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Abstract
The scattering of dark matter particles off nuclei in direct detection experiments can be described

in terms of a multi-dimensional effective field theory (EFT). A new systematic analysis technique is

developed using the EFT approach and Bayesian inference methods to exploit, when possible, the

energy-dependent information of the detected events, experimental efficiencies, and backgrounds.

Highly-dimensional likelihoods are calculated over the mass of the Weakly Interacting Massive Par-

ticle (WIMP) and multiple EFT coupling coefficients, which can then be used to set limits on these

parameters and choose models (EFT operators) that best fit the direct detection data. Expanding

the parameter space beyond the standard spin-independent isoscalar cross-section and WIMP mass

reduces tensions between previously published experiments. Combining these experiments to form

a single joint likelihood leads to stronger limits than when each experiment is considered on its

own. Simulations using two non-standard operators (O3 and O8) are used to test the proposed

analysis technique in up to five dimensions and demonstrate the importance of using multiple like-

lihood projections when determining constraints on WIMP mass and EFT coupling coefficients.

In particular, this shows that an explicit momentum dependence in dark matter scattering can be

identified.

∗ Corresponding author: hrogers@physics.umn.edu
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I. INTRODUCTION

Astrophysical evidence indicates that non-luminous matter makes up approximately 80%

of the mass in the Universe [1–4]. If dark matter is in the form of Weakly Interacting Massive

Particles (WIMPs) and interacts with baryonic matter on the scale of the weak interaction,

it could be accessible to direct detection experiments sensitive to nuclear scattering from a

variety of targets. The nuclear recoil energy is quite small and is expected to occur within

the range of 1 to 100 keV for a WIMP mass range of 10 to 1000 GeV [5] using natural units

with c = ~ = 1. The simplest form of the differential rate is given by

dR

dER
=

ρχ
mTmχ

∫ ∞
vmin

vf(~v)
dσ

dER
d3~v, (1)

where ER is the nuclear recoil energy, ρχ is the expected local dark matter density, mT is

the target nuclear mass, mχ is the WIMP mass, f(v) is the velocity distribution of the dark

matter halo, and dσ/dER is the differential cross-section for the target-WIMP interaction

[6]. The minimum velocity, which is determined from non-relativistic scattering in the

center-of-mass frame, is related to the nuclear recoil energy by

vmin =

√
mNER
2µ2

, (2)

where µ is the reduced mass of the system, and mN is the mass of the neutron.

The non-relativistic limit is considered valid for direct cold dark matter detection. The

generally accepted velocity distribution for the dark matter halo is Maxwell-Boltzmann

shifted by the Earth’s velocity, vE ∼ 232 km/s, and with the width determined by the mean

velocity of the particles in the dark matter halo encompassing the galaxy, v0 = 220 km/s.

The probability of finding a dark matter particle with a velocity greater than the galactic

escape velocity, vesc = 544 km/s, is roughly zero [5]. This is introduced through a cut-off to

the Maxwell-Boltzmann distribution [7, 8], giving the velocity distribution function of

f(~v) ∝ e−(~v+~vE)2/v20 − e−v2esc/v20 . (3)

The energy deposited by this nuclear recoil can be observed in the form of some combina-

tion of complementary signals of ionization, scintillation, and phonon emission depending on

the target material chosen which allows for discrimination between nuclear recoil and back-

ground electron recoil events. There are many direct detection technologies and a variety of
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targets. Examples include noble liquids (argon, xenon, and neon), cryogenic semi-conducting

crystal detectors (germanium, silicon, calcium tungstate), scintillating crystal arrays (NaI,

CsI), and superheated bubble chambers using a variety of fluorinated hydrocarbons. Specifics

of detector sensitivity and noise determine a detector-dependent recoil energy threshold, and

the discrimination afforded by complementary signals affects background discrimination [5].

In the case of a positive signature in any of these experiments, the observed number of

events and the spectral shape of the nuclear recoil spectrum can be used to determine the

dark matter properties [9], including potential non-standard momentum dependent contri-

butions [10]. The goodness of the reconstruction is very sensitive to uncertainties in the

astrophysical parameters describing the Milky Way halo [11] as well as in the nuclear form

factors [12] and is also subject to statistical limitations [13]. Regarding the WIMP-nucleus

cross section, current dark matter direct detection analyses generally interpret results based

on the simplest models of spin-independent or spin-dependent interactions to foster easy

comparison between experiments. These conventional assumptions include form factors that

are based on models of the weak force that limit the possible structure of the target nucleus

and dark matter itself. It was found that, while a single experiment would be insufficient

to unambiguously discriminate between spin-dependent and spin-independent couplings, a

combination of targets [14–16] could be used to this aim.

Recently, a general description of the WIMP-nucleus interaction has been derived using an

effective field theory (EFT) approach [17–19]. This formalism extends the model-driven con-

ventional technique by considering all relevant couplings in the non-relativistic limit [20, 21].

The addition of angular-momentum-dependent and spin-and-angular-momentum-dependent

couplings means that EFT includes interaction operators which are also dependent on mo-

mentum transfer and the initial velocities [17]. The reconstruction of WIMP parameters is

even more challenging in the resulting multi-dimensional parameter space. However, since

each target nucleus is sensitive to different aspects of dark matter interactions [18], combin-

ing the results from multiple targets and techniques strongly constrains theoretical models

in the absence of a detection and allows for determination of the underlying physics of the

interaction once a signal is seen [20, 22]. It has thus been argued that next generation

experiments constitute an excellent tool to probe the general EFT parameter space [23, 24]

and identify the right theory [25, 26]. Adding information from annual modulation [27, 28]

is particularly useful to identify a certain class of unconventional operators.
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In this paper we further investigate the parameter reconstruction in the context of the

EFT formalism. We focus on current experimental data (from the CDMS II and LUX

experiments), as well as future next-generation detectors (SuperCDMS and LZ). We perform

a careful treatment of the background that arises from the unique constraint of not knowing

the energy dependence of the background spectra while retaining the discrimination power

afforded by a binned likelihood function. We also test the reliability of confidence intervals

and the Bayesian evidence for determining which parameters are relevant to dark matter

experiments and to what degree we can constrain these parameters.

This article is organized as follows. In Section II we summarize the basic aspects of the

EFT formalism. In Section III we explain the details of our numerical analysis and provide

a procedure for analyzing direct dark matter detection data from one or more experiments.

This procedure is then used in Section IV to study the existing experimental data from the

CDMS II and LUX experiments. Finally, in Section V we consider a hypothetical future

signature in next-generation experiments and attempt to reconstruct it in a five-dimensional

subset of the EFT operators that include non-trivial dependences on momentum and spin.

Our conclusions are presented in Section VI.

II. EFT FORMALISM OVERVIEW

All interactions considered in the dark matter EFT formalism, listed in Table I by broad

category, are four-fermion operators of elastic scattering between a dark matter particle (χ)

and a target nucleon (N). The effective interaction Lagrangian is expected to be of the form

Lint =
∑
τ

∑
i

cτiOiχχττ, (4)

where τ can either be a sum over proton and neutron interactions or over isoscalar

and isovector interactions and i sums over all interaction types (operators). Here, the

isoscalar/isovector basis will be used instead of the proton/neutron one. While the goal

of EFT is model independence, there are some symmetries and assumptions that limit the

interaction types considered, as follows. The operator variables of the effective interaction

Lagrangian must have Galilean invariance. This means that the momentum- and velocity-

dependent terms must appear as the momentum transfer, ~q = ~pχ,out− ~pχ,in, and the relative

incoming velocities, ~v = ~vχ,in − ~vN,in. Only elastic collisions are considered, so the kinetic
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P-even, ~Sχ-independent, T-conserving

O1 1

O2 (v⊥)2

O3 i~SN · (~q/mN × ~v⊥)

P-even, ~Sχ-dependent, T-conserving

O4
~Sχ · ~SN

O5 i~Sχ · (~q/mN × ~v⊥)

O6 (~Sχ · ~q/mN )(~SN · ~q/mN )

P-odd, ~Sχ-independent,T-conserving

O7
~SN · ~v⊥

P-odd, ~Sχ-dependent, T-conserving

O8
~Sχ · ~v⊥

O9 i~Sχ · (~SN × ~q/mN )

P-odd, ~Sχ-independent, T-violating

O10 i~SN · ~q/mN

P-odd, ~Sχ-dependent, T-violating

O11 i~Sχ · ~q/mN

Table I: EFT interaction operators of the effective interaction Lagrangian separated into

categories of similar parity and WIMP spin dependence [17].

energy must be conserved [18] by

1

2
µv2 =

1

2
µ(~v +

~q

µ
)2, (5)

which leads to

~v · ~q = − q
2

2µ
. (6)

Requiring the interaction to be Hermitian means that only four terms may appear any-

where in the effective interaction Lagrangian: the momentum transfer, i~q/mN , the spin of

the target, ~SN , the possible spin of the dark matter particle, ~Sχ, and the transverse compo-

nent of the incoming velocity, ~v⊥ = ~v+~q/2µ [19]. The transverse component of the incoming
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velocity is chosen such that each term is linearly independent of all others. For example,

~v⊥ · ~q = 0. (7)

The EFT operators shown in Table I all consist of combinations of these four terms,

except for O1, which, as the spin-independent (SI) operator, is the simplest interaction

possible. Standard SI dark matter analyses compute parameter constraints assuming that

interactions with protons and neutrons are the same. This corresponds to the EFT isoscalar

case defined here. EFT O4 is the standard spin-dependent (SD) operator and is dependent

on the spin of both dark matter and the target nuclei. Past SD analyses typically assumed

the proton/neutron basis instead of the isoscalar/isovector basis. Other operators, such as

O3 and O5, are dependent on the momentum transfer and are characterized by different

shapes of the recoil energy spectra than is typically assumed. As shown later by simulations

in O3, experiments with low energy thresholds are particularly important for discriminating

between operators associated with different spectral shapes.

If Lorentz invariance is required, then time-reversal symmetry must also be considered.

Therefore, the possible interaction terms are organized by Table I into T-conserving and

T-violating types. The interactions are also classified by whether they have even or odd

parity and if they depend on dark matter spin, ~Sχ. Within similar regions, there can be

interference between operators. For example, interference terms in the Lagrangian exist

between O1 and O3, O4 and O5, O4 and O6, and O8 and O9 [17].

All of the EFT operators are found as leading-order terms in the non-relativistic reduction

of a relativistic operator with a traditional spin-0 or spin-1 mediator except for O2. For this

reason, O2 is not considered. Four more non-relativistic operators exist from interactions

without a spin-0 or spin-1 mediator; however, these are not linearly independent from the

first eleven and are therefore not considered in order to simplify the analysis [19].

Once the form factors for each interaction are known, the differential cross-section is

calculated as follows:

dσ

d cos θ
=

µ2

32πm2
χm

2
N

11∑
i,j=1

∑
τ,τ ′

cτi c
τ ′

j F
τ,τ ′

i,j (v2, q2), (8)

where cτi is the coupling coefficient for the ith interaction term to the nucleon or isospin. A

listing of form factors for fluorine, sodium, germanium, iodine, and xenon can be found in

Fitzpatrick et al [17]. This leads to a differential event rate per detector mass (cf. Equation
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1) of
dR

dER
= NT

ρχmT

32πm3
χm

2
N

∫ ∞
vmin

d3~v
f(~v)

v

11∑
i,j=1

∑
τ,τ ′

cτi c
τ ′

j F
τ,τ ′

i,j (v2, q2), (9)

where NT is the number of target nuclei per detector mass and the maximum WIMP velocity

is encoded in the Gaussian cut-off defined in Equation 3.

The differential rate equation (Equation 9) can be calculated as a sum over isospin

(isoscalar and isovector) or as a sum over protons and neutrons. The coupling coefficients,

cτi , can be converted between the nucleon and isospin bases by

c0i =
1

2
(cpi + cni ) (10)

and

c1i =
1

2
(cpi − cni ), (11)

where c0i is the isoscalar interaction and c1i is the isovector interaction [19].

III. MULTI-DIMENSIONAL EFFECTIVE FIELD THEORY ANALYSIS TECH-

NIQUE

In order to interpret data from direct detection experiments within the general context

of EFT operators, a likelihood calculation is carried out comparing the data to theoretical

models. Given the low number of expected detected WIMP events, a Poissonian likelihood

function is the most reasonable choice to compare the detected recoil energy spectra with the

theoretical spectra. This method has been used in maximum likelihood analyses for many

different dark matter experiments. Often in dark matter analyses the likelihood function

used includes only a single energy bin, sacrificing discrimination based on the recoil energy

for simplicity [13, 20, 21, 23, 24, 28]. In order to include the spectral information of both the

expected WIMP spectrum and the detected events, the Poissonian likelihood can be split

into n bins, giving a dark matter-only likelihood, LDM, of

LDM =
n∏
k=1

1

Nk!
ηNk
k e−ηk , (12)

where ηk the expected number of events, and Nk is the number of detected events in the

kth energy bin. Binned likelihood functions have been used in some previous dark matter

analyses as well [22, 26]. The expected number of events in any given energy bin is calculated
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using Equation 9 for a chosen combination of WIMP mass, mχ, and non-zero coupling

coefficients; therefore,

ηk({mχ, c
0
i , c

1
i }) =

∫
Ek

dR

dER
dER, (13)

where i ranges over any operators with non-zero coupling coefficients in either isoscalar (c0i )

or isovector (c1i ) directions, and the integral is evaluated over the kth energy bin Ek.

If the energy dependence of the backgrounds are known for an experiment, this can be

added into the likelihood function as

LDM+bkg =
n∏
k=1

1

Nk!
(ηk + bk)

Nke−(ηk+bk), (14)

where bk is the number of background events in the kth energy bin. Most experiments only

publish an estimate of their backgrounds across their entire energy range. Because of this,

previous analyses have ignored expected background all together [22, 23, 26, 28] or only used

simplistic and assumed background models [24, 25]. In order to include the background, our

likelihood definition, therefore, must allow for a constraint on the total (single energy bin)

background estimate, while still retaining the binned energy formalism for the WIMP data.

In order to include an unbinned background in a binned likelihood, we consider all possible

background configurations across energy bins that yield a total count within 2σ of the

expected total background, B. The background configuration that maximizes the likelihood

is then accepted. The number of background configurations to be tested is determined by

how many ways the total number of background counts can be distributed into all of the

energy bins and is, most generally,

number of background combinations =
(n+B − 1)!

(n− 1)!B!
. (15)

For n = 100 energy bins, the number of combinations necessary to test is computationally

feasible for a maximum expected background of 4 counts or less (B+2σ ≤ 4.49). Using this

method, the likelihood can be defined for an expected total background B with error σ as

LDM+bkg =
1√
2πσ

e−(
∑n

k bk−B)2/2σ2
n∏
k=1

1

Nk!
(ηk + bk)

Nke−(ηk+bk). (16)

Once the likelihood has been calculated for a specific experiment, it can be combined with

the likelihoods for other experiments (with potentially different targets) in order to better
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probe the operator space, as has been shown to be useful in previous analyses [10, 13, 22].

The likelihoods are combined as

Lcombined =
∏
j

Lj, (17)

where Lj is the likelihood of the jth experiment. The resulting likelihoods can be used

to show the effect of each experiment (or target) on the chosen operator space and to set

joint constraints on the operator space due to all available experiments. Generally, once

multiplied together, the 95% confidence contours calculated from the joint likelihood are

tighter and more clearly defined.

The theoretical spectrum, ηk, is a function of the WIMP mass and all of the possible

EFT coupling coefficients, thus our parameter space {mχ, c
0
i , c

1
i } contains up to 23 variables.

An efficient method of scanning over all possible dimensions, especially since the likelihood

functions tend to be multimodal, is by using the nested sampling Monte Carlo software

package MultiNest [29–31], a Bayesian inference tool that can be used for parameter estima-

tion or model comparison and selection. The nested sampling technique used by MultiNest

involves an optimized set of live points from the full likelihood. This optimized set includes

the points of highest likelihood such that at each iteration of the algorithm a live point of

the lowest likelihood is replaced with a point of higher likelihood [29].

Even with a software program like MultiNest, calculating a 23-dimensional likelihood

remains computationally intensive and time consuming. Hence, exploring the likelihood

over 3D subspaces corresponding to individual EFT operators (spanned by {mχ, c
0
i , c

1
i } for

the operator Oi) could be used to initially identify which operators are the most consistent

with the data. For this purpose we use the Bayesian evidence, Z, to calculate the probability

that the detected data, Nk, is best represented by a given operator hypothesis, H, and is

calculated by

Z =

∫
dHL(Nk|H)Pr(H), (18)

with the integral over all parameters belonging to that operator hypothesis and where Pr(H)

is the prior for each parameter. For the 3D example with a single operator Oi,

Zi =
∫
dmχdc

0
i dc

1
iL({mχ, c

0
i , c

1
i })Pr({mχ, c

0
i , c

1
i }) (19)

with flat priors assumed for each parameter. The evidence is used in Bayes’ theorem as

P({mχ, c
0
i , c

1
i }|Nk) =

L(Nk|{mχ, c
0
i , c

1
i })Pr({mχ, c

0
i , c

1
i })

Z
, (20)
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where P({mχ, c
0
i , c

1
i }|{Nk}) is the posterior probability distribution in the {mχ, c

0
i , c

1
i } pa-

rameter space given the observed data, {Nk}. For a given experiment, the operators with the

highest Bayesian evidence [32] should be most relevant to the data and thus most likely to

give non-zero coupling coefficients when analyzed jointly with other operators. The Bayesian

evidence has become a fairly standard way of comparing competing models within dark mat-

ter likelihood analyses [23, 24, 26, 28, 29]. In order to visualize 3D or higher dimensional

likelihoods, the likelihoods can be marginalized down to multiple 2D and 1D marginalized

likelihoods. Contours at 95% confidence can be calculated in 2D planes to place constraints

on likely WIMP mass and coupling coefficient values. 1D marginalized likelihoods can be

used to determine the 95% confidence regions for each parameter individually, by integrat-

ing down from the point of highest likelihood. We calculate the 95% confidence intervals,

because they have been shown to be a reliable method of estimating the true values of

likelihood parameters for dark matter experiments [13].

We propose the following procedure for analyzing direct dark matter detection data from

one or more experiments in the vast EFT parameter space:

1. Assuming a flat prior for all parameters involved, run 3D analysis for each EFT op-

erator computing the likelihood dependent only on the WIMP mass and the isoscalar

and isovector coupling coefficients of that operator.

2. Calculate the Bayesian evidence, as defined in Equation 19, for each operator’s 3D

likelihood. The evidence can be used to determine which operators or combination of

operators are most relevant to the data set and therefore, which model best represents

the dark matter interaction.

3. Run 5D or higher dimensional analysis for the combination of two or more relevant

operators determined in step 2, and compute constraints on the WIMP mass and

relevant coupling coefficients simultaneously over all relevant EFT operators.

4. Combine the likelihoods of individual experiments for relevant operators into one like-

lihood. The joint likelihood can be used to compute the most stringent constraints on

EFT parameters, using information from all available experiments.
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IV. 3D ANALYSIS OF PUBLISHED DATA

The EFT analysis methodology described above can be used to present new interpre-

tations of previously published WIMP search results. To demonstrate this, consider three

past results obtained using experiments with different target materials: Cryogenic Dark

Matter Search (CDMS) experiment observed three WIMP candidate events using silicon

detectors [33] and two using germanium detectors [34], while the Large Underground Xenon

(LUX) experiment observed one candidate WIMP event using a liquid xenon detector [35].

While not the most recent results in the field, they were chosen to illustrate an example

of a tension between different experiments. All three measurements assumed an isoscalar

spin-independent interaction (cross-section, σ0
1) and published results for a range of WIMP

masses (mχ) based on detected nuclear recoil events. The energies of the detected events,

total exposure, and expected background for each experiment is shown in Table II. A com-

parison of the exposures of each experiment, including the efficiencies and energy thresholds,

is shown in Figure 1.

Using these parameters, the results obtained by the three experiments were reproduced

using the EFT SI operator. Figure 2 compares the previously published results to the

constraints calculated using the EFT likelihood analysis technique for each experiment over

the two-dimensional parameters space of the WIMP mass and the elastic scattering cross

section due to the isoscalar component of operator 1, σ0
1. The published upper limits from all

three experiments and the detection contour for CDMS II Si result are in good agreement

with the corresponding constraints obtained with the EFT likelihood analysis. In both

cases, the LUX limit, shown in purple, completely excludes the CDMS II Si contour, shown

in blue, leading to a visible tension between these experiments in the low mass region.

Previous dark matter simulations [10, 25] have shown that assuming the incorrect model for

Experiment Exposure (kg days) Events (keV) Background (counts)

CDMS II Si [33] 140.2 8.2, 9.5, 12.3 0.41±0.48

CDMS II Ge [34] 612 10.81, 12.3 0.64±0.17

LUX [35] 10065.4 ∼4.5 0.64±0.16

Table II: Overview of the published results from each of the chosen experiments.
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Figure 1: Exposures of CDMS II Si [33], CDMS II Ge [34], and LUX [35] as a function of

recoil energy including the experimental efficiencies and energy thresholds.

dark matter-target interactions can lead to biased contours and can cause tension between

experiments.

The tension between these experiments can be relieved by generalizing the WIMP-nucleus

interaction, thus including more EFT operators in the analysis. The simplest addition is

the inclusion of the isovector component of O1 to the SI interaction leading to a likelihood

calculated over the 3D parameter space {mχ, c
0
1, c

1
1}. We then marginalize over one of the pa-

rameters to compute 2D marginalized likelihoods for each experiment individually, as shown

in Figure 3. The 95% confidence contours shown for CDMS II Ge and LUX are open con-

tours, consistent with the published LUX and CDMS limits. The symmetries visible in the

likelihoods, especially in CDMS II Ge, indicate that the isoscalar and isovector components

have the same sign. Combining all three experiments together into a single likelihood makes

this symmetry stronger, such that no negative values of the isovector coupling coefficient

remain. Figure 4 shows the joint likelihood (with all three experiments combined) marginal-
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Figure 2: EFT 95% upper limit contours for each experiment and the silicon 95% detection

contour, which were calculated in a 2D likelihood analysis of WIMP mass and the isoscalar

operator 1 cross-section, are compared to the published optimal interval contours for the

CDMS experiments [33, 34] and to the profile likelihood ratio upper limit from LUX [35].

The LUX limit (purple) rules out the CDMS II Si contour (blue).

ized over one of the parameters (top row) or over two of the three parameters (bottom row).

The cross-section is plotted instead of the coupling coefficient, defined by

στ1 =
(AmN)

2

4π〈V 〉4(1 + A)2
(cτ1)

2, (21)

where A is the number of nucleons of the target material and 〈V 〉 = 246.2 GeV is the

Higgs vacuum expectation value, used here to represent the Electroweak scale and to define

dimensionless coefficients [19].

The best fit point of the joint likelihood is shown in Figure 4 in red with 95% confidence

intervals as calculated from the 1D marginalized likelihoods. The parameters of this point

with 95% confidence intervals are mχ = 10.1±7.8
1.5 GeV, σ0

1 = (2.2±10.1
2.1 ) × 10−42 cm2, and

σ1
1 = (8.2±33.2

7.6 ) × 10−41 cm2. The ratio between coupling coefficients of the best fit point,
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(a) CDMS II Si [33]

(b) CDMS II Ge [34]

(c) LUX (2013) [35]

Figure 3: 2D marginalized likelihoods from the 3D likelihood of each previously published

experiment calculated using WIMP mass (mχ) and both isoscalar (c01) and isovector (c11)

coupling coefficient components of operator 1. Contours are calculated at the 95%

confidence level, and the global likelihood maximum is depicted.
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Figure 4: Joint 3D likelihood combining CDMS II Si [33], CDMS II Ge [34], and LUX [35]

data. Plotted are WIMP mass (mχ), isoscalar operator 1 cross-section (σ0
1), and isovector

operator 1 cross-section (σ1
1). The top row depicts 2D marginalized likelihoods obtained by

marginalizing over one of the parameters, while the bottom row shows 1D marginalized

likelihoods obtained by marginalizing over two of the three parameters. Also shown are the

95% confidence contours and the point of best fit with error bars derived from the 1D

marginalized likelihoods.

c01/c
1
1 = 0.172±0.016

0.013, coincides with the point for which the sensitivity of LUX is at the lowest,

as shown in Figure 5, showing that the LUX result constrains the combined likelihood the

most. The 95% or 2σ confidence contours around the best fit point are closed, as shown in

Figure 4; however, at 5σ confidence, the contours are open, so we make no claim of dark

matter detection.

The Bayesian evidence can be used to evaluate whether the goodness of fit was improved

by adding an isovector component. The evidence for each experiment in both the 2D and

3D analyses are shown in Table III. For each experiment individually the evidence is greater

when both coupling components are included, indicating that the 3D model is a better fit

than the simple 2D WIMP mass and isoscalar coupling model.
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Figure 5: Total integrated rate for each experiment over a range of coupling coefficient

ratios for O1 calculated at the best fit mass of mχ = 10.1 GeV and total coupling

coefficient amplitude of
√
(c01)

2 + (c11)
2 = 0.12±0.20

0.09. The minimum for each experiment

represents the ratio for which that experiment would detect the fewest number of events.

The best fit point of the combined 3D likelihood is shown with 95% confidence errors by

the vertical line close to the minimum for LUX. The width of the rate for each experiment

were calculated from the 95% confidence regions of the best fit mass and of the total

coupling coefficient amplitude.

V. SIMULATED DARK MATTER DATA FROM FUTURE EXPERIMENTS

Assuming a wrong operator for WIMP-nucleon coupling when conducting an analysis of

WIMP search data can lead to erroneous conclusions about the WIMPmass and interactions.

Possible failure modes are demonstrated with a set of simulated experiments where the

WIMP-nucleon interaction proceeds via non-standard operators. Three hypothetical direct

dark matter experiments are defined. The silicon (Si) and germanium (Ge) experiments are

based on the proposed SuperCDMS SNOLAB [36] experiment with backgrounds given by

Poissonian errors of 1 count/year for 400 kg of Ge and 0.86 counts/year for 170 kg of Si.

The liquid xenon (LXe) experiment is based on the LUX upgrade with a low threshold [37]
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Model CDMS II Si [33] CDMS II Ge [34] LUX [35]

c01 only 3.54× 10−6 1.99× 10−4 0.00365

c01 and c11 2.84× 10−5 4.38× 10−4 0.0104

3D / 2D 8.02 2.20 2.84

Table III: Bayesian evidence for each experiment and for the two models: isoscalar

spin-independent coupling only (the typically assumed case, 2D) and isoscalar and

isovector spin-independent coupling (3D). For all three experiments, the evidence favors

coupling via a combination of both isoscalar and isovector couplings as shown by the ratio

between the 3D and 2D cases.

Target Live time (kg days) Total Background (counts)

Si 63000 0.86±0.93

Ge 145000 1±1

LXe 33500 3.5±0.4

Table IV: Details used to build the simulated data for each target chosen. Each simulated

experiment is assigned an energy threshold of 1 keV. The Si and Ge experiments are based

on the proposed SuperCDMS SNOLAB [36], and the LXe on the most recent results from

LUX [37–39].

and background [38] over a live time of 33500 kg days [39]. An overview of the assumed

backgrounds, exposures, and energy thresholds is given in Table IV. The efficiencies are

assumed to be a simple step function between the experimental threshold and the energy at

which the experiment’s efficiency drops back to 75%.

We present two simulations, one in which the WIMP-nucleon scattering proceeds via

EFT O8 and the other in which the WIMP-nucleon scattering proceeds via O3. In each

case, the values for the WIMP mass and isoscalar and isovector coupling coefficients are

chosen in order to compute the theoretical recoil energy spectra for each of the three sim-

ulated experiments. The parameters chosen for each benchmark experiment are listed in

Table V. Treating the recoil energy spectra as probability density functions, we randomly

draw WIMP-event recoil energies, with the number of events in each simulated experiment

given by the integral of the theoretical recoil energy spectrum. The energies of the simu-
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Benchmark point mχ (GeV) {c01, c11} {c03, c13} {c08, c18}

BP8 3.0 {0,0} {0,0} {4.875,24.375}

BP3 8.0 {0,0} {16, -6.4} {0,0}

Table V: WIMP mass and coupling coefficients for O1, O3, and O8 as benchmark points to

simulate the detected dark matter data.

lated background events were randomly drawn from a flat probability density function over

the energy range set by the efficiency. The simulated dark matter events and simulated

background events together were used as the detected events for each simulated experiment.

A. 5D Analysis of Data Simulated in Operator 8

The EFT operatorO8, described by ~Sχ·~v⊥, is dependent on the WIMP spin (here assumed

to be Sχ=1/2), the transverse component of relative velocity (~v⊥), and spin-independent-

and angular-momentum-dependent target nuclear responses. The spin-independent nuclear

response is the same as that found in the standard SI interaction, O1 [17]. Therefore, O8

and O1 have the same exponential recoil energy spectral shape; however, the overall rate

depends on the WIMP mass and does so differently depending on the target material. This

operator was chosen in order to illustrate the challenge of identifying the correct WIMP-

nucleon interaction operator when the operator yields similar recoil energy spectral shape

to O1, and the only target-dependent modifier is the overall integrated rate.

We consider the benchmark point, BP8, with parameters as defined in Table V. This

example was chosen specifically to produce a distinctive signal in Si but not in Ge or LXe.

The chosen ratio of isoscalar to isovector components, c08/c18 = 0.2, favors interactions with

Si over Ge. Also, the low WIMP mass of 3 GeV is below the experimental threshold assumed

for LXe. For exposures considered in Table IV, this resulted in 11, 1, and 0 events for Si,

Ge, and LXe respectively. This corresponds to 12, 2, and 4 events when the background is

included.

The simulated WIMP events for the three experiments are shown in Figure 6. All of

the simulated events for Ge sit right at the experimental threshold, so very little shape

information is available. On the contrary, for Si some simulated WIMP events pass the
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(a) Si (b) Ge (c) LXe

Figure 6: The total (signal plus background) recoil energy spectra simulated for each

experiment compared to the expected rates of WIMP-nucleon scattering for the chosen

interaction parameters in the O8 simulation (BP8). The dashed line indicates the energy

threshold used in the simulation.

experimental threshold, so the shape information should be more helpful in distinguishing

between operators. Even though all of the simulated data for LXe are background events,

they mimic the energy distribution of an exponentially decaying WIMP spectrum, which

allows the background events to be easily misinterpreted as a WIMP signal.

We start by analyzing the simulated data in the EFT likelihood formalism assuming

O1 interaction only; that is, the likelihood is computed over the 3D parameter space of

{mχ, c
0
1, c

1
1}. The resulting 3D likelihood is shown in Figure 7a with the 2D marginalized

likelihoods shown on top and the 1D marginalized likelihoods on the bottom. The best-

fit point, which is calculated from the 1D marginalized likelihoods and is listed in Table

VI, is also depicted along with the error bars. The point representing the simulated data

(c01 = 0, c11 = 0) is contained within the 1D 95% confidence intervals but not in two of the

2D 95% confidence contours. For example, the c01 vs. c11 contour plot on the far top right

of Figure 7a shows that the simulated point is not contained within the 95% confidence

contour. This example demonstrates the fact that marginalizations to one dimension, with

their necessary loss of information, can be misleading. The 2D representation must be

used in order to develop a better understanding of the parameter space. In this particular

simulation the 2D marginalized likelihoods indicate that non-zero O1 couplings are needed

in order to explain the simulated data. This, of course, is not consistent with the assumed

simulation parameters, and it is a consequence of the fact that a wrong operator was used
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(a) O1 recovery

(b) O8 recovery

Figure 7: 3D likelihoods of the data simulated using BP8 and analyzed under the

assumption of O1 (7a) or O8 (7b) for all three experiments combined. For each recovery

operator, the top row of plots shows 2D marginalized likelihoods (obtained by

marginalizing over one of the parameters) and the bottom row shows the 1D marginalized

likelihoods (obtained by marginalizing over two of the three parameters). Also shown is

the point representing the simulated data, marked by x in 2D and a black dashed line in

1D and the best fit point represented by the red + in 2D and red vertical line in 1D.
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Reconstructed point mχ (GeV) {c01, c11} × 103 {c08, c18}

BP8 in O1

2.0 {1, 30}
–

(1.5, 4.0) {(0, 20), (−860, 900)}

BP8 in O8

2.4
–

{5, 16}

(1.9, 3.7) {(3, 19), (−92, 94)}

BP8 in O1 and O8

2.03 {2, 30} {0, –}

(1.56, 2.85) {(0, 18), (−820, 870)} {(−18, 18), (−95, 95)}

Table VI: Best fit points with 95% confidence regions for the 3D and 5D reconstructions of

the benchmark point BP8 of Table V, based on 1D marginalized likelihoods. As noted in

the header, O1 coupling coefficients have been enlarged by 103.

to analyze the data. In other words, assuming the wrong operator when calculating the

likelihood can lead to reasonable 2D contours that do not represent the true (in this case,

simulated) nature of dark matter.

This analysis is then repeated assuming O8 interaction only, and the likelihood is com-

puted over the 3D parameter space of {mχ, c
0
8, c

1
8}, as shown in Figure 7b. In this case,

the simulated point is well within the 95% confidence 2D contours and 1D intervals, as one

would expect since this recovery assumes the correct operator. The resulting likelihood is

well-defined in WIMP mass and isoscalar coupling coefficient but less so in the isovector

component. The 95% confidence intervals computed from 1D marginalized likelihoods are

also shown in Table VI. These intervals were calculated using the joint (Si, Ge, and LXe)

likelihood and are tighter than for any single experiment alone. Specifically, since Si detected

the largest number of events (11 events versus 1 for Ge and 0 for Xe), the Si-only likelihood

is expected to best match the results of the joint likelihood. However, the widths of the 95%

confidence contours were ∼ 1.4 times larger for Si alone than for the joint likelihood case,

demonstrating that combining experiments tightens the resulting contours.

Additional information can be gleaned from the Bayesian evidence. From the 3D like-

lihoods, the evidence for O1 is 2 × 10−9, whereas the evidence for O8 is 3 times larger at

6× 10−9. This shows that O8 is the better fit to this data.

In the proposed procedure for analysis of WIMP search data, step 3 proposes a likelihood

analysis in higher-dimensional parameter space including operators with the highest evi-
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Figure 8: 5D likelihood of the data simulated in O8 and recovered assuming interactions in

both O1 and O8, for all three experiments combined. The 95% confidence contours in 2D

marginalized likelihoods are shown on the top and the 1D marginalized likelihoods are

shown in the bottom row of plots. The multiple colors in the 1D plot represent the

marginalizations of the 6 subspaces and the black line the averaged. Also shown is the

point representing the simulated data, marked by x in 2D and a black dashed line in 1D

and the best fit point represented by the red + (or shaded red region) in 2D and red

vertical line in 1D.
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dences in 3D likelihood analyses. Applying this approach to our simulation, we perform the

EFT likelihood analysis of the 5D parameter space {mχ, c
0
1, c

1
1, c

0
8, c

1
8}. The results are shown

in Figure 8 with the 2D marginalized likelihoods on the top and the 1D marginalized like-

lihoods on the bottom. The 1D marginalizations of the 5D likelihood were calculated from

6 different 3D subspaces and averaged together to give one 1D likelihood. The 6 marginal-

izations from different 3D subspaces are plotted in varying colors in Figure 8 (bottom) with

the averaged curve in black. Note that all marginalized likelihoods (for a given parameter)

are similar, indicating that the possible systematic error in this marginalization procedure

is not significant.

The parameters of the best fit point calculated from the 1D likelihoods are found in Table

VI. Note that the open contour for c18 implies a flat spectrum with no discernible peak. The

simulated data point is contained within all of the 95% confidence intervals except for WIMP

mass. The WIMP mass sits just outside the 95% confidence (or 2σ confidence) contour at

2.4σ or at 1.6% probability of occurring. One factor that could contribute to this are the

two LXe background events just above threshold that mimic a low mass WIMP.

Since the spectral shapes for O1 and O8 are both exponentially decaying, it is difficult

to separate the four coupling coefficients from each other using only three target materials.

This is most apparent in the 1D projections of the likelihood, where the peaks of c11 and c08
are very wide, and the likelihood for c18 is completely flat. In other words, although the 5D

likelihood analysis detects the WIMP and places a strong constraint on the WIMP mass

(consistent with the simulated WIMP mass), it cannot constrain the individual couplings in

O1 and O8 due to their degeneracies. Additional experiments with different targets would

be needed to break these degeneracies.

B. 5D Analysis of Data Simulated in Operator 3

EFT operator O3 is given by i~SN · (~q × ~v⊥), has no dependence on the WIMP spin,

and relies on two nuclear responses of the target: a spin-dependent response (transverse

to the momentum transfer) and a spin-and-angular-momentum-dependent response [17].

Therefore, the event rate spectrum of O3 has a different shape than that of O1. In particular,

the event rate spectrum for O1 smoothly decays exponentially with recoil energy, while for

O3, even with no experimental efficiencies included, the event rate is suppressed at low
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(a) Si (b) Ge (c) LXe

Figure 9: The total (signal plus background) simulated data for each experiment compared

to the expected recoil energy spectra of WIMP-nucleon scattering for the chosen O3

interaction parameters using BP3. The dashed line indicates the energy threshold used in

the simulation.

energies with a pronounced peak at higher energies, as shown in Figure 9. The energy

and amplitude of the peak is dependent on the WIMP mass, the combination of coupling

coefficients, and the target chosen. This operator was chosen to demonstrate how differences

in the shape of recoil energy spectra can be used to improve parameter estimation.

The three benchmark experiments (Ge, Si, LXe) are simulated in the O3 framework

using the benchmark point BP3 listed in Table V with the ratio of isoscalar and isovector

components of c03/c13 = −2.5. For the simulated exposures and energy ranges described

in Table IV, Si detected 3 WIMP events, Ge detected 19 events, and LXe detected 21

events. Including the simulated background, the total number of simulated detected events

for each experiment is 4, 20, and 25 events respectively. The simulated data compared to

the expected recoil energy spectra for each experiment are shown in Figure 9.

The numbers of simulated events for Ge and LXe (Figure 9) are large enough to distin-

guish between the spectral shapes of O3 and O1. Si (also Figure 9) has a low number of

simulated events such that little information on the spectral shape is available. However,

the relatively large range of recoil energies points to the nature of the underlying spectrum;

for an exponentially decaying spectrum, most of the WIMP events would be expected to

cluster at the experimental threshold.

As in the case of O8 above, we use 3D EFT likelihood analyses to test steps 1 and 2 of the

proposed analysis procedure. The 3D likelihood is first computed assuming that the WIMP-
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Reconstructed point mχ (GeV) {c01, c11} × 103 {c03, c13}

BP3 in O1

11.8 {0.26, 5.4}
–

(9.7, 14.6) {(0.15, 0.45), (−0.9, 10.4)}

BP3 in O3

8.1
–

{14.2,−8}

(7.0, 9.3) {(7.2, 19.2), (−51,−27) ∪ (−24, 3)}

BP3 in O1 and O3

8.1 {0.13, 0.5} {15,−8}

(6.9, 9.7) {(0.00, 0.42), (−5.3, 4.2)} {(−21, 0) ∪ (4, 28), (−62,−29) ∪ (−27, 54)}

Table VII: Best fit points with 95% confidence regions for the 3D and 5D reconstructions

of the benchmark point BP3 of Table V, based on 1D marginalized likelihoods. As noted in

the header, O1 coupling coefficients have been enlarged by 103.

nucleon scattering proceeds via the standard SI operator, that is over the parameter space

{mχ, c
0
1, c

1
1}. This is then contrasted with the likelihood computed assuming the correct

scattering operator, that is over the parameter space {mχ, c
0
3, c

1
3}. Both likelihoods are

joint, combining all three simulated experiments (Si, Ge, and LXe). Figure 10a shows the

2D marginalized likelihoods (top) and the 1D marginalized likelihoods (bottom) assuming

the O1 interaction. In both the 2D and 1D marginalized likelihoods, the simulated data

point represented by {mχ, c
0
1, c

1
1} = {8.0 GeV, 0, 0} is not included in the 95% confidence

contours/intervals. That is, these contours do not accurately represent the underlying nature

of the simulated dark matter, which is a consequence of assuming the wrong interaction

operator in the analysis. The parameter values of the point of maximum likelihood with

95% confidence intervals calculated from the 1D marginalized likelihoods are shown in Table

VII.

If instead the analysis assumes the same operator as the simulation (in this case O3), the

95% confidence contours include the simulated data point {mχ, c
0
3, c

1
3} = {8.0 GeV, 16,−6.4}

as shown in Figure 10b by the 2D marginalized likelihoods (top) and 1D marginalized

likelihoods (bottom). Even though two regions of high likelihood are visible in each 2D

marginalized likelihood, the likelihood favors the region that contains the simulated data

point. Additionally, the point of maximum likelihood agrees closely with the simulated data

point. This is also shown numerically in Table VII. Bayesian evidence further supports

the hypothesis that the operator O3 fits the simulated data better than O1: the evidence
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(a) O1 recovery

(b) O3 recovery

Figure 10: 3D likelihoods of the data simulated using BP3 and analyzed under the

assumption of O1 (10a) or O3 (10b) for all three experiments combined. For each recovery

operator, the top row of plots shows 2D marginalized likelihoods (obtained by

marginalizing over one of the parameters) and the bottom row shows the 1D marginalized

likelihoods (obtained by marginalizing over two of the three parameters). Also shown is

the point representing the simulated data, marked by x in 2D and a black dashed line in

1D and the best fit point represented by the red + in 2D and red vertical line in 1D.
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calculated for O3 is 2 × 10−18, about 20 times higher than for O1 at 1 × 10−19. This

indicates that the simple Bayesian evidence measure can be used to compare recoveries with

different assumed operators in order to determine which operator(s) perform best in terms

of explaining the observed data from multiple experiments.

Both 3D likelihoods shown in Figure 10 were calculated by combining all three experi-

ments into a single likelihood, resulting in better-defined contours than for any individual

experiment. Even when the likelihood for each experiment individually is fairly flat over the

entire prior range, such as for c03 from the 3D likelihood assuming O3 interaction, combining

experiments can create a closed contour for the coupling coefficient, as shown in Figure 10b.

Unfortunately, it is also possible to obtain closed contours when combining experiments for

a likelihood calculated by assuming the wrong EFT operator, which stresses the importance

of considering the Bayesian evidence.

The Ge and LXe experiments detected many more events than Si, with 19 and 21 re-

spectively, compared to only 3 for Si. The 95% confidence intervals calculated for the joint

likelihood assuming O3 interaction, shown in Table VII, are, on average, 1.4 times tighter

than for Ge only and 4.3 times tighter than for LXe only. Since there were more simulated

data events in LXe than in Ge, it might be expected that the LXe contours would be the

closest to the joint likelihood. However, due to the flatness of the O3 likelihood in LXe

for the isovector coupling coefficient, c13, the average between the three 2D marginalized

likelihoods is slightly higher than for Ge alone or for Si, Ge, and LXe combined.

As suggested in step 3 of the proposed analysis procedure, computing the 5D likelihood

for both O1 and O3 should help differentiate between the two operators by allowing con-

straints to be set simultaneously for both operators. Since the simulation assumed only

non-zero components in O3, the O1 coupling coefficient contours should include zero, which

was the simulated value of those parameters. For the O8 simulation, the 5D likelihood

including O1 and O8 ended up being over-parameterized due to the similar recoil energy

spectral shapes for all four of the coupling coefficients involved and due to the low number

of simulated data points. The O3 simulation has the advantage of having more simulated

WIMP events and different spectral shapes for O1 and O3. We compute the 5D likelihood

over the parameter space {mχ, c
0
1, c

1
1, c

0
3, c

1
3} and show the 2D marginalized likelihoods (top)

and the 1D marginalized likelihoods (bottom) in Figure 11. The 1D marginalized likelihoods

were computed in the same manner as for O8. Unlike the O8 simulation, none of the pa-
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rameters in the 5D analysis have a flat likelihood. Hence, the simulated data point is better

recovered, and it is fully contained within all of the 2D 95% confidence contours and 1D

95% confidence intervals.

Table VII shows the value of the point of highest likelihood with the 95% confidence

intervals as calculated from the 1D marginalized likelihoods. The simulated data point

is well contained within all of the 95% confidence intervals and is closer to the point of

maximum likelihood than suggested by the width of these intervals. In this instance, the

5D likelihood was able to successfully fit the simulated values of WIMP mass and coupling

coefficients. The point of highest likelihood is very similar to that of the 3D O3 likelihood,

but as expected by the increase in the number of parameters, the 95% confidence intervals

are larger for the 5D than for the 3D likelihood.

VI. CONCLUSION

With the systematic analysis procedure suggested here, higher-dimensional analysis of

dark matter data using the model-independent EFT framework is possible. MultiNest [29–

31] is an effective Bayesian inference tool that can be used to efficiently scan high-dimensional

likelihoods. The number of operators or dimensions in a likelihood can be limited by using

the Bayesian evidence for single-operator 3D likelihoods to determine which operators best

fit the observed events. Higher-dimensional likelihoods can be marginalized down to 2D and

1D likelihoods in order to ease visualization and set constraints on the WIMP mass and

coupling coefficients.

Assumptions about the operators could lead to tension between experiments. For exam-

ple, the tension between the isoscalar operator 1 (spin-independent) analyses published by

CDMS II Si [33], CDMS II Ge [34], and LUX [35] could be relieved by including other cou-

pling coefficients in the analysis, such as the isovector operator 1 component, while setting

new limits on dark matter interactions. Combining the three experiments into a single joint

likelihood leads to stronger limits than what is possible from a single target or experiment

alone.

Using simulated data (assuming O3 or O8 interaction) to test the proposed analysis

procedure showed that the simulated data point can be reconstructed in both 3D and 5D

likelihood analyses. Comparisons of the Bayesian evidence for 3D (WIMP mass and a single
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Figure 11: 5D likelihood of the data simulated in O3 and computed assuming

WIMP-nucleon interaction in O1 and O3, for all three experiments combined. The 95%

confidence contours in 2D marginalized likelihoods are shown on the top and the 1D

marginalized likelihoods are shown in the bottom row of plots. The multiple colors in the

1D plot represent the marginalizations of the 6 subspaces and the black line the averaged.

Also shown is the point representing the simulated data, marked by x in 2D and a black

dashed line in 1D and the best fit point represented by the red + in 2D and red vertical

line in 1D.
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EFT operator) likelihoods can identify which operator(s) fit the data well. However, it is

critical to include more than one target in the analysis, in order to differentiate between

operators of similar recoil energy spectra and to create better defined confidence contours,

especially when dealing with a low number of detected events per experiment.

When operators, such as O1 and O3, have different recoil energy spectral shapes due to

different momentum dependencies, they can be more easily distinguished from each other

by the proposed analysis procedure. When using spectral shape in this way, it is extremely

important to have a low enough experimental energy threshold in order to be able to mea-

sure the spectral differences. For a recoil energy spectrum similar to that of O3, if the

experimental energy threshold is above or near the peak of the spectrum (as it was for LXe

in our O3 simulation) then the spectral shape can appear to follow the standard exponential

decay of O1. Very low-threshold dark matter experiments, such as the previously published

CDMSlite [40, 41] and the proposed SuperCDMS SNOLAB High-Voltage experiments [36]

will be particularly useful to convincingly perform spectral shape discrimination in the EFT

framework.
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