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Abstract

We compute the longitudinal electrical conductivity in the presence of strong background
magnetic field in complete leading order of perturbative QCD, based on the assumed hier-
archy of scales αseB � (m2

q, T
2) � eB. We formulate an effective kinetic theory of lowest

Landau level quarks with the leading order QCD collision term arising from 1-to-2 processes
that become possible due to 1+1 dimensional Landau level kinematics. In small mq/T � 1
regime, the longitudinal conductivity behaves as σzz ∼ e2(eB)T/(αsm

2
q log(T/mq)), where

the quark mass dependence can be understood from the chiral anomaly with the axial charge
relaxation provided by a finite quark mass mq. We also present parametric estimates for the
longitudinal and transverse “color conductivities” in the presence of strong magnetic field,
by computing dominant damping rates for quarks and gluons that are responsible for color
charge transportation. We observe that the longitudinal color conductivity is enhanced by
strong magnetic field, which implies that the sphaleron transition rate in perturbative QCD
is suppressed by strong magnetic field due to the enhanced Lenz’s law in color field dynamics.
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1 Introduction and Summary

In this work we compute the longitudinal electric conductivity of a deconfined QCD quark-

gluon plasma in the presence of a strong background magnetic field in complete leading order of

perturbative QCD. The motivation comes from either the ultra-relativistic heavy-ion collisions

where a strong, albeit short-lived, magnetic field of strength eB ∼ (200 MeV)2 is created on top

of a deconfined quark-gluon plasma fireball [1, 2] (see Ref. [3] for recent reviews), or from the

possible quark matter phase in the neutron star core with temperature much smaller than the

magnetic field T 2 � eB (see Ref. [4] for a review). Another system where our study may find

its relevance is a condensed matter system of Dirac semimetal in a magnetic field∗. The QCD

phase diagram and the phase transitions in such strong magnetic fields have been investigated

(see Refs. [5, 6, 7, 8, 9] and references therein). Although the latter system is a dense matter

with high quark chemical potential, we will consider a neutral quark-gluon plasma in this work

that is relevant more in the heavy-ion collisions. See a recent work of Ref.[10] that studies

the magnetized dense matter case of the neutron star physics, considering QED interactions

between electrons and dense nuclear matter, Ref.[11] for a computation in strong coupling limit

via AdS/CFT correspondence, and Ref.[12, 13] for the lattice QCD computation both in vacuum

and at finite temperature for realistic values of magnetic field in heavy-ion collisions.

We will assume a hierarchy of scales that is consistent with perturbative QCD coupling

expansion: αseB � T 2 � eB. This assumption, introduced in Ref.[14], leads to a consistent

Hard Thermal Loop (HTL) power counting scheme. The second inequality, which is what

we mean by strong magnetic field, allows us to focus on only the lowest Landau level states

(LLL) of quarks and antiquarks, since higher Landau level thermal occupation is exponentially

suppressed by e−
√
eB
T and do not participate the transport phenomena in leading order. The first

inequality is more of a theoretical assumption: the dominant charge carriers that contribute to

the transport coefficients in leading order are “hard” quasi particles of typical momenta ∼ T , and

their dispersion relation deviates from the free one by αseB/p
2 ∼ αseB/T

2, since the leading

thermal self energy goes as Σ ∼ αseB due to the other inequality T 2 � eB (the dominant

contribution to the 1-loop self energy comes from the LLL states due to their larger density

of states than the gluons). The first inequality allows us to neglect these corrections for hard

particles in leading order. The outcome is a consistent HTL scheme with thermally excited

“hard” LLL states as the dominant source of HTL self-energies (the density of states for LLL is

∼ (eB)T while that for gluons is only T 3).

∗In Ref. [15], a magnetic field with the magnitude B = 2 ∼ 9 T (corresponding to the energy scale of√
eB~c2 = 11 ∼ 23 eV) was introduced to the Dirac semimetal at kBT = 1.7 meV.
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We will introduce a finite quark mass to have a finite longitudinal conductivity with a

background magnetic field. In the massless limit, the axial anomaly tells us that the axial

charge should increase when we apply a longitudinal electric field as

∂tnA =
e2NcNF

2π2
E ·B , (1.1)

and the Chiral Magnetic Effect [16] current from this axial charge grows linearly in time

J =
e2NcNF

2π2
µAB =

e2NcNF

2π2χ
nAB =

e4(NcNF )2B2

4π4χ
tE , (1.2)

where χ is the charge susceptibility. To have a finite conductivity, we should consider relaxation

dynamics of the axial charge: either sphaleron transitions or a finite quark mass [17]. With

the relaxation term of − 1
τR
nA in the right-hand side of (1.1), we have a stationary solution

nA = e2NcNF
2π2 E · BτR, which gives a finite contribution to the longitudinal conductivity from

Chiral Magnetic Effect [18],

σzz =
e4(NcNF )2B2

4π4χ
τR . (1.3)

The inverse relaxation time from sphaleron dynamics is related to the sphaleron transition

rate Γs by a fluctuation-dissipation relation [19]

1

τR,s
=

(2NF )2Γs
2χT

, (1.4)

and the sphaleron transition rate without magnetic field is known to be of order Γs ∼ α5
s log(1/αs)T

4

[20, 21, 22]. We will discuss in section 5 a possible modification of Γs in the strong magnetic field,

but let us mention here that the result is a further suppression of Γs, mainly due to an enhanced

Lenz’s law from the increased color conductivity along the magnetic field direction (while trans-

verse color conductivity remains as σc ∼ T (neglecting any logarithms in power counting)). This

weak coupling behavior is different from the strong coupling one from AdS/CFT correspondence

[23].

On the other hand, the inverse relaxation time from a finite quark mass goes as

1

τR,m
∼ αsm2

q/T , (1.5)

either without or with the strong magnetic field. In the case without magnetic field, it can be

shown that the dominant chirality flipping transition rate comes from the small angle scatterings

with soft transverse space like magnetic degrees of freedom [24], that is, the same one for the

leading damping rate of hard particles. This results in a single power of αs rather than α2
s. The

m2
q dependence is easy to understand since chirality flipping amplitude should be proportional to

2



the mass. On the other hand, in the case with strong magnetic field in our LLL approximation

for quarks, since the LLL states have 1+1 dimensional dispersion relation, it becomes possible

for an on-shell gluon to pair create quark/antiquark pair and vice versa [25, 26, 27]. This 1-to-2

(and 2-to-1) process rate is only of αs, and becomes dominant over the usual 2-to-2 processes,

(under the assumption αseB � m2
q that we will explain later). The resulting chirality flipping

rate is again expected to be αsm
2
q/T . In fact, this is what we compute in this work, confirming

this expectation by an explicit computation† (see our section 4).

Because the largest inverse relaxation time determines the final inverse relaxation time, a fi-

nite quark mass will be dominant over the sphaleron dynamics if αsm
2
q � α5

sT
2: a condition that

can be justified with a small enough coupling. We will assume this to neglect non-perturbative

sphaleron dynamics, focusing only on perturbative quasi-particle dynamics of LLL quarks inter-

acting with 3+1 dimensional thermal gluons. With τR ∼ T/(αsm
2
q) in (1.3), and recalling that

the charge susceptibility of LLL states in strong magnetic field limit is given by

χ = Nc
1

2π

(
eB

2π

)
, (1.6)

where the first 1/(2π) is the 1+1 dimensional charge susceptibility, and (eB/2π) is the transverse

density of states of the LLL, we expect to have the longitudinal electric conductivity in small

quark mass limit mq → 0 as

σzz ∼ e2Nc(eB)T
1

αsm2
q

, mq → 0 . (1.7)

Our computation with the explicit result (4.43) indeed confirms this expectation, up to a loga-

rithmic correction of 1/ log(T/mq).

We will provide a full result of σzz for an arbitrary value of mq/T in complete leading order

in αs, under the assumed hierarchy αseB � (T 2,m2
q)� eB. The result takes a form

σzz = e2 dimR

C2(R)

(
eB

2π

)
1

αsT
σL(mq/T ) , (1.8)

with a dimensionless function σL(mq/T ) given by (4.45).

In the other case of m2
q � αseB, which is a quite interesting problem for future, the situation

is complicated since some non-chirality flipping 2-to-2 processes become of the same order as

the above 1-to-2 processes‡ (see Appendix 2). The chirality flipping processes is still the major

†Two of us (K.H. and D.S.) also evaluate the conductivity in a complementary paper [28], by using diagram-
matic method instead of the kinetic approach.

‡Nevertheless, at the leading-log approximation, the 2-to-2 process is negligible compared to the 1-to-2 process
even when m2

q � αseB. This case is analyzed in the complementary paper [28] at the leading-log accuracy.
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ingredient for the final conductivity (otherwise the conductivity diverges as seen in the above):

essentially, these chirality flipping processes are the “bottle-neck” for the relaxation of axial

charges that would grow with anomaly, and should be included in the kinetic theory.

The real complication arises when mq � αsT : in the small momentum region pz ∼ mq,

the chirality is maximally violated and chirality can effectively be flipped by going through

this IR region. In 1+1 dimensions, the phase space for this IR region gives only one power of

mq:
∫mq pz ∼ mq, which means that the effective chirality flipping rate from this IR region

is suppressed only by a single power mq, 1/τ ∼ α2
smq, thwarting the above αsm

2
q/T chirality

flipping rates from hard momentum region when mq � αsT . What this all means is that in

1+1 dimensions with mq � αsT , the major “bottle-neck” for axial charge relaxation happens

in the IR region near the origin pz ∼ mq, and this IR dynamics determines the global shape

of the distribution function and the final conductivity. Topologically, the two large pz regions,

pz > 0 and pz < 0, are connected by the IR region of pz = 0, and without knowing the boundary

condition at pz = 0, one cannot determine the global solution uniquely. Since the self energy

is of order αseB, the dispersion relation for these IR modes of p ∼ mq gets thermal correction

of αseB/m
2
q � 1, and we no longer should use kinetic theory with free dispersion relation for

these IR modes. We leave this problem to a future study.

2 Effective kinetic theory in the LLL approximation

In this section, we set up our computational framework based on weakly interacting quasi-

particles described by kinetic theory. We consider a one-flavor case until Sec. 4, as an extension

to the multiflavor case is straightforward. In the strong background magnetic field eB � T 2,

the effect of magnetic field on the motions of quarks and antiquarks should be taken care of non-

perturbatively, and we achieve this by quantizing the quark field in the presence of background

magnetic field, which is summarized in the Appendix 1. The quark wave-functions are now the

Landau levels whose density of states in the transverse two dimensions perpendicular to the

magnetic field is eB/(2π). In the Landau gauge A2 = Bx1, there are two momentum quantum

numbers for each Landau level states: the momentum p2 along x2 direction, and the longitudinal

momentum pz along the direction of magnetic field. The p2 serves as a label for the transverse

position of each Landau levels, and encodes the transverse density of states eB/(2π), while pz

is the conventional momentum for the motion of each state along the longitudinal direction.

Correspondingly, the dispersion relation of quasi-particles is

Epz ,n =
√
p2
z + 2|eB|n+m2

q , (2.9)
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where n = 0, 1, · · · is the Landau levels and mq is the bare quark mass.

In weakly coupled regime, a quasi-particle picture should be a good description with regard

to how the system responds to an external perturbation. In our case of strong magnetic field, the

fermionic quasi-particles are Landau level quarks and antiquarks that move only along the 1+1

dimensions with the above dispersion relation, while their transverse positions do not change in

free limit. Figuratively, we have a collection of 1+1 dimensional fermion theories distributed in

the transverse space with the density eB/(2π) for each n. At a finite temperature in equilibrium,

each Landau level states are occupied by the usual equilibrium thermal distribution functions.

In the regime eB � T 2, only the lowest Landau levels (LLL) with n = 0 are populated due to

an energy gap of ∆ ∼
√
eB � T for higher Landau levels, and therefore higher Landau levels

do not contribute to the transport coefficients in this regime. We will focus only on the LLL in

the rest of our paper.

On the other hand, the gluons at leading order are 3+1 dimensional quasi-particles. Their

dominant self-energy correction arising from QCD interactions with thermally populated LLL

quarks is of order Σ ∼ αseB. With our assumed hierarchy αseB � T 2, this correction is

sub-leading compared to the bare momentum p ∼ T for majority of “hard” particles of p ∼ T .

Therefore, these hard gluons have the bare dispersion relation at leading order.

As shown in the Appendix 1, the Landau level wave function with p2 is localized around

x1 = p2/eB with a width of order 1/
√
|eB|. One can construct a wave packet with a central value

of pcenter
2 with a width ∆p2 that is localized in xcenter

2 (note that there is no velocity associated

with pcenter
2 since ∂E/∂p2 = 0). Then this wave packet has a spatial width of ∆x2 ∼ 1/∆p2.

Since ∆p2 = ∆x1|eB|, we have the transverse uncertainty of ∆x1∆x2 ∼ 1/|eB|, which is the

well-known transverse size of the Landau levels. An accurate counting of available states in the

Appendix 1 shows that the transverse density of such states is eB/(2π). In this way, the label

p2 is effectively transformed into a transverse space position variable XT (up to an ambiguity

of 1/
√
|eB|),

p2 → (pcenter
2 , xcenter

2 )→ (xcenter
1 , xcenter

2 ) = XT . (2.10)

This decomposition is similar to the decomposition of space and momentum up to an ambiguity

of ~: the transverse space is roughly a phase space with ∆X2
T ∼ 1/|eB|. We will continue to

use p2 for a label for the Landau levels.

Perturbative QCD interactions can induce momentum as well as transverse position changes

of each Landau level quasi-particles by scatterings with other quarks/antiquarks or gluons. We

will shortly see that in addition to conventional 2-to-2 scatterings that have been considered in

literature, we have additional leading 1-to-2 scatterings due to the presence of magnetic field.
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Explicit computations in section 3 and Appendix 2 shows that the changes in p2 due to QCD

scatterings is bounded by ∆p2 .
√
eB due to a form factor R00(q⊥) = e−

q2
⊥

4eB , which means

that these interactions are local in the transverse space within a distance of ∆p2/eB ∼ 1/
√
eB.

Therefore if the variation scale of external parameters (such as electric field or temperature

gradient) is much larger than 1/
√
eB, we can introduce a further decomposition

p2 = pglobal
2 + p̃2 , (2.11)

where pglobal
2 encodes a large scale (compared to 1/

√
eB) transverse position XT , while p̃2 .

√
eB

counts a local collection of Landau levels around XT . This decomposition is possible, since the

theory is invariant under a constant shift of p2.

Based on these, we are led to introduce the quark and anti-quark distribution functions,

f±(z, pz,XT , p2, n) , (2.12)

as an occupation number per unit dzdpz/(2π) for the state labeled by (p2, n) around the global

position XT . The ± refers to quark and antiquark respectively, and for gluons, we have the

usual (color diagonal) gluon distribution function fg(x,k). The dynamics of these distributions

should be described by the Boltzmann equation,

∂f±
∂t

+ ż
∂f±
∂z

+ ṗz
∂f±
∂pz

= C[f±, fg] . (2.13)

Note that the dynamical change of (XT , p2) representing the transverse position of Landau level

states should only arise as a result of QCD scatterings, and it is a part of the collision term

in the right-hand side. This reflects the absence of classical transverse motion of Landau level

states in free limit: the transverse motions of quark/antiquark are quantum processes. By the

same reason, the above framework is not very useful for computing the transverse conductivities.

Our longitudinal electric conductivity specifically results from the classical longitudinal motion

along the momentum pz induced by an applied electric field:

ṗz = ±eE . (2.14)

The Feynman rules how to write down the collision terms from the specific QCD interaction

diagrams are derived in the Appendix 1, which we will refer to throughout our computations.

In terms of the effective distribution functions f±, the electric current from a state of

(XT , p2, n) is written as

Jz = edimR

∫
dpz
(2π)

vp (f+(pz,XT , p2, n)− f−(pz,XT , p2, n)) , vp =
pz
Ep

, (2.15)
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where vp is the longitudinal velocity and dim R is the dimension of color representation. This

formula is quite intuitive.

For the kinetic theory to be meaningful, the mean free path should be larger than the

Compton wavelength of dominant quasi-particles governing the response. For most of transport

coefficients, the dominant charge carriers have typical momenta of order temperature pz ∼ T

(and the wave-length of 1/T ), while the mean free path arising from scatterings with other

ambient particles are found to be about lmfp ∼ T/(αsm
2
q) (for “kinetic relaxation” of quarks)

or lmfp ∼ 1/(αsT ) (for “color” relaxation). These results are derived in section 3 and section 5,

respectively. Therefore, with a sufficiently small αs � 1 and a reasonable ratio of m2
q/T

2 . O(1),

this criterion is satisfied.

Finally we explain one important aspect in our QCD collision terms. Due to the 1+1 dimen-

sional dispersion relation for quark/antiquarks and the usual 3+1 dimensional dispersion relation

for gluons, it is now kinematically possible to have on-shell 1-to-2 processes of quark/antiquark

pair annihilation/pair creation to/from a single gluon [25, 26, 27]. These are the only on-shell

1-to-2 processes, and their rate is proportional to a single power of αs, even for the “kinetic

relaxation rate” relevant for electric conductivity. A more careful computation in section 3

shows that it is ∼ αsm
2
q/T , featuring a universal factor of m2

q for both chirality flipping and

non-flipping rates. As we show in the Appendix 2, the kinetic relaxation relevant for conductiv-

ity arising from the conventional 2-to-2 processes is at most of α2
s(eB/T ) log(m2

q/αseB)§. With

our assumed hierarchy of scales αseB � (T 2,m2
q)� eB, these 2-to-2 processes are sub-leading

compared to the novel 1-to-2 processes in the presence of strong magnetic field.

3 Collision term in leading order

In this section we work out the leading order collision term from the pair creation/annihilation

processes discussed in the previous section. In the case of longitudinal conductivity, the applied

electric field E is parallel to the magnetic field and is homogeneous in the two dimensional

transverse space. The resulting distribution functions for 1+1 dimensional Landau levels will

be homogeneous in the transverse space too, that is, there will be no dependence on the label

of the LLL states, p2 in our Landau gauge:

f±(pz, p2) ≡ f±(pz) . (3.16)

§However, we show in section 5 that the damping rate relevant for “color conductivity” from 2-to-2 processes
is of order αsT , similar to the conventional case. As the damping rate from 1-to-2 processes is the same αsm

2
q/T ,

the 2-to-2 processes dominate over 1-to-2 processes for color conductivity when mq . T .
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We will write down the collision term with this assumption for simplicity.

From the Feynman rules summarized in the Appendix 1, it is straightforward to get the

collision term for the quark distribution f+(pz) as

C[f+(pz)] =
1

2Ep

∫
d2p′

(2π)22Ep′

∫
d3k

(2π)32Ek
|M|2 (2π)3δ(2)

(
p+ p′ − k)δ(Ep + Ep′ − Ek

)
×

(
(1− f+(pz))

(
1− f−(p′z)

)
fg(k)− f+(pz)f−(p′z) (1 + fg(k))

)
, (3.17)

where Ep =
√
p2
z +m2

q , Ek = |k|, d2p ≡ dpzdp2, and

δ(2)(p) ≡ δ(pz)δ(p2) , (3.18)

which includes only spatial two dimensions (pz, p2) (recall that p2 is the label for the LLL states),

while we write down the energy δ-function explicitly. Note that the gluon momentum k is fully

three dimensional. The above is the sum of the pair creation and annihilation processes with

the detailed balance condition imposed, such that we can combine them with a common matrix

element M. The collision term for the antiquark distribution is similar.

Following the conventional treatment, we write down a deviation from the equilibrium in

linear order as

f±(pz) = feqF (Ep) + βfeqF (Ep)
(
1− feqF (Ep)

)
χ±(pz) ,

fg(k) = feqB (Ek) + βfeqB (Ek)
(
1 + feqB (Ek)

)
χg(k) , (3.19)

with feqF/B(ε) = 1/(eβε ± 1) and β = 1/T . Using the energy δ-function for the detailed balance,

we can show that

(1− f+(pz))
(
1− f−(p′z)

)
fg(k)− f+(pz)f−(p′z) (1 + fg(k))

= βfeqF (Ep)f
eq
F (Ep′)

(
1 + feqB (Ek)

) (
χg(k)− χ−(p′z)− χ+(pz)

)
. (3.20)

In the specific situation we are considering, it is clear that χ−(pz) = −χ+(pz), that is, the

effect of the applied electric field on the antiquarks is precisely opposite to the effect on the

quarks due to the opposite charge. Similarly, charge conjugation invariance tells us that gluon

distribution should not be affected: χg(k) = 0 ¶. Furthermore, E is a 1 dimensional vector in ẑ

space, and χ±(pz) is a scalar, which dictates that the response should take a form

χ+(pz) = (E · pz)F (|pz|) = −χ+(−pz) , (3.21)

¶The magnetic field is C-odd, so breaks C-invariance. However, its effects on 1+1 dimensional LLL dynamics
depend only on |eB| except the Schwinger phase (see below). Since the Schwinger phase is irrelevant for our
leading order collision term, we can effectively use C-invariance.
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that is, χ+(pz) is an odd function on pz. All these facts can be explicitly derived from the

structure of the collision term and the source term from the electric field in the Boltzmann

equation. They mirror the similar statements in the 3+1 dimensional case [29, 30].

The matrix element from the Feynman rules in the Appendix 1 is given by

M = igsεµ(k)
[
v̄(p′)γµ‖ t

a
Ru(p)

]
R00(k⊥)eiΣ , (3.22)

where ε(k) is the polarization of the external gluon, tR is the color generator in the quark

representation R. The phase factor eiΣ is called the Schwinger phase [9] whose expression can be

found also in the Appendix, but it will disappear in the matrix square at the end. The subscript

‖ denotes 1+1 dimension with the one spatial direction being parallel to B, and it is important

to note that γµ‖ is 1+1 dimensional γ-matrix which is effectively 2×2 by the projection operator

we are omitting here. Correspondingly, the spinors u(p) and v(p′) are 1+1 dimensional spinors

with relativistic normalization

u(p)ū(p) = γµ‖ pµ +mq , v(p′)v̄(p′) = γµ‖ p
′
µ −mq . (3.23)

Finally the form factor originating from the finite transverse size lB ∼ 1/
√
|eB| of the LLL wave

function is

R00(k⊥) = e
− k2

⊥
4|eB| . (3.24)

We have to sum |M|2 over all incoming antiquark color states and the out-going gluon states,

and average over the color states of the incoming quark. The color algebra gives a Casimir factor

C2(R) as usual, and the gluon polarization sum is∑
ε

εµ(εν)∗ = δij −
kikj
|k|2

. (3.25)

We have

|M|2 = g2
sC2(R)e

− k2
⊥

2|eB|

(
δij −

kikj
|k|2

)
Tr
[
(γµ‖ p

′
µ −mq)γ

i
‖(γ

µ
‖ pµ +mq)γ

j
‖

]
= 2g2

sC2(R)e
− k2

⊥
2|eB|

k2
⊥
|k|2

(
EpEp′ + pzp

′
z +m2

q

)
. (3.26)

The form factor e
− k2

⊥
2|eB| reflects the finite transverse size of the LLL states, and k⊥ �

√
|eB| ∼

1/lB modes can not resolve the LLL states.

Without loss of generality, we can choose p2 = 0 in (3.17), and perform p′2 and kz integration

to arrive at

C[f+(pz)] = 2g2
sC2(R)

1

2Ep

∫
dp′z
2Ep′

∫
d2k⊥

(2π)22Ek
e
− k2

⊥
2|eB|

k2
⊥
|k|2

(
EpEp′ + pzp

′
z +m2

q

)
× δ(Ek − Ep − Ep′)βfeqF (Ep)f

eq
F (Ep′)

(
1 + feqB (Ek)

) (
χ+(p′z)− χ+(pz)

)
,(3.27)
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where it is understood that kz = pz + p′z. The energy δ-function can be worked out as

δ(Ek − Ep − Ep′) = δ

(√
(pz + p′z)

2 + k2
⊥ − Ep − Ep′

)
= (2Ek) δ

(
k2
⊥ − (p‖ + p′‖)

2
)

(3.28)

and performing k⊥ integration, we finally obtain the leading order collision integral

C[f+(pz)] = αsC2(R)m2
q

∫
dp′z

β

EpEp′
feqF (Ep)f

eq
F (Ep′)

(
1 + feqB (Ep + Ep′)

) (
χ+(p′z)− χ+(pz)

)
,

(3.29)

where we can safely neglect the form factor e
− k2

⊥
2|eB| in our assumed hierarchy T 2 � eB, because

k2
⊥ = (p + p′)2 ∼ T 2 due to the Boltzmann factor in the collision term which ensures that the

dominant leading contribution to the collision integral and the conductivity comes from the hard

momentum modes (pz, p
′
z) ∼ T .

It is worthwhile to mention that the above simple collision integrand is a result of the two

competing effects. The first one is the “chirality selection rule” that results from the spinor

trace in Eq. (3.26) and gives rise to the factor

EpEp′ + pzp
′
z +m2

q → |pz||p′z|+ pzp
′
z , (3.30)

where the right-hand side is the expression in the massless limit (mq → 0). In the massless limit,

this factor is nonvanishing only when the pz and p′z have the same sign. This is related to the

chirality selection, because, when the spin of the LLL fermions are aligned along the magnetic

field, the signs of the longitudinal momentum and of the chirality are locked. Specifically, the

chirality of the LLL massless fermion is identical to the sign of sgn(eB)pz: if we quantize a

right-handed spinor field ψR, both quarks and antiquarks carry only the sgn(eB)pz > 0 modes.

Likewise, the quarks and antiquarks from a left-handed field ψL carry only the sgn(eB)pz < 0

modes. An important fact is that gauge interactions via γ-matrix do not mix ψR and ψL fields,

which means that the sgn(eB)pz > 0 modes and sgn(eB)pz < 0 modes do not interact in the

massless limit. Therefore, the chirality selection imposes the longitudinal momenta to have the

same sign in Eq. (3.30).

The other selection rule comes from the gluon polarization factor

k2
⊥
|k|2

=
(p‖ + p′‖)

2

(Ep + Ep′)2
= 2

(EpEp′ − pzp′z +m2
q)

(Ep + Ep′)2
→ 2

(|p||p′| − pzp′z)
(|p|+ |p′|)2

, (3.31)

where the last expression is again for the massless limit (mq → 0). We can understand the role

of this factor as follows. If k⊥ = 0, that is, the momentum of the external gluon line is parallel
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to the ẑ direction, its polarization will be along the transverse space. However, the motion of

the LLL quarks and antiquarks are (1+1)-dimensional and their current is strictly longitudinal,

and hence the gluon emission vertex should vanish in the k⊥ = 0 limit. In the massless limit,

this factor imposes the pz and p′z to have the opposite sign.

We have just found that the fermion-chirality and gluon-polarization selection rules impose

the competing conditions on the signs of pz and p′z. Actually, they are not compatible in the

massless limit, so that the collision term vanishes in this limit. Indeed, with a finite mass, the

product of these two factors, and thus the collision term, is proportional to the mass square and

is independent of the relative sign of pz and p′z. This is an exact form of the mass dependence,

and shows the universal suppression of the collision integral C[f+(pz)] ∼ m2
q in the small mass

limit.

4 The longitudinal conductivity in leading order

With the leading order collision term in the effective Boltzmann equation in the previous section,

we are ready to compute the longitudinal electric conductivity in complete leading order. The

Boltzmann equation for the quark distribution in the applied electric field E = Eẑ is

∂f+(pz)

∂t
+ eE

∂f+(pz)

∂pz
= C[f+(pz)] . (4.32)

We seek a stationary solution in the linear order in E to find the equilibrium conductivity. From

f+(pz) = feqF (Ep) + βfeqF (Ep)
(
1− feqF (Ep)

)
χ+(pz), and

∂Ep
∂pz

≡ vp =
pz
Ep

, (4.33)

we finally obtain the integral equation for χ+(pz) sourced by the applied electric field,

−eE pz
Ep
feqF (Ep)

(
1− feqF (Ep)

)
= αsC2(R)m2

q

∫
dp′z

1

EpEp′
feqF (Ep)f

eq
F (Ep′)

(
1 + feqB (Ep + Ep′)

) (
χ+(p′z)− χ+(pz)

)
.(4.34)

This is a neat one dimensional integral equation which can be solved as follows. Recall that

χ+(p′z) is an odd function of p′z, and since the other integrand is an even function of p′z, we see

that the integral with χ+(p′z) simply vanishes. Then, χ+(pz) is easily solved as

χ+(pz) =
eE

2C2(R)αsm2
q

pz (1− feqF (Ep))∫∞
0 dp′z

1
Ep′

feqF (Ep′)(1 + feqB (Ep + Ep′))
. (4.35)
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In fact, what appears in front of χ+(pz) in (4.34) is nothing but the quark damping rate

γq =
αsC2(R)m2

q

Ep
(
1− feqF (Ep)

) ∫ dp′z
1

Ep′
feqF (Ep′)

(
1 + feqB (Ep + Ep′)

)
, (4.36)

which gives a relaxation dynamics in the Boltzmann equation

∂tχ+(pz) ∼ −γq χ+(pz) . (4.37)

Then, the solution (4.35) is nothing but

χ+(pz) = eE
pz
Ep

1

γq
, (4.38)

that is, the relaxation time approximation with the momentum dependent relaxation time τR =

1/γq is in fact an exact solution of the full Boltzmann equation in our special case.

After finding the solution χ+(pz), the longitudinal current jz is given by

jz = e

(
eB

2π

)
2 dimR

∫
dpz
(2π)

vp βf
eq
F (Ep)

(
1− feqF (Ep)

)
χ+(pz) , vp =

pz
Ep

. (4.39)

The factor (eB/2π) is the transverse density of LLL states, and the next factor 2 comes from the

equal contribution from the antiquarks. The final expression for our longitudinal conductivity

is then

σzz = e2

(
eB

2π

)
dimR

C2(R)αsm2
q

∫ +∞

−∞

dpz
(2π)

p2
z

TEp

feqF (Ep)(1− feqF (Ep))
2∫∞

0 dp′z
1
Ep′

feqF (Ep′)(1 + feqB (Ep + Ep′))
. (4.40)

For a general value of mq/T , we need a simple numerical integration to get the result, but

the small mq limit can be handled more accurately. In this limit, note that the p′z integral in the

denominator has a logarithmic IR enhancement in p′z ∼ 0 regime due to 1/Ep′ = 1/
√
p′2z +m2

q

factor, as∫ ∞
0

dp′z
1

Ep′
feqF (Ep′)(1 + feqB (Ep + Ep′)) ∼

1

2
(1 + feqB (Ep)) log(T/mq) (leading log in mq/T ) .

(4.41)

Using the integral ∫ ∞
−∞

dpz
(2π)

p2
z

TEp

feqF (Ep)(1− feqF (Ep))
2

(1 + feqB (Ep))
=

T

2π
, mq → 0 , (4.42)

we have the small mq limit as

σzz →
e2

π

dimR

C2(R)

(
eB

2π

)
T

αsm2
q log(T/mq)

, mq → 0 . (4.43)
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Figure 1: A plot of σL(mq/T ) from numerical evaluations (blue dots), compared to the leading-
log expression of mq/T in Eq. (4.46) (red curve) and heavy quark limit (4.47) (green curve).

Here, we extend our result to the multi-flavor case and write the longitudinal conductivity

in terms of dimensionless variables p̄ = pz/T and m̄ = mq/T . Taking the sum of the flavor

dependences arising from the electric charge (ef ) and mass (m̄f ) of the fermion, we have

σzz =
∑
f

e2
f

dimR

C2(R)

(
efB

2π

)
1

αsT
σL(m̄f ) , (4.44)

where

σL(m̄) =
2

m̄2

∫ ∞
0

dp̄

(2π)

p̄2

εp̄

nF (εp̄) (1− nF (εp̄))
2∫∞

0
dp̄′

εp̄′
nF (εp̄′)(1 + nB(εp̄ + εp̄′))

, (4.45)

and εp̄ =
√
p̄2 + m̄2 and nF/B(ε) = 1/(eε ± 1). In the small m̄ → 0 limit shown in Eq. (4.43),

we have

σL(m̄)→ 1

πm̄2 log(1/m̄)
, (4.46)

while, in the opposite limit (m̄→∞),

σL(m̄)→ 1

πm̄
. (4.47)

Figure 1 shows a plot of σL(mq/T ) from the numerical evaluation, compared to the asymptotic

expressions in the two limits. It shows that the leading-log result (4.46) can be trusted when

mq/T . 0.1, and the heavy-quark limit (4.47) is reliable for mq/T & 5.
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5 Damping rates, color conductivity, and the sphaleron rate
with strong magnetic field

In this section, we study a somewhat different physics of “color conductivity” [31] that is an essen-

tial ingredient in computing the sphaleron transition rate in leading order of perturbative QCD

[20, 21]. The color conductivity appears in the effective Bodeker theory governing ultra-soft color

magnetic field dynamics that is responsible for non-perturbative sphaleron transitions. At such

low frequency-momentum scales, the color field dynamics reduces to “magneto-hydrodynamics”

where the magnetic fields diffuse at a rate given by the well-known diffusion-type dispersion

formula

ω ∼ −ik
2

σc
, (5.48)

where σc is the color conductivity. The diffusion of magnetic field is resisted by Faraday current,

which is also called Lenz’s law. Since the Faraday current is proportional to the conductivity

σc, the diffusion rate is inversely proportional to the color conductivity σc in the above. The

Bodeker theory is a non-Abelian magneto-hydrodynamics with this color conductivity, with ad-

ditional thermal noise from the fluctuation-dissipation relation that ensures equilibrium thermal

distributions.

The key difference in the physics of color conductivity from the usual abelian conductivity

we compute in the previous sections is that even scatterings with small momentum exchange (or

small qz scatterings in the case of LLL quarks) can contribute to the effective mean-free path of

color transportation, since they can change colors without changing the momentum significantly

[31]. This means that the mean-free path for color transportation is determined by the (largest)

damping rate, which is roughly a total scattering rate of a given hard quasi-particle, up to a

color charge factor which we will not be precise about. We will focus only on the parametric

dependence of color conductivity on the coupling, magnetic field, temperature, and the quark

mass. Denoting the dominant damping rate by γ, the color conductivity is parametrically given

by

σc ∼ αs
(density of states)/T

γ
, (5.49)

where αs in front is a trivial coupling factor in the definition‖. The majority of this section is

devoted to computing the damping rate γ for both LLL quarks and the gluons.

In the presence of strong magnetic field, the color conductivity is asymmetric as well. The

LLL quarks/antiquarks can transport the color charges only along the direction of magnetic

‖More precisely, the numerator is the phase space integral of −∂feq(p)/∂p = βfeq(p)(1± feq(p)).
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field, and the only charge carriers in the transverse direction are gluons. On the other hand,

the LLL fermions have a larger density of states (eB)T than that for the thermal gluons T 3,

and moreover we will find that the quark damping rate is parametrically smaller than the gluon

damping rate. Therefore, we conclude that the longitudinal color conductivity is larger than the

transverse color conductivity. We will discuss the implication of this in the sphaleron transition

rate at the end of this section.

The damping rate of a quasi-particle of momentum p can easily be read from the Boltzmann

equation for χ(p) by keeping only χ(p) term in the collision term, dropping all other χ’s with

different momenta than p. Then the Boltzmann equation gives a relaxation for χ(p) as

∂tχ(p) = −γpχ(p) , (5.50)

with the damping rate γp (see (4.37) as an example). In this way we see how a particular single

mode of a momentum p relaxes to the equilibrium with the damping rate.

Quark damping rate

We will compute the three major contributions to the LLL quark damping rate: 1) 1-to-2

process, 2) 2-to-2 quark-quark/antiquark t-channel scatterings, and 3) 2-to-2 quark-gluon t-

channel scatterings. Since t-channel scatterings are expected to be at least larger than s-channel

by potential IR enhancement, we think that these computations are enough to identify the

parametric dependence of the leading order damping rate of hard quarks.

The collision terms of all these processes are worked out in the other sections: 1) is in section

3 and 2),3) are in the Appendix B, so we can easily borrow the results from these sections. The

damping rate from the 1-to-2 process is already given in (4.37), which we reproduce here,

γ1−2
q =

αsC2(R)m2
q

Ep
(
1− feqF (Ep)

) ∫ dp′z
1

Ep′
feqF (Ep′)

(
1 + feqB (Ep + Ep′)

)
∼ αsm2

q/T , (5.51)

where the last expression is our parametric estimate for a hard momentum Ep ∼ T .

For 2-to-2 quark-quark/antiquark scatterings, we can start from the collision term derived

in (B.125), and the damping rate from this by looking at the coefficient in front of χ+(pz) is

written as

γq−qq = 8πα2
sTRC2(R)

(
eB

2π

)
m4
q

Ep

∫
dp′z
(2π)

1

Ep′ |Epp′z − Ep′pz|

× 1

(Λ2
IR + 2(EpEp′ − pzp′z −m2

q))
feqF (Ep′)(1− feqF (Ep′)) , (5.52)
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where Λ2
IR ∼ (αseB/m

2
q)

2
3T 2 � αseB is a dynamic screening scale coming from the gluon self-

energy that is discussed in Appendix B. This has a logarithmic IR enhancement from the region

Λ̃IR � |p′z − pz| �
ΛIR

mq
Ep � Ep , (5.53)

where we will get back to the other IR cutoff Λ̃IR shortly, and the last inequality is from our

assumption m2
q � m2

D,B ∼ αseB. In this regime, we have legitimate approximations

|Epp′z − Ep′pz| =
m2
q |p′2z − p2

z|
|Epp′z + Ep′pz|

≈
m2
q

Ep
|p′z − pz| , (5.54)

and

2(EpEp′ − pzp′z −m2
q)) =

2m2
q(p
′
z − pz)2

EpEp′ + pzp′z +m2
q)
≈
m2
q

E2
p

(p′z − pz)2 � Λ2
IR , (5.55)

so that we have in leading log order,

γq−qq ≈ 8πα2
sTRC2(R)

(
eB

2π

)
m2
q

Λ2
IREp

feqF (Ep)(1− feqF (Ep))

∫ ΛIR
mq

Ep

Λ̃IR

dp′z
(2π)

1

|p′z − pz|

= 8πα2
sTRC2(R)

(
eB

2π

)
m2
q

Λ2
IREp

feqF (Ep)(1− feqF (Ep)) log

(
ΛIREp

mqΛ̃IR

)
. (5.56)

To identify the IR cutoff Λ̃IR, we note that this IR divergence is from the Jacobian of the energy

δ-function which results in the term 1/|Epp′z − Ep′pz| in (5.52) (see (B.122) in Appendix B).

This energy δ-function will be smoothened precisely by the damping rate. From (5.56), we will

see that γq−qq � γ1−2
q ∼ αsm2

q/T in (5.51). Therefore we can use in leading order,

Λ̃IR ∼ αsm2
q/T , (5.57)

and we finally have (note that Λ̃IR � ΛIR
mq
Ep = ΛUV is satisfied due to eB � (T 2,m2

q))

γq−qq =
8

3
πα2

sTRC2(R)

(
eB

2π

)
m2
q

Λ2
IREp

feqF (Ep)(1− feqF (Ep)) log

(
T 9eB

α2
sm

11
q

)
∼ αs(αseBmq)

1
3

(mq

T

)3
log

(
T9eB

α2
s m11

q

)
. (5.58)

One can easily check that the UV regime |p′z − pz| > ΛIR
mq

Ep produces a finite integral which

adds a constant under the log. This γq−qq is smaller than γ1−2
q ∼ αsm2

q/T in (5.51).

Lastly, let us compute the quark damping rate arising from 2-to-2 quark-gluon t-channel

scattering, the collision term of which is worked out in Appendix B. We can start from the

collision integral (B.146) with the matrix element (B.147) and the phase space integral (B.148),
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which gives

γq−gq =
8π3

3
α2
sNcC2(R)T 3 1

E4
p

∫
d3q

(2π)3

1

|q|
1(

q2
⊥ +

m2
q

E2
p
q2
z + Λ2

IR

)2

×

(
2m4

q + 5m2
qp

2
z

(
1− q2

z

|q|2

)
+ 3p4

z

(
1− q2

z

|q|2

)2
)
. (5.59)

After changing a variable qz → Ep

mq
qz, and performing radial |q| integral, we finally obtain

γq−gq =
π

3
α2
sNcC2(R)

T 3

Λ2
IR

S̃(mq/Ep) , (5.60)

where the dimensionless function S̃(x) is defined by an angular integral

S̃(x) = x4

∫ 1

−1
d cos θ

1√
x2 sin2 θ + cos2 θ

(5.61)

×
(

2 + 5(1− x2)
sin2 θ

(x2 sin2 θ + cos2 θ)
+ 3(1− x2)2 sin4 θ

(x2 sin2 θ + cos2 θ)2

)
.

In small x = mq/Ep → 0 limit, the angular integral localizes around cos θ ∼ x and parametrizing

cos θ = xt, we have

S̃(x)→
∫ ∞
−∞

dt
3

(1 + t2)5/2
= 4 , x→ 0 . (5.62)

From Λ2
IR ∼ (αseB/m

2
q)

2
3T 2, we see that γq−gq ∼ α2

sT (m2
q/αseB)2/3 � γ1−2

q ∼ αsm
2
q/T when

eB � α
1/2
s T 3/mq. We will consider only such case in this section.

Gluon damping rate

We will consider the three important processes: 1) 1-to 2 process, 2) 2-to-2 gluon-quark t-channel

scattering, and 3) 2-to-2 gluon-gluon t-channel scattering.

For the 1-to-2 process, we can start from the 1-to-2 collision term such as (3.17), but since

we are considering the collision term for the gluons, we should replace the k integration of gluon

momentum with the p integration of incoming quark, and with a couple of changes of color and

normalization factors, we have

γ1−2
g =

1

2Ek(1 + feqB (Ek))

∫
p

∫
p′
|M|2(2π)2δ(2)(p + p′ − k)(2π)δ(Ep + Ep′ − Ek)

× (1− feqF (Ep))(1− feqF (Ep′)) , (5.63)

where the matrix element can be borrowed from (3.26),

|M|2 = 2g2
sTRe

− k2
⊥

2eB
k2
⊥
|k|2

(EpEp′ + pzp
′
z +m2

q) . (5.64)
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Performing p′ integration we have

γ1−2
g =

1

2Ek(1 + feqB (Ek))

(
eB

2π

)∫
dpz
(2π)

1

(2Ep)(2Ek−p)
|M|2(2π)δ(Ep + Ek−p − Ek)

× (1− feqF (Ep))(1− feqF (Ek−p)) . (5.65)

After some algebra the energy δ-function becomes

δ(Ep + Ek−p − Ek) =
2EpEk−p

k2
⊥

√
1− 4m2

q/k
2
⊥

δ(pz − p±z )Θ(k2
⊥ − 4m2

q) , (5.66)

where

p±z =
kz
2
± Ek

2

√
1− 4m2

q/k
2
⊥ , (5.67)

and the matrix element simply becomes

|M|2 = 4g2
sTRm

2
q . (5.68)

Performing pz integral, we finally have (for k2
⊥ > 4m2

q)

γ1−2
g =

8παsTR
Ek(1 + feqB (Ek))

(
eB

2π

) m2
q

k2
⊥

√
1− 4m2

q/k
2
⊥

 (1− feqF (Ep))(1− feqF (Ek−p))

∼ αsm
2
q/T

(
eB

T 2

)
, (5.69)

where

(Ep, Ek−p) =
1

2

(
Ek ± kz

√
1− 4m2

q/k
2
⊥

)
. (5.70)

The above damping rate exists only for k2
⊥ > 4m2

q , which is okay for our purpose since we are

interested in the gluonic contribution to the transverse color conductivity that comes mainly

from the hard gluons moving transverse to the magnetic field, so that m2
q . k2

⊥ ∼ T 2.

Next, let’s consider 2-to-2 gluon-quark/antiquark scattering contributions. Again, we can

start from the collision term similar to the case of quark-gluon scattering in (B.134) with the

matrix element (B.147),

γg−qg =
2

2Ek(1 + feqB (Ek))

∫
k′

∫
p

∫
p′
|M|2(2π)2δ(k + p− k′ − p′)(2π)δ(Ek + Ep − Ek′ − Ep′)

× (1 + feqB (Ek′))f
eq
F (Ep)(1− feqF (Ep′)) , (5.71)

where the factor 2 comes from equal contributions from quarks and antiquarks, and

|M|2 = 32g4
sNcTR

(EkEp − kzpz)2

(q2
⊥ +

m2
q

E2
p
q2
z + Λ2

IR)2
. (5.72)
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Changing integration variable from k′ to q = k − k′ and performing p′ integration, we have in

small q/T -limit as

γg−qg =
1

Ek(1 + feqB (Ek))

(
eB

2π

)∫
d3q

(2π)32Ek−q

∫
dpz
(2π)

|M|2

(2Ep)(2Ep−q)

× (2π)δ

(
k̂ · q − pz

Ep
qz

)
(1 + feqB (Ek−q))f

eq
F (Ep)(1− feqF (Ep−q)) . (5.73)

Since we are interested in the gluons moving transverse to the magnetic field, let us focus on

the case kz = 0 which simplifies the computation, and take k = kx̂. Performing qx integration

with the energy δ-function, we finally have

γg−qg = 4g4
sNcTR

(
eB

2π

)∫
dqydqz
(2π)2

1

(q2
y + q2

z + Λ2
IR)2

∫
dpz
(2π)

feqF (Ep)(1− feqF (Ep))

= 16α2
sNcTR

(
eB

2π

)
T

Λ2
IR

∫ ∞
0

dpz
T
feqF (Ep)(1− feqF (Ep))

∼ αs(αseBmq)
1
3

(mq

T

)
. (5.74)

We see that γg−qq is smaller than γ1−2
g in (5.69).

Finally, we discuss the contribution from the 2-to-2 gluon-gluon t-channel processes. For this

we don’t need to compute since it is the same process that gives the dominant damping rate in the

usual plasma, and need only to discuss the screening mass. As explained below Eq. (B.116), there

are two polarizations of the exchanged transverse gluons which are, respectively, screened by the

self energy from the 1-loop LLL quarks m2
D,B ∼ αseB, or by that from the 1-loop thermal gluons

m2
D,T ∼ αsT 2. Explicitly, the latter mode has the polarization that is perpendicular to the plane

formed by the gluon momentum and B field, and is decoupled from the 1+1 dimensional LLL

quarks. Therefore, when mD,B � mD,T , the dominant contribution comes from the exchange of

the gluon with this latter polarization which is screened only by mD,T . Inserting mD,T , we get

γg−gg ∼ α2
s

T 3

m2
D,T

log

(
mD,T

αsT

)
∼ αsT logα−1

s , (5.75)

where T 3 in the numerator is from the thermal gluon density, while m2
D,T in the denominator

is from the screening scale in the t-channel propagator.

In summary of the above computations, the dominant damping rates for quarks and gluons

are

1) When m2
q/T

2 � T 2/eB,

γq ∼ αs(m2
q/T ) , γg ∼ αsm2

q/T

(
eB

T 2

)
. (5.76)
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2) When m2
q/T

2 � T 2/eB,

γq ∼ αs(m2
q/T) , γg ∼ αsT . (5.77)

As claimed before, the quark damping rate is parametrically smaller than the gluon damping

rate by T 2/eB � 1 or by m2
q/T

2 � 1. The resulting color conductivity from (5.49) is

1) When m2
q/T

2 � T 2/eB,

σLc ∼
(eB)T

m2
q

, σTc ∼
T 5

m2
qeB

. (5.78)

2) When m2
q/T

2 � T 2/eB,

σLc ∼
(eB)T

m2
q

, σTc ∼ T . (5.79)

In the physics of sphaleron transitions, the typical length scale is given by the magnetic scale

l−1
sph = k ∼ αsT while the time scale is governed by the magnetic diffusion time (Lenz’s law)

(5.48), t−1
sph ∼ k2/σc ∼ α2

sT
2/σc, so the sphaleron transition rate scales as Γs ∼ (l−1

sph)3t−1
sph ∼

α5
sT

5/σc [21]. The increased σc along the magnetic field (while the transverse color conductivity

remains similar) would therefore reduce the transition rate. However, the σc to be used in this

estimate should be the one defined at the spatial scale k ∼ αsT , and if the mean free path

(equivalently, the inverse damping rate γ−1) that gives the above results for color conductivity

is larger than this spatial scale, we need to use k−1 ∼ (αsT )−1 instead as the effective mean free

path to determine the σc used in the estimate for sphaleron transitions [21]. Considering this

fact, we find that the effective longitudinal σLc to be used for sphaleron transitions becomes in

mq � T case

σLc (k ∼ αsT ) ∼ eB

T
� T , (5.80)

while the transverse color conductivity is

σTc (k ∼ αsT ) ∼ T 5

m2
qeB

. T (when m2
q/T

2 & T 2/eB) ,

σTc (k ∼ αsT ) ∼ T (when m2
q/T

2 � T 2/eB) . (5.81)

This σLc is much larger than the usual value T/ log(1/αs), while σTc remains similar to that. It

means that the sphaleron transition rate will be smaller in the presence of strong magnetic field

due to the enhanced Lenz’s law in color field dynamics, as claimed in the introduction.
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A Feynman rules in the LLL approximation

In this appendix, we summarize the quantization of quark field in the presence of a strong

background magnetic field and derive the effective Feynman rules that we use in computing the

collision terms in the Boltzmann equation. We choose to work in the Landau gauge A2 = Bx1

(with B = Bx̂3 ≡ Bẑ) which seemingly breaks the translational invariance in x1 direction, while

keeping that in x2 direction. This allows us to introduce two momentum quantum numbers, pz

and p2, along ẑ and x̂2. It is important to keep in mind that 1) there is no concept of p1 in the

quark wave functions (while the gluon wave functions have it), and 2) p2 serves as a label for

the degenerate Landau levels in the transverse (x1, x2) ≡ x⊥ space.

To take care of the transverse density of states of the Landau levels in a clear manner, we

first consider a finite box of each sides (L1, L2, L3), and then take an infinite volume limit at the

end. The two dimensional momenta (pz, p2) take discrete values, which we denote collectively

as pn. Solving the Dirac equation with the background magnetic field, we get positive/negative

energy solutions as usual,

e−iEn,lx
0+ipn·xul‖(pz)Hl

(
x1 − p2

eB

)
, e+iEn,lx

0−ipn·xvl‖(pz)Hl
(
x1 +

p2

eB

)
, (A.82)

where the energy is

En,l =
√
p2
z + (2l + 1∓ 1)|eB|+m2

q ≡
√
p2
z +m2

l , (A.83)

depending on the spinor projection iγ1γ2 = ±1, and Hl(x1) are the normalized l-th eigenstate

of simple harmonic oscillator with frequency ω = |eB|, such that

H0(x1) =

(
|eB|
π

) 1
4

exp

(
− (x1)2

2|eB|

)
, (A.84)

and ul‖(pz) and vl‖(pz) are 1+1 dimensional spinors (due to the projection iγ1γ2 = ±1) for quarks

and antiquarks with the mass ml in relativistic normalization u†u = v†v = 2En,l. It is important
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to notice that the quark state with p2 is localized in x1 ∼ p2/eB with a width ∆x1 ∼ 1/
√
|eB|,

while the antiquark state is localized in x1 ∼ −p2/eB.

Let us first reproduce the well-known transverse density of states of Landau levels in this

gauge: |eB|/(2π). The p2 is discrete valued, p2 = 2πk/L2, with integers k, and the quark state

with a given Landau level l with this momentum is localized in x1 ∼ p2/eB = 2πk/(L2eB).

Since x1 should lie in the interval [0, L1], we have 0 < k < L1L2(|eB|/2π), that is, the total

number of such states is L1L2(|eB|/2π) per the transverse area L1L2.

The special case with l = 0 and iγ1γ2 = +1 gives the lowest possible 1+1 dimensional

mass m2
0 = m2

q , which is separated by multiples of |eB| from other higher level states. These

states are the lowest Landau levels (LLL). In the language of 1+1 dimension, their spinors

u0
‖(pz), v

0
‖(pz) form a single Dirac fermion field in 1+1 dimension. For higher Landau levels with

m2
l = 2l|eB|+m2

q (l ≥ 1), we have two possibilities to get the same mass: one with iγ1γ2 = +1

and the level l, and the other with iγ1γ2 = −1 and the level l− 1. These two possibilities result

in two Dirac fermion fields with the common mass ml in the language of 1+1 dimensions.

Following the standard quantization scheme, we expand the quark field operator as

ψ(x) =
1√
L2L3

∑
pn,l

1√
2En,l

(
eipn·xHl

(
x1 − p2

eB

)
ul‖(pz)apn,l + e−ipn·xHl

(
x1 +

p2

eB

)
vl‖(pz)b

†
pn,l

)
,

(A.85)

where the sum over iγ1γ2 = ±1 is assumed, and

{apn,l, a
†
pn′ ,l

′} = {bpn,l, b
†
pn′ ,l

′} = δn,n′δl,l′ . (A.86)

Using the completeness relation ∑
l

Hl(x)Hl(y) = δ(x− y) , (A.87)

it is easy to show the canonical commutation relation is satisfied

{ψα(x), ψ†β(y)} = δ(3)(x− y)δαβ . (A.88)

Since the higher Landau level states have the energy at least of order
√
|eB|, their thermal

occupation numbers are exponentially small e−
√
|eB|/T in our assumed hierarchy T 2 � eB, and

they don’t contribute to the transport coefficients such as electric conductivity of our interest.

This justifies the LLL approximation that we use in this work, that is keeping only l = 0 and

iγ1γ2 = +1 component in the above expansion of quark field operator. In the following, we

will call the LLL spinors (u0
‖(pz), v

0
‖(pz)) simply by (u(pz), v(pz)), and similarly En,0 ≡ En and
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apn,0 ≡ apn , so that

ψ(x) ∼ 1√
L2L3

∑
pn

1√
2En

(
eipn·xH0

(
x1 − p2

eB

)
u(pz)apn + e−ipn·xH0

(
x1 +

p2

eB

)
v(pz)b

†
pn

)
.

(A.89)

One consequence of the LLL approximation is that the quark current jµ = ψ̄γµψ has zero com-

ponent in the transverse x⊥ direction, due to the projection iγ1γ2 = +1 which anti-commutes

with γ⊥. Physically this is because Landau level states move only along 1+1 dimensions. The

transverse current or transverse motion necessarily involves mixing with higher Landau levels.

We are interested in the QCD interaction with the gluon fields living in 3+1 dimensions.

We will do time-ordered perturbation theory, but the matrix element for a given Feynman

diagram ends up to a (1+1 dimensional) relativistic expression after summing over all time-

ordered processes. We will derive such Feynman rules in our LLL approximation by showing

a few example time-ordered perturbation theory computations and extracting Feynman rules

from those results.

The interaction Hamiltonian is

HI = gs

∫
d3x Aaµ(x)ψ̄(x)γµ‖ t

aψ(x) , (A.90)

where a is the color index, and recall that in the LLL approximation µ runs only along 1+1

dimensions indicated by γµ‖ . Since ψ field is already projected by iγ1γ2 = +1, the γµ‖ matrices

are effectively 2× 2 γ matrices in 1+1 dimensions. The gluon field is quantized as usual:

Aµ(x) =
1√
V

∑
qm,ε

1√
2|qm|

eiqm·xεµ a
g
qm + h.c. , (A.91)

where V = L1L2L3 and qm is the discrete 3-momentum, and [aqm , a
†
qm′ ] = δm,m′ . The HI has

non-zero matrix elements for four types of processes: absorption/emission of a gluon by/from

quark or antiquark, and pair creation/annihilation of quark-antiquark pair from/to a gluon. For

example, denoting a normalized one quark state as |pn′〉, and one quark+one gluon state as

|pn,km〉, we have

〈pn′ |HI |pn,km〉 =
gs√
V

1√
2En

1√
2En′

1√
2|km|

εµ

(
ū(p′z)γ

µ
‖ u(pz)

)
R00(km⊥)eiΣδ

(2)
pn+km−pn′

(A.92)

where δ(2) is only about pn = (pz, p2) (so that k1
m is not constrained at all), and the form factor

R00(km⊥) and the Schwinger phase eiΣ arise from the overlap integral∫
dx1 eik

1
mx

1H0

(
x1 − p2/eB

)
H0

(
x1 − p′2/eB

)
= R00(km⊥)eiΣ , (A.93)
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with

R00(k⊥) = e
− k2

⊥
4|eB| , Σ = − k1

m

2eB

(
p2 + p′2

)
. (A.94)

Note that we used the fact that k2
m = p′2 − p2 in the expression of R00(km⊥). The other

matrix elements of HI are similar with the form factor and the Schwinger phase. From these

and applying the Fermi’s Golden rule, we can construct the collision term in the Boltzmann

equation as a transition probability rate per unit time from a given initial state to a final state.

In this way, the normalization issue is taken care of clearly in a finite volume we are considering

before we take an infinite volume limit.

As a first example, let us consider the collision term for the quark distribution of momentum

pn from 2-to-2 quark scattering: pn + pn′′ → pn′ + pn′′′ . There are two time ordered diagrams

in the second order perturbation theory where the transition rate is given by

Ti→f =
∑
m

〈f |HI |m〉〈m|HI |i〉
Em − Ei

(2π)δ(Ef − Ei) , (A.95)

Summing the two time ordered processes, for which |m〉 = |pn′ ,pn′′ , qm〉 or |m〉 = |pn,pn′′′ , qm〉
(qm is the exchanged gluon momentum), we get after a short algebra∑

n′,n′′,n′′′

Ti→f =
1

(L2L3)2

∑
n′,n′′,n′′′

1

2En

1

2En′

1

2En′′

1

2En′′′
δ

(2)
pn+pn′′−pn′−pn′′′

× |M|2 (2π)δ (En + En′′ − En′ − En′′′) , (A.96)

where the matrix element is given by

M = g2
s

1

L1

∑
q1
m

ηµν
(q0
m)2 − q2

m

(R00(qm⊥))2 e−i
q1
m

2eB
(p2+p′2−p′′2−p′′′2 )[ū(p′z)γ

µu(pz)][ū(p′′′z )γνu(p′′z)] ,

(A.97)

with q0
m = En′ − En and q

(2)
m = pn − pn′ . The structure of M is a product of 1+1 dimen-

sional relativistic matrix element for quarks and the form factors/Schwinger phase. The gluon

propagator is 3+1 dimensional. Recall that there is no constraint for q1
m and we have a sum-

mation over it in M. We omit color factors in the above and the following, but can easily be

reinstated. The above transition probability rate with distribution functions of incoming and

outgoing states attached is what should appear in the collision term in the Boltzmann equation.

Taking an infinite volume limit, we get a collision term

C[f+(p)] = − 1

2Ep

∫
p′

∫
p′′

∫
p′′′
|M|2(2π)2δ(2)

(
p + p′′ − p′ − p′′′

)
(A.98)

× (2π)δ
(
Ep + Ep′′ − Ep′ − Ep′′′

)
f+(p)f+(p′′)(1− f+(p′))(1− f+(p′′′)) ,

with

M = g2
s

∫
dq1

(2π)

ηµν
q2

(R00(q⊥))2 e−i
q1

2eB
(p2+p′2−p′′2−p′′′2 )[ū(p′z)γ

µu(pz)][ū(p′′′z )γνu(p′′z)] , (A.99)
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and ∫
p
≡
∫

dpzdp2

(2π)22Ep
. (A.100)

One can work out to see that the Schwinger phase in (A.99) is crucial to get a finite result with

correct Landau level density of state.

As another example, let’s consider 2-to-2 scattering of a quark with thermal gluons: p+k′′ →
p′ + k′′′. Working out similar details as above and taking an infinite volume limit, one arrives

at

C[f+(p)] = − 1

2Ep

∫
p′

∫
k′′

∫
k′′′
|M|2(2π)2δ(2)

(
p + k′′ − p′ − k′′′

)
(A.101)

× (2π)δ
(
Ep + Ek′′ − Ep′ − Ek′′′

)
f+(p)fg(k

′′)(1− f+(p′))(1 + fg(k
′′′)) ,

where

M = g2
sf

abcR00(q⊥)e−i
q1

2eB
(p2+p′2) ηµν

q2
[ū(p′z)γ

µu(pz)]× (gluon current) , (A.102)

is the usual relativistic expression except the form factor/Schwinger phase, and∫
k
≡
∫

d3k

(2π)32Ek
. (A.103)

As a final example, let’s consider 2-to-2 scattering of a gluon with thermal LLL quarks:

k+p′′ → k′+p′′′ (the same process as the second example, but the collision term for the gluon

tagged, rather than the quark). Taking an infinite volume limit, we end up to

C[fg(k)] = − 1

2Ek

1

L1

∫
k′

∫
p′′

∫
p′′′
|M|2(2π)2δ(2)

(
k + p′′ − k′ − p′′′

)
(A.104)

× (2π)δ
(
Ek + Ep′′ − Ek′ − Ep′′′

)
fg(k)f+(p′′)(1 + fg(k

′))(1− f+(p′′′)) ,

Note the residual 1/L1 factor which is correct as we explain in the following. In this case, when

we sum over the final quark states with p′′ and p′′′, one easily see that p′′2 + p′′′2 is unconstrained,

and one has a trivial summation over them. The physics is simple to understand: recalling that

x1 = p2

eB , the (p′′′ + p′′′)/2 ∼ eBx1
c represents a center of mass x1 position of the incoming and

out-going quark states, which is free to take any value between (0, L1). Indeed, in taking an

infinite volume limit, one encounters the combination

1

L1

1

2π

∫
d(p′′2 + p′′′2 )/2→ 1

L1
(eB/2π)

∫ L1

0
dx1

c = (eB/2π) , (A.105)

that is, the unconstrained integral of (p′′2 + p′′′2 )/2 always comes with a residual L1 factor in the

denominator, and results in the transverse density of states of LLL, (eB/2π). This is generic for
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any complete fermion line whose phase space is integrated: there is one p2 integral associated to

it that is not constrained at all (which represents the overall x1 position of the fermions), and

it always comes with a residual 1/L1 factor to produce (eB/2π) at the end. Note that this rule

does not apply for the tagged fermion line in the collision term as in the second example, since

the tagged fermion momentum is not integrated over.

From these examples, one derives the following Feynman rules in the LLL approximation:

1) For external quark/antiquark lines, the phase space integration is∫
p
≡
∫

dpzdp2

(2π)22Ep
. (A.106)

while for external gluons, it is ∫
k
≡
∫

d3k

(2π)32Ek
. (A.107)

2) For quark-quark-gluon vertex, impose the momentum conservation only along two dimen-

sions (pz, p2), and attach the form factor and Schwinger phase. The k1 component of gluon is

not constrained.

3) If there is an internal q1 gluon momentum which is not fixed by external gluons, we

integrate
∫
dq1/(2π) in the total matrix element M.

4) The rest of the matrix element simply follows the usual relativistic Feynman rules for 1+1

dimensional relativistic fermions and 3+1 dimensional relativistic gauge theory.

5) In the collision integral, the momentum δ-function is only two dimensional, and the energy

δ-function is as usual. There is an overall normalization of 1/(2Ep) in front of the collision term.

6) There exists one unconstrained p2 integral for any complete quark (antiquark) line whose

phase space is integrated. We have a simple thumb rule that each of these unconstrained p2

integral produces the transverse density of states of LLL, (eB/2π);∫
dp2

(2π)
→
(
eB

2π

)
. (A.108)

In fact, only with this thumb rule applied, the final result has the correct energy dimension for

the collision term.

B Collision terms from the 2-to-2 processes

In this appendix, we give explicit derivations of some of the collision terms arising from 2-to-2

processes, and show that these are indeed sub-leading compared to the 1-to-2 process in the main

text when αseB � m2
q . We will also see in passing that in the other regime of m2

q � αseB,
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some of these 2-to-2 processes become of the same order as the 1-to-2 process, as we claimed in

the introduction.

There are several 2-to-2 processes, and we will illustrate that their largest contribution to

the collision term when αseB � m2
q is

C2−2[χ+] ∼ α2
s (eB) log

(
m5

q

αseBT3

)
∂2
pzχ+ , (B.109)

compared to the 1-to-2 collision term in the main text which is of order

C1−2[χ+] ∼ αs

(
m2
q

T 2

)
χ+ , (B.110)

so that indeed 2-to-2 is subleading to 1-to-2 when αseB � m2
q .

The most important 2-to-2 processes are quark-antiquark scatterings. One reason why they

are dominant over quark-gluon scatterings is simply the thermal density of scattering particles:

antiquark thermal density is ∼ (eB/2π)T which is bigger than the thermal density of gluons

∼ T 3. However, it would be still comforting to check this expectation explicitly, since quark

and antiquark currents are only 1+1 dimensional, and the corresponding matrix elements may

depend on the quark mass in a non-trivial way. Indeed, we will see in the example of quark-

antiquark t-channel scatterings that there is an intricate cancellation of quark mass dependence

in quark-antiquark scatterings that results in the estimate (B.109). We will also show an ex-

ample computation of quark-gluon t-channel scattering contribution to confirm the expectation

that quark-gluon scatterings are indeed sub-leading compared to (B.109). As in the case with-

out magnetic field, the t-channel processes are potentially enhanced by an extra IR logarithm

compared to the s-channel processes, so we will present explicit computations for the t-channel

processes only.

The existence of on-shell 1-to-2 processes implies that the s-channel 2-to-2 scatterings have

a on-shell singularity when the s-channel gluon becomes close to the on-shell point. One might

worry whether this enhanced contribution might overturn our power counting estimates claimed

in the above. However, we explain in the following that this singular s-channel 2-to-2 contribution

is precisely what our 1-to-2 collision term (3.29) is. The s-channel singularity is caused by a

long-lived intermediate gluon, and in the narrow width approximation which is valid in leading

order, it is regulated by a finite damping rate of gluon in the retarded gluon propagator that

gives a finite life-time: the dominant damping rate is given by 1-to-2 process as in (5.69). The

resulting contribution to the collision term arising from the damping-rate regulated 2-to-2 s-

channel singularity can be shown to be “identical” to our 1-to-2 collision term (3.29)∗∗, which

∗∗More precisely, one first solves the gluon Boltzmann equation with 1-to-2 collision term to express the gluon
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means that this 2-to-2 contribution near s-channel singularity is in fact precisely taken care of

by having our 1-to-2 collision term, that is, it would be a double counting to have them both.

The physics is clear: 1-to-2 collision assumes that the external gluon state has a narrow width

(damping rate), so we can treat it as a stable particle. In reality, the gluon is not stable and will

decay to quark-antiquark final states eventually, so the full process should be 2-to-2 s-channel

process. When the damping rate is narrow, the decay process will happen sufficiently long

after the initial 1-to-2 process happens, so the initial 1-to-2 process is factorized from the final

decay processes. As the initial 1-to-2 process does’t care what happens to the gluon afterwards,

if we sum over all possible final states of s-channel 2-to-2 processes, the resulting rate should

be the same to the initial 1-to-2 process rate. The same physics can be found in the Z-boson

physics in the ”narrow width approximation”. Outside the singular region, the off-shell s-channel

contribution is parametrically smaller than (B.109) by an absence of logarithm.

The readers might wonder why we don’t care about quark-quark scatterings at all. The

reason is simply due to 1+1 dimensional kinematics of massive quasi-particles. Imagine we

consider quark-quark scatterings: p+ p′′ → p′ + p′′′. Remembering that the dispersion relation

is 1+1 dimensional, Ep =
√
p2
z +m2

q , the energy and z-momentum conservation allows only two

possibilities of final momenta (p′z, p
′′′
z ): either (p′z, p

′′′
z ) = (pz, p

′′
z) or (p′z, p

′′′
z ) = (p′′z , pz), that is,

the final z-momenta should be the same to the initial momenta up to permutation. The collision

term, using detailed balance at equilibrium, is proportional to

χ+(p′z) + χ+(p′′′z )− χ+(pz)− χ+(p′′z) = 0 , (B.111)

where the crucial point is that the distributions depend only on pz, not p2 due to homogene-

ity in the transverse plane in our specific problem for longitudinal conductivity. Therefore, the

collision term from quark-quark scatterings for our specific problem vanishes simply due to kine-

matics. Physics wise, quark-quark scatterings leave two incoming pz momenta unchanged (only

permuted), while the transverse positions parametrized by p2 can be changed. For longitudinal

conductivity, these transverse diffusion does not matter at all, and only pz that determines the

longitudinal velocity matters: therefore, quark-quark scatterings are irrelevant for longitudi-

nal conductivity. Note that this wouldn’t be the case if the source is not homogeneous in the

transverse plane (so that χ+ depends also on p2).

The situation is different for quark-antiquark scatterings, where the collision term is propor-

distribution in terms of quark and anti-quark distribution functions, and replace the gluon distribution in the 1-to-2
collision term for quark Boltzmann equation with that solution. The result is identical to the damping rate
regulated s-channel 2-to-2 collision term.
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tional to

χ+(p′z) + χ−(p′′′z )− χ+(pz)− χ−(p′′z) . (B.112)

The case of (p′z, p
′′′
z ) = (pz, p

′′
z) still gives vanishing result, but the other case (p′z, p

′′′
z ) = (p′′z , pz)

(momenta permuted between the quark and the antiquark) gives

χ+(p′z) + χ−(p′′′z )− χ+(pz)− χ−(p′′z) = 2(χ+(p′z)− χ+(pz)) , (B.113)

where we used the fact χ+(pz) = −χ−(pz). Note that this case has a non-zero momentum

exchange q = p′ − p 6= 0.

Quark-antiquark t-channel scattering

The collision term from quark-antiquark scattering, p + p′′ → p′ + p′′′, and its time reversed

process is written as

C[f+(pz)] =
1

2Ep

∫
p′

∫
p′′

∫
p′′′
|M|2(2π)2δ(2)(p + p′′ − p′ − p′′′)(2π)δ(Ep + Ep′′ − Ep′ − Ep′′′)

× βfeqF (Ep)f
eq
F (Ep′′)(1− feqF (Ep′))(1− feqF (Ep′′′))

(
χ+(p′z) + χ−(p′′′z )− χ+(pz)− χ−(p′′z)

)
,

(B.114)

where the matrix element is given by a similar expression as (A.99),

M = g2
s

∫
dq1

(2π)
Gµν(q)(R00(q⊥))2e−i

q1

2eB (p2+p′2+p′′2 +p′′′2 )[ū(p′z)γ
µ
‖ u(pz)][v̄(p′′z)γ

ν
‖v(p′′′z )] , (B.115)

where q = p′ − p = p′′ − p′′′. We neglected color indices, and the color trace simply gives a

factor of TRC2(R) in front of |M|2. The (color stripped) full gluon propagator Gµν(q) including

the dominant 1-loop self energy from hard thermal LLL loop can be found in Ref.[14, 27, 28, 32].

This self energy is of order ∼ αseB, and dominates over the one from hard thermal gluons of

αsT
2. Note that (µ, ν) in the above are projected to 1+1 dimensions due to the coupling to

LLL quarks, and in this case the re-summed gluon propagator is given by

Gµν(q) =
iη
‖
µν

−q2 +m2
D,B+iImΠ‖(q)

=
iη
‖
µν

q2
⊥ − q2

‖ +m2
D,B+iImΠ‖(q)

, (B.116)

where ηµν‖ = diag(1, 0, 0,−1), and ImΠ‖(q) is the imaginary part of the gluon self-energy which

we have retained for later convenience. In Eq. (B.116), we have dropped the gauge-dependent

terms, which are proportional to the momentum and vanish at on-shell kinematics due to the

1+1 dimensional Ward identity. The Debye mass from the real part of the self-energy from the

LLL loop in small quark mass limit is

m2
D,B = 4αsTRNF

(
eB

2π

)
e−

q2
⊥

2eB . (B.117)
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We will see later that −q2
‖ becomes small in the infrared region qz � T where we can get

potentially infrared enhanced contributions. In this region, the imaginary part of the self-energy of the

exchanged gluon becomes large: it is estimated as [14] ImΠ‖(q) ∼ m2
D,BT/qz. This is much larger

than m2
D,B when qz � T , and becomes much larger than −q2

‖ when |qz| � ΛIR ≡ (mD,B/mq)
2/3T ,

using the fact −q2
‖ ∼ m

2
qq

2
z/T

2 (see Eq.(B.128)). Thus, the imaginary part of the gluon self-energy

introduces a new dynamical IR cutoff, ΛIR, for this infrared sensitive region, replacing the Debye

mass mD,B. Because the purpose of the current calculation is just to make an order estimate, we

simply take into account this effect by replacing the terms coming from the gluon self-energy in the

exchanged gluon propagator as m2
D,B + iImΠ‖(q)→ Λ2

IR.

For t-channel scatterings, the momentum exchange is space like −q2
‖ > 0. Note that the LLL

quarks inside the one-loop gluon self energy couple only to one of the two transverse modes of

gluons which has the in-plane polarization with respect to the plane spanned by the external

magnetic field and the gluon momentum. The other polarization mode perpendicular to the

plane is decoupled from the LLL quarks, and is not affected by the LLL self-energy. This can

be seen by the vanishing current transverse to B, ψ̄γ⊥ψ = 0, in the LLL approximation (see

Appendix A). Therefore, whereas the in-plane mode is screened by mD,B, the other mode, the

out-of-plane polarization, is not screened by the LLL quark loop. Nevertheless, as long as LLL

quarks are involved in the scatterings as carriers and/or scatterers, one can use Eq. (B.116)

because the out-of-plane mode is decoupled from LLL quarks, and will not appear anyway

(Eq. (B.116) contains only in-plane mode contributions). However, for the gluon-gluon scattering

considered around Eq. (5.75), one needs to include the ordinary gluon-loop contribution for

out-of-plane modes, which gives rise to the screening mass m2
T ∼ αsT

2 for the out-of-plain

polarization mode.

Note the q1 integral in M and we need to compute |M|2: the Schwinger phase will play a

crucial role to get the right LLL density of states as follows. The |M|2 is

|M|2 = g4
s

∫
dq1

(2π)

∫
dq̃1

(2π)
e−i

(q1−q̃1)
2eB (p2+p′2+p′′2 +p′′′2 ) × (other stuff) . (B.118)

Consider p2 integrals in (B.114) with the above Schwinger phase,∫
dp′2
(2π)

∫
dp′′2
(2π)

∫
dp′′′2
(2π)

(2π)δ(p2 + p′′2 − p′2 − p′′′2 ) e−i
(q1−q̃1)

2eB (p2+p′2+p′′2 +p′′′2 ) . (B.119)

Without loss of generality, we can choose p2 = 0, and the “other stuff” depends only on q2 =

p′2 = p′′2 − p′′′2 , so after performing p′′′2 integral using the δ-function, we have∫
dq2

(2π)

∫
dp′′2
(2π)

e−i
(q1−q̃1)

eB
·p′′2 =

(
eB

2π

)
(2π)δ(q1 − q̃1)

∫
dq2

(2π)
. (B.120)
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Then, we have∫
dp′2
(2π)

∫
dp′′2
(2π)

∫
dp′′′2
(2π)

(2π)δ(p2 + p′′2 − p′2 − p′′′2 ) e−i
(q1−q̃1)

2eB (p2+p′2+p′′2 +p′′′2 )|M|2

= g4
s

(
eB

2π

)∫
d2q⊥
(2π)2

× (other stuff) , (B.121)

where the other stuff depends on q⊥ = (q1, q2) only. This way, the correct LLL density of states

(eB/2π) is produced.

As explained in the previous subsection, the 1+1 dimensional energy-momentum condition

fixes the unique solution p′z = p′′z and p′′′z = pz, and working out Jacobian, we have∫
dp′z
(2π)

∫
dp′′z
(2π)

∫
dp′′′z
(2π)

(2π)δ(pz + p′′z − p′z − p′′′z )(2π)δ(Ep + Ep′′ − Ep′ − Ep′′′)

=

∫
dp′z
(2π)

EpEp′

|Epp′z − Ep′pz|
. (B.122)

Also, the t-channel momentum exchange becomes

−q2
‖ = −(p′ − p)2

‖ = 2(EpEp′ − pzp′z −m2
q) > 0 , (B.123)

and finally the spinor trace is easily computed to be(
[ū(p′z)γ

µ
‖ u(pz)][v̄(p′z)γ‖µv(pz)]

)2
= 16m4

q . (B.124)

We have all the ingredients to write down the collision term as

C[f+(pz)] = 2g4
sTRC2(R)

(
eB

2π

)
(16m4

q)
1

(2Ep)2
βfeqF (Ep)(1− feqF (Ep))

×
∫

dp′z
(2π)

1

(2Ep′)2

EpEp′

|Epp′z − Ep′pz|

∫
d2q⊥
(2π)2

e−
q2
⊥

eB
1(

q2
⊥ + (−q2

‖ + Λ2
IR)
)2

× feqF (Ep′)(1− feqF (Ep′))(χ+(p′z)− χ(pz))

= 8πα2
sTRC2(R)

(
eB

2π

)
m4
q

β

Ep
feqF (Ep)(1− feqF (Ep))

×
∫

dp′z
(2π)

1

Ep′

1

|Epp′z − Ep′pz|
1

(Λ2
IR + 2(EpEp′ − pzp′z −m2

q))

× feqF (Ep′)(1− feqF (Ep′))(χ+(p′z)− χ(pz)) , (B.125)

where we neglected e−
q2
⊥

eB since q2
⊥ ∼ Λ2

IR − q2
‖ . T 2 � eB. Although the expression looks

proportional to m4
q , they cancel in a subtle way in the final result. We need to consider two

separate cases; 1) pz · p′z < 0 (chirality flip) and 2) pz · p′z > 0 (chirality non-flip).
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1) pz ·p′z < 0 case (chirality flip): In this case, |Epp′z−Ep′pz| and −q2
‖ are all of order pz ∼ T ,

and there is no IR enhanced regime in the integration. Typical momenta of integration is of

order T and therefore, the collision term in this case is of order

C ∼ α2
s(eB)

m4
q

T 6
χ+ , (B.126)

which is clearly sub-leading to the 1-2 process, C1−2 ∼ αsm2
q/T

2χ+, when αseB � (m2
q , T

2).

2) pz · p′z > 0 case (chirality non-flip): In this case, both |Epp′z − Ep′pz| and −q2
‖ are pro-

portional to m2
q , canceling the m4

q factor in the numerator. Explicitly, it is better to write them

as

|Epp′z − Ep′pz| =
m2
q |p′2z − p2

z|
Epp′z + Ep′pz

, (B.127)

and

−q2
‖ =

2m2
q(p
′
z − pz)2

EpEp′ + pzp′z +m2
q

, (B.128)

that shows the m2
q factor clearly. In (B.125), when we compare Λ2

IR and −q2
‖, the −q2

‖ dominates

for most of the p′z since Λ2
IR � m2

q , unless p′z is very close to pz (IR region) so that

|p′z − pz|2 .
Λ2

IR

m2
q

T 2 � T 2 , (B.129)

below which Λ2
IR dominates. We will find a logarithmic enhancement from the range ΛIRT/mq �

|p′z − pz| � T . To identify this logarithm near this IR region, it is safe to approximate p′z ≈ pz

in the integrand except IR diverging pieces, and we also have a “diffusion” expansion

χ+(p′z)− χ+(pz) = (p′z − pz)∂pzχ+(pz) +
1

2
(p′z − pz)2∂2

pzχ+(pz) . (B.130)

Putting all these in (B.125), we finally have

C[f+(pz)]LLog ≈ (4π)α2
sTRC2(R)

(
eB

2π

)
1

T

∫ T

|p′z−pz |=
ΛIR
mq

T

dp′z
(2π)

1

|p′z − pz|

× ∂pz

(
Ep(f

eq
F (Ep))

2
(
1− feqF (Ep)

)2
∂pzχ+(pz)

)
=

2

3
α2
sTRC2(R)

(
eB

2π

)
1

T
log

(
m5

q

αseBT3

)
× ∂pz

(
Ep(f

eq
F (Ep))

2
(
1− feqF (Ep)

)2
∂pzχ+(pz)

)
,

(B.131)

which is what we claimed in (B.109). It is easy to check that the other region |p′z − pz| .
ΛIR
mq

T

(where Λ2
IR dominates over −q2

‖) produces only a constant under the above log.
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Finally let us see what happens when m2
q � αseB. In this case, we see that Λ2

IR always

dominates over −q2
‖ in (B.125), and there is no infrared enhancement in the q integral, which means

that q integral is dominated by the region q ∼ T . Then, the real and imaginary part of the gluon self-

energy is of the same order to be ∼ m2
D,B ∼ αseB. We therefore have the replacement Λ2

IR → αseB

in this case, and have the estimate (for chirality non-flip case pz · p′z > 0)

C ∼ α2
s(eB/T

2)m2
q

1

αseB

∫
dp′z

1

|p′z − pz|
(χ+(p′z)− χ(pz)) . (B.132)

With the expansion of (χ+(p′z)−χ(pz)) ≈ (p′z − pz)∂pzχ+(pz) for small (p′z − pz), there is no IR

enhancement in the above expression, and we have the estimate

C ∼ αs(m2
q/T

2)χ+ , (B.133)

which is of the same order as the 1-to-2 process (B.110). Therefore, this has to be included as

well in leading order computation, as we claimed in the introduction.

Quark-gluon t-channel scattering

Another 2-to-2 process of interest is quark-gluon t-channel scattering with a gluon exchange.

One can check by an explicit computation that the t-channel fermion exchange is sub-leading to

this process by a factor of log(T 2/αseB), and we skip its detail here. We consider quark-gluon

scattering: p + k → p′ + k′ with the momentum exchange q = p′ − p = k − k′. The collision

term from this is

C[f+(pz)] =
1

2Ep

∫
p′

∫
k

∫
k′
|M|2(2π)2δ(2)(p + k − p′ − k′)(2π)δ(Ep + Ek − Ep′ − Ek′)

× βfeqF (Ep)f
eq
B (Ek)(1− feqF (Ep′))(1 + feqB (Ek′))(χ+(p′z)− χ+(pz)) , (B.134)

where we dropped the gluon distribution χg(k) = 0, and Ek = |k| is the gluon on-shell energy.

The matrix element is

M = g2
sf

abc[ū(p′z)t
aγβ‖ u(pz)]Gβµ(q) ((k − 2q)νηµα + (kα + qα)ηµν − (2k − q)µηαν)

× εν(ε̃α)∗R00(q⊥)eiΣ , (B.135)

where (ε, ε̃) are polarizations of incoming and outgoing gluons, a, b, c are color indices of ex-

changed, incoming and outgoing gluons respectively. Since the exchanged gluon propagator

Gβµ(q) is coupled to the purely longitudinal quark current on one side, one can show that the

only non-vanishing part is

Gβµ(q) =
iη
‖
βµ

q2
⊥ − q2

‖ +m2
D,B+iImΠ‖(q)

≈
iη
‖
βµ

q2
⊥ − q2

‖ + Λ2
IR

, (B.136)
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as before. Color traces in |M|2 produces a color factor of NcC2(R), and other than this we can

forget about colors in the following.

We will show that the above collision integral has a logarithmic IR enhancement from

mD,B � q � T , and for this leading log order, we can focus on only leading terms in small

q/T � 1 expansion in the matrix element. For example, in leading order of q/T we have

((k − 2q)νηµα + (kα + qα)ηµν − (2k − q)µηαν) εν(ε̃α)∗ ≈ −2k‖µ(ε · ε̃∗) +O(q) (B.137)

using the fact that ε · k = ε̃ · k = 0 +O(q). Moreover, since k ≈ k′ +O(q) ∼ T , the polarization

summation in |M|2 gives ∑
ε,ε̃

|(ε · ε̃∗)|2 = 2 +O(q/T ) . (B.138)

Performing spinor trace, we have (we can neglect R00(q⊥) since q2
⊥ � T 2 � eB)

|M|2 = 16g4
sNcC2(R)

1

|q2
⊥ − q2

‖ + Λ2
IR|2

(
2(k · p)(k · p′)− (p · p′ −m2

q)k
2
‖

)
. (B.139)

Also, a short algebra gives

p · p′ −m2
q =

m2
qq

2
z

EpEp′ + pzp′z +m2
q

∼ O(q2) , (B.140)

since for small momentum transfer qz � pz ∼ T , we have pz · p′z > 0. Therefore, we can neglect

(p · p′ −m2
q) in the above as well, and we have

|M|2 ≈ 32g4
sNcC2(R)

(EkEp − kzpz)2

|q2
⊥ − q2

‖ + Λ2
IR|2

. (B.141)

The phase space integral in (B.134) is also approximated in small q/T limit as follows. We first

re-parametrize k′ integral to the momentum transfer q ≡ k − k′,∫
k′

=

∫
d3q

(2π)32Ek−q
, (B.142)

and performing p′ integral to arrive at

C[f+(pz)] =
1

2Ep

1

2Ep+q

∫
d3k

(2π)32Ek

∫
d3q

(2π)32Ek−q
|M|2(2π)δ(Ep + Ek − Ep+q − Ek−q)

× βfeqF (Ep)f
eq
B (Ek)(1− feqF (Ep+q))(1 + feqB (Ek−q))(χ+(pz + qz)− χ+(pz)) .

(B.143)

Taking the small q/T � 1 limit, we have

δ(Ep + Ek − Ep+q − Ek−q) = δ

(
k̂ · q − pz

Ep
qz

)
, (B.144)
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and

−q2
‖ = −(q0)2 + q2

z =

(
1− p2

z

E2
p

)
q2
z =

m2
q

E2
p

q2
z . (B.145)

By neglecting subleading terms in q/T , we have

C[f+(pz)] =
1

(2Ep)2

∫
d3q

(2π)3

∫
d3k

(2π)3(2Ek)2
|M|2(2π)δ

(
k̂ · q − pz

Ep
qz

)
(B.146)

× βfeqF (Ep)f
eq
B (Ek)(1− feqF (Ep))(1 + feqB (Ek))(χ+(pz + qz)− χ+(pz)) ,

where

|M|2 = 32g4
sNcC2(R)

(EkEp − kzpz)2

(q2
⊥ +

m2
q

E2
p
q2
z + Λ2

IR)2
. (B.147)

The phase space k integral is doable with some effort. The result is∫
d3k

(2π)3(2Ek)2
(2π)δ

(
k̂ · q − pz

Ep
qz

)
(EkEp − kzpz)2βfeqB (Ek)(1 + feqB (Ek))

=
πT 2

48

1

|q|
1

E2
p

(
2m4

q + 5m2
qp

2
z

(
1− q2

z

|q|2

)
+ 3p4

z

(
1− q2

z

|q|2

)2
)
.

(B.148)

With this, one easily recognizes that there is an IR divergence in (B.146) in small q regime

that is regulated by Λ2
IR. To extract this leading log enhancement, we first do the “diffusion

expansion” for small qz � pz: χ+(pz + qz) − χ+(pz) ≈ qz∂pzχ+(pz) + 1
2q

2
z∂

2
pzχ+(pz), and only

the quadratic piece contributes due to symmetry qz → −qz in the integrand (however, see the

discussion at the end of this subsection). We also rescale qz → Ep

mq
qz to finally obtain

C[f+(pz)] =
π

3
α2
sT

2NcC2(R)feqF (Ep)(1− feqF (Ep))S (mq/Ep)

(∫ ∼T
0

d|q| |q|3

(|q|2 + Λ2
IR)2

)
∂2
pzχ+(pz)

=
π

9
α2
sT

2NcC2(R)feqF (Ep)(1− feqF (Ep))S (mq/Ep) log

(
m2

q

αseB

)
∂2
pzχ+(pz) , (B.149)

where the UV cutoff is provided by T above which our low q/T � 1 approximation is no longer

valid, and the dimensionless function S(mq/Ep) is defined by the angular integral,

S(x) = x2

∫ +1

−1
d cos θ

cos2 θ√
x2 sin2 θ + cos2 θ

(B.150)

×
(

2 + 5(1− x2)
sin2 θ

(x2 sin2 θ + cos2 θ)
+ 3(1− x2)2 sin4 θ

(x2 sin2 θ + cos2 θ)2

)
.

In the small mass limit of x = mq/Ep → 0, the integral is dominated by the region cos θ ∼ x

(and sin θ ∼ 1), and parametrizing this region as cos θ = xt, we have

S(x)→
∫ +∞

−∞
dt

3t2

(1 + t2)
5
2

= 2 , x→ 0 . (B.151)
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Although we derived (B.149) by neglecting q/T corrections in the matrix element, there can

be other contributions of the same order that result from a first order q/T correction from the

matrix element combined with the linear term of the “diffusion expansion” of χ+(pz + qz) −
χ+(pz). The easiest way to handle this subtlety is to work with the variational functional I

such that C = δI
δχ+

as in literature [29]. The upshot of this exercise is that the final leading log

collision term is a total derivative,

C[f+(pz)] =
π

9
α2
sT

2NcC2(R)log

(
m2

q

αseB

)
∂pz

(
feqF (Ep)(1− feqF (Ep))S (mq/Ep) ∂pzχ+(pz)

)
,

(B.152)

which is our final result in this section. As claimed before, this collision term is parametrically

smaller than the 1-to-2 process when m2
q � αseB � αsT

2.
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