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In the first paper of this series, we proposed a novel method to probe large–scale intergalactic
magnetic fields during the cosmic Dark Ages, using 21–cm tomography. This method relies on the
effect of spin alignment of hydrogen atoms in a cosmological setting, and on the effect of magnetic
precession of the atoms on the statistics of the 21–cm brightness–temperature fluctuations. In this
paper, we forecast the sensitivity of future tomographic surveys to detecting magnetic fields using
this method. For this purpose, we develop a minimum–variance estimator formalism to capture
the characteristic anisotropy signal using the two–point statistics of the brightness–temperature
fluctuations. We find that, depending on the reionization history, and subject to the control of
systematics from foreground subtraction, an array of dipole antennas in a compact–grid configuration
with a collecting area slightly exceeding one square kilometer can achieve a 1σ detection of ∼10−21

Gauss comoving (scaled to present–day value) within three years of observation. Using this method,
tomographic 21–cm surveys could thus probe ten orders of magnitude below current CMB constraints
on primordial magnetic fields, and provide exquisite sensitivity to large–scale magnetic fields in situ
at high redshift.

I. INTRODUCTION

Magnetic fields are ubiquitous in the universe on all
observed scales [1–6]. However, the question of origins
of the magnetic fields in galaxies and on large scales is
as of yet unresolved. Various forms of dynamo mecha-
nism have been proposed to maintain and amplify them
[7], but they typically require the presence of seed fields
[1]. Such seed fields may be produced during structure
formation through the Biermann battery process or sim-
ilar mechanisms [8, 9], or may otherwise be relics from
the early universe [1, 10, 11]. Observations of large–scale
low–strength magnetic fields in the high–redshift inter-
galactic medium (IGM) could thus probe the origins of
present–day magnetic fields and potentially open up an
entirely new window into the physics of the early uni-
verse.

Many observational probes have been previously pro-
posed and used to search for large–scale magnetic fields
locally and at high redshifts (e. g. [4, 12–20]). Amongst
the most sensitive tracers of cosmological magnetic fields
is the cumulative effect of Faraday rotation in the cosmic–
microwave–background (CMB) polarization maps, which
currently places an upper limit of ∼10−10 Gauss (in co-
moving units) using data from the Planck satellite [21].
In Paper I of this series [22], we proposed a novel method
to detect and measure extremely weak cosmological mag-
netic fields during the pre–reionization epoch (the cosmic
Dark Ages). This method relies on data from upcom-
ing and future 21–cm tomography surveys [23, 24], many
of which have pathfinder experiments currently running
[25–30], with the next–stage experiments planned for the
coming decade [28, 30].

In Paper I, we calculated the effect of a magnetic field
on the observed 21–cm brightness–temperature fluctua-

tions, and in this Paper, we focus on evaluating the sen-
sitivity of future 21–cm experiments to measuring this
effect. As we pointed out in Paper I, the 21–cm signal
from the cosmic Dark Ages has an intrinsic sensitivity
to capturing the effect of the magnetic fields in the IGM
that are more than ten orders of magnitude smaller than
the current upper limits on primordial magnetic fields
from the CMB. In the following, we demonstrate that
a square–kilometer array of dipole antennas in a com-
pact grid can reach the sensitivity necessary to detect
large–scale magnetic fields that are on the order of 10−21

Gauss comoving (scaled to present day, assuming adia-
batic evolution of the field due to Hubble expansion).

The rest of this Paper is organized as follows. In §II,
we summarize the main results of Paper I. In §III, we
define our notation and review the basics of the 21–cm
signal and its measurement. In §IV, we derive minimum–
variance estimators for uniform and stochastic magnetic
fields. In §V, we set up the Fisher formalism necessary to
forecast sensitivity of future surveys. In §VI, we present
our sensitivity forecasts. In §VII we summarize and dis-
cuss the implications of our results. Supporting materials
are presented in the appendices.

II. SUMMARY OF THE METHOD

Magnetic moments of hydrogen atoms in the excited
(triplet) state of the 21–cm line transition tend to align
with the incident quadrupole of the 21–cm radiation from
the surrounding medium. This effect of “ground–state
alignment” [31, 32] arises in a cosmological setting due
to velocity–field gradients. In the presence of an exter-
nal magnetic field, the emitted 21–cm quadrupole is mis-
aligned with the incident quadrupole, due to atomic pre-
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Figure 1. Illustration of the effect of a magnetic field on hy-
drogen atoms in the excited state of 21–cm transition in cos-
mological setting. In the classical picture, magnetic moments
of the atoms (depicted as red arrows) are aligned with den-
sity gradients (see upper panel; the gradient is depicted with
the background shading), unless they precess about the di-
rection of ambient magnetic field (pointing out of the page on
the lower panel). When the precessing atoms decay back into
the ground state, the emitted quadrupole (aligned with the
direction of the magnetic moments) is misaligned with the in-
cident quadrupole. This offset can be observed as a statistical
anisotropy in 21–cm brightness–temperature signal, and used
to trace cosmological magnetic fields.

cession; this is illustrated in Fig. 1. The resulting emis-
sion anisotropy can be used to trace magnetic fields at
high redshifts.

The main result of Paper I was derivation of the 21–
cm brightness–temperature fluctuation1 T, including the
effects of magnetic precession, as a function of the line–

1 Standard notation, used in other literature and in Paper I of this
series, for this quantity is δTb; however, we use T here to simplify
our expressions.
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)
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}]
,

(1)
where the magnetic field is along the z axis in the rest
frame of the emitting atoms (in which the spin–zero
spherical harmonics Y2m are defined in the usual way);

δ(~k) is a density–fluctuation Fourier mode correspond-

ing to the wave vector ~k whose direction is along the

unit vector k̂; xα,(2), xc,(2), and xB parametrize the rates
of depolarization of the ground state by optical pump-
ing and atomic collisions, and the rate of magnetic pre-
cession (relative to radiative depolarization), respectively
(defined in detail in Paper I), and are all functions of red-
shift z; Ts and Tγ are the spin temperature and the CMB
temperature at redshift z, respectively. Fig. 2 illustrates
the effect of the magnetic field on the brightness tempera-
ture emission pattern in the frame of the emitting atoms;
shown are the quadrupole patterns corresponding to the
last term of Eq. (1), for various strengths of the magnetic
field. Notice that there is a saturation limit for the field
strength—for a strong field, the precession is much faster
than the decay of the excited state of the forbidden tran-
sition, and the emission pattern asymptotes to the one
shown in the bottom panel of Fig. 2. Above this limit,
the signal cannot be used to reconstruct the strength of
the field. However, in this “saturated regime”, it is still
possible to distinguish the presence of a strong magnetic
field from the case of no magnetic field, as we discuss in
detail in §V.

The effect of quadrupole misalignment arises at second
order in optical depth (it is a result of a two–scattering
process), and is thus a small correction to the total
brightness–temperature fluctuation. However, owing to
the long lifetime of the excited state of the forbidden
transition (during which even an extremely slow preces-
sion can have a large cumulative effect on the direction
of the quadrupole, at second order), the misalignment is
exquisitely sensitive to magnetic fields in the IGM at red-
shifts prior to cosmic reionization. As we showed in Paper
I, a minuscule magnetic field of 10−21 Gauss (in comov-
ing units) produces order–one changes in the direction
of the quadrupole. This implies that a high–precision
measurement of the 21–cm brightness–temperature two–
point correlation function intrinsically has that level of
sensitivity to magnetic fields prior to the epoch of reion-
ization (when most of the IGM is still neutral). We now
proceed to develop a formalism to search for magnetic
fields at high redshifts using this effect, and to forecast
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Figure 2. Illustration of the quadrupolar pattern of 21–cm
emission from the last ( ~B–dependent) term of Eq. (1) in the
frame of the emitting atoms, shown in Molleweide projection,
where the intensity increases from blue to red shades. This

illustration in all panels shows the case where ~k matches the
direction of the hot spots in the top panel, and is perpendic-
ular to the direction of the magnetic field (along the vertical
axis in all panels). Every pixel in the maps corresponds to a
unique direction n̂ in Eq. (1). Lower panels correspond to in-
creasingly stronger magnetic field (strength denoted on each
panel in comoving units, for z = 21), with the bottom panel
corresponding to the saturated case. Notice how the type of
quadrupole in the top panel (weak–field regime) is distinct
from that in the bottom panel (saturated regime).

the sensitivity of future 21–cm experiments.

III. BASICS

Before focusing on the estimator formalism (presented
in the following Section), we review the basics of 21–cm
brightness–temperature fluctuation measurements. In
§III A, we set up our notation and review definitions of
quantities describing sensitivity of interferometric radio
arrays; in §III B, we focus on the derivation of the noise
power spectrum; and in §III C, we discuss the effects of
the array configuration and its relation to coverage of
modes in the uv plane.

A. Definitions

The redshifted 21–cm signal can be represented with
specific intensity at a location in physical space I(~r) or

in Fourier space Ĩ(~k). In sky coordinates (centered on
an emitting patch of the sky), these functions become

I(θx, θy, θν) and Ĩ(u, v, η), respectively. Here, vector ~k
(in the units of comoving Mpc−1) is a Fourier dual of ~r
(comoving Mpc), and likewise, θx (rad), θy (rad), and θν
(Hz) are duals of the coordinates u (rad−1), v (rad−1),
and η (seconds), respectively. Notice that θx and θy rep-
resent the angular extent of the patch in the sky, while
θν represents its extent in frequency space. The two sets
of coordinates are related through linear transformations
in the following way

θx =
rx
χ(z)

, u =
kxχ(z)

2π
,

θy =
ry
χ(z)

, v =
kyχ(z)

2π
,

θν =
H(z)ν21

c(1 + z)2
rz, η =

c(1 + z)2

2πH(z)ν21
kz,

(2)

where ν21 = 1420.4 MHz is the frequency corresponding
to the 21–cm line in the rest frame of the emitting atoms;
H(z) is the Hubble parameter; and χ(z) is the comoving
distance to redshift z which marks the middle of the ob-
served data cube where rz and θν intervals are evaluated.
Note that 2πθiu = riki, for i ∈ {x, y}. The convention
we use for the Fourier transform is

I(~r) =
1

(2π)3

∫
Ĩ(~k)ei

~k·~rd~k,

Ĩ(~k) =

∫
I(~r)e−i

~k·~rd~r,

(3)
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where Fourier–space functions are denoted with tilde.
Similarly,

I(θx, θy, θν) =

∫
Ĩ(u, v, η)e2πi(uθx+vθy+ηθν)dudvdη,

Ĩ(u, v, η) =

∫
I(θx, θy, θν)e−2πi(uθx+vθy+ηθν)dθxdθydθν .

(4)
From Eqs. (2)–(4), the following relation is satisfied

Ĩ(~k) =
c(1 + z)2χ(z)2

H(z)ν21
Ĩ(u, v, η), (5)

where the proportionality factor contains the transfor-

mation Jacobian
drxdrydrz
dθxdθydθν

. Finally, the relationship be-

tween the specific intensity in the uv–plane and the vis-
ibility function V(u, v, θν) is given by the Fourier trans-
form of the frequency coordinate,

V(u, v, θν) =

∫
Ĩ(u, v, η)e2πiθνηdη,

Ĩ(u, v, η) =

∫
V(u, v, θν)e−2πiθνηdθν .

(6)

Here, θν,max − θν,min = ∆ν is the bandwidth of the ob-
served data cube, centered on z (see also Appendix A).

B. Power spectra and noise

In this Section, we derive the noise power spectrum
for the brightness–temperature fluctuation measurement.
We start by defining a brightness–temperature power
spectrum as

〈Ĩ(~k)Ĩ∗(~k′)〉 ≡ (2π)3PĨδD(~k − ~k′), (7)

where δD is Dirac delta function. The observable
quantity of the interferometric arrays is the visibility
function—a complex Gaussian variable with a zero mean
and the following variance (see detailed derivation in Ap-
pendix A)

〈V(u, v, θν)V(u′, v′, θ′ν)∗〉

=
1

Ωbeam

(
2kBTsky

Ae
√

∆νt1

)2

δD(u− u′)δD(v − v′)δθνθ′ν ,
(8)

where Tsky is the sky temperature (which, in principle,
includes both the foreground signal from the Galaxy, and
the instrument noise, where we assume the latter to be
subdominant in the following); t1 is the total time a single
baseline observes element (u, v) in the uv plane; Ae is
the collecting area of a single dish; kB is the Boltzmann
constant; ∆ν is the bandwidth of a single observation
centered on z; and the last δ in this expression denotes
the Kronecker delta.

Combining Eqs. (6) and (8), and taking the ensemble
average,

〈Ĩ(u, v, η)Ĩ∗(u′, v′, η′)〉

=
1

t1Ωbeam

(
2kBTsky

Ae

)2

δD(u− u′)δD(v − v′)δD(η − η′),
(9)

where we used the standard definition∫
e2πiθν(η−η′)dθν = δD(η − η′). (10)

Taking into account the relation of Eq. (5), using Eq. (7),
and keeping in mind the scaling property of the delta
function, we arrive at

PN1 (~k) =
c(1 + z)2χ2(z)

Ωbeamt1H(z)ν21

(
2kBTsky

Ae

)2

, (11)

for the noise power per ~k mode, per baseline.
In the last step, we wish to get from Eq. (11) to the

expression for the noise power spectrum that corresponds
to observation with all available baselines. To do that,
we need to incorporate information about the array con-
figuration and its coverage of the uv plane. In other
words, we need to divide the expression in Eq. (11) by

the number density of baselines nbase(~k) that observe a

given mode ~k at a given time (for a discussion of the uv
coverage, see the following Section). The final result for

the noise power spectrum per mode ~k in intensity units
is

PN (~k) =
c(1 + z)2χ2(z)

Ωbeamt1H(z)ν21

(2kBTsky)
2

A2
enbase(~k)

, (12)

and in temperature units

PN (~k) =
λ4c(1 + z)2χ2(z)

Ωbeamt1H(z)ν21

T 2
sky

A2
enbase(~k)

, (13)

where λ = c/ν21(1 + z).

C. The UV coverage

The total number density nbase(~k) of baselines that

can observe mode ~k is related to the (unitless) number
density n(u, v) of baselines per dudv element as

nbase(~k) =
n(u, v)

Ωbeam
, (14)

where 1
Ωbeam

represents an element in the uv plane. The
number density integrates to the total number of base-
lines Nbase,

Nbase =
1

2
Nant(Nant + 1) =

∫
half

n(u, v)dudv, (15)
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where Nant is the number of antennas in the array, and
the integration is done on one half of the uv plane2. We
assume that the array consists of many antennas, so that
time dependence of n(u, v) is negligible; if this is not the
case, time average of this quantity should be computed
to account for Earth’s rotation.

In this work, we focus on a specific array configuration
that is of particular interest to cosmology—a compact
grid of dipole antennas, with a total collecting area of
(∆L)2, and a maximum baseline length3 of ∆L. In this
setup, the beam solid angle is 1 sr, the effective area of
a single dipole is Ae = λ2, and the effective number of

antennas is Nant = (∆L)2

λ2 . For such a configuration, the
number density of baselines entering the calculation of
the noise power spectrum reads

n(u, v) = (
∆L

λ
− u)(

∆L

λ
− v). (16)

The relation between ~k = (k, θk, φk) and (u, v) is

u⊥ ≡
χ(z)

2π
k sin θk,

u = u⊥ cosφk,

v = u⊥ sinφk,

(17)

where the subscript ⊥ denotes components perpendicular
to the line–of–sight direction n̂, which, in this case, is
along the z axis. From this, the corresponding number

of baselines observing a given ~k is

nbase(~k) = (
∆L

λ
− χ(z)

2π
k sin θk cosφk)

×(
∆L

λ
− χ(z)

2π
k sin θk sinφk).

(18)

As a last note, when computing numerical results in
§VI, we substitute the φk–averaged version of the above
quantity (averaged between 0 and π/2 only, due to the
four–fold symmetry of the experimental setup of a square
of dipoles) when computing the noise power, in order to
account for the rotation of the baselines with respect to
the modes in the sky. This average number density reads

〈nbase(~k)〉φk =

(
∆L

λ

)2

− 4

π

∆L

λ

χ(z)

2π
k sin θk

+
1

π

(
χ(z)

2π
k sin θk

)2

,

(19)

assuming a given mode k is observable by the array, such
that its value is between 2πLmin/(λ(z)χ(z) sin θk) and
2πLmax/(λ(z)χ(z) sin θk), where Lmin and Lmax are the
maximum and minimum baseline lengths, respectively. If

this condition is not satisfied, 〈nbase(~k)〉φk = 0.

2 This is because the visibility has the following property
V (u, v, θν) = V ∗(−u,−v, θν), and only a half of the plane con-
tains independent samples.

3 Note that for a square with area (∆L)2 tiled in dipoles, there is
a very small number of baselines longer than ∆L, but we neglect
this for simplicity.

IV. QUADRATIC ESTIMATOR FORMALISM

We now derive an unbiased minimum–variance
quadratic estimator for a magnetic field ~B present in the
IGM prior to the epoch of reionization. This formalism is
applicable to tomographic data from 21–cm surveys, and
is similar to that used in CMB lensing analyses [33], for
example. We assume that the magnetic field only evolves
adiabatically, due to Hubble expansion,

B(z) = B0(1 + z)2, (20)

where B0 is its present–day value (the value of the field in
comoving units). The corresponding estimator is denoted

with a hat sign, B̂0.

We start by noting that the observed brightness–

temperature fluctuations T (~k) contain contributions

from the noise fluctuation TN (~k) (from the instrumental
noise plus Galactic foreground emission4) and the signal

TS(~k),

T (~k) = TN (~k) + TS(~k), (21)

where TS(~k) can get contribution from both the
magnetic–field effects and the (null–case) cosmological

21–cm signal, TS0 (~k). The signal temperature fluctuation
is proportional to the density fluctuation δ, with transfer

function G(k̂) as the proportionality factor,

G(k̂) ≡ ∂T

∂δ
(k̂, δ = 0), (22)

and

TS(~k) = G(k̂)δ(k),

TS0 (~k) = G0(k̂)δ(k),
(23)

where k̂ = (θk, φk) is a unit vector in the direction of
~k. Note that we use the subscript “0” to denote when
the transfer function G, the temperature fluctuation T ,
their derivatives, or the power spectrum P , are evaluated
at B0 = 0. Furthermore, we omit explicit dependence
of G on redshift and on cosmological parameters, and
consider it implied. Finally, note that G is a function of

the direction vector k̂, while the power spectrum Pδ is
a function of the magnitude k, in an isotropic universe.
The expression for the transfer function is obtained from

4 Note that this term adds variance to the visibilities due to fore-
grounds, but we assume the bias in the visibilities is removed via
foreground cleaning.
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Eq. (1),

G(k̂) =

(
1− Tγ

Ts

)
x1s

(
1 + z

10

)1/2

×
[
26.4 mK

(
1 + (k̂ · n̂)2

)
− 0.128 mK

(
Tγ
Ts

)
×x1s

(
1 + z

10

)1/2 {
2
(

1 + (k̂ · n̂)2
)

−
∑
m

4π

75

Y2m(k̂) [Y2m(n̂)]
∗

1 + xα,(2) + xc,(2) − imxB

}]
,

(24)

for a reference frame where the magnetic field is along
the z–axis. For simplicity of the expressions, we adopt
the following notation

∂TS0
∂B0

(~k) ≡ δ(k)
∂G

∂B0
(k̂, B0 = 0),

∂G0

∂B0
(k̂) ≡ ∂G

∂B0
(k̂, B0 = 0),

(25)

where ∂G0

∂B0
= ∂G0

∂B (1 + z)2 for adiabatic evolution of the
magnetic field.

The signal power spectrum in the absence of a mag-
netic field (null case) is given by〈

T0(~k)T ∗0 (~k′)
〉
≡ (2π)3δD(~k − ~k′)PS0 (~k)

= (2π)3δD(~k − ~k′)G2
0(k̂)Pδ(k),

(26)

where 〈
δ(~k)δ∗(~k′)

〉
≡ (2π)3δD(~k − ~k′)Pδ(k). (27)

The total measured null–case power spectrum is

Pnull(~k) ≡ PN (~k) + PS0 (~k). (28)

In §IV A, we first consider the case of a field uniform
in the entire survey volume; this case is described by
a single parameter, B0. In §IV B, we move on to the
case of a stochastic magnetic field, with a given power

spectrum PB( ~K) (where ~K is the wavevector of a given
mode of the field); in this case, the relevant parame-
ter is the amplitude of this power spectrum, A2

0. In
both cases, we assume that there is a valid separation
of scales: density–field modes in consideration must have
much smaller wavelengths than the coherence scale of the
magnetic field (or a given mode wavelength for the case
of a stochastic magnetic field), and both length scales
must fit within the size of the survey.

A. Uniform field

We now derive an estimator B̂0 for a comoving uniform
magnetic field. We adopt the linear–theory approach and
start with

TS(~k) = TS0 (~k) +B0
∂TS0
∂B0

(~k), (29)

where B0 is a small expansion parameter. The observable
two–point correlation function in Fourier space is then

〈T (~k)T ∗(~k′)〉 = Pnull(~k)(2π)3δD(~k − ~k′)

+〈TS0 (~k)B0
∂TS,∗0

∂B0
(~k′)〉+ 〈TS,∗0 (~k′)B0

∂TS0
∂B0

(~k)〉

=

(
Pnull(~k) + 2B0Pδ(k)G0(k̂)

∂G0

∂B0
(k̂)

)
×(2π)3δD(~k − ~k′),

(30)

where we use the reality of G0 and ∂G0

∂B0
, assume that

the signal and the noise are uncorrelated, and keep only
terms linear in B0. Since we observe only one universe,
a proxy for the ensemble average in Eq. (30) is measure-

ment of the product T (~k)T ∗(~k). Thus, an estimate of B0

from a single temperature mode ~k is

B̂
~k
0 =

1
V T (~k)T ∗(~k)− Pnull(~k)

2Pδ(k)G0(k̂)∂G0

∂B0
(k̂)

, (31)

where we use the following properties of the Dirac delta
function (defined on a finite volume V of the survey)

δD(~k − ~k′) =
V

(2π)3
, for ~k = ~k′,

(2π)3δD(~k − ~k′) ≡
∫
e−i~r·(

~k−~k′)d~r,

(32)

which is related to the Kronecker delta as

δ~k~k′ =
(2π)3

V
δD(~k − ~k′). (33)

The estimator of Eq. (31) is unbiased (with a zero

mean), 〈B̂~k0 〉 = 0. The covariance 〈B̂~k0 B̂
~k′,∗
0 〉 of estima-

tors derived from all measured temperature modes in-
volves temperature–field four–point correlation function
with three Wick contractions, whose numerator reads

1

V 2
〈T (~k)T ∗(~k)T (~k′)T ∗(~k′)〉+ Pnull(~k)Pnull(~k

′)

− 1

V
Pnull(~k)〈T (~k′)T ∗(~k′)〉 − 1

V
Pnull(~k

′)〈T (~k)T ∗(~k)〉

= Pnull(~k)Pnull(~k
′)

[
(2π)6

V 2
δD(~k − ~k)δD(~k′ − ~k′)

+
(2π)6

V 2
δD(~k − ~k′)δD(~k − ~k′) +

(2π)6

V 2
δD(~k + ~k′)δD(~k + ~k′)

− (2π)3

V
δD(~k′ − ~k′)− (2π)3

V
δD(~k − ~k)

]
= Pnull(~k)Pnull(~k

′)
(
δ~k,~k′ + δ~k,−~k′

)
,

(34)
where every ensemble average yielded one factor of vol-
ume V . Using the final expression in the above Equation,
we get

〈B̂~k0 B̂
~k′,∗
0 〉 =

P 2
null(

~k)
(
δ~k,~k′ + δ~k,−~k′

)
4Pδ(k)2

[
G0(k̂)∂G0

∂B0
(k̂)
]2 . (35)
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Estimators from all ~k–modes can be combined with
inverse–variance weighting as

B̂0 =

∑
~k

B̂
~k
0

〈B̂~k0 B̂
~k,∗
0 〉∑

~k
1

〈B̂~k0 B̂
~k,∗
0 〉

. (36)

Expanding the above expression, we get the minimum–
variance quadratic estimator for B0 obtained from all
temperature–fluctuation modes observed at a given red-
shift,

B̂0 = σ2
B0

∑
~k

1
V T (~k)T ∗(~k)− Pnull(~k)

P 2
null(

~k)

×2Pδ(k)G0(k̂)
∂G0

∂B0
(k̂).

(37)

Its variance σ2
B0

is given by

σ−2
B0

=
1

2

∑
~k

(
2Pδ(k)G0(k̂)∂G0

∂B0
(k̂)

Pnull(~k)

)2

, (38)

where the sums are unrestricted. Note that B̂
~k
0 = B̂−

~k
0 ;

this follows from the reality condition on the temperature

field, T (~k) = T ∗(−~k), and from the isotropy of space in

the null–assumption case, G0(k̂) = G0(−k̂). Thus, in
order to avoid double counting of modes, a factor of 1/2
appears at the right–hand side of Eq. (38).

Finally, the total sensitivity of a survey covering a
range of redshifts is given by integrating the above Equa-
tion as

σ−2
B0,tot =

1

2

∫
dV(z)

k2dkdφk sin θkdθk
(2π)3

×
(

2Pδ(k, z)G0(θk, φk, z)
∂G0

∂B0
(θk, φk, z)

PN (k, θk, z) + Pδ(k, z)G2
0(θk, φk, z)

)2

,

(39)

where we transitioned from a sum over ~k modes to an
integral, using

∑
~k → V

∫
d~k/(2π)3. The integral is per-

formed over the (comoving) volume of the survey of angu-
lar size Ωsurvey (at a given redshift, given in steradians),
such that the volume element reads

dV =
c

H(z)
χ2(z)Ωsurveydz. (40)

B. Stochastic field

We now examine the case where both the magnitude
and the direction of the magnetic field are stochastic ran-
dom variables, with spatial variation. Note that in this
Section we do not assume a particular model for their
power spectra, but we do assume a separation of scales, in

the sense that we are only concerned with the modes ~K of

the magnetic field that correspond to scales much larger
than those corresponding to the density and tempera-

ture modes used for estimating the field, | ~K| � |~k|, |~k′|.
We use B0 to denote a component of the magnetic field
along one of the three Cartesian–system axes, and ~r to
denote position vector in physical space, as before, and
start with

T (~r) = TS0 (~r) +B0(~r)
∂TS0
∂B0

(~r), (41)

where the subscripts and superscripts have the same
meaning as before. In Fourier space, we now get

T (~k) = TS0 (~k) +

∫
d~re−i

~k·~rB0(~r)
∂TS0
∂B0

(~r)

= TS0 (~k) +
1

(2π)3

∫
d~k1B0(~k1)

∂TS0
∂B0

(~k − ~k1),

(42)

where the last step uses the convolution theorem. The
observable two–point correlation function in Fourier
space then becomes〈

T (~k)T ∗(~k′)
〉

= (2π)3δD(~k − ~k′)Pnull(~k)

+

〈
TS,∗0 (~k′)

1

(2π)3

∫
d~k1B0(~k1)

∂TS0
∂B0

(~k − ~k1)

〉
+

〈
TS0 (~k)

1

(2π)3

∫
d~k1B

∗
0(~k1)

(
∂TS0
∂B0

(~k′ − ~k1)

)∗〉
,

(43)
to first order in B0. Note that, in this case, there is cross–
mixing of different modes of the temperature field. From
Eqs. (23), (25), and (27), we get〈
T (~k)T ∗(~k′)

〉
= (2π)3δD(~k − ~k′)Pnull(~k) +B0(~k − ~k′)

×
[
Pδ(k

′)G∗0(k̂′)
∂G0

∂B0
(k̂′) + Pδ(k)G0(k̂)

∂G∗0
∂B0

(k̂)

]
,

(44)

where we used the reality condition B∗0(− ~K) = B0( ~K).

In analogy to the procedure of §IV A, we estimate B0( ~K)

from ~k~k′ pair of modes that satisfy ~K = ~k − ~k′ as

B̂
~k~k′

0 ( ~K) =
T (~k)T ∗(~k′)

Pδ(k′)G∗0(k̂′)∂G0

∂B0
(k̂′) + Pδ(k)G0(k̂)

∂G∗0
∂B0

(k̂)
,

(45)

where we only focus on terms ~K 6= 0 (~k 6= ~k′). The vari-

ance
〈
B̂
~k~k′

0 ( ~K)
(
B̂
~k~k′

0 ( ~K ′)
)∗〉

of this estimator (under

the null assumption) can be evaluated using the above ex-

pression. Furthermore, the full estimator for B0( ~K) from
all available temperature modes is obtained by combin-

ing individual B̂
~k~k′

0 ( ~K) estimates with inverse–variance
weights, and with appropriate normalization, in complete
analogy to the uniform–field case. For the purpose of
forecasting sensitivities, we are interested in the variance
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of the minimum–variance estimator, or equivalently, the

noise power spectrum PNB0
( ~K), given by

(2π)3δD( ~K − ~K ′)PNB0
( ~K) ≡

〈
B̂0( ~K)B̂0( ~K ′)∗

〉

=

∑
~k

(
Pδ(k

′)G∗0(k̂′)∂G0

∂B0
(k̂′) + Pδ(k)G0(k̂)

∂G∗0
∂B0

(k̂)
)2

2V 2Pnull(~k)Pnull(~k′)


−1

,

(46)

with the restriction ~K = ~k − ~k′. The factor of 2 in
the denominator corrects for double counting mode pairs,

since B̂
~k~k′

0 ( ~K) =
(
B̂−

~k−~k′
0 ( ~K)

)∗
, and the sum is uncon-

strained. If we only consider diagonal terms ~K = ~K ′,
then the left–hand side of the above Equation becomes

equal to V PNB0
( ~K). The explicit expression for the noise

power spectrum is then

PNB0
( ~K) =∑

~k

(
Pδ(k

′)G∗0(k̂′)∂G0

∂B0
(k̂′) + Pδ(k)G0(k̂)

∂G∗0
∂B0

(k̂)
)2

2V Pnull(~k)Pnull(~k′)


−1

.

(47)
Finally, transitioning from a sum to the integral (like in

§V A), we get the following expression for the noise power
spectrum of one of the components B0,i of the magnetic
field in the plane of the sky,(

PNB0,i
( ~K)

)−1

=

∫
k2dk sin θkdθkdφk

×

(
Pδ(k

′)G∗0(k̂′)∂G0

∂Bi
(k̂′) + Pδ(k)G0(k̂)

∂G∗0
∂Bi

(k̂)
)2

2(2π)3Pnull(~k)Pnull(~k′)
,

(48)

where ~k′ = ~K − ~k and the above expression is evaluated
at a particular redshift. Only the components of the
magnetic field in the plane of the sky affect the observed
brightness–temperature fluctuations, and so Eq. (48) can
be used to evaluate the noise power spectrum for either
one of the two (uncorrelated) components. The noise in
the direction along the line of sight can be considered
infinite. Finally, note that we can construct a similar
estimator for the direction of the magnetic field in a given
patch of the sky. However, in this work we focus on
the magnitude of the field and ignore considerations with
regard to its direction.

V. FISHER ANALYSIS

We now use the key results of §IV to evaluate sen-
sitivity of future tomographic 21–cm surveys to detect-
ing presence of magnetic fields in high–redshift IGM. In
§V A, we derive the expression for sensitivity to a field
uniform in the entire survey volume. We start with the

unsaturated case where (in the classical picture) hydro-
gen atoms complete less than a radian of magnetic pre-
cession during their lifetime in the triplet state, for all
redshifts of interest (weak–field limit), and then move
on to considering the saturated case (the fast–precession
and stong–field limit). In §V B, we derive the expression
for sensitivity to detecting a stochastic magnetic field de-
scribed by a scale–invariant power spectrum.

A. Uniform field

Eq. (39) provides an expression for evaluating 1σ
sensitivity to reconstructing a uniform magnetic field
from measurements of the 21–cm signal at range of red-
shifts. For our numerical calculations, we take the fol-
lowing integration limits: φk ∈ [0, 2π]; θk ∈ [0, π]; and
k ∈ [2πumin/(χ(z) sin θk), 2πumax/(χ(z) sin θk)], where

umin,max =
Lmin, max

λ correspond to the maximum and
minimum baseline lengths, Lmin and Lmax, respectively.
If the survey area is big enough that the flat–sky approx-
imation breaks down, σ−2

B0,tot can be evaluated on a small

(approximately flat) patch of size Ωpatch centered on the
line of sight, and then corrected to account for the total
survey volume 5 as

σ−2
B0,corr =

σ−2
B0,tot

Ωpatch

∫ θsurvey

0

∫ 2π

0

cos2 θdθdφ

=
πσ−2

B0,tot

Ωpatch
(θsurvey + cos θsurvey sin θsurvey) .

(49)

So far, we have only focused on the regime of a weak
magnetic field. Let us now consider the case where the
field is strong enough that the precession period is com-
parable to (or shorter than) the lifetime of the excited
state of the forbidden transition—the saturated regime.
In this case, the brightness–temperature signal still cap-
tures the presence of the field (as illustrated in Fig. 2),
but it loses information about the magnitude of the field,
and can only be used to determine the lower limit of the
field strength. The ability to distinguish the saturated
case from zero magnetic field becomes a relevant mea-
sure of survey sensitivity in this scenario.

To quantify the distinguishability of the two regimes,
we write the signal power spectrum as the sum of contri-
butions from both B0 = 0 and B0 →∞,

PS(~k) = (1− ξ)PS(~k,B = 0) + ξPS(~k,B →∞). (50)

We then perform the standard Fisher analysis to evaluate
sensitivity to recovering parameter ξ,

σ−2
ξ =

∫
dV(z)

d~k

(2π)3

(
∂PS

∂ξ (~k)

PN (~k) + PS0 (~k, ξ = 0)

)2

, (51)

5 This accounts for the change in the angle that a uniform mag-
netic field makes with a line of sight, as the line of sight “scans”
through the survey area.
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where

∂PS

∂ξ
(~k) = PS(~k,B →∞)− PS(~k,B = 0), (52)

and evaluating PS(~k,B → ∞) requires the following
limit of the transfer function (derived from Eq. (24))

G(k̂, B →∞) =

(
1− Tγ

Ts

)
x1s

(
1 + z

10

)1/2

×
[
26.4 mK

(
1 + (k̂ · n̂)2

)
− 0.128 mK

(
Tγ
Ts

)
×x1s

(
1 + z

10

)1/2 {
2 + 2(k̂ · n̂)2 − 1

60

1− 3 cos2 θk
1 + xα,(2) + xc,(2)

}]
.

(53)
Note that the above Equation is valid in the reference
frame where the magnetic field is along the z axis, and
the line–of–sight direction is perpendicular to it. When
evaluating Eq. (51) in §VI, we will only be interested in
this configuration, since we aim to evaluate the sensitivity

to the plane–of–the–sky component of ~B. We interpret
σ−1
ξ as 1σ sensitivity to detecting the presence of a strong

magnetic field.

B. Stochastic field

To compute signal–to–noise ratio (SNR) for measuring
the amplitude of a stochastic–field power spectrum, at a
given redshift, we start with the general expression

SNR2 =
1

2
Tr
(
N−1SN−1S

)
, (54)

where Tr denotes a trace of a matrix, and S and N
stand for the signal and noise matrices, respectively. In
the case of interest, these are 3Nvoxels × 3Nvoxels matri-
ces (there are 3 components of the magnetic field and
Nvoxels voxels in the survey). In the null case, voxels are
independent and the noise matrix is diagonal. Voxel–
noise variance for measuring a single mode is given by

PNB0,i
( ~K, z)/Vvoxel(z), where Vvoxel is voxel volume. Sum-

ming over all voxels and components of the magnetic field
with inverse–variance weights gives

SNR2(z) =
1

2

∑
iα,jβ

S2
iα,jβ

PNB0,i
( ~K, z)PNB0,j

( ~K, z)
V 2

voxel

=
1

2

∑
ij

∫
d~rα

∫
d~rβ

〈B0,i(~rα)B0,j(~rβ)〉2

PNB0,i
( ~K, z)PNB0,j

( ~K, z)
,

(55)

at a given redshift, where the Greek indices label indi-
vidual voxels and, as before, Roman indices denote field
components; ~rα/β represents spatial position of a given
voxel.

To simplify further calculations, we now focus on a par-
ticular class of magnetic–field models where most of the

power is on largest scales (small ~K). In this (squeezed)

limit, ~K � ~k and thus ~k ≈ ~k′, such that Eq. (48) re-

duces to white noise (independent of ~K). A model for
the power spectrum is defined through

(2π)3δD( ~K − ~K ′)PB0,iB0,j
( ~K) ≡

〈
B∗0,i( ~K)B0,j( ~K

′)
〉
,

(56)
which relates to the variance in the transverse component

PB⊥( ~K) as

PB0,iB0,j
( ~K) = (δij − K̂iK̂j)PB⊥( ~K), (57)

where K̂i/j is a unit vector along the direction of the
i/j component of the wavevector. In the rest of this
discussion, for concreteness, we consider a scale–invariant
(SI) power spectrum,

PB⊥( ~K) = A2
0/K

3. (58)

Here, the amplitude A0 is a free parameter of the model
(in units of Gauss).

If homogeneity and isotropy are satisfied, the integrand
in Eq. (55) only depends on the separation vector ~s ≡
~rβ − ~rα. Using this and the squeezed limit assumption
gives6

SNR2(z) =
1

2

∑
ij

dVpatch

(PNB0,i
(z))2

∫
d~s 〈B0,i(~rβ − ~s)B0,j(~rβ)〉2

=
1

2(2π)3

∑
ij

dVpatch

(PNB0,i
(z))2

∫
d ~K

(
PB0,iB0,j (

~K)
)2

,

(59)
where dVpatch is the volume of a redshift–slice patch de-
fined in Eq. (40). After substituting Eq. (58) and inte-
grating over redshifts the total SNR is given by

SNR2 =
A4

0

2(2π)3

∫ zmax

zmin

dVpatch

(PNB0,i
(z))2

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ Kmax(z,θ,φ)

Kmin(z,θ,φ)

dK

K4

∑
ij∈{xx,xy,yx,yy}

(δij − K̂iK̂j)
2,

(60)
where x and y denote components in the plane of the sky,
and

K̂x = sin θ sinφ, K̂y = sin θ cosφ. (61)

The sum in the above expression reduces to∑
ij∈{xx,xy,yx,yy}

(δij − K̂iK̂j)
2 = 2 cos2 θ + sin4 θ. (62)

6 In the last step, we used
∫
d~s|f(~s)|2 =

∫
d ~K

(2π)3
|f̃( ~K)|2, which

holds for an arbitrary function f and its Fourier transform f̃ .
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Substituting Eq. (62) into Eq. (60) and integrating over
K, θ, φ gives

SNR2 =
A4

0

10π2

∫ zmax

zmin

dVpatch

(PNB0,i
(z))2

(
1

K3
min

− 1

K3
max

)
.

(63)
Finally, from the above expression, 1σ sensitivity to mea-
suring A2

0 is given by

σ−2
A2

0
=

1

10π2

∫ zmax

zmin

dVpatch

(PNB0,i
(z))2

(
1

K3
min

− 1

K3
max

)
. (64)

Note at the end that, for our choice of the SI power spec-
trum, the choice of Kmax does not matter (contribution
to sensitivity rapidly decreases at small scales), while we
take Kmin = 2π/(χ(z) sin θk) to match the survey size
at a given redshift, for the compact–array configuration
considered throughout this work.

VI. RESULTS

We now proceed to numerically evaluate the detection
threshold of 21–cm tomography for magnetic fields in the
pre–reionization epoch, using the formalism from the pre-
vious two Sections. For this purpose, we only focus on
one type of experimental setup—an array of dipole anten-
nas arranged in a compact grid. The motivation for this
choice is that such a configuration maximizes sensitivity
to recovering the power spectrum of the cosmological 21–
cm signal [30, 34]. We consider an array with a collecting
area of (∆L km)2, where ∆L is taken to be the maximal
baseline separation. In this case, the observation time t1
entering the expression for the noise of Eq. (13) is the
same as the total survey duration7, t1 = tobs. We do not
explicitly account for the fact that any given portion of
the sky is above the horizon of a given location only for
a part of a day. Therefore, tobs we substitute in the noise
calculation is shorter than the corresponding wall–clock
duration of the survey (by a factor equal to the fraction of
the day that a given survey region is above the horizon).
To derive numerical results, we assume Ωsurvey = 1sr and
tobs = 1 year (corresponding to the wall–clock observ-
ing time on the order of three years). To compute sky
temperature, we assume a simple model for Galactic syn-
chrotron emission from Ref. [35],

Tsky = 60

(
21

100
(1 + z)

)2.55

[K]. (65)

We take the observed redshift range to be z ∈ [15, 25].

7 Calculation of the observation time t1, given total survey dura-
tion tobs, depends on the type of the experiment. For a radio
dish with a beam of solid angle Ωbeam = λ2/Ae (smaller than
the survey size Ωsurvey), where the telescope scans the sky one
beamwidth at a time, t1 is the total time spent observing one
(u, v) element, and thus t1 = tobsΩsurvey/Ωbeam.
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Figure 3. Inputs used for the sensitivity calculation, com-
puted for standard cosmology using the 21CMFAST code. Top
panel: Lyman–α flux model; fiducial choice used for sensitiv-
ity calculations is shown with a solid line, while the extrema
of the gray band are used to test the effects of the uncer-
tainty in the Lyman–α flux at high redshift (as discussed in
the text). Middle panel: fiducial models for spin, kinetic,
and CMB temperatures. Bottom panel: fiducial models for
quantities that parametrize the rate of depolarization of the
ground state by optical pumping and atomic collisions, and
the rate of magnetic precession for a representative value of
the magnetic field (10−22 Gauss comoving).
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Other inputs to the sensitivity calculation are shown
in Fig. 3: the mean Lyman–α flux as a function of red-
shift (top panel); the spin and kinetic temperatures of
the IGM, along with the CMB temperature, also as func-
tions of redshift (middle panel); and the quantities that
parametrize the rate of depolarization of the ground state
by optical pumping and atomic collisions, and the rate
of magnetic precession, for a representative value of the
magnetic field (bottom panel). We obtain the quantities
from the top two panels from the 21CMFAST code [36],
and the matter power spectra from the CAMB code [37].
As inputs to 21CMFAST and CAMB, we use standard cosmo-
logical parameters (H0 = 67 km s−1 Mpc−1, Ωm = 0.32,
ΩK = 0, ns = 0.96, σ8 = 0.83, w = −1) consistent with
Planck measurements [38]. For the 21CMFAST runs, we
set the sources responsible for early heating to Popula-
tion III stars by setting Pop= 3, and keep all other input
parameters at their default values, with the exception of
the star formation efficiency, F_STAR. For our fiducial cal-
culation (denoted with solid curves in Fig. 3), we choose
F_STAR=0.0075, but we also explore two other reioniza-
tion models, as discussed below. The fiducial model is
chosen to match the models from Ref. [39] at z = 15
(which were computed by extrapolation of the flux mea-
surements from observations at much lower redshifts).
We tested that this fiducial model is physically reason-
able, in the sense that it produces a sufficient number of
ionizing photons to reionize the universe; we detail these
tests in Appendix C.

Since the evolution of the Lyman–α flux prior to reion-
ization is unconstrained by observations, we vary our in-
put flux model (and, correspondingly, the models for the
temperaures and depolarization rates) in order to cap-
ture the effect of this uncertainty on the key results of
our sensitivity calculation. Specifically, we consider two
“extreme” models for the Lyman–α flux, shown in the
top panel of Fig. 3 as the extrema of the gray band of
uncertainty around the fiducial JLyα(z) curve. They are
obtained from 21CMFAST runs with F_STAR= 0.01875 (for
the top edge of the gray band), and F_STAR= 0.0025
(bottom edge). Note that the rest of the panels in this
Figure only show the fiducial model in order to avoid
clutter, but the corresponding variation in all quantities
is consistently included in the calculations.

Figs. 4 and 5 show our key results: the projected 1σ de-
tection thresholds for tomographic surveys, as a function
of the maximum baseline ∆L (where different values of
∆L may correspond to different stages of a single exper-
iment). Fig. 4 shows the 1σ threshold to measuring the
parameter ξ of Eq. (50) which quantifies the inferred pref-
erence for zero magnetic field versus the case where the
field is strong and the signal is in the saturated regime.
The value of this parameter is, by definition, bounded
between 0 and 1 (representing the case of no magnetic
field and the saturated case, respectively). In this Fig-
ure, the solid line corresponds to our fiducial calculation,
while the light–colored band around it corresponds to the
level of variation in the input Lyman–α flux shown as a

1 2 3 4 5 6 7 8 9 10
∆ L [km]

10−1

100

ξ

Figure 4. Projected 1σ threshold of an array of dipoles in a
compact–grid configuration for detecting a cosmological mag-
netic field in the saturated regime, as a function of the max-
imum array baseline. We assume a survey size of 1 sr, a
total observation time of three years, and a collecting area
of (∆L)2. The parameter on the y axis quantifies distin-
guishability of the case of no magnetic field (ξ = 0) from
a strong magnetic field (ξ = 1). Smaller thresholds (for larger
maximum–baseline values shown on the x axis) correspond
to a higher sensitivity for recovering ξ, and thus to a bet-
ter prospect for distinguishing between the two regimes. The
light–colored band around the solid line corresponds to the
Lyman–α model flux variation represented with a gray band
in Fig. 3.

grey band in Fig. 3. The fiducial result implies that an
array of dipoles with one square kilometer of collecting
area can achieve enough sensitivity to detect a magnetic
field in the saturation regime. Such detection of a non–
vanishing value of ξ can then be interpreted as a lower
bound on a uniform magnetic field, at a 1σ confidence
level (assuming the field is uniform in the entire survey
volume). The value of the lower bound as a function
of redshift corresponds, in this case, to the saturation
“ceiling” at that redshift, which can be roughly evalu-
ated by requiring that the depolarization rates through
standard channels equal the rate of magnetic precession,
xB = 1 + xα,(2) + xc,(2). The ceiling is depicted with a

dashed line in Fig. 6, and it corresponds to | ~B| ≈ 10−21

Gauss (comoving) at z = 21, for example. On the other
hand, if a survey were to report a null result, it would rule
out such a magnetic field, at the same confidence level. In
this case, the result would imply an upper bound on the
strength of the magnetic field components in the plane
of the sky, as discussed in the following.

We obtain results in Fig. 5 by evaluating Eqs. (39)
and (63). This Figure shows a projected 1σ upper bound
that can be placed on the value of the magnetic field, in
case of no detection with an array of a given size. The
result is shown for both the uniform field (lower solid red
line), and for the amplitude of a stochastic field with a
scale–independent power spectrum (upper gray line). It
implies that an array with one square kilometer collecting
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Figure 5. Projected 1σ threshold of an array of dipoles in a
compact–grid configuration for detecting cosmological mag-
netic fields. We assume a survey size of 1 sr, a total observing
time of three years, and a collecting area of (∆L)2. Thresh-
olds for a uniform (lower red line) and a stochastic (upper
gray line) magnetic field are shown as a function of maximum
array baseline ∆L. For the stochastic field, a scale–invariant
(SI) power spectrum is assumed; we plot the 1σ error for mea-
suring the root–mean–square variation of the field magnitude
per logK, or A0/π (with A0 defined in the text).

area may reach a 1σ detection threshold of 10−21 Gauss
comoving, after three years of observing 1 sr of the sky.

While the numerical calculation behind this result as-
sumes that the brightness–temperature signal is a linear
function of the field strength, this assumption is not guar-
anteed to hold—it breaks down in the limit of a strong
field, as discussed above and in §II. So, the results of
Fig. 5 are only valid if the value of the ξ parameter is
measured to be small at high confidence. In order to
demonstrate how these projected constraints compare to
the saturation ceiling, Fig. 6 shows the saturation ceiling
and the values of the integrand of Eq. (39) (as a func-
tion of redshift, plotted for several array sizes). We see
that the sensitivity of arrays with collecting areas slightly
above one square kilometer is sufficient to reach below the
saturation ceiling for redshifts contributing most of the
signal–to–noise, z∼21 (the minima of these curves). This
gives us confidence that the results for the uniform field
in Fig. 5 are indeed valid, and the linear theory holds in
a given regime (the transfer function is a linear function
of the field strength). For the stochastic case, however,
it is likely that collecting areas larger by a factor of ∼10
will be needed to achieve detection thresholds below sat-
uration at relevant redshifts. It is important to note two
things here. First, the saturation ceiling presented in this
Figure is quite conservatively calculated, and the linear
approximation may hold for field strengths a few times
above this level (for illustration, see also Fig. 2). Second,
a downwards variation of the Lyman–α flux by a factor
of a few from our fiducial model at redshift of ∼21 can
easily change relative values of the ceiling and detection
thresholds of a one–square–kilometer array, placing the

16 18 20 22 24 26 28
z
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10−18

1σ
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ss
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10 km

Figure 6. Saturation regime is shown as a shaded gray area
above the dashed curve (saturation ceiling). Integrand of
Eq. (39) (inverse sqare root of it) is shown as a function of
redshift, for several maximum–baseline lengths. When the
integrand values are below the saturation ceiling, the analy-
sis assuming the unsaturated regime is valid. For the base-
line lengths considered here, this is indeed the case for inte-
grand values around their minima (corresponding to redshifts
of maximal signal–to–noise for magnetic–field detection; note
that the saturation ceiling is conservatively calculated for the
purposes of this illustration), for arrays with collecting ar-
eas slightly above a square kilometer. This implies that the
projections for the uniform–field case of Fig. 5 are valid.

result into the unsaturated regime and enabling detection
of a uniform field on the order of 10−21 Gauss comoving
with such an array; however, the converse is also true.

VII. SUMMARY AND DISCUSSION

The origin of cosmic magnetism on galactic and extra-
galactic scales is not fully understood. The competing
hypotheses predict a wide range of field strengths, be-
tween 10−30–10−15 Gauss comoving for primordial (in-
flationary and post–inflationary) mechanisms [1, 11], and
on the order of 10−24 Gauss comoving on Mpc scales for
Biermann battery [8] and pre–recombination [40] mecha-
nisms. On the other hand, dynamo mechanism believed
to sustain and amplify present–day fields in galaxies typ-
ically requires field strengths on the order of 10−30–10−20

Gauss at 10 kpc scales to operate [40–42]. In this series
of papers, we proposed and developed a new method to
trace extremely weak cosmic magnetic fields using 21–
cm tomography. This method has intrinsic sensitivity
to field strengths below ∼10−21 Gauss comoving at Mpc
scales in the IGM prior to cosmic reionization, and could
thus start tapping the relevant range of field strengths at
high redshift, potentially enabling observational discrim-
ination between various field–origin scenarios with future
21–cm measurements.

In this Paper, we forecast the sensitivity of this method
for future 21–cm tomography surveys. For this purpose,
we developed a minimum–variance estimator for the mag-



13

netic field, which can be applied to measurements of the
21–cm brightness–temperature fluctuations prior to the
epoch of reionization. The main numerical results are
shown in Figs. 4 and 5. They imply that a radio array
in a compact–grid configuration with a collecting area
slightly larger than one square kilometer can achieve 1σ
sensitivity to a uniform magnetic field of strength ∼10−21

Gauss comoving, after three years of observation. The
case of a stochastic field is more challenging and requires
∼10 times larger collecting area to detect a field with a
scale–invariant power spectrum.

Some primordial mechanisms produce fields with
power on large scales (see, e. g. [41]), while other mech-
anisms, in contrast, produce seed fields with blue power
spectra (see, e. g. [8, 40]). The latter scenario was not
directly addressed in this work, but we briefly discuss it
now. Namely, in the extreme case where the field has
rapid spatial variation and its variance on scales smaller
than the wavelength of density fluctuations at hand ex-
ceeds the saturation limit, the resulting fast precession of
atoms isotropises the incident quadrupole of 21–cm radia-
tion, causing a net reduction of the null–case re–scattered
emission quadrupole (rather than transition to another
type of quadrupolar emission in the case of a strong field
with large coherence length, the case depicted in the bot-
tom panel of Fig. 2). Thus, the presence of such fields
with small coherence lengths and large amplitudes can
also be traced through their effect on the two–point cor-
relation function of the observed brightness temperature,
but the calculation of detection sensitivity presented in
this work is not applicable to this case, and is left for
future work. On the other hand, if the field has an in-
creasingly larger power on small scales (a blue spectrum),
but does not exceed saturation, an estimator analogous
to that presented in §IV for the red–spectrum case can be
derived to measure the spectral shape and amplitude. In
this case, only modes of the field on large scales would be
measurable, while those on small scales would not affect
the signal. We also leave a more detailed consideration
of this case for future work.

We have only considered an array of dipole antennas in
a compact–grid configuration, such as the proposed Fast
Fourier Transform Telescope (FFTT) [34]. Our calcula-
tions are, however, also applicable to compact arrays of
dishes, with the caveat that they have a smaller instanta-
neous field of view than FFTT and hence have to observe
for longer in order to reach the same sensitivity threshold
(for a fixed collecting area). Such a design will soon be
implemented in the Hydrogen Epoch of Reionization Ar-
ray (HERA) [29], and our forecasts can be easily rescaled
for the next generation of this experiment.

The prospect for measuring cosmological magnetic
fields using this method depends on the rate of depolar-
ization of the ground state of hydrogen through Lyman–
α pumping, which is proportional to the mean Lyman–α
flux prior to reionization. As shown in Fig. 6, most of the
sensitivity to magnetic fields (for the setup considered
in this work) comes from z ∼ 21, where the Lyman–α

flux sufficiently decreases, while the kinetic temperature
of the IGM is still low enough. However, the value of
the mean Lyman–α flux at these redshifts is completely
unconstrained by observation. While the fiducial model
we used in our calculations represents one that satisfies
modeling constraints and can be extrapolated to match
low–redshift observations, it does not capture the full
range of possibilities. It is thus important to keep in
mind that the projected sensitivity can vary depending
on this quantity. We qualitatively capture the variation
in projected sensitivity by exploring Lyman–α flux mod-
els that vary within a factor of a few from the fiducial
model, as shown in Fig. 3.

In our analysis, we took into account the noise com-
ponent arising from Galactic synchrotron emission, but
we ignored more subtle effects (such as the frequency
dependence of the beams, control of systematic errors
from foreground–cleaning residuals, etc.) which may fur-
ther complicate reconstruction of the magnetic–field sig-
nal and should be taken into account when obtaining
detailed figures of merit for future experiments. Finally,
we note that the effect of cosmic shear on the 21–cm sig-
nal (from weak lensing of the signal by the intervening
large scale structure) can produce a noise bias for the
magnetic–field measurements. In Appendix B, we exam-
ine the level of lensing contamination and show that it is
small even for futuristic array sizes of a hundred square
kilometers of collecting area.

It is worth emphasizing again that the main limitation
of this method is that it relies on effects that require two–
scattering processes. As soon as the quality of cosmolog-
ical 21–cm statistics reaches the level necessary to probe
second–order processes, the effect of magnetic precession
we discussed here will lend unprecedented precision to
a new in situ probe of minuscule, possibly primordial,
magnetic fields at high redshifts.
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Appendix A: Visibility variance

Here we derive the variance of the visibility for an inter-
ferometric array of two antennas separated by a baseline
~b = (bx, by), each with an effective collecting area Ae, ob-
serving a single element in the uv plane for time duration
t1, with total bandwidth ∆ν = νmax − νmin. We choose
notation that is consistent with the rest of this Paper,
and adapted to the purpose of discussing measurement
of a cosmological signal (as opposed to the traditional
context of radio imaging). However, similar derivation
can be found in the radio astronomy literature (see, e.g.,
Refs. [44, 45]), and in the literature discussing forecasts
for 21–cm experiments (see, e.g., Refs. [35, 46–49]).

A schematic of the experimental setup considered here
is shown in Fig. 7. Modes with frequencies that differ
by less than 1/t1 cannot be distinguished, and modes
with frequencies in each interval 1/t1 are collapsed into
a discrete mode with frequency νn = n/t1, where n ∈ Z.
Thus, the number of measured (discrete) frequencies is
Nν = t1∆ν. Electric field induced in a single antenna is

E(t) =

Nν∑
n

Ẽ(νn)e2πiνnt, (A1)

while the quantity an interferometer measures is the cor-
relation coefficient between the electric field Ei in one and
the electric field Ej in the other antenna, as a function
of frequency,

ρij(ν) ≡ 〈Ẽ∗i (ν)Ẽj(ν)〉√
〈|Ẽi(ν)|2〉〈|Ẽj(ν)|2〉

. (A2)

Let us now assume that

〈Ẽ∗i (νn)Ẽj(νm)〉 = σ(ν)2δmn. (A3)

In the following, for clarity, we omit the dependence on
ν. The real (or imaginary) part of ρ has the following
variance

var(Re[ρij ])
1

2Nν
=

1

2t1∆ν
. (A4)

Before continuing, let us take a brief digression to
show that the above formula implicitly assumes that
the electric fields in the two antennas have a very weak
correlation, ρ � 1. Consider two random Gaussian
variables, x and y, both with zero mean values, where
var(x) ≡ 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 = 〈x2〉, and similarly

for y. Their correlation coefficient is ρ ≡ 〈xy〉√
〈x2〉〈y2〉

. In

Figure 7. Schematic of a two–antenna interferometer.

this case, the following is true

var(xy) = 〈x2y2〉 − 〈xy〉2 = 〈x2〉〈y2〉+ 〈xy〉2

= 〈x2〉〈y2〉+ ρ2〈x2〉〈y2〉 = var(x)var(y)(1 + ρ2),
(A5)

so that when ρ is small, var(xy) = var(x)var(y), which
was assumed in the first equality of Eq. (A4).

Resuming the derivation, if different frequencies are
uncorrelated, the result of Eq. (A4) implies

〈|ρij(ν)|2〉 =
1

t1∆ν
. (A6)

The final step requires a relation between intensity on
the sky I(θx, θy, ν) (within the beam solid angle Ωbeam,
centered on the direction n̂ = (θx, θy)) and the electric
fields measured in the two antennas,

〈Ẽ∗i (ν)Ẽj(ν)〉 ∝
∫

Ωbeam

dθxdθyI(θx, θy, θν)

×ei 2πνc (bxθx+byθy)R(θx, θy),

(A7)

where R(θx, θy) is the antenna response function (the
shape of the beam in the sky), which we will assume to
be unity. Furthermore, 2πν

c (bxθx+byθy) ≡ 2π(uθx+vθy)
is the phase delay between the two antennas (position
in the uv plane measures the phase lag between the two
dishes in wavelengths). The coefficient of proportional-
ity in the above Equation is set by various instrumental
parameters and is not relevant for our purposes. From
Eq. (A2), it follows that

ρij(ν) =

∫
Ωbeam

dθxdθyI(θx, θy, θν)e2πi(uθx+vθy)∫
Ωbeam

dθxdθyI(θx, θy, θν)
, (A8)

where the denominator in the above formula approxi-
mately integrates to (for a small beam)∫

Ωbeam

dθxdθyI(θx, θy, θν) ≈ ΩbeamI(θx, θy, θν). (A9)
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We can now use the approximate expression for the res-
olution of a single dish,

Ωbeam =
λ2

Ae
, (A10)

the Rayleigh–Jeans law (or the definition of the bright-
ness temperature),

I(θx, θy, θν) =
2kBTsky

λ2
, (A11)

and note that the numerator in Eq. (A8) matches the
definition of visibility from Eq. (6), to get

ρij(ν) =
Ae

2kBTsky
V(u, v, θν). (A12)

Combining Eq. (A12) and Eq. (A6), we get the final
result of this derivation,

〈|V(u, v, θν)|2〉 =
1

Ωbeam

(
2kBTsky

Ae
√
t1∆ν

)2

×δD(u− u′)δD(v − v′)δθνθν′ ,
(A13)

where the visibility V is a complex Gaussian variable,
centered at zero, and uncorrelated for different values of
its arguments, and the factor of Ωbeam came from con-
verting from Kronecker delta to a Dirac delta function.
Note finally that we considered the contribution to the
visibility from the noise only (the system temperature +
the foreground sky temperature, in the absence of a sig-
nal); in the presence of a signal, Tsky should be the sum
of the signal and the noise temperatures.

Appendix B: Lensing noise bias

We now consider weak gravitational lensing of the 21–
cm signal by the large scale structure, as a source of noise
in searches for magnetic fields using the method proposed
in this work. We first compute the transverse shear power
spectrum and then evaluate the noise bias it produces
for the magnetic–field estimator. We demonstrate that
this bias is very small, even for arrays with futuristic
collecting areas of one hundred square kilometers.

To follow standard lensing notation, we no longer label
cartesian coordinate axes with x, y, and z, but rather
with numbers, using the convention where directions 1
and 2 lie in the plane of the sky, while 3 lies along the line
of sight. Specifically, we use angular coordinates (θ1, θ2)
to denote direction in the sky n̂, and θ3 to denote a co-
moving interval rz/χ(z) along the line of sight, located at
redshift z, and corresponding to ∆z interval. As before,
we denote variables in Fourier space with tilde. We use
~̀≡ (`1, `2) for a conjugate variable of n̂.

We start by generalizing the formalism for two–
dimensional weak lensing [50] to the three–dimensional
case. In the presence of lensing, a source coordinate θSi ,

where i ∈ {1, 2, 3}, maps onto the observed coordinate θi
as follows

θSk = θk +
∂ψ

∂θk
, k = 1, 2, θS3 = θ3, (B1)

where ψ is the lensing potential. The full Jacobian of
this coordinate transformation is

Jij ≡
∂θSi
∂θj

=

 1 + ψ,11 ψ,12 ψ,13

ψ,21 1 + ψ,22 ψ,23

0 0 1


=

 1 + κ+ γ11 γ12 γ13

γ12 1 + κ− γ11 γ23

0 0 1

 ,

(B2)

where i, j ∈ {1, 2, 3}, and the commas stand for par-
tial derivatives with respect to the corresponding coordi-
nates, as usual. In the above Equation, κ and γ compo-
nents represent the magnification and shear, respectively.
Fourier transform of the lensing potential is

ψ̃(~̀, z) ≡
∫
ψ(n̂, z)e−i

~̀·n̂ dθ1dθ2, (B3)

where the relation between ψ(n̂, z) and the Newtonian
potential Φ in a flat universe reads

ψ(n̂, z) = −2

∫ χ(z)

0

dχ1

[
1

χ1
− 1

χ

]
Φ(n̂, χ1). (B4)

Combining Eqs. (B3) and (B4), we get

∂ψ̃(~̀, z)

∂θ3
= − 2

χ(z)

∫ χ(z)

0

dχ1Φ̃(~̀, χ1). (B5)

From Eqs. (B5) and (B2), it follows

〈γ̃∗13(~̀, z)γ̃13(~̀′, z′)〉 =

〈
`1`
′
1

ψ̃∗(~̀, z)

∂θ3

ψ̃(~̀′, z′)

∂θ3

〉

=
4`1`

′
1

χ(z)χ(z′)

∫ χ(z)

0

dχ1

∫ χ(z′)

0

dχ′1〈Φ̃∗(~̀, χ1)Φ̃(~̀′, χ′1)〉.
(B6)

We now define the three–dimensional Fourier trans-

form
˜̃
Φ of the Newtonian potential,

Φ̃(~̀, χ) ≡
∫ ˜̃

Φ(~̀, `3)ei`3χ
d`3
2π

. (B7)

Using this definition, we get

〈Φ̃∗(~̀, χ)Φ̃(~̀′, χ′)〉 =

∫ ∫
d`3
2π

d`′3
2π
〈˜̃Φ∗(~̀, `3)

˜̃
Φ(~̀′, `′3)〉

×ei(`′3χ′−`3χ).
(B8)

Assuming different modes are uncorrelated, we arrive at

〈 ˜̃Φ∗(~̀, `3)
˜̃
Φ(~̀′, `′3)〉

= (2π)3δ(`3 − `′3)δ2(~̀− ~̀′)PΦ(
√
`23 + `2),

(B9)
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where

PΦ(`) =
PΦ(k = `/χ(z))

χ(z)2

=

[
3

2
ΩmH

2
0 (1 + z)

]2
Pδ(k, z)

k4χ(z)2
.

(B10)

Substituting Eq. (B9) into (B8) and applying Limber ap-
proximation `3 � `, we obtain

〈Φ̃∗(~̀, χ)Φ̃(~̀′, χ′)〉
= (2π)2δ(~̀− ~̀′)PΦ(`)δ(χ′ − χ).

(B11)

Thus, for z ≤ z′,

〈γ̃∗13(~̀, z)γ̃13(~̀′, z′)〉

=
4

χ(z)χ(z′)
`1`
′
1(2π)2δ2(~̀− ~̀′)

∫ χ(z)

0

dχ1PΦ(`).
(B12)

We are interested in calculating the power spectrum

P13(~̀, z, z′) of γ13 components, defined as

〈γ̃∗13(~̀, z)γ̃13(~̀′, z′)〉
≡ (2π)2P13(~̀, z, z′)δ(~̀− ~̀′).

(B13)

From Eq. (B12), we can express

P13(~̀, z, z′) =
4`21

χ(z)χ(z′)

∫ χ(z)

0

dχ1PΦ(`). (B14)

A similar result holds for the power spectrum P23 of γ23

component. The transverse power spectrum Pt reads

Pt(`, z, z
′) ≡ P13 + P23

=
4`2

χ(z)χ(z′)

∫ χ(z)

0

dχ1PΦ(`).
(B15)

If z = z′, the above expression simplifies to

Pt(`, z) =
4`2

χ(z)2

∫ χ(z)

0

dχ1PΦ(`). (B16)

Now that we have computed the transverse power
spectrum, we move on to evaluating the contamina-
tion it produces for the measurement of the magnetic
field. Denoting a vector transpose with “T”, let us set

k̂ = (sin θ cosφ, sin θ sinφ, cos θ)T, and consider the line
of sight along the direction 3, n̂ = (0, 0, 1)T, in the three–
dimensional Cartesian reference frame where x, y, and z
axes correspond to 1, 2, and 3, respectively; θ is the angle

between the direction 3 and k̂. Lensing distorts ~k into

~k′ = [J−1]T · ~k =

(
1− 2κ

3

)
~k + σ · ~k + Ω× ~k, (B17)

where J is given by Eq. (B2) and

σ ≡

 −κ/3− γ11 −γ12 −γ13/2
−γ12 −κ/3 + γ11 −γ23/2
−γ23/2 −γ23/2 2κ/3

 ,

Ω ≡ (−γ23/2, γ13/2, 0)T,

(B18)

where σ is a tensor quantity. The first term in Eq. (B17)

only changes the magnitude of ~k, the third term only
changes its direction, and the second term contributes to
both changes. To leading order, the fractional magnitude

change is (k′ − k)/k = −2κ/3 + k̂ · σ · k̂. We now define

C ≡ 26.4 mK

(
1− Tγ

Ts

)
x1s

(
1 + z

10

)1/2

, (B19)

and use Eqs. (B17) and (1) to arrive at the expression for
the brightness–temperature fluctuation in the presence of
lensing (keeping only the leading–order terms and assum-
ing no magnetic fields),

T(lens)(n̂,~k) =
1

det(J )
T
(
n̂,~k′

)
= T

(
n̂,~k

)
(1− 2κ) + C

{
δ(~k)2(k̂ · n̂)

[
n̂ · σ · k̂

−(k̂ · n̂)(k̂ · σ · k̂) + (Ω× k̂) · n̂
]

+

(
−2κ

3
~k + σ · ~k + Ω× ~k

)
·∇~kδ(

~k)
[
1 + (k̂ · n̂)2

]}
,

(B20)
where det(J ) corresponds to the determinant of J . The
lensed signal power spectrum is then given by

PS(lens)(
~k) = C2Pδ(k)

(
1 + (k̂ · n̂)2

)
×
{(

1 + (k̂ · n̂)2
)[

1− 2κ

(
1 +

1

3

∂ lnPδ(k)

∂ ln k

)
+
∂ lnPδ(k)

∂ ln k
(k̂ · σ · k̂)

]
+ 4(k̂ · n̂)

×
([

n̂− (k̂ · n̂)k̂
]
· σ · k̂ + (Ω× k̂) · n̂

)}
,

(B21)

where we use ∂ lnPδ(k)/∂ ln k ∼ −2.15 (the slope of the
density–fluctuation power spectrum, evaluated at red-
shift and k values that contribute most to the SNR for
magnetic–field measurement). On the other hand, from
Eq. (1), a magnetic field contributes to the signal as

PSB(~k) = C2Pδ(k)
(

1 + (k̂ · n̂)2
)
×{(

1 + (k̂ · n̂)2
)

+ 1.353× 1016

(
1 + z

10

)−1/2

×Tγ
Ts

x1s

(1 + xα,(2) + xc,(2))2

[
~B · (k̂× n̂)

]
(k̂ · n̂)

}
,

(B22)

where ~B is given in units of Gauss (physical, rather than
comoving). Let us now consider a magnetic field in the

(1, 2) plane, such that ~B = (Bx, By, 0); the results will
be valid for any field orientation. If we explicitly ex-
pand both Eq. (B21) and Eq. (B22) in terms of spherical
harmonics, and consider only Y2±1 terms (which domi-
nate the terms that are asymmetric around the line–of–
sight direction; contribution from the higher–order har-
monics is subdominant), we can match the coefficient
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of Eq. (B21) that corresponds to the multiplier to the
magnetic–field strength of Eq. (B22). With this proce-
dure, we arrive at the expression for the comoving value
of the lensing–induced spurious magnetic field given by

~B(lens) = 1.577× 10−18[Gauss] × 1

x1s

(
Ts
Tγ

)(
1 + z

10

)−3/2

×(1 + xα,(2) + xc,(2))
2

(
1 +

11

16

∂ lnPδ(k)

∂ ln k

)
×(−γ23, γ13, 0)T ≡ α(−γ23, γ13, 0)T,

(B23)
in units of comoving Gauss. The lensing noise bias for
magnetic–field reconstruction reads

P noise
(lens)(`) = P noise,Bx

(lens) + P
noise,By

(lens) = α2Pt(`), (B24)

where α is given by Eq. (B23) and Pt(`) is given by
Eq. (B16). Finally, the root–mean–square of the con-
tamination is given by

∆(lens)(`) =

√
`(`+ 1)

2π
P noise

(lens)(`). (B25)

A survey of size 1 sr, considered in this work, corre-
sponds to ` ∼ 6, which relates to the lensing–potential
fluctuations on comoving scale `/D(z) ∼ 5× 10−4Mpc−1

at z ∼ 20. We evaluate the contamination of Eq. (B25) at
this multipole, which has a dominant contribution to the
noise bias.9, and show the results in Fig. 8. Comparing
this to Fig. 6, we see that the contamination due to lens-
ing shear remains below the projected sensitivities even
for the case of futuristic array sizes. It may further be
possible to distinguish lensing contribution from that of
a magnetic field using difference in shapes of the inferred
signal power spectra, but such detailed considerations are
beyond the scope of this work.

Appendix C: Estimating the escape fraction of
ionizing photons

This Appendix describes our method for estimating
the escape fraction of ionizing photons in semi–numerical
simulations of the high–redshift 21–cm signal. We use
this estimate to perform a sanity check of the fiducial
model of the Lyman–α flux evolution (shown in Fig. 3)
used for the sensitivity calculations shown in §VI. We
computed this model using 21CMFAST. In order to match
the calculations of Ref. [39] at the lower end of the rel-
evant redshift range (z ∼ 15), we changed two of the

9 Note that the derivations shown in this Appendix hold only if the
scale of matter fluctuations that contribute most to the lensing
contamination are much larger than than those that contribute
the most SNR for magnetic–field measurements, which is indeed
the case here.
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Figure 8. The lensing–shear noise bias for the measurement
of the magnetic field is shown before (solid red line) and after
the de–lensing procedure is applied (dashed blue line). The
saturation ceiling is denoted by the shaded region above the
thin dashed line. Comparison with Fig. 6 reveals that lens-
ing noise is below the projected sensitivity even for futuristic
array sizes.

default input parameters, setting the star–formation ef-
ficiency to 0.0075, and the population of ionizing sources
to Population III stars. We then checked that these pa-
rameters satisfy the constraint that the escape fraction
of ionizing photons is bound to be less than one, at all
redshifts of interest.
21CMFAST sidesteps the computationally expensive

tasks of tracking individual radiation sources and per-
forming the radiative transfer of ionizing photons (needed
to simulate HII regions in the early universe). It uses an
approximate relation between the statistics of HII regions
and those of collapsed structures, the latter of which can
be efficiently computed in pure large–scale–structure sim-
ulations [51]. Thus, the escape fraction of ionizing pho-
tons is not a direct input to these simulations, but can
be estimated using the procedure we describe below.

The number of ionizing photons emitted in a given
ionized region, integrated up to a fixed redshift, should
equal the number of absorbed ionized photons. These
read, respectively,

Nem = 〈fesc〉f∗Nγ/bfcollNb

Nabs = fH(1 + 〈nrec〉)Nb,
(C1)

where fH = 0.924 is the hydrogen number fraction; f∗
is the star–formation efficiency (the fraction of galactic
baryonic mass in stars; this is an input parameter to
21CMFAST); Nγ/b is the number of ionizing photons pro-
duced by stars per nucleus; Nb is the total number of
nuclei within a given ionized region; 〈fesc〉 is the aver-
age escape fraction associated with a given region; 〈nrec〉
is the average number of recombinations per hydrogen
atom inside that region; and fcoll is the collapse fraction
therein. We assume that once regions are ionized, they
stay ionized.
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Integrating the number of absorbed photons of
Eq. (C1) over the set R(z) of all ionized regions at a
given redshift, we get the total number of absorbed ion-
izing photons,

Nabs,tot(z) = fH

∫
R(z)

nbdV

+f2
H

∫ ∞
z

dz′
∣∣∣∣ dtdz′

∣∣∣∣ ∫
R(z′)

Cn2
bαB dV,

(C2)

where nb is the baryon number density; the Jacobian
|dt/dz| maps between redshift and proper time; C ≡
〈n2

b〉/〈nb〉2 is the clumping factor; and αB is the case–B
recombination coefficient (varies from ionized region to
ionized region). On the other hand, using the 21CMFAST
ansatz that fcoll = 1/ζ, where ζ is an efficiency factor
(also given as an input to the code), the total number of
emitted ionizing photons reads

Nem,tot(z) =
fesc(z)f∗Nγ/b

ζ

∫
R(z)

nb dV, (C3)

where fesc(z) is the overall averaged escape fraction up to
redshift z—the quantity we aim to estimate. Combining

Eqs. (C2) and (C3), we get

fesc(z) =
fHζ

f∗Nγ/b

×

1 + fH

∫∞
z
dz′
∣∣∣∣ dtdz′ ∣∣∣∣ ∫R(z′)

Cn2
bαB dV∫

R(z)
nb dV

 .
(C4)

Rewriting the above integrals in terms of comoving coor-
dinates ~r and the overdensity δ(~r, z), we finally get

fesc(z) =
fHζ

f∗Nγ/b

×
[

1 +
fHnb,today∫

R(z)
d~r[1 + δ(~r, z)]

∫ ∞
z

dz′
∣∣∣∣ dtdz′

∣∣∣∣
× (1 + z′)3

∫
R(z′)

d~r C[1 + δ(~r, z′)]2αB

]
.

(C5)

where nb,today is the number density of baryons today.
An additional subtlety is that 21CMFAST follows the ki-
netic temperature in the IGM outside the ionized regions,
while the recombination coefficient αB depends on the
temperature inside these regions. In general, the latter
differs from the former due to the energy deposited by
the free–electrons released during photoionization. We
simplify our calculation by setting the temperature in-
side the bubbles to 104 K (corresponding to the mean
kinetic energy of the particles of a few eV).
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