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We present the first self-consistent direct calculation of a spectral function in the framework of the
Functional Renormalization Group. The study is carried out in the relativistic O(N) model, where
the full momentum dependence of the propagators in the complex plane as well as momentum-
dependent vertices are considered. The analysis is supplemented by a comparative study of the
Euclidean momentum dependence and of the complex momentum dependence on the level of spectral
functions. This work lays the groundwork for the computation of full spectral functions in more
complex systems.
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I. INTRODUCTION

Realtime observables such as spectral functions, form
factors or transport coefficients lie at the heart of the
understanding of the dynamical properties of strongly
correlated systems in general. Unfortunately these ob-
servables are hard to obtain in Euclidean frameworks
due to the necessity of performing an analytic continua-
tion in the external momenta. Concentrating on spectral
functions in the following, the standard procedure is to
numerically reconstruct the spectral function based on
given Euclidean propagator data using for example the
Maximum Entropy Method (MEM) or performing a con-
tinuation based on appropriate fitting functions such as
Padé approximants. The common problem of these pro-
cedures is however the lack of control and consequently
the large systematic errors arising from the analytic con-
tinuation. Therefore the present situation urges for a
direct calculation of spectral functions.

Such an approach has been put forward in the frame-
work of the Functional Renormalization Group (FRG) in
[1, 2], cf. also [3] for a calculation of the gluon propaga-
tor at complex momenta using Dyson-Schwinger equa-
tions. The framework has been significantly generalized
in [4], where also the connection to real time flows on
a Schwinger-Keldysh contour has been established, see
also [5–7] for recent real time applications in the FRG.
Although related methods have been employed earlier in
the context of solid-state physics [8, 9] only recently there
has been a growing interest in such approaches [4, 10–15].

In this work we present a proof-of-principle study for
the calculation of spectral functions in a general setting
considering the full momentum dependence of the prop-
agators as well as momentum-dependent vertices. The
model of choice for this study is the relativistic O(N)
model at vanishing temperature. While we have in par-
ticular application in QCD in mind, where the O(4)
model in 3+1 dimensions represents a low-energy effec-
tive model for two-flavor QCD, relativistic O(N) mod-
els mainly in 2+1 dimensions also play an important
role as effective descriptions of condensed-matter sys-
tems such as quantum antiferromagnets or superconduc-
tors. Although we consider the O(N) model as illus-

trative example, the underlying framework is of a more
general nature. The primary application we have in
mind is the calculation of real time observables in the
framework of the fQCD collaboration [16] which aims
to provide a first-principle continuum approach to QCD,
see [17–19]. The primary objective is the calculation of
the elementary spectral functions of QCD in this frame-
work, which can then be used as direct input for the
computation of transport coefficients along the lines of
[20, 21]. This necessitates an approach that is capable
of handling the technically advanced truncation schemes
that are required for quantitative accuracy in Yang-Mills
(YM) theory and QCD [17, 19], which for this reason
has to be an entirely numerical procedure. In particu-
lar, this requires the use of regulator functions that de-
pend on 4-momentum in contradistinction to the com-
monly used 3-momentum regulators and as well as the
inclusion of fully momentum-dependent propagators and
momentum-dependent vertices.

The O(N) model at vanishing and non-vanishing tem-
perature has been studied in a wide range of different
functional approaches ranging from the FRG [2, 22–33]
to 2PI methods [34–41] focusing on the one hand one
investigating properties of QCD/solid-state applications
in an effective model setting and on the other hand on
critical behavior at the quantum critical point in 2+1 di-
mensions or the thermal critical behavior in 3+1 dimen-
sions. Most of the studies focus on solving the system
of Euclidean correlation functions in various degrees of
sophistication, but only few address the calculation of re-
altime observables and in particular spectral functions in
this model. Notable exceptions are the spectral functions
in 2+1 dimensions calculated from Euclidean data by
means of Padé approximants [31, 32], finite-temperature
spectral functions from the lattice [42] via MEM, and
the first FRG calculation for spectral functions in the
present framework [2], where spectral functions were cal-
culated on the basis of a Euclidean solution in the local
potential approximation (LPA), as well as a 2PI investi-
gation on finite-temperature O(N) model spectral func-
tions [36]. The latter uses an approximation scheme that
includes similar diagrams as the truncation scheme with
momentum-independent vertices considered in this work.
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However, the numerical solution neglects the real part of
the diagrams involving 3-point diagrams which lead to
a deviations from classical Euclidean propagators. The
spectral functions computed in this work do not only
include the full complex momentum dependence of the
propagators but in addition momentum-dependent ver-
tices and are therefore the most sophisticated directly
calculated spectral functions and at the same time the
first results on the way towards quantitative elementary
spectral functions in YM theory and QCD.

The paper is organized as follows: In Sec. II we re-
view the O(N) model in a vertex expansion scheme for
the effective action focusing on the Euclidean momentum
dependence in the first part and the direct calculation of
realtime propagators in the second part. Results for Eu-
clidean propagators and vertices as well as spectral func-
tions in different approximation schemes are presented in
Sec. III. We summarize and conclude in Sec. IV.

II. EUCLIDEAN AND REALTIME
CORRELATION FUNCTIONS FROM THE FRG

A. O(N) model in a vertex expansion scheme

The classical action of the O(N) model is given by

Scl =

∫
ddx

(
1

2
∂µφa∂µφa +m2ρ+

λ

2
ρ2 − cσ

)
, (1)

where φa = (σ, ~π)a, ρ(x) = 1
2φaφa and the explicit sym-

metry breaking terms cσ accounts for a non-vanishing
pion mass. Here we work in d = 4 dimensions.

In this work quantum fluctuations are included by
means of the functional renormalization group (FRG).
The FRG implements the idea of the Wilson renormal-
ization group, where quantum fluctuations are gradually
integrated, see [43–47] for QCD-related reviews. On a
technical level this is achieved by means of an infrared
regulator that is added to the action which is of the form

∆Sk =
1

2

∫
p

φa(p)Rk(p2)φa(−p)

=
Zk
2

∫
p

φa(p)
(
p2 + ∆m2

r

)
r

(
p2 + ∆m2

r

k2

)
φa(−p) ,

(2)

with
∫
p

=
∫

ddp
(2π)d

. Here we use an exponential regulator

shape function, r(x) = xm−1/(ex
m − 1) and m = 2. The

wavefunction renormalization factor Zk is taken from the
pion propagator at vanishing momentum. The need for
the shift in the argument of the regulator shape functions,
∆m2

r and its implications is discussed in the following
section. The scale dependence of the effective average
action Γk, the scale-dependent analogue of the effective

action, is governed by a 1-loop flow equation [22],

k∂kΓk[φ] = Tr
k∂kRk

Γ
(2)
k +Rk

, (3)

where Γ
(2)
k denotes a full field- and momentum-dependent

(inverse) propagator. Flow equations for n−point func-
tions are derived straightforwardly from the master equa-
tion (3) via functional differentiation with respect to the
fields, see e.g. Fig. 1 for a graphical representation of
the flow equations for the (inverse) propagators. Given
suitable initial conditions ΓΛUV

at some large initial UV
scale ΛUV the set of flow equations derived from the mas-
ter equation (3) are integrated down to k = 0 where the
infrared regulator is eventually removed and where Γk
approaches the effective action Γ.

The structure of (3) implies that the flow equation for a
n−point vertex function depends in turn on up to (n+2)-
point vertex functions. This leads to an infinite tower
of coupled equations that have to be truncated within
appropriate nonperturbative expansion schemes in order
to obtain a finite system of coupled equations suitable
for numerical applications. While frequently derivative
expansions are applied in scalar models [24, 33, 48, 49]
such as the O(N) model, we address the O(N) model in
a vertex expansion in this work with particular regard
to future applications in YM theory and QCD along the
lines of [17, 19]. The vertex expansion corresponds to
an expansion of the effective action in terms of 1PI ver-
tex functions, see App. A for the parameterizations of
propagators and vertices used in this work.

truncation considered dressing functions

LPA Uk

LPA’ Uk, Zπ,k

LPA’+Y Uk, Zπ,k, Zσ,k

PMOM Uk, Zπ,k(p), Zσ,k(p)

PVMOM Uk, Zπ,k(p), Zσ,k(p),

Zxxy,k(psym), Zxxyy,k(psym)

TABLE I. Overview over the considered truncation schemes,
see text for details.

Here we consider five different truncations: LPA,
where only a scale-dependent effective potential is con-
sidered, LPA’ and LPA’+Y which add scale-dependent
wavefunction renormalization factor(s), a truncation
with fully momentum-dependent propagators (PMOM)
analogous to the bosonic sector in [50], and finally a trun-
cation scheme with fully momentum-dependent propaga-
tors and momentum-dependent vertices (PVMOM). In
LPA’ we consider just a single scale-dependent wavefunc-
tion renormalization constant whereas in LPA’+Y sepa-
rate wavefunction renormalization factors for each field
are taken into account. The latter can be understood
as taking into account contributions to the propagators
corresponding to a term of the form Yk∂µρ∂µρ on the
level of the effective action [51], where one neglects Yk-
dependent, i.e. momentum-dependent, contributions to
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the vertices as argued in [50]. The different truncation
schemes are summarized in Tab. I.

We solve the full system at a fixed expansion point in
field space using a Taylor expansion at a fixed bare expan-
sion point [52]. Here this concerns in particular the effec-
tive potential which is considered to capture effects be-
yond the vertices up to fourth order in the vertex expan-
sion that are calculated explicitly. For notational simplic-
ity we suppress the dependence on the expansion point in
the following. In the PVMOM-scheme we explicitly take
into account the full momentum dependence of the prop-
agators, and the momentum-dependence of all 3- and 4-
point vertices in a one-dimensional momentum approxi-
mation at the symmetric point. Higher n-point functions
(n > 4) are approximated momentum-independently via
the effective potential. Flow equations for n-point corre-
lation functions can either be derived from the effective
potential or from the corresponding flow equations for
the vertices. Since all equations are derived from a sin-
gle generating object, the effective action, these have to
coincide in the full theory, but deviate for approximate
solutions. As the effective potential equation is less sensi-
tive to momentum-dependent approximations, we always
decompose n−point functions as

Γ
(n)
i,k (p1, . . . , pn−1) = Γ

(n)
i;0,k + ∆Γ

(n)
i,k (p1, . . . , pn−1) , (4)

where the flow of Γ
(n)
i;0,k = Γ

(n)
i,k (0, . . . , 0) is calculated

from the effective potential equation and the momentum-

dependent difference ∆Γ
(n)
i,k (p1, . . . , pn−1) is calculated

from the corresponding propagator/vertex equation. For
n > 4 we neglect the momentum-dependence and con-
sider just the contribution from the effective potential.

In summary, the numerical solution in the PVMOM
truncation involves the solution of the flow equation
for the effective potential Uk, expanded up to some fi-
nite order n in ρ, which also enters the momentum-
independent contributions in the propagators and ver-

tices Γ
(n)
i;0,k in (4). The numerical results below were

obtained using an expansion order n = 7. In the Eu-
clidean sector it involves the simultaneous solution of the
equations for momentum-dependent propagators ∆Γ

(2)
π,k,

∆Γ
(2)
σ,k as that of momentum-dependent 3- and 4-point

vertices, ∆Γ
(3)
2πσ,k, ∆Γ

(3)
3σ,k, ∆Γ

(4)
4π,k, ∆Γ

(4)
2π2σ,k, ∆Γ

(4)
4σ,k.

The momentum dependence of all vertex function is ap-
proximated using a one-dimensional momentum approx-
imation at the symmetric point p2

sym = 1
n (p2

1 + . . . p2
n).

The PMOM truncation neglects the momentum depen-

dence of the vertices by setting ∆Γ
(3)
x,k = ∆Γ

(4)
x,k = 0.

In the LPA’+Y truncation the momentum-dependence
of the inverse propagators is in addition parametrized
using only scale-dependent dressing function i.e. via

∆Γ
(2)
x,k(p2) = ZkZ̄x,kp

2, where Z̄x,k is calculated from the
propagator equation at vanishing momentum. In LPA’
in addition Z̄σ,k is approximated by Z̄π,k. Finally the
LPA involves just a scale-dependent effective potential

and trivial inverse propagators, ∆Γ
(2)
x,k(p2) ≡ p2.

Despite the simplicity of the model under considera-
tion this represents already a considerably large system of
equations that is best dealt with using appropriate tools.
This work relies on the fQCD-collaboration workflow that
is only briefly recapitulated at this point. Flow equations
were derived using DoFun [53], traced using FormTracer
[54] that makes use of FORM [55], converted into compi-
lable kernels using CreateKernels and solved numerically
using the frgsolver, a flexible, object-orientated, parallel
C++ framework for the solution of flow equations. For
explicit flow equations and further details on the solution
procedure we refer the reader to App. B.

The UV parameters m2
UV, λUV and c, or equivalently

the bare expansion point, are tuned to reproduce physical
parameter values of fπ = 93 MeV, associated with the
minimum of the effective potential, the pion (curvature)
mass mπ = 138 MeV and the sigma meson (curvature)
mass mσ in the IR. It is beyond the scope of this study
to systematically investigate the effect of the sigma mass
on the results. Therefore we fix a sigma mass in the full
truncation (PVMOM) and adjust the UV parameters in
all other approximation schemes to match this value in
addition to physical parameter values for fπ and mπ.
The 3- and 4-point dressings are initialized momentum
independently at the UV scale.

B. Spectral Functions from the FRG

In this section we briefly recapitulate the framework
for the calculation of spectral functions in the general
framework put forward in [4], its generalization to fully
momentum-dependent propagators and vertices as well
as the specific application in the O(N) model.

The central idea for the direct calculation of spectral
functions in this framework is to carry the analytic con-
tinuation on the level of the functional equation itself.
This poses the complication of obtaining the correct an-
alytic continuation, as in particular at finite temperature
there is an infinite number of analytic continuations but
only one with the correct asymptotic behavior. The con-
tinuation is simple to identify in the situation where the
right hand side is given as an explicit analytic expression
in terms of bosonic or fermionic occupation numbers nb
or nf . Here one simply exploits the periodicity in the
external frequency p0, e.g. nb(q0 + p0) → nb(q0), in or-
der to obtain the correct analytic continuation. Such an
analytic form is no longer available in more complicated
situations and one has to resort to other ways of obtaining
the correctly continued correlation functions from those
that are most easily computable in Euclidean approaches.

In the following we restrict ourselves to the case of
vanishing temperature. The generalization to finite tem-
perature is possible along the lines of [4] and will be
discussed elsewhere. The key step in this argument is
to identify the difference between the simply continued
equation obtained by evaluating the right hand side for
complex momentum variables and the (inverse) retarded
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FIG. 1. Graphical representations of the flow equations for
the inverse pion and sigma propagators. Dashed lines denote
full mesonic propagators, filled circles full vertices and crossed
circles correspond to insertions of ∂tRk = k∂kRk. .

2-point function, which in turn relates to the spectral
function via

ρσ/π(p0, ~p) = −2 ImGRσ/π(p0, ~p) , (5)

using the conventions from [4]. The retarded propagator
GR relates to its Euclidean counterpart GE via

GR(p0, ~p) = − lim
ε→0

GE(−i(p0 + iε), ~p) , (6)

see [4] for the formal generalization to finite temperature.
Therefore it remains to calculate the analytically contin-
ued Euclidean correlator, which unfortunately does not
coincide with the simply continued propagator obtained
by just performing the analytic continuation on the right
hand side of its equation.

At this point we restrict ourselves to the case of vertices
that are independent of Minkowski external momentum
and that depend at most on Euclidean external momen-
tum, which implies that they can be considered as con-
stant for the sake of this argument where we are only
concerned about the analytic structure of the right hand
side of the equation. Furthermore one can then neglect
the tadpole diagrams and consider just the diagrams in-
volving two 3-point vertices, see Fig. 1. The simplest way
of understanding the difference between the two proce-
dures is via the non-interchangeability of performing the
q0 integration and performing the analytic continuation.
As illustrated in Fig. 2a no matter how complicated the
analytic structure of the propagator may be, the two can
always be related to different integration contours. Given
an analytic right hand side of the equation in the sense
of complex analysis, which is ensured by the use of an-
alytic regulator functions cf. (2), the difference reduces

to a closed contour integral. In the simplest case, where
only simple poles are enclosed in the contour, the dif-
ference between the two continuation procedures is just
given as a sum of residues, which is precisely the situa-
tion covered in [4]. This means we can calculate the flow
of the properly continued 2-point function as it appears
on the right hand side of (6) from the flow of the simply
continued propagators and appropriate correction terms
that are in the simplest case just given by residues,

Γ
(2)
E (pR0 + ipI0, |~p|) = Γ

(2)
E,simple(pR0 + ipI0, |~p|)+

∑
x∈Ccorr

Resx .

(7)
We stress at this point that all objects appearing on the
right hand side can be computed in purely numerical pro-
cedure which does not rely on a certain analytic struc-
ture of the equations. Note that at vanishing temper-
ature both continuations are identical for external mo-
menta that are smaller than the imaginary part of the
closest singularity of the propagators contributing in the
diagrammatic expression for the corresponding correla-
tion function. In case of a pole on the imaginary (i.e.
Minkowski) momentum axis, this simply corresponds to
the mass of the lightest particle. This implies in par-
ticular that for example the pion pole mass can already
be read off from a vanishing of the simply continued (in-
verse) propagator.

As a final remark, calculating the spectral function
from (5) and (6) requires to evaluate the continued Eu-
clidean propagator in the limit of an infinitesimally small
Euclidean external momentum. In the numerical results
presented below the propagators were however evaluated
at a small but still finite value ε = 0.1 MeV for the
Euclidean external momentum. In case the right hand
side of the equation can be expressed analytically in
terms of occupation numbers, as it is the case for three-
dimensional regulator functions, this limit can be taken
analytically as demonstrated in [4]. This is no longer pos-
sible in the present fully numerical setup. At this point
we refrain from numerically extrapolating to ε = 0 and
only present results for fixed ε instead.

The arguments presented so far focused on 1-loop ar-
guments without considering the occurrence of the reg-
ulator in the flow equation. As pointed out [4], generic
analytic regulators with good numerical decay properties
such as the m = 2 exponential regulator specified below
(2), lead to additional regulator poles in the regularized
propagator. In this particular case there is an infinite
number of regulator poles that move diagonally in the
complex q0 plane and approach the real axis for k → 0.
It has been demonstrated semi-analytically in the LPA
[4] that one can ensure that a strip around the real axis
with |Im qmax

0 | < p0,max stays free of regulator poles by
introducing a shift ∆m2

r in the argument of the regula-
tor shape function in (2). Beyond LPA the absence of
regulator poles in a predefined strip can no longer be
proven analytically, but the position of the first pole can
still be traced numerically illustrating the applicability of
this mechanism in more general situations. It is advan-
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(a) Contours in the complex q0-plane for the simple and
the retarded analytic continuation arising fromG(q)G(q+
p): simple continuation Csimple (dark blue, solid), re-
tarded correlation function Cret (light blue, dashed), cor-
rection contour Ccorr (green, dotted). .
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(b) Constraints on ∆m2
r(k) from avoiding regulator poles; here

for pmax
0 = 300 MeV, ΛUV = 900 MeV at a mass parameter

M̂2 = −1.3 [4]. A possible parameterization of ∆m2
r(k) with

parameters α = 2.5, β = 0.48 and n = 20 as in (8) is shown in
red. .

FIG. 2. Contour choice for analytic continuation and constraints on the shift in the argument of the regulator shape function,
∆m2

r(k) from avoiding regulator poles. .

tageous to consider a scale-dependent ∆m2
r = ∆m2

r(k)
which is just large enough to prevent regulator poles from
entering the strip. The typical k-dependent constraints
arising from different poles are illustrated for the LPA in
Fig. 2b, cf. [4]. In particular, if ∆m2

r(ΛUV ) is sufficiently
small such that the effective action in the UV remains
unchanged compared to that with ∆m2

r(ΛUV ) = 0, one
can continue to use the same initial conditions as for
∆m2

r(ΛUV ) = 0 and the results in the IR remain un-
changed. In this case the introduction of ∆m2

r reparam-
eterizes the flow leading to vastly different effective cutoff
scales keff(k), see [4] for details and [56] for consequences
in theories with different particle species. For definiteness
we parameterize ∆m2

r(k) as

∆m2
r(k) =

αp2
0,max

1 +
(

βk
pmax
0

)n , (8)

for appropriately chosen parameters α = 2.5, β = 0.48
and n = 20 for p0,max = 300 MeV.

To summarize, the use of appropriate regulator func-
tions such as the one in (2) avoids the occurrence of reg-
ulator pole in a strip in the complex q0-plane up to some
predefined imaginary part. Provided the correction con-
tour Ccorr is entirely contained in this strip then leaves
us with the 1-loop case without regulator insertions as
discussed above. In the setting of the flow equation the
prescription (7) then has to be applied in every RG-step.
This involves tracking the poles in the propagator equa-
tions and calculating the residue in (7). Here the pole
search was implemented on one-dimensional slices in the
complex plane and the residue was calculated numerically

via contour integration. We stress that the restriction to
simple poles is sufficient in the given range of Minkowski-
momenta where only pion pole contributions have to be
taken into account, cf. also the discussion on the back-
coupling effects of pole contributions in Sec. III B. The
more intricate case of larger external momenta and the
numerical treatment of possibly more complicated com-
plex structures in the propagators is deferred to future
investigations.

In addition to the Euclidean correlation functions dis-
cussed in the previous section this requires the calculation

of correlation functions Γ
(2)
σ/π(pR0 + ipI0, |~p|) as a function

of complex momenta i.e. with a three-dimensional mo-
mentum dependence. The simply continued correlators
have the convenient property that they can be calculated
for fixed values of the imaginary part of the external mo-
mentum, Im p0, as the flow equation only involves prop-
agators G(q + p) in addition to Euclidean propagators,
G(q). This is no longer possible if one wants to calcu-
late the properly continued correlators via (7) that relate
to the retarded correlators via (6), as the evaluation of
the pole corrections requires knowledge of the full three-
dimensional momentum dependence of the propagator.
The application of (7) in the context of the FRG leaves
two possibilities: either the pole correction can be com-
puted just on the solution of the simply continued prop-
agators, which is the procedure that has been applied
in all LPA studies so far, or the full complex propaga-
tor including pole correction can be coupled back into
all complex equations, i.e. at the present stage in the
propagator equation themselves. By construction these
procedures lead to different results as soon as a genuine
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imaginary part is generated during the flow.
In the O(N) model the UV cutoff scale cannot be taken

to arbitrarily large values. If we insist on keeping an es-
sentially vanishing ∆m2

r at the UV cutoff scale, this limits
the accessible external momenta to p0,max ≈ 300 MeV,
which is just large enough to identify the two-pion thresh-
old in the sigma spectral function. This is however not a
severe limitation of this approach, but just sensible from
a physical point of view as the UV cutoff scale should nat-
urally limit the accessible Minkowski external momenta.
Even for the O(N) model the range of external momenta
could be slightly enlarged by loosening the connection
to ∆m2

r = 0 by simple retuning the model parameters,
which would would allow to enlarge the range in external
momenta up to p0,max ≈ 450 MeV. This restriction is
less severe for example in quark-meson models and even-
tually in the full QCD system, which admits arbitrarily
large UV cutoff scales.

However, there are further decay channels at even
larger external momenta that would even with an in-
creased range in external momentum not be accessi-
ble as they are linked inherently to Minkowski-external-
momentum dependence in vertices. One example is the
three-pion threshold in the pion spectral function that
arises from a momentum-dependent tadpole diagram. Its
origin is most easily traced in a 2PI approach where it
arises from a sunset diagram. This decay threshold is
still not visible in the most sophisticated truncation PV-
MOM as it still neglects the Minkowski-momentum de-
pendence in the 4-point vertex function. As a second
hint in this direction, the analysis in Sec. II B suggests
that it is not only the propagators but also the properly
continued vertex functions that have to be consistently
coupled back in the propagator equation as well as in
their own equation in order to incorporate for example
information on resonances. This is most easily seen at the
example of a resonant 4-point vertex which we can write
effectively as meson-exchange contribution and a residual
4-point interaction. Inserted into the tadpole diagram in
the propagator equation this shows that the simply con-
tinued result has to fail for large external momenta that
exceed the mass of the resonance.

III. RESULTS

A. Euclidean momentum dependence

We start by comparing the five different truncation
schemes discussed in Sec. II A on the basis of the simplest
observable available in the setting, the minimum of the
effective potential, see Tab. II.

To illustrate the differences between the different ap-
proximation schemes, we compare the results in a top-
down approach, i.e. in a fixed microphysics approach,
where we initialize all flows at ΛUV = 900 MeV with the
initial conditions tuned for the best truncation scheme
(PVMOM). In addition we illustrate the independence

truncation with ∆m2
r without ∆m2

r

LPA 83.1 83.2

LPA’ 88.8 88.8

LPA’+Y 91.9 91.9

PMOM 91.1 91.1

PVMOM 93.0 93.1

TABLE II. Top-down comparison of the minimum of the ef-
fective potential in different truncation schemes (in MeV)

of ∆m2
r in this procedure, parameterized as in (8), by

comparing to flows with ∆m2
r = 0. As argued above

for this parameterization of ∆m2
r the infrared physics

stays unchanged compared to ∆m2
r = 0. The results im-

prove gradually towards the PVMOM result, see Tab. II.
Coincidentally the LPA’+Y truncation is even closer to
the full truncation PVMOM than the truncation with
fully momentum-dependent propagators, PMOM. As ob-
served in [50], the LPA’+Y truncation already represents
a reasonable approximation of the full momentum de-
pendence, PMOM. However, the deviations at vanishing
temperature are slightly larger than the ones reported in
this earlier work, where a Yukawa system was considered
which is largely dominated by fermionic 1-loop contribu-
tions.

Next we turn to the Euclidean momentum-dependence
of the propagators and vertices. In this case we choose
a bottom-up approach for the comparison i.e. we fix the
initial conditions for each truncation scheme separately
as described in Sec. II A. The sigma meson curvature
mass was adjusted in all cases to match that of the PV-
MOM calculation, see Tab. III. In Fig. 3 we show the
momentum-dependence of the Euclidean propagators at
vanishing cutoff scale, where we parameterize the (in-
verse) propagator via

Γ(2)
xx (p) = Z(Z̄x(p)p2 + m̄2

x) (9)
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FIG. 3. Bottom-up comparison of the Euclidean momentum
dependence of the propagators at k = 0. .
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FIG. 4. Momentum dependence of 4- and 3- point dressing functions at the symmetric point at k = 0. .

with limp→0 Z̄x(p)p2 = 0 and Z = Zπ(0), see also
(A1). Note that only LPA’+Y and the fully momentum-
dependent truncations PMOM and PVMOM allow a dis-
tinction between pion and sigma meson on the level of the
momentum dependence of the propagator. Whereas the
momentum-dependence of the pion propagator is essen-
tially negligible in both fully momentum-dependent trun-
cations, the momentum-dependence of the sigma meson
propagator is slightly more pronounced. The inclusion
of momentum-dependent vertices and in particular the
momentum-dependent sigma 4-point function that cou-
ples back into the sigma propagator leads to an overall
reduction of Z̄σ along with a slightly less momentum-
dependent dressing function in PVMOM compared to
PMOM.

The PVMOM-scheme includes momentum-dependent
3- and 4-point vertices, whose momentum dependence at
the symmetric point momentum configuration is shown
in Fig. 4. Here one should keep in mind that the flow
was initialized using momentum-independent 3- and 4-
point functions at Λ = 900 MeV, whereas the full QCD
flow initialized at some large perturbative scale will ob-
viously provide momentum-dependent initial conditions.
The 3-point vertices and the two-pion-two-sigma as well
as the four-pion vertex only show a mild momentum de-
pendence. Interestingly, the momentum-dependence of
the sigma 4-point function is comparably strong with a
decrease by 37 % at psym = 500 MeV compared to the
value at vanishing external momentum. This is an impor-
tant observation since the strong momentum dependence
occurs in the momentum range below 500 MeV where
mesonic fluctuations become quantitatively important in
the QCD setting. This suggests that it might have (semi-
)quantitative impact also in the full system of QCD cor-
relation functions. However, here one has to keep in mind
that the momentum dependence of the sigma meson 4-
point function apart from vertices only couples back into
the sigma meson propagator, whose impact on the final

result is significantly smaller than that of the pion prop-
agator due to its larger mass.

Relying on the experiences from the Yang-Mills system
[19], the one-dimensional average momentum dependence
at the symmetric point is expected to correctly capture
at least the qualitative effects of momentum-dependent
vertices. The obvious extension along the lines of [19] is
the calculation of the momentum dependence of 4-point
vertices in the momentum configuration that is required
in the tadpole diagrams using momentum-averaged ver-
tices on the right hand side of the equation. For studies
of the full momentum-dependence of the 4-point vertex
in the symmetric phase of a scalar theory we refer to [57].
The study of critical properties such as critical exponents
in the PMOM and PVMOM schemes in 2+1 dimensions
at vanishing temperature or in 3+1 dimensions at finite
temperature is deferred to future work.

B. Spectral functions

In Fig. 5a we compare the spectral functions obtained
in the various truncation schemes. The spectral func-
tions in Fig. 5a were all obtained by evaluating the pole
corrections on a given solution for the simply continued
propagators, see also the discussion in Sec. II B.

The pion spectral function shows a peak that deter-
mines by definition the pion pole mass. As demonstrated
explicitly in [4] this spectral function turns into a delta
function at vanishing temperature in the limit ε → 0.
The distinct feature in the pion spectral function in the
given momentum range is the pion pole mass. Most no-
tably, the LPA spectral function shows a deviation of 3%
to the value of the pion curvature mass that was used
to fix the model parameters. The inclusions of fermions
leads to an even larger deviation in LPA as investigated
in detail in [4]. The spectral functions except for the
LPA solution show a very similar behavior with nearly
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FIG. 5. Pion and sigma meson spectral functions at vanishing spatial external momentum. .

coinciding pion pole masses.

It is worthwhile noting that the spectral functions cal-
culated on a LPA(’) solution do not represent a self-
consistent solution as the calculated momentum depen-
dence goes beyond that considered in the Euclidean sec-
tor. These solutions should rather be understood as the
first iteration step in an iterative solution procedure anal-
ogous to [50]. This implies in particular that the pole
mass calculated from the spectral function in this first
iteration step may deviate from the curvature mass of
the zeroth iteration step which by definition coincides
with the pole mass in this zeroth step.

truncation mπ,pole mπ,cur mσ,cur m2
UV [Λ2

UV] λUV

LPA 134.3 138.0 384.7 -0.6367 43.64

LPA’ 137.9 138.0 384.7 -0.7199 51.8

LPA’+Y 137.9 138.0 384.8 -0.6423 46.51

PMOM 137.9 138.0 384.7 -0.6529 47.15

PVMOM 138.9 138.0 384.6 -0.7495 55.9

TABLE III. Bottom-up comparison of pion pole and curvature
mass. For completeness we also indicate the sigma curvature
mass as well as the UV parameters of the potential at ΛUV =
900 MeV.

In Tab. III we compare the pion curvature and pole
masses, see [50] for a comprehensive discussion of differ-
ent mass definitions, which can be extracted from the
analytically continued propagators. Whereas the former
is extracted from the zero momentum limit of the prop-
agator, which is most easily accessible in Euclidean ap-
proaches, is the latter given by the zero of the propagator

at finite Minkowski external momentum, i.e.

m2
π,cur =

1

Z
Γ(2)
ππ(0,~0)

0 = Γ(2)
ππ(imπ,pole,~0) . (10)

The curvature mass is unlike the pole mass, which is as-
sociated to an inverse temporal screening length, no a di-
rect physical observable. Furthermore there is no funda-
mental reason that requires the degeneracy of these two
mass definitions at vanishing temperature [50]. Rather,
the degree of their agreement probes the dependence of
wavefunction renormalization on Minkowski momenta,
which was found to be small for the case of the pion
[50], which was however just inferred indirectly by ana-
lytically continuing Euclidean data rather than directly
calculated. The very good agreement of pion pole and
screening masses in the PMOM truncation scheme pro-
vides a direct confirmation of this earlier result. The
three different truncation schemes for the momentum-
dependence of the propagators gradually improve the
agreement and the largest improvement already takes
place from LPA to LPA’. Interestingly, the deviations
in the PVMOM scheme with momentum-dependent ver-
tices increase again slightly, which might still be due
to an insufficient momentum resolution of the vertices,
but might also point at a genuine effect of momentum-
dependent vertices that has not been considered in earlier
studies as there is no fundamental reason for an agree-
ment of curvature and pole masses. Nevertheless the ap-
proximate agreement in all truncation schemes beyond
LPA is a good message for studies that fix or measure
the pion curvature, which is directly accessible in a purely
Euclidean calculation, as a proxy for the pion pole mass.

Coming back to the discussion of the sigma spectral
function in Fig. 5a, we note that the sigma spectral
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function shows the 2-pion-decay threshold as characteris-
tic feature in the momentum range under consideration.
Again, in the ε → 0 limit the sigma spectral function
at vanishing temperature has to vanish identically below
this value.

Interestingly, all truncations with momentum-
independent vertices show an approximate agreement
of the sigma meson spectral function to a surprisingly
high degree of accuracy. The inclusion of momentum-
dependent vertices leads to a quantitative change of the
sigma spectral function with a slightly larger value of
the two-pion threshold. However, in all cases except
in the LPA the two-pion threshold is numerically
consistent with twice the value of the pion pole mass,
which is slightly larger in PVMOM compared to the
other schemes. The quantitative differences in the
case of PVMOM hints at the fact that in order to
achieve quantitative accuracy in the investigation of
spectral functions, which are inherently momentum-
dependent objects, as much (Euclidean but eventually
also Minkowski) momentum dependence as possible has
to be taken into account.

In Fig. 5b we illustrate the backcoupling effects in the
pole-corrected propagators on the resulting spectral func-
tions. These effects are indistinguishable on the level of
the spectral function itself and stay within the numeri-
cal accuracy of the calculation. These findings advocate
the use of spectral functions obtained from evaluating
pole corrections on the level of the simply continued so-
lution as these calculations also come with a consider-
ably smaller run time compared to the fully back cou-
pled solution where poles have to be traced for the full
three-dimensional propagator. However, the reason for
the agreement of both procedures might just lie in the
fact that both calculations can only deviate in momen-
tum regions where the complex propagator develops a
genuine imaginary part, which in this case just applies
to the region beyond the two-pion-threshold in the com-
plex sigma propagator. In addition this applies only to
small spatial momenta as the two-pion threshold moves
to larger frequencies at finite external momenta as re-
quired by Lorentz invariance.

Given these recent advances it will be interesting to
follow up on a direct calculation of spectral functions in
comparison to spectral functions inferred indirectly from
Euclidean data. The latter are most conveniently pro-
vided within FRG studies for example in φ4 theory [58],
critical O(N) models in 2+1 dimensions [31, 32] or (non-
relativistic) Yukawa systems [59].

IV. SUMMARY AND CONCLUSIONS

In this letter we presented the first directly calcu-
lated self-consistent spectral functions in the O(N) model
which include the full (complex) momentum dependence
of the propagators as well as momentum-dependent ver-
tices. This study illustrates the applicability of the com-

putational framework [4] to more general situations to-
wards quantitative studies of elementary spectral func-
tions in QCD.

In the Euclidean sector the results for the truncation
with momentum-dependent propagators represent a non-
trivial confirmation of earlier results [50], whereas the
full truncation goes beyond approaches in the literature,
where the strong momentum-dependence of the sigma
meson four-point function represents an interesting ob-
servation. In all truncations except in the LPA the pion
pole mass as the most prominent feature of the pion
spectral function in the considered momentum range and
the pion curvature mass agree approximately. Interest-
ingly, the sigma spectral function agree approximately
in all truncations with momentum-independent vertices,
whereas the full truncation shows quantitative changes
hinting at the importance of momentum-dependent trun-
cations in order to achieve quantitative accuracy in spec-
tral functions.

Apart from direct applications in the O(N) model dis-
cussed above and the obvious generalization to more com-
plex theories with different particle species, which is cur-
rently investigated for the closely related problem of finite
chemical potential in a quark-meson model setting [56],
there are two obvious extension of the framework that
are both subject to current investigations: The first one
is the extension to finite temperature along the lines of [4]
which remains to be investigated numerically in a quan-
titative setting. The second concerns the extension to-
wards Minkowski momentum dependence in vertex func-
tions to resolve effects of resonances and additional de-
cay channels that are only captured in such (Minkowski)
momentum-dependent approximation schemes.

Acknowledgments The author thanks S. Schlichting for
discussions and J. Pawlowski and N. Wink for discus-
sions and work on related projects. This work was sup-
ported by the DFG under grant no. Str1462/1-1 and by
the Office of Nuclear Physics in the US Department of
Energy’s Office of Science under Contract No. DE-AC02-
05CH11231.

Appendix A: Vertex expansion in the O(N) model

In this section we present details on the vertex expan-
sion in the O(N) model. The (inverse) propagators are
parameterized according to

Γ
(2)
πiπj ,k

= Zk(Z̄π,k(p)p2 + m̄2
π,k)δij ,

Γ
(2)
σσ,k = Zk(Z̄σ,k(p)p2 + m̄2

σ,k) , (A1)

where limp→0 Z̄π,k(p)p2 = limp→0 Z̄σ,k(p)p2 = 0. m̄2
π,k

and m̄2
σ,k are renormalized curvature masses that, given

(4), relate to the effective potential via

m̄2
π,k = U

(1)
k (ρ̄) , m̄2

σ,k = U
(1)
k (ρ̄) + 2ρ̄ U

(2)
k (ρ̄) , (A2)
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where superscripts are understood as derivatives with re-
spect to ρ̄. The wavefunction renormalization Zk is ex-
tracted from the pion propagator evaluated at vanishing
momentum. The 3-point vertices are parameterized as

Γ
(3)
πiπjσ,k

(p1, p2) = Z
3/2
k δijZ̄2πσ,k(p1, p2) ,

Γ
(3)
σσσ,k(p1, p2) = Z

3/2
k Z̄3σ,k(p1, p2) . (A3)

Again via (4) these relate to the effective potential in the
zero-momentum limit via

Z̄2πσ,k(0, 0) =
√

2ρ̄ U
(2)
k (ρ̄)

Z̄3σ,k(0, 0) =
√

2ρ̄
(

3U
(2)
k (ρ̄) + 2ρ̄ U

(3)
k (ρ̄)

)
(A4)

Turning to 4-point vertices, we define

Γ
(4)
πiπjπkπl,k

(p1, p2, p3) = Z2
kZ̄4π,k(p1, p2, p3)

(δijδkl + δikδjl + δilδjk) ,

Γ
(4)
πiπjσσ,k

(p1, p2, p3) = Z2
kZ̄2π2σ,k(p1, p2, p3)δij ,

Γ
(4)
σσσσ,k(p1, p2, p3) = Z2

kZ̄4σ,k(p1, p2, p3) . (A5)

These relate to the effective potential via

Z̄4π,k(0) = U
(2)
k (ρ̄) ,

Z̄2π2σ,k(0) = U
(2)
k (ρ̄) + 2ρ̄U

(3)
k (ρ̄) ,

Z̄4σ,k(0) = 3U
(2)
k (ρ̄) + 4ρ̄(3U

(3)
k (ρ̄) + ρ̄U

(4)
k (ρ̄)) . (A6)

This scheme is extended straightforwardly to higher-
order vertex functions of order 5 and 6, which appear ex-
plicitly in the flow equations for the 4− and 3-point func-
tions, which are approximated momentum-independently
using the effective potential.

Appendix B: Flow equations and solution procedure

In this section we provide exemplary flow equations
used in this work focusing on the flow equations for
the (inverse) propagators. The flow equations for the
momentum-dependent contributions are given by

∂t∆Γ(2)
π (p) =

{∫
q

∂tRk(q)Z3
kq

2Z̄2πσ,k(−p,−q)Z̄2πσ,k(p, q)

((Γ
(2)
π,k (q) +Rk (q))2(Γ

(2)
σ,k (p+ q) +Rk (p+ q))

− N + 1

2

∫
q

∂tRk(q)Z2
kq

2Z̄4π,k(p,−p, q)
(Γ

(2)
π,k (q) +Rk (q))2

+

∫
q

∂tRk(q2)Z3
k(p+ q)2Z̄2πσ,k(−p,−q)Z̄2πσ,k(p, q)

(Γ
(2)
π,k (q) +Rk (q))(Γ

(2)
σ,k (p+ q) +Rk (p+ q))2

− 1

2

∫
q

∂tRk(q)Z2
kq

2Z̄2π2σ,k(p,−p, q)
(Γ

(2)
σ,k (q) +Rk (q))2

}
−
{
p→ 0

}

∂t∆Γ(2)
σ (p) =

{
(N − 1)

∫
q

∂tRk(q)Z3
kq

2Z̄2πσ,k(q,−p− q)Z̄2πσ,k(p+ q,−q)
(Γ

(2)
π,k (q) +Rk (q))2(Γ

(2)
π,k (p+ q) +Rk (p+ q))

− N − 1

2

∫
q

∂tRk(q)Z2
kq

2Z̄2π2σ,k(q,−q, p)
(Γ

(2)
π,k (q) +Rk (q))2

+

∫
q

∂tRk(q)Z3
kq

2Z̄3σ,k(−p, p+ q)Z̄3σ,k(p, q)

(Γ
(2)
σ,k (q) +Rk (q))2(Γ

(2)
σ,k (p+ q) +Rk (p+ q))

− 1

2

∫
q

∂tRk(q)Z2
kq

2Z̄4σ,k(p,−p, q)
(Γ

(2)
σ,k (q) +Rk (q))2

}
−
{
p→ 0

}
(B1)

where the momentum-independent contribution is pro-
vided by the effective potential, see (4). The flow equa-

tion for the effective potential is simply given by

∂tUk =
1

2

∫
q

(
(N − 1)∂tRk(q)q2

(Γ
(2)
π,k (q) +Rk (q))

+
∂tRk(q)q2

(Γ
(2)
σ,k (q) +Rk (q))

)
,

(B2)
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see also [50]. We refrain from presenting explicit flow
equations for the momentum-dependent vertex functions
as they represent quite long expressions which do not
provide direct physical insights for the reader. However,
given the definitions in App. A these equations can be
derived straightforwardly using DoFun [53] and Form-
Tracer [54].

In the PMOM and PVMOM truncations we resolve
the full three-dimensional momentum dependence of the

propagators, i.e. ∆Γ
(2)
x (p) ≡ ∆Γ

(2)
x (pR0 + ipI0, |~p|) for

x ∈ {π, σ}. Both objects are discretized on a momentum
grid with 10 − 20 points in each direction with interme-
diate values inferred via spline interpolation. Similarly
the vertex equations are solved using a one-dimensional
momentum variable at the symmetric point configuration
which are due to the rather mild momentum dependence

of the vertex functions already well-approximated using
8 grid points. However, we checked in all cases the sta-
bility of the results upon increasing the number of grid
points. In the propagator equations, (B1), and the cor-
responding vertex equations the occurring momentum-
dependent vertex functions are evaluated at average mo-
menta p2

sym = 1
n (p2

1 + . . . p2
n). The system of differential

equations for expansion coefficients of the effective poten-
tial, the momentum-dependent propagators on a three-
dimensional grid and the flow equations for the vertices
spanned on a one-dimensional grid is solved simultane-
ously and self-consistently within the frgsolver, which in
turn uses a Runge-Kutta-Cash-Karp adaptive integrator
[60]. For further details on the numerical procedure the
reader is referred to [19].
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[7] D. Mesterházy, J. H. Stockemer, and Y. Tanizaki, Phys.
Rev. D92, 076001 (2015), arXiv:1504.07268 [hep-ph].

[8] B. Kyung, E. G. Klepfish, and P. E. Kornilovitch, Phys.
Rev. Lett. 80, 3109 (1998), cond-mat/9802239v1.

[9] D. Rohe and W. Metzner, Phys. Rev. B63, 224509
(2001), cond-mat/0011500v2.

[10] R.-A. Tripolt, N. Strodthoff, L. von Smekal, and
J. Wambach, Phys.Rev. D89, 034010 (2014),
arXiv:1311.0630 [hep-ph].

[11] R.-A. Tripolt, L. von Smekal, and J. Wambach,
Phys.Rev. D90, 074031 (2014), arXiv:1408.3512 [hep-
ph].

[12] R.-A. Tripolt, L. von Smekal, and J. Wambach, (2016),
arXiv:1605.00771 [hep-ph].

[13] T. Yokota, T. Kunihiro, and K. Morita, PTEP 2016,
073D01 (2016), arXiv:1603.02147 [hep-ph].

[14] K. Kamikado, T. Kanazawa, and S. Uchino, (2016),
arXiv:1606.03721 [cond-mat.quant-gas].

[15] C. Jung, F. Rennecke, R.-A. Tripolt, L. von Smekal, and
J. Wambach, (2016), arXiv:1610.08754 [hep-ph].

[16] fQCD Collaboration, J. Braun, L. Corell, A. K. Cyrol,
W.-j. Fu, M. Leonhardt, M. Mitter, J. M. Pawlowski, M.
Pospiech, F. Rennecke, N. Strodthoff, N. Wink.

[17] M. Mitter, J. M. Pawlowski, and N. Strodthoff,
Phys.Rev. D91, 054035 (2015), arXiv:1411.7978 [hep-
ph].

[18] J. Braun, L. Fister, J. M. Pawlowski, and F. Rennecke,
Phys. Rev. D94, 034016 (2016), arXiv:1412.1045 [hep-
ph].

[19] A. K. Cyrol, L. Fister, M. Mitter, J. M. Pawlowski,
and N. Strodthoff, Phys. Rev. D94, 054005 (2016),
arXiv:1605.01856 [hep-ph].

[20] M. Haas, L. Fister, and J. M. Pawlowski, Phys.Rev.
D90, 091501 (2014), arXiv:1308.4960 [hep-ph].

[21] N. Christiansen, M. Haas, J. M. Pawlowski, and
N. Strodthoff, Phys. Rev. Lett. 115, 112002 (2015),
arXiv:1411.7986 [hep-ph].

[22] C. Wetterich, Phys.Lett. B301, 90 (1993).
[23] N. Tetradis and C. Wetterich, Nucl.Phys. B422, 541

(1994), arXiv:hep-ph/9308214 [hep-ph].
[24] T. R. Morris and M. D. Turner, Nucl. Phys. B509, 637

(1998), arXiv:hep-th/9704202 [hep-th].
[25] D. F. Litim, Nucl.Phys. B631, 128 (2002), arXiv:hep-

th/0203006 [hep-th].
[26] J.-P. Blaizot, R. Mendéz-Galain, and N. Wschebor,
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N. Wschebor, Nucl.Phys. A784, 376 (2007), arXiv:hep-
ph/0610004 [hep-ph].

[28] F. Benitez, J.-P. Blaizot, H. Chaté, B. Delamotte,
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