zcut = 0.5 [31]. Note that
our results are less sensitive to α2 and α3 since these
parameters determine the redshift distribution at z >∼ 2.
The dependence of zcut on the clustering analysis is sum-
marized in Section II D. There, we found that the choice
of zcut have a small impact on the signal-to-noise in auto
correlation of DM and the cross correlation of DM and
galaxies. In Section III, we examine another model of n̄s
taking into account a time delay of FRB rates relative to
the global star-forming rate (see Eq. 45).

Two-dimensional field of dispersion measures

DMobs(θ) is defined as the integral of number density
of free electrons along a line of sight, which can be de-
composed as

DMobs = DMIGM + DMhost + DMMW, (7)

where DMIGM, DMhost and DMMW represent the con-
tributions from the IGM, FRB host galaxies, and the
Milky way, respectively. DMhost includes the interstel-
lar medium of the host and near-source plasma. We as-
sume that DMMW(θ) for each direction is already de-
termined from Galactic pulsar observations [32] and can
be subtracted from DMobs(θ)2. In the following, we fo-
cus on the extragalactic DM field expressed as DMext =
DMIGM + DMhost.

For a fixed source redshift zs, DMIGM is given by

DMIGM(θ, zs) =

∫ zs

0

dz

H(z)

ne(θ, z)

(1 + z)2
, (8)

2 In real, the subtraction of DMMW is still uncertain and the im-
perfect subtraction can affect the measurement of the auto cor-
relation of DM. On the other hand, the cross correlation analysis
of DM with extragalactic objects should be insensitive to the
subtraction of galactic DM, since the galactic DM does not cor-
relate with the spatial distributions of extragalactic objects. As
we show in the following sections, the cross correlation of DM
and galaxies can play a central role to constrain the parameters
of FRB sources, indicating that the imperfect subtraction will
not affect our results significantly.
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where ne(θ, z) represents the three-dimensional number
density of free electrons at redshift z. The average den-
sity of IGM elections can be expressed as [25, 33]

n̄e(z) = n0(1 + z)3fe(z), (9)

where

n0 =
Ωbρcrit,0

mH
= 2.475× 10−7

(
Ωbh

2

0.022

)
cm−3, (10)

with Ωb being the baryon density normalized by the
critical density ρcrit,0 at z = 0 and h = H(z =
0)/(100 km/s/Mpc). Also,

fe =

[
(1− Y )fHII +

1

4
Y (fHeII + 2fHeIII)

]
, (11)

where Y ' 0.25 is the mass fraction of helium, fHII is the
ionization fraction of hydrogen, fHeII and fHeIII represent
the ionization fractions of singly and doubly ionized he-
lium, respectively. After helium reionization (occurred
at z ∼ 2− 3), we can approximate as fHII = 1, fHeII = 0,
and fHeIII = 1. In this case, fe = 0.88 and

DMIGM(θ, zs) = 1060 pc cm−3

(
fe

0.88

)(
Ωbh

2

0.022

)(
h

0.7

)−1

×
{∫ zs

0

dz
(1 + z)

E(z)
[1 + δe(θ, zs)]

}
, (12)

where E(z) = H(z)/H(z = 0) and δe is the over-density
field of free electrons. Note that Eq (12) with δe = 0
correspond to Eq (2) in Ref [11], which is commonly used.

The average DMIGM for an angular position θ can be
described as

DMIGM(θ) =

∫ ∞
0

dzWDM,IGM(z) [1 + δe(θ, z)] ,(13)

where

WDM,IGM(z) = 1060 pc cm−3

(
fe

0.88

)(
Ωbh

2

0.022

)(
h

0.7

)−1

× (1 + z)

E(z)

∫ ∞
z

Ws(z)dz. (14)

We next consider the contribution from host galaxies.
For galaxies at redshift of zs, DMhost is expressed as

DMhost(θ, zs) =

∫
d2θs τe(χs [θ − θs] |zs)

×n̄s(zs) [1 + δs(θs, zs)] (15)

where χs = χ(zs) and τe(x⊥|zs) represent the projected
number density of free electrons around the host galaxy
and the apparent angular size, respectively. In this pa-
per, the apparent angular size of τe is assumed to be small
enough, i.e. τe(x, z) ∝ δ(2)(x), where δ(2)(x) is the two-
dimensional delta function. This approximation should
be reasonable when one considers the large-scale cluster-
ing of DM with angular separation of >∼ 1 deg. Taking

into account the source distribution, the average DMhost

for an angular position θ is given by

DMhost(θ) =

∫ ∞
0

dzWDM,host(z) [1 + δs(θ, z)] , (16)

where

WDM,host(z) = τ̄e(z)Ws(z). (17)

In the above equation, τ̄e(z) represents the mean DM
from galaxies at redshift of z. Note that τ̄e is considered
to be averaged over the orientation and population of the
host galaxies. The redshift dependence of τ̄e should con-
tain the information of the environment of FRB sources,
which is poorly known. In this paper, we assume τ̄e(z)
to be constant, for simplicity. We take τ̄e = 100 pc cm−3

as a face value, that is consistent with the observational
constraint on the host galaxy of FRB 121102 [19].

According to Eqs (13) and (16), DMIGM and DMhost

can be expressed as the integral of over-density field of
electron number density δe and source number density δs
along a line of sight, respectively. In order to compute
a possible clustering signal of these DMs, we adopt the
linear bias model. In the linear bias model, a given over-
density field δα is expressed as

δα(x) = bαδm(x), (18)

where δm represents the overndensity of cosmic matter
density. In this model, the distribution of δα can be
determined by δm, but the amplitude of their fluctuation
is biased by a factor of bα. The proportional factor bα is
referred to as the bias factor throughout this paper. The
linear bias model is thought to be valid for the clustering
analysis on large scales greater than ∼ 10 Mpc [34].

B. FRB auto correlation

We then consider the large-scale clustering of FRBs.
In general, clustering information of a two-dimensional
field f(θ) is encompassed in the two-point correlation
function;

ξff (θ) = 〈f(φ)f(φ+ θ)〉 − 〈f(φ)〉〈f(φ+ θ)〉. (19)

The power spectrum Cff (`) defined as

Cff (`) =

∫
d2θ ξff (θ) exp (−i` · θ) , (20)

is commonly used in clustering analyses. Here ` = 2π/θ
is the multipole. In this paper, we adapt the flat-sky
approximation.

Using Eqs. (3) and (4) with the Limber approximation
[35], we can compute the angular power spectrum of the
over-density field of FRB sources as,

Css(`) =

∫
dzW 2

s (z)
H(z)

χ2(z)

× b2FRBPm

(
`+ 1/2

χ
, z

)
, (21)
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where bFRB is the bias factor of δs relative to the un-
derlying matter over-density field δm and Pm(k, z) rep-
resents the three-dimensional power spectrum of δm at
redshift z. We assume that Pm(k, z) is the linear mat-
ter power spectrum. The approximation of using linear
matter power spectrum is valid at sufficiently large scales
of k <∼ 0.1h/Mpc. The linear matter power spectrum is
computed with CAMB [36]. We also assume linear bias of
δs(θ, z) = bFRBδm(θ, z) and compute the angular power
spectrum of the extragalctic DM field DMext as

CDM−DM(`) = CIGM−IGM(`) + CIGM−host(`)

+Chost−host(`), (22)

CIGM−IGM(`) =

∫
dzW 2

DM,IGM(z)
H(z)

χ2(z)

× b2ePm
(
`+ 1/2

χ
, z

)
, (23)

CIGM−host(`) =

∫
dz 2WDM,IGM(z)WDM,host(z)

H(z)

χ2(z)

× bebFRBPm

(
`+ 1/2

χ
, z

)
, (24)

Chost−host(`) =

∫
dzW 2

DM,host(z)
H(z)

χ2(z)

× b2FRBPm

(
`+ 1/2

χ
, z

)
, (25)

where be = δe/δm is the bias factor of electron density
field.

Figure 1 shows the auto power spectrum of DMs,
CDM−DM. Here we set bFRB = 1.3, be = 1, and
τ̄e = 100 pc cm−3. Note that bFRB = 1.3 is consis-
tent with star-forming galaxies at z <∼ 1 [37]. In this
case, the clustering of IGM will dominate. We find that
CIGM−host becomes larger than CIGM−IGM at ` = 100
if bFRBτ̄e

>∼ 680 pc cm−3. The dashed line in Figure 1
represents the shot noise induced by the intrinsic scat-
ter of DM around host galaxies σDM,host. The shot noise
NDM−DM is computed as

NDM−DM =
σ2

DM,host

n̄s,2D
(26)

= 1.95
(
pc cm−3

)2( σDM,host

100 pc cm−3

)2

×
(

n̄s,2D

1 deg−2

)−1

. (27)

With a FRB number density of n̄2D,s
>∼ 1 deg−2, the

signal CDM−DM is larger than the noise NDM−DM at ` <∼
100 if σDM,host

<∼ 100 pc cm−3. We study the information
content of CDM−DM in more detail in Section II D.

C. Cross correlation with galaxies

The clustering analysis of the FRB auto correlation
can give some constraints on the model parameters of

FIG. 1. Auto power spectrum of dispersion measure (DM).
Colored lines represent contributions from the auto correla-
tion of the IGM component (red), the cross correlation of the
IGM and host-galaxy components (green), and auto correla-
tion of the host-galaxy component (blue). The solid black line
shows the total power. The mean DM around host galaxies τ̄e
is set to be 100 pc cm−3. The dashed gray line indicates the
shot noise induced by the intrinsic scatter of DM around host
galaxies σDM,host. Here we assume the average source number
density of n̄s,2D = 1 deg−2 and σDM,host = 100 pc cm−3.

Sample Redshift range n̄g (h/Mpc)3 Galaxy bias bg

LOW-Z 0.15 < z < 0.43 3× 10−4 1.7

CMASS 0.43 < z < 0.70 3× 10−4 1.9

eBOSS 0.70 < z < 1.60 3× 10−4 1.3

TABLE I. Summary of galaxy samples assumed in this pa-
per. The galaxy bias of LOW-Z and CMASS are found to be
consistent with the previous works in Refs [39, 40].

FRB sources and IGM, but they will be degenerate. We
here consider cross-correlation analysis with galaxies in
order to put additional constraints.

In general, galaxies trace the large-scale structure in a
biased manner. The bias factor depends on the type of
galaxies. Thus, the host galaxies of FRBs and their red-
shift evolution can be statistically inferred from spatial
cross-correlation between FRBs and galaxies. A simi-
lar idea has been proposed in Ref [38] to constrain the
redshift-distance relation of gravitational-wave sources.
In principle, the three-dimensional information can be
extracted from observables of FRBs alone; Ref [26] pro-
poses that DMs can be used as the distance indicator as
similar to redshift.

Let us consider a spectroscopic sample of galaxies with
redshift ranging from zi,min < z < zi,max. The over-
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FIG. 2. Cross power spectra of FRB observables and galaxies. The upper panels show the cases for dispersion measures. The
solid and dotted lines correspond to the contribution from the IGM and host galaxies, respectively. The bottom panels show
the cases for angular number density of FRBs (green lines). We also show the auto power spectra of FRBs (blue lines) and
galaxies (red lines) for comparison. Note that the similar shape among cross power spectra is expected in the linear bias model.
In the linear bias model, the distribution of the relevant field such as electron number density is assumed to follow the matter
density field.

density field of galaxies is expressed (in a similar way to
Eq. 3) as

δig,2D(θ) =

∫ ∞
0

dzWg,i(z)δg,i(θ, z), (28)

where δg,i represents the three-dimensional over-density
field of galaxies. The window function Wg,i(z) is

Wg,i(z) =
1

n̄ig,2D

χ2

H(z)
n̄g(z)

×H(z − zi,max)H(zi,min − z), (29)

where n̄g(z) is the average comoving number density of
galaxies, H(x) is the Heaviside function, and n̄ig,2D =∫ zi,max

zi,min
dz χ2n̄g(z)/H(z).

Using the Limber approximation [35], the cross power
spectrum of δig,2D and δs,2D can be given as

Csg,i(`) =

∫
dzWs(z)Wg,i(z)

H(z)

χ2(z)

× bFRBbg,iPm

(
`+ 1/2

χ
, z

)
, (30)

where we assume linear bias of δg,i(θ, z) = bg,iδm(θ, z).
For each galaxy sample (identified by the index i), the
correlation arises from the clustering in a finite redshift
range of zi,min < z < zi,max. Therefore, Csg,i(`) contains
the information of the source distribution Ws(z). We
can also compute the cross power spectrum of δig,2D and
DMext as

CDM−g,i = CIGM−g,i + Chost−g,i, (31)

where

CIGM−g,i =

∫
dzWDM,IGM(z)Wg,i(z)

H(z)

χ2(z)

× bebg,iPm
(
`+ 1/2

χ
, z

)
, (32)

Chost−g,i =

∫
dzWDM,host(z)Wg,i(z)

H(z)

χ2(z)
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× bFRBbg,iPm

(
`+ 1/2

χ
, z

)
, (33)

which also contains the information of source distribution
Ws(z). Moreover, the mean DM from host galaxies τ̄e
and the linear bias of sources bFRB can be inferred from
these power spectra.

In this paper, we consider three spectroscopic sam-
ples of galaxies from SDSS. These include two samples
from the SDSS-III Baryon Oscillation Spectroscopic Sur-
vey (BOSS), named LOW-Z and CMASS [41]. We also
consider emission-line galaxies to be catalogued by the
SDSS-IV extended Baryonic Oscillation Spectroscopic
Survey (eBOSS) [42]. The characteristics of these sam-
ples are summarized in Table I.

Figure 2 shows the expected cross power spectra. We
assume bFRB = 1.3, be = 1, and τ̄e = 100 pc cm−3 as
in Figure 1. For both Csg,i and CDM−g,i, the highest
redshift bin has the smallest power. This is because we
set an exponential cutoff for the FRB source distribution
as zcut = 0.5 (see Eq. 5). When the mean DM from
host galaxies is set to be 100 pc cm−3, the contribution
from IGM is dominant in the range of 0.15 < z < 0.70,
while the contribution from host galaxies can become im-
portant at z > 0.70. We note that the contribution from
IGM is proportional to the integration term

∫∞
z

dzWs(z)
that is decreasing quickly for higher redshift in the pres-
ence of the exponential cutoff as in Eq. (5).

D. Signal-to-noise ratio

The S/N of angular power spectrum essentially deter-
mines to what extent we can extract source information
from the clustering analysis. For given multiple field X
and Y , the S/N of cross power spectrum CXY (`) can be
computed as[

S

N

]2

(`max) =
∑

`i,`j<`max

Cov−1
XY [`i, `j ]

×CXY (`i)CXY (`j), (34)

where CovXY [`i, `i] represents the covariance matrix be-
tween two modes of `i and `j . We assume that all the ob-
servable fields follow Gaussian distribution. This is rea-
sonable since our primary focus is on large-scale modes
( >∼ 1 deg) for which the linear perturbation theory gives
accurate results. For Gaussian fields X and Y , the co-
variant matrix is described as

CovXY [`i, `j ] =
δij

(2`i + 1)∆`fsky

[
Cobs,XX(`i)Cobs,Y Y (`i)

+C2
obs,XY (`i)

]
, (35)

where fsky is the observed sky fraction. We consider
binned power spectra with a bin width of ∆`. In Eq. (35),
the observed spectra of Cobs,XX , Cobs,Y Y and Cobs,XY in-
clude both clustering signal and shot noise. We consider

FIG. 3. Signal-to-noise ratio (S/N) of the auto correlation of
DMs. In the top panel, we plot the S/N as a function of the
average source number density n̄s,2D for a fixed intrinsic scat-
ter of DM around host galaxies, σDM,host = 100 pc cm−3. In
the bottom panel, we plot the S/N as a function of σDM,host

for n̄s,2D = 1 deg−2. In both, we set the maximum multi-
pole to be `max = 200 and assume a sky coverage of 10,000
deg2. The dotted lines in both panels represent the case in
the absence of the shot noise (i.e., σDM,host = 0 pc cm−3).

three fields, δs,2D, DMest, and δig,2D, and then calculated
the observed spectra as follows:

Cobs,ss(`) = Css(`) +
1

n̄s,2D
(36)

Cobs,DM−DM(`) = CDM−DM(`) +
σ2

DM,host

n̄s,2D
, (37)

Cobs,gi−gj(`) = δij

[
Cgg,i(`) +

1

n̄g,2D

]
, (38)
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FIG. 4. S/N of the cross correlation of FRBs and three spectroscopic galaxy samples as a function of the average source
number density of FRBs. The top and bottom panels show the S/N of Csg,i and CDM−g,i, respectively. In the bottom panels,
we assume the intrinsic scatter of DM to be σDM,host = 100 pc cm−3. The dotted lines represent the case with σDM,host = 0
and n̄s,2D →∞.

Cobs,sg,i(`) = Csg,i(`), (39)

Cobs,DM−g,i(`) = CDM−g,i(`). (40)

The definitions of Css, CDM−DM, Csg,i, and CDM−g,i are
shown in Section II B and II C, and the galaxy spectrum
is defined as

Cgg,i(`) =

∫
dzW 2

g,i(z)
H(z)

χ2(z)

× b2g,iPm
(
`+ 1/2

χ
, z

)
. (41)

Note that the shot noise is absent in the cross correlation
analysis. In the following, we set the survey area to be
10,000 deg2, which roughly corresponds to the area of
SDSS. We set `max = 200, `min = 10 and ∆` = 50 as
constant and investigate the clustering signals of scales
larger than 2π/`max = 1.8 deg. Following results are not
sensitive to the choice of ∆` since the power spectra have
simple shapes as shown in Figures 1 and 2.

Auto correlation of dispersion measures

We first consider the auto correlation of DMs. We
here adopt our fiducial model of CDM−DM(`) as shown
in Figure 1. We then examine the effect of shot noise on
the detectability of the clustering signal.

The top panel in Figure 3 shows the S/N of CDM−DM

for various average source number densities. For an in-
trinsic scatter of σDM,host = 100 pc cm−3, the clustering
signal can be identified with a 5σ significance by detect-
ing ∼ 1000 FRBs. Once 10,000 FRBs are observed, the
S/N can be ∼ 10, corresponding to a measurement of
CDM−DM with a ∼ 10 percent accuracy. The effect of
σDM,host on the detectability of CDM−DM is shown in the
bottom panel where we assume 10,000 FRBs are observed
in a 10,000 deg2 field. According to this figure, we can
measure CDM−DM with a 10− 20 percent accuracy even
if σDM,host is of an order of 100 pc cm−3.
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FIG. 5. Dependence of the S/N of FRB clustering signals on the survey parameters. In each panel, different color lines represent
the different values of redshift cutoff zcut in Eq (5), corresponding to different detection thresholds of radio survey. We set
the maximum multipole as `max = 200 and the intrinsic scatter of DM as σDM,host = 100 pc cm−3. The left, medium, and
right panels show the cases of auto correlation of DMs (CDM−DM), cross correlation of DMs and galaxies (CDM−g), and cross
correlation of positions between sources and galaxies (Csg), respectively.

Cross correlation with galaxy distribution

We next consider the cross correlation with galaxy dis-
tribution. When computing the S/N, we adopt the fidu-
cial model as shown in Figure 2. Figure 4 summarizes
the S/N of cross power spectra as a function of average
source number density.

The upper panels show the cases of cross correlation
between FRB sources and galaxies, while the bottom
panels are for the correlation between DMs and galax-
ies. Compared with the auto correlation (Figure 3), we
require a larger number of events to detect the cluster-
ing signals; 10,000 events are necessary to detect Csg
for LOW-Z and CMASS samples with a ∼ 3σ signif-
icance, whereas it is difficult to detect the signal for
the highest redshift bin. We also find that the shot
noise will dominate for average source number density
of n̄s,2D < 10 deg−2.

The bottom panels show that the S/N of CDM−g can
be close to the cosmic-variance limit with 10,000 FRBs in
the 10, 000 deg2 field, resulting in the measurement with
a ∼ 5 − 10 percent accuracy for LOW-Z and CMASS
samples and ∼ 50 percent accuracy for eBOSS sample.
The effect of σDM,host on the detectability of CDM−host is
similar to the case of CDM−DM (Figure 3 bottom). The
S/N will be degraded by a factor of 3−5 when we increase
σDM,host from 20 pc cm−3 to 100 pc cm−3.

We should note that a measurement of Csg with a 5
% accuracy roughly leads to constrain bFRBWs(zg) with
a similar accuracy where zg represents the redshift of
a given galaxy sample (see also Eq. 30). Likewise a

measurement of CDM−g with a 5 % accuracy constrains
beWDM,IGM(zg) with a ∼ 5% accuracy.

Dependence on the FRB survey configuration

So far we consider a specific detection threshold in FRB
clustering analyses. In our theoretical framework shown
in Section II, the redshift cutoff zcut in Eq (5) represents
the detection threshold of the FRB survey; a smaller zcut

corresponds to a lower sensitivity. Radio surveys can
be roughly categorized into two types: (i) a low detec-
tion threshold with a large sky coverage and (ii) a high
detection threshold with a small sky coverage. The for-
mer corresponds to “imaging” survey, while the latter
is “beam-formed” survey. Here we calculate the S/N of
FRB clustering signals as a function of the total survey
area and zcut in order to demonstrate which survey strat-
egy (beam-formed or imaging) will be suitable.

Figure 5 summarizes the S/N of three clustering anal-
yses CDM−DM, CDM−g, and Csg as a function of the total
area and zcut. In this figure, we assume 10,000 detections
and adopt the fiducial model of clustering signals. For
cross correlation analyses of CDM−g and Csg, we properly
combine three redshift bins of galaxies that are given by
Table I. In general, a larger sky coverage improves the
S/N more efficiently and the effects of the cutoff zcut are
not significant. This is simply because the statistical un-
certainty of the clustering analyses scales with inverse
of survey area. Although a hypothetical survey with a
larger source number density in the same sky coverage



9

Analysis Parameters of interest Physical meaning Fiducial value

CDM−DM, CDM−g be The fraction of free electrons in the unit of 0.88 1

CDM−DM, CDM−g bFRBτ̄e The bias of sources times mean DM around source population 1.3× 100 pc cm−3

Csg bFRB The bias of sources 1.3

CDM−DM, CDM−g, Csg Ws(z) The redshift distribution of sources of FRBs Eq (5)

TABLE II. Set of parameters that will be constrained by large-scale clustering of FRBs. In principle, the auto correlation of
source number density field Css should also contain some information of Ws(z) and bFRB. However, it is expected to be difficult
to detect the signal from Css even with ∼ 10, 000 FRBs.

FIG. 6. Fractional errors of parameters as a function of average source number density and intrinsic scatter of DM around host
galaxies σDM,host. The left panel shows the case for bFRBτ̄e and the right is for be. In both panels, the dashed lines represent the
constraints only from the auto-correlation of DMs and the solid lines are for the combined analysis with the cross correlation
with galaxy distribution. The color difference corresponds to the difference of σDM,host: 20 pc cm−3 in red, 100 pc cm−3 in
green and 500 pc cm−3 in blue.

can suppress the shot noise in clustering signals, the sta-
tistical uncertainty will always dominate.

The effects of zcut will appear in the clustering signals
of CDM−DM and CDM−g only when the sky coverage will
be close to ∼ 10, 000 squared degrees. This is because
that CDM−DM and CDM−g is mainly determined by low-
redshift structures. According to the left and medium
panels, the S/N of CDM−DM and CDM−g will vary from
∼ 10 to ∼ 20 for zcut = 0.3 − 1.0. This suggests that
the difference of zcut will induce a ∼ 1/20 − 1/10 ∼ 5%
effect on the clustering signals. It should be noted that
the S/Ns converge for zcut

>∼ 0.5.

The S/N of Csg will be affected by zcut when the sky
coverage is larger than ∼ 100 squared degrees. The sta-
tistical uncertainty of Csg is mainly determined by the
poisson term (source number density) when 10,000 detec-
tions are assumed. Among the galaxy samples in Table I,
LOW-Z and CMASS contribute the most to the signal of
Csg since the structures at lower-redshift have a larger

clustering amplitude at degree scales. We find that low-
ering zcut can improve the S/N of Csg more efficiently.
For example, with a sky coverage of 10,000 square de-
grees, the S/N of Csg with zcut = 0.3 is larger than that
with zcut = 1.0 by a factor of ∼ 3.

From the above results, we conclude that future imag-
ing surveys with zcut ∼ 0.5 and a larger sky coverage as
possible are suitable for large-scale clustering analyses of
FRBs.

III. PARAMETER CONSTRAINTS

In Section II D, we show that ∼ 10,000 FRBs over
the sky coverage of ∼ 10,000 deg2 will enable to detect
the large-scale clustering signals of FRBs with a high
S/N. Here we investigate what we can learn from such
precise measurements. We perform a Fisher analysis of
the FRB auto correlation and the cross correlation with
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FIG. 7. The expected constraint in τ̄e−bFRB plane. The green
filled region shows the 68% confidence region from CDM−DM

alone, while the blue hatched region represents the 68% con-
fidence region from the combined analysis with Cgg, CDM−g

and CDM−DM. The red is for the combined analysis with Cgg

and Cgs. In this figure, we assume 10,000 events with the
sky coverage of 10,000 deg2 and the intrinsic scatter of DM
around host σDM,host = 20 pc cm−3.

SDSS galaxies in order to quantify the constraints on the
model parameters. The details of our Fisher analysis are
summarized in Appendix A and the parameters of inter-
est are shown in Table II3.

Figure 6 shows the dependence of the determination
accuracy of bFRBτ̄e and be with respect to n̄s,2D and
σDM,host. We find that one can determine be with an
uncertainty of 30-1000 percent by CDM−DM alone with
∼10,000 FRBs (dashed lines in the right panel). On
the other hand, CDM−DM will not put a meaningful con-
straint on bFRBτ̄e if the IGM contribution is dominant
as in our fiducial model (dashed lines in the left panel).
Importantly, by combining the cross correlation CDM−g
and Cgg, the constraints on bFRBτ̄e and be can be signif-
icantly improved by a factor of ∼ 10 for a wide range of
n̄s,2D and σDM,host (solid lines).

Only using CDM−DM, CDM−g and Cgg, the constraints
on bFRB and τ̄e are strongly degenerate. This degener-
acy is resolved by adding Csg as demonstrated in Fig-
ure 7. With 10,000 FRBs in the 10,000 deg2 field and

3 It’s worth mentioning that the forecast in the Fisher analysis
depends on the choice of fiducial value of the parameters in prin-
ciple. Nevertheless, the expected error in FRB parameters is
found to be less affected by the choice of fiducial value if we set
n̄s,2D ' 1 deg−1 and σDM,host ' 100 pc cm−3. This is because
the statistical uncertainty of clustering signals is mainly deter-
mined by the Poisson noise in our case and the clustering signal
is assumed be proportional to the parameters of be, bFRB and
bFRBτ̄e.

σDM,host = 20 pc cm−3, the fractional error of bFRB and
τ̄e can become as small as ∼ 20% and ∼ 70%, respec-
tively. More generally, the fractional errors of bFRB and
bFRBτ̄e are approximately given as

∆bFRB

bFRB
' 0.2

(
n̄s,2D

1 deg−2

)−0.5

, (42)

∆(bFRBτ̄e)

bFRBτ̄e
' 0.7x2

{
0.05

(
σDM,host

20.0 pc cm−3

)−0.3

+1/x2
}
, (43)

where x in Eq. (43) is defined as

x =

(
σDM,host

20.0 pc cm−3

)(
n̄s,2D

1 deg−2

)−1/2

. (44)

Note that the bias factor of star-forming galaxies and
passive galaxies at z < 1 are bFRB = 1.3 and = 1.7− 1.9,
respectively [43] and the difference is also ∼ 20 %. Thus,
the host galaxy type of FRBs can be statistically inferred
once ∼ 10,000 FRBs are detected in the 10,000 deg2 field.

So far we have assumed that the FRB source distri-
bution follows the star-formation history (Eqs. 5 and 6).
Since CDM−DM, CDM−g and Csg contain information of
Ws (Eqs. 22, 30, and 32), the redshift distribution of FRB
sources can be also constrained from the clustering anal-
ysis, in principle. As a representative example, we here
consider a time delay distribution f(∆t) ∝ (∆t)−αt with
∆t > 20 Myr. For a given αt, we can compute the source
distribution by convoluting the delay time distribution
and the global star-formation history:

n̄s,delay(z;αt) = A exp

[
− d2

L(z)

2d2
L(zcut)

]
×
∫ ∞
z

dz′ ρ̇∗(z
′;α1 = 0.13)

×
(
t(z)− t(z′)

∆tnorm

)−αt dt

dz′
(45)

where t(z) is the age of universe as a function of z, ∆tnorm

is the normalization factor for the delay time distribution
and ρ̇∗(z) is given by Eq. (6). By comparing our fiducial
model (Eq. 5) and n̄s,delay(z;αt), we find the approxi-
mated correspondence between two models: αt = 0.5 in
Eq. (45) corresponds to α1 = 0 in Eq. (5), while αt = 1.0
in Eq. (45) is for α1 = 0.2× 0.13 in Eq. (5).

We find that the fractional error of α1 scales as

∆α1

α1
' 4.0

(
n̄s,2D

1 deg−2

)−0.5

, (46)

with Csg + Cgg for the sky coverage of 10,000 deg2.
Eq (46) shows that we require >∼ 160, 000 events on
10,000 deg2 to constrain on αt < 0.5, whereas 4 × 106

events enable us to constrain on αt < 1. It should be
noted that the model of αt = 1 roughly corresponds to
the neutron-star merger scenario [44].
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FIG. 8. Dependence of the probability distribution function (PDF) of observed DM on FRB source distribution (left) and DM
around host galaxies (right). In both panels, the black line shows our fiducial case with a source distribution of Eq. (5) and
τ̄e = 0. The colored lines in left panel represent the model PDF with different values of α1 (Eq. 5). The red and green lines in
right panel show the cases with τ̄e = 100 pc cm−3 and σDM,host = 100 pc cm−3 or 20 pc cm−3, respectively. The error bars in
both panels show the poisson error for 10,000 events.

A. Combining DM distribution function

As shown in the previous section, even 10,000 FRBs
are not enough to obtain meaningful constraints on the
redshift distribution of FRB sources if we only uses the
large-scale clustering. In order to improve the constraint,
we need additional information other than two-point cor-
relation functions.

One of the simplest FRB statistics is one-point dis-
tribution function or probability distribution function
(PDF) of DM. It is suggested that the DM PDF con-
tains rich cosmological information [23]. For example,
Ref. [45] proposes to use the DM PDF to determine the
formation mechanism of FRBs. Here we explore how the
constraint on the redshift distribution of FRB sources
can be improved by combining the DM PDF.

The left panel of Figure 8 shows the DM PDFs with
different source redshift distributions4. The black line
shows our fiducial model with α1 = 0.13 in Eq. (5), while
the red and green lines are for α1 = 0 and 0.13 × 0.2,
respectively. As expected, the mean value of DM be-
comes smaller for a larger delay time. The error bar in
Figure 8 represents the poisson error for 10,000 FRBs.
The left panel clearly shows the statistical power of DM
PDF to constrain the source redshift distribution. As in
Section III, the model of αt = 1 roughly corresponds to
the neutron-star merger scenario; the DM PDF of 10000
events is sufficient to constrain the various time-delayed

4 The details of our modeling of cosmological DM are summarized
in Appendix B.

models in Eq (45). However, we should stress that in
the left panel we neglect the contribution from DMhost,
which in general affect the observed DM PDF.

The right panel in Figure 8 shows the impact of DMhost

on DM PDF. As for the PDF of DMhost, we assume that
DMhost follows Gaussian distribution with mean of τ̄e
and scatter of σDM,host. The black line in the right panel
is the same as that in the left panel while the red and
green lines correspond to the cases with τ̄e = 100 pc cm−3

and σDM,host = 100 pc cm−3 or 20 pc cm−3, respectively.
In the right panel, we set the source distribution as our
fiducial model (Eq. 5). Of course, the mean value of
DM becomes larger when including DMhost. One can
see that the effects of σDM,host will be minor as far as
σDM,host

<∼ τ̄e.

Figure 8 shows that DM PDF is a powerful probe of
the redshift distribution of FRB sources. Note, however,
that expected constraints from DM PDF are dependent
on the intrinsic properties of DMhost. Unfortunately, our
result indicates that it is difficult to determine the source
distribution and the mean host DM with PDF alone. In
contrast, the large-scale clustering of FRBs has a good
sensitivity for τ̄e and σDM,host. Therefore, by combining
the large-scale clustering and PDF of FRBs, the redshift
distribution of FRB sources can be also constrained with
a similar accuracy to τ̄e in Figure 7. In order to study
more detailed information content in the combined anal-
ysis, we require more accurate modeling of FRBs and
leave it for our future work.
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IV. CONCLUSION AND DISCUSSION

In this paper, we have studied the information content
in large-scale clustering of FRBs at degree scales. We
have developed a theoretical framework for the clustering
analyses based on the standard theory of structure for-
mation. In addition to the two-point clustering of FRB
source number density and extragalactic DMs, we have
considered the cross correlation with galaxy distributions
to identify the origin of FRBs. Assuming a reasonable
parameter set, we have investigated the S/N of clustering
signals and made a forecast for expected constraints on
the model parameters obtained by future radio transient
surveys. Our main findings are summarized as follows:

1. The auto correlation of DMs consists of contribu-
tions from the clustering of IGM, the clustering of
host galaxies, the clustering due to overlapped red-
shift distribution between IGM and host galaxies,
and the shot noise originating from the intrinsic
scatter of DM around host galaxies. Among these,
the IGM clustering is likely to be dominant in the
auto correlation of DMext. The typical amplitude is
expected to be ∼ 0.1−10 [pc cm−3]2 in the range of
` ∼ 10−200. The clustering between IGM and host
galaxies can be significant if the mean DM around
host galaxies τ̄e is ∼ 600− 700 pc cm−3.

2. The S/N of auto correlation of DMs depends on the
average source number density n̄s,2D and the in-
trinsic scatter of DM around host galaxies σDM,host

for a fixed survey area. Assuming a hypothetical
survey with the sky coverage of 10, 000 deg2 and
σDM,host = 100 pc cm−3, we estimate that 1,000
events are sufficient to detect the clustering sig-
nal of IGM with a 3σ significance. A sample of
10,000 FRBs enable us to measure the signal with
a ∼ 10 percent accuracy at degree scales. A sim-
ilar S/N can be obtained in the cross correlation
of DMs and the galaxy distribution from existing
spectroscopic galaxy samples. The cross correla-
tion of FRBs with galaxy distributions in the red-
shift range of 0.15 < z < 1.6 can be detected with
a >∼ 3σ confidence level if ∼ 10,000 FRBs are ob-
served.

3. Measurement of large-scale clustering of FRBs can
place constraints on the fraction of free elections,
the environment of the source population(s), and
the mean DM around host galaxies. The DM auto-
correlation can be used to constrain the global
abundance of free electrons at z < 1 with a level
of ∼ 70 percent, if 10,000 FRBs are observed over
10, 000 deg2 and the intrinsic scatter of DM is as-
sumed to be σDM,host = 100 pc cm−3. The cross
correlation with galaxy distributions will improve
the constraint by a factor of ∼ 10. The cross cor-
relation of FRBs and galaxy distributions will help

determining the linear bias of the source population
bFRB with a level of ∼ 20 percent. If we add the
information from the DM-galaxy cross correlation,
it is possible to put a tight constraint on the mean
DM around host galaxies by statistical analysis in
future transient surveys (see Figure 7).

Our clustering analysis can be useful to identify the
origin of FRB. In some models, FRBs are associated
with newborn or young compact stellar objects, e.g, fast-
spinning pulsars or magnetars [12–14]. In this case,
FRBs typically occur in star-forming galaxies and the
bias factor will be bFRB ∼ 1.3. The first identified FRB
host of FRB 121102 may belong to this group [19]. On
the other hand, e.g., in the compact binary merger sce-
narios [15, 16], FRBs will preferentially occur in more
evolved galaxies and the bias factor can range from
bFRB = 1.7− 1.9. In a more exotic scenario, e.g., evapo-
ration of primordial black holes [2], the bias factor could
be bFRB ∼ 1. Such a difference of the bias factor can be
distinguished by the clustering analysis once ∼10,000 of
FRBs are detected in a sky area of ∼ 10, 000 deg2. An-
other key to distinguish the FRB source candidates is the
delay time distribution, which can be also constrained by
the combined analysis of clustering and DM distribution
function (see Figure 8). Although high precision local-
ization of FRBs with long-baseline observatories is still
the most robust way to probe physical properties of FRB
host galaxies and near source regions, a drawback is the
small detection efficiency due to the limited field-of-view.
Our statistical approach only requires an angular resolu-
tion of ∼ deg and will be complementary and powerful
once ∼ 100− 1000 of FRBs are detected annually.
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Appendix A: Fisher Analysis

Let us briefly summarize the Fisher analysis. For a
multivariate Gaussian likelihood, the Fisher matrix Fij
can be written as

Fij =
1

2
Tr
[
AiAj + C−1Hij

]
, (A1)

where Ai = C−1∂C/∂pi, Hij = 2(∂µ/∂pi)(∂µ/∂pj), C
is the data covariance matrix, µ represents the assumed
model, and pi describes parameters of interest. The



13

Fisher matrix provides an estimate of the error covari-
ance for two parameters as

〈∆pα∆pβ〉 = (F−1)αβ , (A2)

where ∆pα represents the statistical uncertainty of pa-
rameter pα.

In the present study, we consider only the second term
in Eq. (A1). Because C is expected to scale inversely to
the survey area, the second term will be dominant for a
large area survey. We consider the following parameters
to vary: p = {bg,1, bg,2, bg,3, bFRB, α1, bFRBτ̄e, be} where
bg,i is the galaxy bias for i-th spectroscopic sample given
by Table I and α1 controls the redshift dependence of
Ws(z) (also see Eq (6)). The fiducial values of p are set
to be pfid = {1.7, 1.9, 1.3, 1.3, 0.13, 130 pc cm−3, 1}.

We construct the data vector D from a set of binned
spectra CDM−DM, CDM−g, Cgg and Cgs as,

Di = {CDM−DM(`1), ..., CDM−DM(`10),

CDM−g,1(`1), ..., CDM−g,1(`10),

CDM−g,2(`1), ..., CDM−g,2(`10),

CDM−g,3(`1), ..., CDM−g,3(`10),

Cgg,1(`1), ..., Cgg,1(`10),

Cgg,2(`1), ..., Cgg,2(`10),

Cgg,3(`1), ..., Cgg,3(`10),

Cgs,1(`1), ..., Cgs,1(`10),

Cgs,2(`1), ..., Cgs,2(`10),

Cgs,3(`1), ..., Cgs,3(`10)}, (A3)

where `i = `min + (i + 0.5)(`max − `min)/10 with `min =
10 and `min = 200. The cross covariance between two
spectra of CXY and CAB is then computed as

CovXY,AB [`i, `j ] =
δij

(2`i + 1)∆`fsky

[
Cobs,XY (`i)Cobs,AB(`i)

+Cobs,XA(`i)Cobs,Y B(`i)
]
, (A4)

where the width is set to be ∆` = (`max − `min)/10 and
we assume the sky fraction of fsky ' 10000/41252.96 =
0.242.

Appendix B: Construction of mock FRB catalogs
with cosmological N-body simulation

Here we summarize our modeling of DMIGM based on
cosmological N -body simulations. For DMIGM, we as-

sume that the free-electron number density is an unbi-
ased tracer of underlying matter density. In order to
simulate the three-dimensional matter density distribu-
tion, we utilize a set of N -body simulations used in our
previous work of Ref [46]. We employ 2563 particles in a
comoving volume of 2403 [h−1 Mpc]3 and damp ten snap-
shots in the redshift range of z = 0 − 1. We determine
the output redshifts of simulation so that the simulation
boxes are placed to cover a past light cone of a hypothet-
ical observer with angular extent 5×5 deg2 from redshift
z = 0 to z ∼ 1. The details of our simulation are found
in Ref [46].

From the distribution ofN -body particles in each snap-
shot, we first generate three-dimensional matter den-
sity field on 2563 grids by using the nearest-grid-point
method. We then combine 10 grid-based density maps to
generate a light cone outout with a line-of-sight depth of
∼ 2 Gpc. To avoid the same structure appearing multiple
times along the line of sight, we randomly shift the simu-
lation boxes. In total, we generate 20 quasi-independent
realizations of matter density distribution in a comoving
volume of 240 × 240 × 2400 [h−1 Mpc]3. Note that the
transverse grid size in the density maps corresponds to
a few arcmin at z ∼ 0.5. This is sufficient for upcoming
wide-area FRB surveys such as CHIME.

We also locate dark matter halos using the standard
friend-of-friend (FOF) algorithm with the linking pa-
rameter of b = 0.2. We then assume that FRBs oc-
cur in dark matter halos with the FOF mass greater
than 1013 h−1M�. Note that the mass selection of >
1013 h−1M� roughly correspond to a sample with the
halo bias of 1-1.5 [47]. Finally, we make a random down-
sampling of halos so that the redshift distribution of FRB
hosts can be approximated as assumed in our model. For
the input redshift distribution of FRBs, we consider the
functional form of Eq. (5) with zcut = 0.5. As our fidu-
cial model, we set α0 = 0.0170, α1 = 0.13, α2 = 3.3,
and α3 = 5.3, while we examine a sensitivity of α1 on
DM PDF. After the random sampling, we find ∼ 2, 000
halos in each realization. For selected halos, we compute
DMIGM by summing the pixel value of grid-based mat-
ter density maps along the line of sight as in Eq. (8),
assuming Ωbh

2 = 0.022 and fe = 0.88.
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