
This is the accepted manuscript made available via CHORUS. The article has been
published as:

One-loop pseudo-Goldstone masses in the minimal SO(10)
Higgs model

Lukáš Gráf, Michal Malinský, Timon Mede, and Vasja Susič
Phys. Rev. D 95, 075007 — Published  6 April 2017

DOI: 10.1103/PhysRevD.95.075007

http://dx.doi.org/10.1103/PhysRevD.95.075007


CETUP2016-005

One-loop pseudo-Goldstone masses in the minimal SO(10) Higgs model
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I. INTRODUCTION

The upcoming generation of very large volume detectors such as Hyper-K [1] and/or DUNE [2] is not only a blessing
for the neutrino community, but it is also likely to provide a great deal of information to other branches of particle
physics research. Concerning, in particular, the possible baryon number non-conservation signals such as proton
decay, the sensitivity of the current searches may be improved by as much as one order of magnitude, reaching up to
about 1035 years for the proton lifetime.

Unfortunately, this steady progress is not matched by any significant developments on the theory side. As a matter
of fact, the existing proton lifetime estimates – usually made in the context of grand unified theories (GUTs) [3],
the most economical scheme for addressing these issues in the standard quantum field theory context – are typically
plagued by theoretical uncertainties stretching over many orders of magnitude, see, for instance, Table II in [4] and
references therein. Needless to say, this is way too poor to make any real benefit from the expected experimental
sensitivity improvements (unless we were lucky and a clear signal of baryon number violation was observed; however,
even in such a case it would be extremely difficult to distinguish among even the simplest models, let alone more
complicated settings).

There are two general reasons behind this unsatisfactory situation:

1. The main quantities governing the proton lifetime estimates in GUTs, in particular the unification scale MGUT

(which, in the non-supersymmetric context enters the rates quartically) and the flavour structure of the relevant
baryon and lepton number violating currents, are very difficult to estimate with good-enough accuracy from just
the low-energy data we have access to. As for the former, at least a two-loop renormalization-group-equation
(RGE) analysis is necessary to keep the error in MGUT at a reasonable level which, however, assumes a detailed
knowledge of the relevant threshold corrections (and, hence, the theory spectrum); for the latter one often needs
information that is inaccessible even in principle at the electroweak scale, such as, for instance, the shape of the
right-handed (RH) rotations in flavour space.

2. Since the unification scale turns out to be only a few orders of magnitude below the Planck scale MPl, the
(a-priori unknown) effects of the MPl-suppressed higher-dimensional operators need not be negligible [5–7]; in
practice, they often turn out to be comparable in size to those of the one-loop thresholds and, as such, the
associated uncertainties tend to ruin the efforts to go beyond the leading order in precision anyway.

Nevertheless, there seems to exist an exception to these empirical restrictions, namely, the minimal renormalizable
SO(10) grand unified theory [8–10] in which the unified gauge symmetry is spontaneously broken by the 45-dimensional
scalar. This choice turns out to be rather special as it inhibits the most dangerous class of the leading order (i.e.,
d = 5) gravity-induced operators and, hence, also the corresponding theoretical uncertainties in the determination of
MGUT.

Remarkably enough, this scenario has not been considered for more than 30 years since its first formulation at
the beginning of 1980s due to notorious tachyonic instabilities [11–13] appearing in its scalar sector along essentially
all potentially realistic symmetry breaking chains; it was only in 2010 that these were shown to be just artefacts
of the tree-level approach [14] or rather that a region of parameter space exists, where the tree-level contribution is
suppressed with respect to the loop corrections and that the theory there may be fully consistent at the quantum
level.

To this end, the simplest version of the relevant Higgs model in which the rank of the gauge group is reduced
by a 16-dimensional scalar field has been thoroughly studied in the same work. However, it turns out that the
45⊕ 16 scenario can hardly support a potentially realistic theory because it is unclear how it could accommodate the
electroweak data (namely, the weak mixing angle) together with (a variant of) the seesaw mechanism for the neutrino
masses. This is namely due to the fact that the seesaw requires two B−L breaking vacuum expectation value (VEV)
insertions (recall that the Standard Model singlet in 16 carries only one unit of B − L); this, however, calls for the
B−L breaking to occur at a relatively large scale (in the 1014 GeV ballpark) which is generically difficult to reconcile
with the gauge unification constraints1. For the same reason, the renormalizable alternative to seesaw mechanism by
Witten [15] does not work either due to the extra two-loop suppression. Furthermore, it is very problematic to get
any firm grip on the flavour structure of this model as any potentially realistic variant of its Yukawa sector relies on
a number of contributions from non-renormalizable operators.

Therefore, the most promising scenario of this kind includes one copy of the 126-dimensional representation in the
scalar sector instead of the spinorial 16; its main virtue is that it can support the standard seesaw mechanism, as well

1 This is almost obvious in the minimally fine-tuned scenarios; however, admitting accidentally light extra scalars in the 45 ⊕ 16 model
does not seem to work either as there are simply no fields around that may affect significantly the running of the strong coupling to the
extent achieved, e.g., by the (8, 2,+ 1

2
) scalar in the 45⊕ 126 setting.
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as (upon adding another 10-dimensional scalar representation to the flavour sector) a potentially realistic (yet simple)
Yukawa pattern at the renormalizable level and, thus, avoid most of the aforementioned complications.

The first attempt to study the quantum version of the 45 ⊕ 126 model was undertaken in the works [10, 16, 17]
where it was shown that, under several simplifying assumptions, there are extended regions in its parameter space that
can support a stable Standard Model (SM) vacuum, accommodate all the SM data and, at the same time, maintain
compatibility with the existing proton lifetime constraints. Remarkably, this can all be attained with only a single
fine-tuning of the model parameters ensuring one specific heavy scalar in the desert2 [16, 17]. The main drawback of
these early studies lies in the fact that, out of all relevant quantum corrections emerging at one loop, only the simplest
universal type has been considered in order to stabilize the scalar sector of the theory with minimum efforts. Hence,
those results should be regarded as only approximate and the situation clearly calls for a more complete treatment.

In the current paper we partly fill this gap by calculating in great detail the leading one-loop corrections to the
masses of the scalar multiplets transforming as (1, 3, 0) and (8, 1, 0) under the SU(3)c × SU(2)L × U(1)Y SM gauge
group in the 45⊕ 126 Higgs model. We focus our attention solely on these two fields as they are the principal culprits
causing the notorious tree-level tachyonic instabilities mentioned above and, thus, their quantum-level behaviour is of
our primary concern. In this sense, a thorough analysis of the relevant radiative corrections represents the first and
minimal step towards any reliable phenomenological analysis of this scenario in the future.

The work is structured as follows: after a short recapitulation of the tree-level shape of the model’s scalar spectrum in
Section II we use the effective potential techniques to calculate the zero-momentum one-loop corrections to the masses
of (1, 3, 0) and (8, 1, 0) (Section III) and cross-check our results by means of two basic methods: first, by inspecting
the relevant formulae in various limits where the spectrum takes specific known shapes and, second, by confirming
the coefficient of the simplest SO(10)-invariant contribution with the direct diagrammatic calculation which, for this
term, is relatively easy. Furthermore, we use these results to provide a sample point in the parameter space that is not
only free from all the aforementioned pathologies but, at the same time, may even support a potentially realistic GUT
scenario (including neutrino masses); we also add several comments on the methods of implementation of the results
in a future numerical analysis. Most of the technicalities are deferred to a set of Appendices. Then we conclude.

II. THE MINIMAL SO(10) HIGGS MODEL

In what follows, we shall use the symbols φij and Σijklm (with all Latin indices running from 1 to 10) for the
components of the 45-dimensional adjoint and the 126-dimensional self-dual 5-index antisymmetric irreducible tensor
representations of the SO(10) gauge group, respectively. Note that in the real basis of the SO(10) both these
structures are fully antisymmetric in all their indices and that Σ obeys Σijklm = − i

5!εijklmnopqrΣnopqr provided
ε12345678910 = +1. Unlike φ, Σ is a complex representation and we shall denote the complex conjugated object by
Σ∗. For more on the notation regarding these representations, see Appendix A. The decompositions of φ and Σ into
irreducible representations of the SM gauge group are listed in Table I.

A. The SO(10) symmetric Lagrangian in the unbroken phase

The normalization of the component fields in φ and Σ follows the usual convention which fixes the kinetic part of
the relevant Lagrangian, L = Lkin − V0, to the form

Lkin = 1
4 (Fµν)ij(F

µν)ij + 1
4 (Dµφ)†ij(D

µφ)ij+

+ 1
5! (DµΣ)†ijklm(DµΣ)ijklm, (1)

where

(Fµν)ij = ∂µ(Aν)ij − ∂ν(Aµ)ij − i g [Aµ, Aν ]ij , (2)

and a summation over the repeated Latin indices is implicit (for remaining definitions of the used quantities, see
Appendix A 1). This yields the “standard” kinetic terms for the relevant SM components including coefficients 1

2 and
1 for real and complex fields, respectively. With this at hand, the (renormalizable) scalar potential reads

V0(φ,Σ,Σ∗) = V45(φ) + V126(Σ,Σ∗) + Vmix(φ,Σ,Σ∗), (3)

2 Given that in all potentially realistic settings identified there, the seesaw scale σ turned out to be relatively close to MGUT, one may
even view the situation with the accidentally light scalar S as if the ‘usual’ fine-tuning in σ was ‘traded’ for that in the scalar’s mass
mS .
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TABLE I. All types of SM representations R of scalar fields in the 45⊕126 Higgs model. The R/C column denotes whether the
representation is real or complex (implicitly, for a complex R, there exists an inequivalent conjugate representation R), the hash
sign # denotes the multiplicity of R (and consequently the dimension of the corresponding block in the full scalar mass matrix)
and the dagger † indicates the presence of a would-be Goldstone mode. There are in general 33 Goldstones contained in 5
different SM multiplets corresponding to the same number of broken SO(10) generators. The “size” column enumerates the real
degrees of freedom in the representation R (reflected in the number of equivalent blocks with identical eigenvalues in the properly
reordered full mass matrix). Summing the size × multiplicity over all blocks yields

∑s
i=a #i × sizei = 45 + 126 + 126 = 297

real degrees of freedom in total. There are 19 different SM representations, out of which 11 appear only in one copy, 5 are 2-fold
degenerate, 2 are 3-fold degenerate and 1 appears even 4 times (the singlet block is 4 × 4; two real singlets and one complex,
which can acquire non-zero VEVs

√
3ωb,

√
2ωr and

√
2σ, respectively). Hence, there are in principle 31 different eigenvalues;

since 5 of them are Goldstone bosons, one is left with only 26 non-vanishing (and different) eigenvalues. The G422 column
denotes the origin of each SM representation within the corresponding representations of the Pati-Salam SU(4)c × SU(2)L ×
SU(2)R subgroup of SO(10). (Note however, that none of the representations actually contains a singlet under Pati-Salam, so
there can be no intermediate physical phase characterized by the Pati-Salam G422 gauge symmetry).

label R ∼ G321 R/C # size R ⊆ G422 ⊆ SO(10)

a (1, 3, 0) R 1 3 (1, 3, 1) φ

b (8, 1, 0) R 1 8 (15, 1, 1) φ

c (3, 2,− 5
6
) C 1† 12 (6, 2, 2) φ

d (1, 1,+2) C 1 2 (10, 1, 3) Σ

e (1, 3,−1) C 1 6 (10, 3, 1) Σ

f (3̄, 1,+ 4
3
) C 1 6 (10, 1, 3) Σ

g (3, 3,− 1
3
) C 1 18 (10, 3, 1) Σ

h (6, 3,+ 1
3
) C 1 36 (10, 3, 1) Σ

i (6̄, 1,− 4
3
) C 1 12 (10, 1, 3) Σ

j (6̄, 1,− 1
3
) C 1 12 (10, 1, 3) Σ

k (6̄, 1,+ 2
3
) C 1 12 (10, 1, 3) Σ

l (1, 2,+ 1
2
) C 2 4 (15, 2, 2), (15, 2, 2)∗ Σ, Σ∗

m (3, 2,+ 7
6
) C 2 12 (15, 2, 2), (15, 2, 2)∗ Σ, Σ∗

n (8, 2,+ 1
2
) C 2 32 (15, 2, 2), (15, 2, 2)∗ Σ, Σ∗

o (3̄, 1,+ 1
3
) C 3 6 (6, 1, 1), (6, 1, 1)∗, (10, 1, 3) Σ, Σ∗, Σ

p (1, 1,+1) C 2† 2 (1, 1, 3), (10, 1, 3) φ, Σ

q (3̄, 1,− 2
3
) C 2† 6 (15, 1, 1), (10, 1, 3) φ, Σ

r (3, 2,+ 1
6
) C 3† 12 (6, 2, 2), (15, 2, 2), (15, 2, 2)∗ φ, Σ, Σ∗

s (1, 1, 0) R 2
}

4†
1 (15, 1, 1), (1, 1, 3), φ, φ

C 1 2 (10, 1, 3) Σ

provided

V45 = −µ
2

4
(φφ)0 +

a0

4
(φφ)0(φφ)0 +

a2

4
(φφ)2(φφ)2, (4)
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V126 = −ν
2

5!
(ΣΣ∗)0 +

λ0

(5!)2
(ΣΣ∗)0(ΣΣ∗)0+

+
λ2

(4!)2
(ΣΣ∗)2(ΣΣ∗)2 +

λ4

(3!)2(2!)2
(ΣΣ∗)4(ΣΣ∗)4+

+
λ′4

(3!)2
(ΣΣ∗)4′(ΣΣ∗)4′ +

η2

(4!)2
(ΣΣ)2(ΣΣ)2+

+
η∗2

(4!)2
(Σ∗Σ∗)2(Σ∗Σ∗)2, (5)

Vmix =
iτ

4!
(φ)2(ΣΣ∗)2 +

α

2 · 5!
(φφ)0(ΣΣ∗)0+

+
β4

4 · 3!
(φφ)4(ΣΣ∗)4 +

β′4
3!

(φφ)4′(ΣΣ∗)4′+

+
γ2

4!
(φφ)2(ΣΣ)2 +

γ∗2
4!

(φφ)2(Σ∗Σ∗)2, (6)

where (φφ)0 ≡ φijφij , (φφ)2 ≡ (φφ)jk ≡ φijφik, (ΣΣ∗)0 ≡ ΣijklmΣ∗ijklm, (ΣΣ∗)2 ≡ (ΣΣ∗)mn ≡ ΣijklmΣ∗ijkln,

(ΣΣ∗)4 ≡ (ΣΣ∗)lmno ≡ ΣijklmΣ∗ijkno, and analogously if Σ or Σ∗ is replaced with its conjugate. The invariant
contractions among these expressions read

(ΣΣ∗)2(ΣΣ∗)2 = (ΣΣ∗)mn(ΣΣ∗)mn,

(ΣΣ∗)4(ΣΣ∗)4 = (ΣΣ∗)lmno(ΣΣ∗)lmno,

(ΣΣ∗)4′(ΣΣ∗)4′ = (ΣΣ∗)lmno(ΣΣ∗)lnmo,

(φ)2(ΣΣ∗)2 = φmn(ΣΣ∗)mn, (7)

(φφ)4(ΣΣ∗)4 = φlmφno(ΣΣ∗)lmno,

(φφ)4′(ΣΣ∗)4′ = φlmφno(ΣΣ∗)lnmo,

(φφ)2(ΣΣ)2 = (φφ)jk(ΣΣ)jk.

Note that there are 3 parameters with a positive dimension of mass {µ, ν, τ} in V0, 9 dimensionless real parameters
{a0, a2, λ0, λ2, λ4, λ

′
4, α, β4, β

′
4} and 2 dimensionless complex parameters {η2, γ2}. The minus signs in front of µ2 and

ν2 and the various symmetry factors in other terms are mere convenience. Note also that the coefficient of the µ2

term has been fixed in a different way than in [10, 16–18]; the slight advantage of the current notation is the fact that
in the symmetric phase −µ2 and −ν2 are exactly the squares of the (tree-level) physical masses of the SM fields in φ
and Σ, respectively. In what follows, we shall use Φ as a generic symbol denoting all scalar components at play, i.e.,
Φ ≡ (φ,Σ,Σ∗).

B. Spontaneous SO(10) symmetry breaking

There are 3 SM singlets in the scalar sector: 2 real in φ and 1 complex in Σ. In what follows, we shall denote their
potentially non-vanishing VEVs by

〈(1, 1, 1, 0)φ〉 ≡
√

3ωb, 〈(1, 1, 3, 0)φ〉 ≡
√

2ωr,

〈(1, 1, 3,+2)Σ〉 = 〈(1, 1, 3,−2)Σ∗〉∗ ≡
√

2σ . (8)

The multiplets above were written in the SU(3)c × SU(2)L × SU(2)R × U(1)B−L language and the corresponding
fields are assumed to be canonically normalized. The VEVs ωb and ωr are real while σ is a VEV of a complex scalar
singlet and, hence, it can be complex. Note that there is a freedom to redefine the overall phase of Σ in such a way
that σ can be made real; alternatively, the same transformation can be used to absorb the phase of γ2 in equation (6),
thus reducing γ2 to a real parameter. In the latter case σ can be complex (and, hence, it may be convenient to keep
track of the relevant complex conjugation as we shall do in what follows).

Assuming no correlations among the VEVs above, the SO(10) gauge symmetry gets spontaneously broken down
to the SM group SU(3)c × SU(2)L × U(1)Y . Special symmetry breaking patterns can be attained in various limits
as listed in Table II. From the phenomenological perspective, however, it is sensible to consider predominantly the
case with |σ| � max{|ωb|, |ωr|} in which σ plays the role of an intermediate (seesaw) scale, while the dominant ωr,b
corresponds to the unification scale.
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TABLE II. Residual gauge symmetries (in a self-explanatory notation) attained for various configurations of the VEVs defined
in eq. (8). The last column corresponds to the alternative ’flipped’ embedding of the SM hypercharge into the SU(5)′×U(1)Z′
subgroup of the SO(10), cf. [19, 20]. Note also that for ωb = ωr the breaking to SM cannot occur.

ωb 6= 0, ωr 6= 0 ωb = 0, ωr 6= 0 ωb 6= 0, ωr = 0 ωb = ωr 6= 0 ωb = −ωr 6= 0

σ = 0 3c 2L 1R 1B−L 4c 2L 1R 3c 2L 2R 1B−L 5 1Z 5′ 1Z′

σ 6= 0 3c 2L 1Y 3c 2L 1Y 3c 2L 1Y 5 3c 2L 1Y

The tree-level vacuum stationarity conditions translating among these VEVs and the massive parameters of the
potential read (see also [10])

µ2 = (12a0 + 2a2)ωb
2 + (8a0 + 2a2)ωr

2+

+ 2a2ωbωr + 4(α+ β′4)|σ|2, (9)

ν2 = 3(α+ 4β′4)ωb
2 + 2(α+ 3β′4)ωr

2 + 12β′4ωbωr+

+ 4λ0|σ|2 + a2
ωbωr
|σ|2

(ωb + ωr)(3ωb + 2ωr), (10)

τ = 2β′4(3ωb + 2ωr) + a2
ωbωr
|σ|2

(ωb + ωr). (11)

Note that there are potentially problematic terms containing |σ|2 in the denominator in the latter two conditions that
may ruin the perturbative expansion whenever the relevant expression exceeds significantly the GUT scale3 (i.e., the
maximum of ωb,r). Hence, in realistic settings one should assume that

a2
ωbωr
|σ|2

(ωb + ωr)�MPl . (12)

C. The tree-level spectrum

With this information at hand, the tree-level scalar and gauge spectra of the 45⊕ 126 SO(10) Higgs model under
consideration can be readily obtained. Since 45 is a real representation and 126 is complex, the total number of real
degrees of freedom in the scalar sector is 297.

For later convenience, it is useful to arrange the second derivatives of V0 into a (297-dimensional) Hermitian matrix

M2
S(Φ) ≡M2

S(φ,Σ,Σ∗) = ∂∂∗V0(φ,Σ,Σ∗)

=

 Vφφ VφΣ∗ VφΣ

VΣφ VΣΣ∗ VΣΣ

VΣ∗φ VΣ∗Σ∗ VΣ∗Σ

 , (13)

with sub-blocks indicating the types of fields with respect to which the relevant derivatives are taken. In the SM
vacuum (characterized by one of the four relevant VEV configurations in the 2nd row of Table II) this matrix encodes
the tree-level scalar spectrum of the model and, as such, it may be brought into block-diagonal form; each block
has a size equal to the number of same-type SM irreducible representations the states of the block are coming from
(multiplicity), and the blocks repeat with a degeneracy equal to the number of states in the representation (size),
see Table I. Note that the fields of our main interest, i.e., the pseudo-Goldstones (1, 3, 0) and (8, 1, 0), are then fully
contained in the Vφφ sector of M2

S(Φ). The complete structure of M2
S(Φ) in the (block-diagonal) SM basis evaluated in

the SM vacuum is given in Appendix A 2, see also [10]. In order to conform to the needs of the subsequent quantum-
level analysis the notation here has been slightly amended4 with respect to that used in [10]; see, in particular,
definitions (A38)–(A44).

In a similar manner one can define the 45-dimensional field-dependent mass matrix for gauge bosons M2
G(Φ), see

Appendix A 1. Since we do not consider the breaking of the Standard Model gauge group, this matrix evaluated in
the SM vacuum has 12 massless modes corresponding to the gluons, the W±, Z0 and the photon.

3 To this end, let us note that several of the tree-level scalar sector mass-squares calculated in Appendix A 2 are linear in the combina-
tion (11) so the scalar spectrum would be badly distorted if the condition (12) was not satisfied.

4 Besides the overall compactness of the results obtained in Sect. III the new notation facilitates their cross-checking in various limits
corresponding to enhanced gauge symmetries, in particular, those listed in Table II.
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1. The masses of the (1, 3, 0) and (8, 1, 0) pseudo-Goldstone bosons

The multiplets of our main interest in the current study are the two scalar pseudo-Goldstone bosons (cf. [14])
transforming as (1, 3, 0) and (8, 1, 0) under the SU(3)c × SU(2)L × U(1)Y of the SM. Their masses, at the tree level,
are (see Appendix A 2 for the notation)

M2
a = 2a2(ωr − ωb)(ωb + 2ωr) ≡ +2a2ω

′w1
[1,2] , (14)

M2
b = 2a2(ωb − ωr)(ωr + 2ωb) ≡ −2a2ω

′w1
[2,1] . (15)

The two states are referred to as pseudo-Goldstone bosons, because the tree-level masses are vanishing as the parameter
a2 → 0 (this is no longer true though for higher order corrections). Given these mass expressions, the scalar spectrum
can be non-tachyonic if and only if

a2 > 0 and − 2 <
ωb
ωr

< −1

2
, (16)

i.e., in the vicinity of the flipped SU(5) limit (the last column in Table II). This means, however, that the symmetry-
breaking chains supporting, at the tree level, a locally convex minimum (i.e., a potentially stable SM-like vacuum) all
feature an approximate SU(5)′ ×U(1)Z′ -symmetric scalar spectrum clustering around the superheavy breaking scale
|ωr| ≈ |ωb|, at odds with the gauge unification constraints (at least in the minimally fine-tuned scenarios, i.e., those
obeying the minimal survival hypothesis, cf. [8, 21–23]). This, obviously, disqualifies the minimal (and minimally fine-
tuned) setting from any potentially realistic model building, at least at the lowest order in perturbation theory. This
conclusion applies even to the situation when the minimal Higgs model is further extended by an extra 10-dimensional
scalar multiplet in order to support a viable Yukawa sector with at least two different complex symmetric matrices of
Yukawa couplings – the extra 10H does not alter the symmetry breaking pattern by more than just an admixture of
its weak doublet component within the electroweak Higgs and an extra set of superheavy doublets and color triplets
clustered around the SO(10) breaking scale.

Barring, for the sake of this study, the option of non-minimally fine-tuned settings, the only chance to bring the
current scenario back from oblivion seems to be a careful inspection of its quantum structure. The hope is that higher
order effects may disentangle the overly strong correlation between the two pseudo-Goldstone masses above, at least
in case that the tree-level contributions happen to be accidentally small; this option has been identified (but never
inspected in detail) in previous studies like [14]. A detailed calculation of the relevant radiative contributions to the
tree-level mass relations (14) and (15) is the scope of the next section.

III. ONE-LOOP PSEUDO-GOLDSTONE MASSES IN THE MINIMAL SO(10) HIGGS MODEL

A. One-loop scalar masses from the effective potential

In this section we review some of the technical aspects of the effective potential formalism we adopt for the
computation of the desired scalar masses at the 1-loop level.

1. Scalar mass matrix at the one-loop level

In the effective potential approach there are in general two types of effects contributing to the scalar masses at the
one-loop level (i.e., at the order characterized by one power of the generic ~/16π2 suppression factor), namely:

1. The usual one-loop corrections to the two-point 1PI Green’s functions whose roots in the true vacuum define
the pole masses of the scalar excitations.

2. The quantum shift of the vacuum which justifies the use of a simplified perturbation theory in which there are
no degenerate one-point vertices in the interaction part of the Lagrangian density (aka “tadpole cancellation”).

Up to the first power in ~ (ultimately set to ~ → 1), the relevant combination of the two effects governing the ~-
expansion of the one-loop scalar mass matrix M around its tree-level value ∂2V0|v0 (at zero external momentum, as
implicitly assumed within the effective potential approach) reads formally

M2
ab ≡ ∂a∂bV |v = ∂a∂bV0|v0+~ v1 + ~ ∂a∂bV1|v0 +O(~2) , (17)
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where V =
∑∞
i=0 Vi ~i = V0 + ~V1 + O(~2) is the Coleman-Weinberg effective potential [24] and v =

∑∞
i=0 vi ~i =

v0 + ~ v1 +O(~2) denotes the true quantum vacuum of the theory determined from the stationary point condition

∂aV |v = ∂aV0|v + ~ ∂aV1|v = 0 , (18)

and expanded around its tree level value5 v0 satisfying the condition ∂aV0|v0 = 0. Besides the tree-level contribution
V0 discussed at length in the previous section, cf. (3), the one-loop scalar potential (in the MS renormalization scheme)
is given by [25]

V1(Φ, µr) =
1

64π2
Tr

[
M4

S(Φ)

(
log

M2
S(Φ)

µ2
r

− 3

2

)
+

+3M4
G(Φ)

(
log

M2
G(Φ)

µ2
r

− 5

6

)]
, (19)

where M2
S(Φ) and M2

G(Φ) are the tree-level field-dependent scalar and gauge mass matrices introduced in Sect. II C
(with boldface always indicating a matrix structure) and µr is the relevant renormalization scale.

The quantum-level contribution to the stationary point condition (18) is then given by

∂aV1 =− 1

32π2
Tr
[
M2

S ∂aM
2
S + M2

G ∂aM
2
G

]
+

+
1

64π2
Tr

[{
M2

S, ∂aM
2
S

}
log

M2
S

µ2
r

+

+3
{
M2

G, ∂aM
2
G

}
log

M2
G

µ2
r

]
; (20)

note that we have dropped all the brackets denoting the implicit dependence of the mass matrices on the scalar fields
of the model.

Due to the general non-commutativity of M2
S,G with their own first derivatives, the second derivative of the

formula (19) is far more involved6:

∂a∂bV1 = − 1

32π2
Tr
[
∂aM

2
S ∂bM

2
S + M2

S ∂a∂bM
2
S +

+∂aM
2
G ∂bM

2
G + M2

G ∂a∂bM
2
G

]
+

+
1

64π2
Tr

[({
∂aM

2
S, ∂bM

2
S

}
+
{
M2

S, ∂a∂bM
2
S

})
×

× log
M2

S

µ2
r

+ Sab

]
+

+
3

64π2
Tr

[({
∂aM

2
G, ∂bM

2
G

}
+
{
M2

G, ∂a∂bM
2
G

})
×

× log
M2

G

µ2
r

+ Gab

]
. (21)

Here

Sab = Υ

(
M2

S

µ2
r

, ∂aM
2
S, ∂bM

2
S

)
,

Gab = Υ

(
M2

G

µ2
r

, ∂aM
2
G, ∂bM

2
G

)
, (22)

are expressed via a matrix function Υ including an infinite series of nested commutators

Υ(A,Aa,Ab) =

∞∑
m=1

(−1)m+1 1

m

m∑
k=1

(
m

k

)
{A,Aa}×

× [A, . . . [A,Ab] . . .]︸ ︷︷ ︸
(k−1)× commutator

(A− 1)m−k, (23)

5 In our 45⊕ 126 model that corresponds to the values of mass parameters defined in eqs. (9)–(11).
6 The main source of complication here are, namely, the derivatives of the matrix logs, see Appendix C.
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where the first commutator bracket is just Ab, the second is [A,Ab], the third [A, [A,Ab]] and so on. The general
strategy for dealing with the formula (23), together with a brief discussion of the shape of the results it yields, is given
in Section III A 2 and Appendix C.

Let us also remark that there are no such issues for a single derivative of the matrix logarithm in the expression (20)
because of the cyclic property of the overall trace which admits a resummation of the Taylor series expanded expression
into a simple polynomial form.

2. Dealing with the nested commutators

In this section we describe several tricks that facilitate dealing with the nested commutators7, focusing mainly on
their numerical evaluation. As for a full analytic account, it turns out in our case that the scalar sector contribution
is only practical to write down in special cases as, for instance, the one discussed in Section III A 3. For all the
derivations and proofs of the expressions in use see Appendix C.

The object of our main interest, i.e., the trace of Υ evaluated in the tree-level vacuum, cf. (21)–(22), may be further
simplified using the identity (see Appendix C)

Tr Υ(A,Aa,Ab) =
∑

i,j; λi 6=λj

Ma
jiM

b
ij

λi + λj
λi − λj

log
λi
λj

+

+
∑

i,j; λi=λj

2Ma
jiM

b
ij , (24)

where λi are eigenvalues of the matrix A with corresponding orthonormal eigenvectors vi, while Ma and M b are the
matrices Aa and Ab rotated into the orthonormal eigenbasis of A:

Ma
ij = v†iAavj , M b

ij = v†iAbvj . (25)

Let us note that this approach is completely general and applicable (at least numerically) to any form of the matrices
A, Aa and Ab. In that sense, it is superior to the method used previously in, e.g., ref. [26] which assumed a simple
geometric behaviour of the nested commutators from a certain value of the k index in eq. (23) onwards – unfortunately,
unlike in the case of the simpler 45⊕ 16 model studied previously in [14] (or the Abelian Higgs model, cf. [26]) where
this was indeed the case, the situation in the 45⊕ 126 Higgs model is more complicated.

Another point worth making here concerns the visual difference between the two contributions in eq. (24) – the
former structure, belonging to a set of non-degenerate eigenvalues, suggests a log-type behaviour while the latter
tends to yield non-log terms (in fact, in most cases even polynomials). Since the same two types of terms emerge
also from the “non-commutator” parts of the basic formula (21), the distinction between log and non-log terms is in
fact very handy and we shall use it in the next section. However, one needs to be careful when it comes to limits in
which the character of the spectrum changes qualitatively, i.e., when the degeneracies increase. Indeed, if two formerly
non-degenerate eigenvalues λi,j become equal in a certain limit, one has

lim
λi→λj

(λi + λj)
log λi − log λj

λi − λj
= 2 , (26)

and hence a term of the first type becomes formally a second-type contribution, cf. Section III B 1.

3. One-loop masses of the (1, 3, 0) and (8, 1, 0) scalars in the 45⊕ 126 Higgs model

The one-loop masses (at zero momentum, in MS renormalization scheme) of the (1, 3, 0) and (8, 1, 0) scalars can be
written as

M2
a,1-loop =M2

a + ∆G[poly]
a + ∆G[log]

a +

+ ∆SFIN [poly]
a + ∆SINF [poly]

a + ∆S[log]
a , (27)

M2
b,1-loop =M2

b + ∆
G[poly]
b + ∆

G[log]
b +

+ ∆
SFIN [poly]
b + ∆

SINF [poly]
b + ∆

S[log]
b , (28)

7 This concerns especially the Sab structure defined in eq. (22) which comes from the huge scalar sector; the gauge contribution proportional
to TrGab is at least for both PGBs of our main interest relatively simple since then [A,Ab] = 0 and the infinite series of nested
commutators in Gab reduces to {A,Aa}AbA

−1. For other states in the spectrum one can often employ tricks described in [26].
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where the first terms on the RH sides are their tree-level values, cf. (14)–(15) and the ∆ symbols correspond to
different types of one-loop contributions calculated from ~ part of ∂2V0|v0+~ v1 and formulae (21)–(23). They are
sorted with respect to their origin (gauge with superscript G and scalar with superscript S) and their mathematical
form (polynomial [poly] and logarithmic [log]) as follows:

1. The ∆G[poly] contributions contain all the polynomial-type terms from diagrams with gauge bosons running
in the loops. As such, these contributions are all proportional to g4, where g is the SO(10) gauge coupling
constant. They generally come from both terms on the RH side of eq. (17), i.e. the polynomial part of the
1-loop vacuum substituted into ∂2V0 and the polynomial terms of ∂2V1 given in eq. (21) including the second
type of terms in the expression for the nested commutator series (24) corresponding to degenerate eigenvalues
of M2

G.

2. The ∆G[log] terms contain all the logarithmic terms from the diagrams with gauge bosons running in the
loops. As before, there are g4-proportional factors in front of the logs whose arguments are the masses of the
massive gauge bosons corresponding to the broken generators of SO(10). Again, these come from both parts of
expression (17) including, in this case, the “non-degenerate” contributions from eq. (24).

3. The ∆SFIN [poly] terms contain all polynomial contributions from the scalars running in the loop, except for
those coming from the nested commutator series, i.e., they are fully contained in the ∂2V0 factor in (17) and
the “finite” part of the formula (21). These terms are homogenous quadratic polynomials in the parameters of
the scalar potential (3).

4. The ∆SINF [poly] pieces denote the polynomial scalar contributions coming solely from the infinite series term
Sab in eq. (21) in which they emerge from the scalar spectrum degeneracies due to the residual Standard Model
gauge symmetry.

5. Finally, the ∆S[log] structure labels all the logarithmic contributions associated to the graphs with scalars
running in the loop. These again come from both parts of the expression (17), including the “non-degenerate”
contributions from eq. (24). The coefficients in front of the logs are homogenous quadratic polynomials of
the tree-level scalar potential parameters, while their arguments contain the (squared) tree-level masses of the
relevant massive scalars in the loops.

Note that the ∆SINF [poly] terms have been singled out because these are rather difficult to calculate analytically and
the results in a closed form are cumbersome; the same applies also to ∆S[log]. We shall thus not present them in their
full complexity, but rather in a simplified form that they attain in the limit8

σ → 0, a2 → 0, γ2 → 0,
a2

|σ|2
= const. (29)

Let us also remark that this setting is not an arbitrary choice but rather a physically well-motivated approximation
to the general case: as far as the σ → 0 limit is concerned, the “delayed breaking” of the U(1)B−L obtained in
such a situation corresponds to the potentially realistic seesaw scale with the RH neutrino masses well below MGUT;
the a2 → 0 and γ2 → 0 limits are, on the contrary, suggested by the (simplified) preceding studies [16, 17] as the
only situation in which a fully non-tachyonic spectrum compatible with the gauge unification constraints seems to be
attainable.

The full analytic form (modulo the aforementioned limit (29) adopted for simplicity reasons for the ∆SINF [poly] and
∆S[log] pieces) of the one-loop corrections entering formulae (27)–(28) is given in Appendix B.

4. Going to the mass shell

As we have already mentioned, the formulae (27)–(28) with the ∆ factors given in Appendix B encode the (zero-
momentum) masses of the two pseudo-Goldstone bosons of our interest in the MS renormalization scheme. A direct
use of these results is, however, not so straightforward. The main reason is that there are peculiar infra-red (IR)
divergences due to a certain number of zero eigenvalues in the arguments of logs in the ∆S,G[log] terms emerging from

8 Note that in the σ → 0, γ2 → 0 limit the Σ-self interaction terms do not contribute to the 1-loop masses of the fields coming solely
from φ. Hence, one can neglect the λ0, λ2, λ4, λ′4 and η2 terms in the potential V0 from the beginning (in fact, η2 is absent from M2

a

and M2
b even at the level of field dependent tree-level mass matrix M2

S(Φ)). The reason is that all the off-diagonal blocks in the mass
matrix (13) in vacuum vanish in this limit. Then the only mixing within the 126-dimensional VΣΣ∗ block is among the states in M2

o
belonging either to (6, 1, 1) or (10, 1, 3) of SU(4)c × SU(2)L × SU(2)R .
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the tree-level field-dependent mass matrices M2
S,G(Φ) in (21) evaluated at the tree-level vacuum9. Obviously, these

are associated with the Goldstone modes whose propagators, in the Landau gauge, have poles at p2 = 0.
A minimal and natural solution to this issue is provided by the transition from the zero-momentum to the on-shell

regime in which the physical masses are given as a solution of the secular equation

det
[
p2 −M2 −Σ(p2) + Σ(0)

]
= 0 , (30)

where M2 is the matrix of the second derivatives of the effective potential in the vacuum calculated above and Σ(p2)
denotes the corresponding matrix of the scalar fields’ self-energies (in any scheme; the scheme dependence of Σ drops
out of the difference above). Note also that, by definition, Σ(0) is nothing but the loop part of M2.

In principle, the transition from the zero-momentum to the on-shell masses is highly non-trivial as it includes the
full structure of Σ(p2). However, given the scope of this study, i.e., to provide a robust description of the heavy
spectrum for a future two-loop RG analysis10, the effects of M2 + Σ(p2) −Σ(0) in the calculation of the masses of
the fields of our main interest, i.e., the pseudo-Goldstone bosons tachyonic at the tree-level, may still be reasonably
well approximated by the contributions from M2 alone, as long as their pole masses stay somewhat below those of
the heavy “GUT-scale” fields (M) circulating in the relevant loops. This may be readily seen from the momentum
expansion of the typical scalar-field contribution to Σ(p2)−Σ(0):

Σ(p2)−Σ(0) =
1

16π2

(
c1p

2 + c2
p4

M2
+ . . .

)
, (31)

where ci are numerical O(1) coefficients with i denoting the power of p2 in the numerators of the corresponding terms.
Substituting this into (30) and solving for p2 in the regime in which the tree-level contribution to M2 is absent or
strongly suppressed (with respect to the dominant 1-loop contribution of the order M2/16π2), the on-shell mass, i.e.,
the physical root of (30), obeys m2

phys = O(M2/16π2). Hence, Σ(p2) − Σ(0) = O[M2/(16π2)2] = O(m4
phys/M

2)

which is clearly subleading with respect to the leading contribution from M2.
The only exception to this simple reasoning is the case when some of the sub-blocks of the tree-level scalar mass

matrix in the arguments of the log terms contain Goldstone-mode zeros which are not regulated by the corresponding
zero pre-factors. Such an IR divergence is then compensated only by the Σ(0) term in eq. (30) which, however, is
much easier to calculate than the full-fledged Σ(p2); alternatively, one can just discard such IR divergences at the
leading order in the perturbative expansion.

In summary, for those fields whose masses are dominated by the one-loop corrections, there is no need to deal with
the self-energy at the leading order and the IR-regulated zero-momentum mass expressions derived from the effective
potential are sufficient as inputs of a two-loop RGE analysis.

B. Consistency checks

Given the high complexity of the results presented in Appendix B we find it convenient to supply a set of consistency
checks concerning their behaviour in several limits corresponding to an enhanced gauge symmetry when the character
of the spectrum changes qualitatively.

1. Limits

There are two specific limits in which one can anticipate the form of the one-loop results (27) and (28) on the
symmetry basis, corresponding to the standard and the flipped SU(5) × U(1) scenarios, attained in the regimes
ωb = ±ωr (and σ = 0), respectively, see Table II.

The “standard” SU(5)×U(1) limit ωr → ωb: In this limit, the one-loop triplet and octet masses (27) and (28)
should vanish as they do at the tree level, see (14) and (15); the reason is that they become members of an SU(5)×U(1)
multiplet which, in the SM vacuum, contains also a Goldstone mode (3, 2,− 5

6 ) + h.c., cf. Sect. III B 2.

9 Remarkably, all the spurious IR divergences happen to disappear from the triplet and octet ∆ factors in the limit (29).
10 This, in the usual situation, requires just the tree-level masses inserted into the relevant one-loop matching formulae [27, 28]; however,

in models which possess a (meta)stable vacuum supporting a non-tachyonic spectrum only at the loop level, the critical (i.e., potentially
tachyonic) sectors of the spectrum require regularization by means of radiative corrections.
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In order to see this, it is convenient to substitute ωr = ωb + κ into the relevant formulae in Appendix B and then
take the κ→ 0 limit. Note that the contributions of the logarithmic and polynomial type in (27) and (28) do not need
to vanish separately due to the aforementioned metamorphosis (26) of some of the logarithmic terms into polynomial
form. The behaviour of the individual contributions to M2

a,b,1-loop is sketched in the following scheme:

M2
a,tree, M

2
b,tree

κ→0−−−→ 0,

∆SFIN [poly]
a , ∆

SFIN [poly]
b

κ→0−−−→ 0,

∆G[poly]
a +∆G[log]

a , ∆
G[poly]
b +∆

G[log]
b

κ→0−−−→ 0,

∆SINF [poly]
a +∆S[log]

a , ∆
SINF [poly]
b +∆

S[log]
b

κ→0−−−→ 0. (32)

The proof of these equalities is slightly complicated by the fact that all the pre-factors of the log terms tend to blow
up in the κ → 0 limit, see Appendices B 1 and B 2, which renders the individual log-type contributions divergent.
The obvious trick is to group together the logs whose arguments converge to the same limit and use the identity

lim
κ→0

[∑
x

Ax(κ)

κ
log
(
m0 + cxκ+O(κ2)

)]

= lim
κ→0

[∑
xAx(κ)

κ

]
log (m0) +

∑
x

cxAx(0)

m0
, (33)

where x sums over a group of indices with the same argument m0 (for κ → 0) in the logarithm – for the scalar
contributions11, for instance, the indices belong to the following 6 groups:

{x} : {l2, o1}; {p, q, r1}; {e, k, r2}; {d, h, i,m1, n2, o3};
{f, g, j, l1,m2, n1, o2}; {s}. (34)

Ax(κ) are analytic functions of κ and cx is the first expansion coefficient in κ of the logarithm arguments. Only terms
with a non-zero constant part in Ax(κ) produce non-vanishing polynomial pieces in the κ→ 0 limit, i.e. only the logs
with divergent prefactors can give rise to a polynomial contribution. The behaviour (32) can be viewed as a rather
non-trivial consistency check of the results because the constant and linear terms in κ in the sums

∑
xAx(κ) must

vanish for each group of indices x to annihilate the logarithmic loop contributions, while the divergent parts must
cancel the original polynomial pieces, as they indeed do.

The “flipped” SU(5)×U(1) limit ωr → −ωb: In this case, the symmetry group is SU(5)′×U(1)′, cf. Table II,
the hypercharge is a linear combination of one of the Cartans of SU(5)′ and the extra U(1)′ charge. The triplet
(1, 3, 0) and the octet (8, 1, 0) again become part of the same 24-dimensional gauge multiplet (this time together with
(3, 2,+ 1

6 ) + h.c.). This is easily seen from the form of the M2
r matrix (A36) which becomes diagonal in this limit,

with the 11-entry therein reducing to the same expression as M2
a and M2

b (in the same limit). In contrast with the
“standard” SU(5) case above, the (3, 2,+ 1

6 ) + h.c. multiplet is not a would-be Goldstone boson (in the SM vacuum),
so the octet and triplet masses should be equal but non-vanishing.

As before, it is convenient to implement this limit by means of the κ parameter (ωr = −ωb + κ) with κ → 0 and,
for the scalar contributions, it is useful to group the logarithmic terms according to the scheme12:

{x} : {d}; {l1, o1}; {f,m1, p}; {e, i,m2};
{g, j, l2, n2, o2, q, r2}; {h, k, n1, o3, r1}; {s}. (35)

The results assume the following form:

11 Note that there are 22 different log terms in the scalar sector, while 4 such terms are generated by the gauge interactions, cf. Appen-
dices B 1 and B 2.

12 These groupings are listed in the same ordering as the log terms in equation (40), with all IR divergences coming from the next to last
grouping of indices, and the last grouping having no contribution. As we have argued in Sect. III A 4, the IR divergences disappear in
the on-shell formula (30).
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M2
a,tree,M

2
b,tree

κ→0−−−→ 4a2ωb
2, (36)

∆G[poly]
a ,∆

G[poly]
b

κ→0−−−→ 17
32π2 g

4ωb
2, (37)

∆G[log]
a ,∆

G[log]
b

κ→0−−−→ 3
32π2 g

4ωb
2 log

[
g2ωb

2/µ2
r

]
, (38)

∆
SFIN [poly]
b ,∆

SFIN [poly]
b

κ→0−−−→ − 1
8π2

(
96a0a2 + 76a2

2 + 560|γ2|2 − 5β2
4 + 60β4β

′
4 − 100β′4

2
)
ωb

2, (39)

∆
SINF [poly]
a + ∆

S[log]
a ,

∆
SINF [poly]
b + ∆

S[log]
b

κ→0−−−→ 5
8π2 F

(
7; 0, 0; 9ωb

2, 12ωb
2, 60ωb

)
+

+ 1
16π2

(
F
(
−4; 0, 64ωb; 0, 0,−240ωb

2
)

log
[
4ωb f(1; 0,−6ωb)/µ

2
r

]
+

+ F
(
1;−12ωb,−4ωb;−51ωb

2, 12ωb
2, 4ωb

2
)

log
[
6β4ωb

2/µ2
r

]
+

+ F
(
−9;−34ωb, 72ωb; 2ωb

2, 172ωb
2,−132ωb

2
)

log
[
2ωb f(1;ωb,−4ωb)/µ

2
r

]
+

+ F
(
−29;−20ωb,−148ωb; 0,−40ωb

2,−68ωb
2
)

log
[
−4ωb f(1; 0, 2ωb)/µ

2
r

]
+

+ F
(
6; 66ωb, 156ωb; 39ωb

2,−24ωb
2, 96ωb

2
)

log
[
−2ωb f(1;−ωb, 0)/µ2

r

]
+

+ IR divergent log terms
)
, (40)

where the F function is defined in eq. (A44). Let us note that the “log-to-polynomial metamorphosis” is less frequent
here than in the previous case because only few of (exclusively scalar) log prefactors blow up in the “flipped” SU(5)
limit. In fact, only the Oj , Ol2 , On2

, Oo2 , Tg, To2 terms (see Appendix B) contribute to the polynomial part of
eq. (40).

2. Exact Goldstone bosons

There is another relatively cheap consistency check of the method used for the calculation of the various ∆a,b

factors governing the leading one-loop contributions to the PGB masses of our interest: all would-be Goldstone
modes associated with the gauge fields from the SO(10)/SU(3)×SU(2)×U(1) coset should be massless at all orders
in perturbation theory. We managed to demonstrate that this is the case at least for the most accessible of these
fields, namely, the (3, 2,− 5

6 ) + h.c. scalar which is contained solely in the scalar 45 of the SO(10) and, hence, no
mixing with the scalar 126 needs to be considered.

We have checked explicitly that it indeed remains massless even at the 1-loop level, i.e., that each of its ∆c-
contributions – defined along the lines of eqs. (27) and (28) – individually vanishes: the log and the polynomial terms
of the gauge contribution, as well as the polynomial terms and log terms of the scalar contribution. In this case, the

polynomial parts from scalars ∆
SFIN [poly]
c and ∆

SINF [poly]
c even vanish separately.13

Moreover, the structure of all the ∆c contributions is such that it allows for a simple numerical check even outside
the “analytic simplification domain” (29) where it likewise yields zero for all randomly chosen values of σ, γ2 and a2.

3. Diagrammatics

Last, but not least, it is relatively straightforward to calculate some of the leading polynomial parts of the one-loop
corrections to the masses of the (1, 3, 0) and (8, 1, 0) PGBs by means of the standard perturbative expansion. This
applies, in particular, to the τ2-proportional (i.e., SO(10) invariant) contribution, cf. eqs. (B7) and (B8); the other
leading polynomial terms, namely, those proportional to ωr

2, ωb
2 and/or ωrωb turn out to be easily accessible only in

the simplified version of the minimal model with 16 instead of 126 in the Higgs sector. In what follows, we shall first
comment briefly on the salient points of the corresponding calculation in the sample 45 ⊕ 16 Higgs model and then
turn our attention to the 45⊕ 126 scenario of our current interest.

13 If one expresses the scalar mass matrix in a reordered basis, in which MS
2 acquires a block diagonal form, where each block consists

of states with degenerate mass, it is easy to see explicitly that ∆
SINF [poly]
c = 0 without even referring to any special limit. The

block structure alone allows us in that case to avoid the computation of complicated analytical forms of eigenvectors (modulo those
of Goldstone modes, which are relatively simple) and automatically discards the nested commutator’s polynomial contribution to the
1-loop mass of the would-be Goldstone pair (3, 2,− 5

6
)⊕ (3̄, 2,+ 5

6
).
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TABLE III. β2-proportional parts of the polynomial corrections to the masses of the pseudo-Goldstone bosons in the simplified
45⊕ 16 scenario in various limits.

4π2∆Φ ωr = 0 ωb = 0 ωr = −ωb ≡ ω

Φ = (1, 3, 0) 2β2ωb
2 2β2ωr

2 5β2ω2

Φ = (8, 1, 0) 3β2ωb
2 β2ωr

2 5β2ω2

The method: In the simplest scalar theory context with a pair of scalar fields Φ and φ with only the latter
developing a VEV, it is straightforward to show that the leading order one-loop contribution to the mass (squared)
of Φ can be formally written as [29]

∆Φ = − 1

〈φ〉
, (41)

where the graphs denote the sums of the one-loop contributions to the two-point and one-point functions with
appropriate external legs Φ, respectively, while the dots between the crossed lines correspond to all possible insertions14

of the VEVs of φ. In the classical “λϕ4 context” these structures can be formally expanded as

1-point: , (42)

2-point: , (43)

where the symbols with “empty” blobs stand for the usual Feynman diagrams of a given topology. There are a few
points worth making here:

1. Only some of the one-loop topologies above will generate a polynomial contribution to ∆Φ; for example, the
first two displayed contributions to the 2-point function (43) yield a polynomial contribution, while the third
does not.

2. The undisplayed terms in the remainder of series (42) and (43) correspond to diagrams with higher and higher
number of insertions of (pairs of) VEVs and, as such, they may generate a power-series-like structure of similar
polynomial contributions; if the interactions are simple enough, the quotients of such power series may be
identified and the series themselves may be eventually summed up in a closed form.

3. Note that if there is simultaneously a trilinear vertex at play, many more topologies become available; this will
lead to “mixed” contributions proportional not only to the VEVs but also to the dimensionful trilinear vertex
coupling (such as τ in the SO(10) context of our interest). However, as long as one is interested in either the
pure VEV-squared or the pure τ2 contribution to ∆Φ, it is sufficient to focus on the relevant sub-series with
only one kind of interactions (quartic or trilinear, respectively) connecting the VEV legs to the main loop.

Diagrammatics in the 45⊕ 16 scenario, the β2-proportional polynomial piece: This all said, let us first
turn our attention to the SO(10) Higgs model featuring a simplified set of scalars transforming as 45⊕ 16, see, e.g.,
reference [14]. There are again three convenient limits in this setting corresponding to the assumed single VEV
situation, namely ωr = 0 (the 3c2L2R1B−L limit), ωb = 0 (the 4c2L1R limit) and ωr = −ωb (the flipped SU(5) limit),
in which the formalism above may be quite easily applied and clusters of graphs with contributions behaving as a
power series can be identified in the 1-point and 2-point Green’s function expansions.

For instance, focusing solely on the quartic interaction governed by the β coupling (see [14] for its structure), the
power-like behaviour of the polynomial contributions on the RHS of eqs. (42) and (43) may be readily inferred. The
combinations (41) of the sums of the corresponding power series are given in Table III. Remarkably, the information
thus obtained in the three different limits above is just enough to reconstruct all three coefficients cΦi of the expected
form of the β2-proportional polynomial one-loop contribution to ∆Φ, namely ∆Φ = β2(cΦ1 ωr

2 + cΦ2 ωrωb + cΦ3 ωb
2).

14 Obviously, the calculation is performed in the unbroken phase formalism in which the VEV is kept in the interaction part of the
Lagrangian.
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TABLE IV. The shape of a potentially viable scalar spectrum (all masses in units of ωb) at the leading order (corresponding to the
one-loop level expressions (27)–(28) for the critical pseudo-Goldstones and tree-level formulae for the other scalars, respectively)
computed in the limit (29). The underlying parameters were chosen as follows: a2 = −19.7|σ|2/ωb2 was determined by the
vacuum stationarity condition (11) and the other parameters assumed the values ωr/ωb = 0.2 (hence abandoning the flipped
SU(5) scenario required at tree level, cf. (16)), τ/ωb = −2, µr/ωb = 2, β4 = β′4 = 0.4, a0 = 0.2 and g = 0.7. The scalar
potential parameters α, λ0, λ2, λ4, λ′4 and η2 can remain unspecified since, at the leading order, they do not contribute to
the above masses (as explained in Section III A 3). Note also that the loop-induced pseudo-Goldstone masses are much lighter
than the bulk of the scalar spectrum, which justifies the simple transition from zero-momentum to on-shell-momentum masses
advocated in Sect. III A 4.

md me mf mg mh mi mj mk ml1 ml2 mm1 mm2 mn1 mn2 mo1 mo2 mo3 mp mq mr1 mr2 ms Ma,1-loop Mb,1-loop

1.9 3.7 3.3 3.7 3.0 3.5 3.6 3.7 3.6 3.5 2.6 3.7 3.3 3.5 3.2 3.7 3.1 1.4 2.9 2.3 3.7 2.2 0.27 0.35

Putting all this together, the polynomial pieces of the scalar-loop-generated corrections to the masses of the pseudo-
Goldstone bosons (1, 3, 0) and (8, 1, 0) in the simplified 45⊕ 16 scenario read (in the same notation as before)

∆S[poly],β2

a =
1

4π2
β2
(
2ωr

2 − ωrωb + 2ωb
2
)
,

∆
S[poly],β2

b =
1

4π2
β2
(
ωr

2 − ωrωb + 3ωb
2
)
, (44)

which, indeed, coincides with the results of the existing effective potential analysis [14].

Diagrammatics in the 45 ⊕ 16 scenario, the τ2-proportional polynomial piece: Since the interaction of
our interest here is trilinear, there are no τ -proportional polynomial contributions popping up from the two-point
part (43) of formula (41) and, hence, it is sufficient to consider only the τ -proportional tadpoles (42). The summation
of the relevant parts of the corresponding power series yields a universal (i.e., SO(10) invariant) contribution

∆S[poly],τ2

a = ∆
S[poly],τ2

b =
τ2

4π2
, (45)

which, as before, coincides with that obtained by the effective potential approach [14]. Hence, at least for the one-loop
polynomial corrections to the PGB triplet and octet masses, the purely diagrammatic approach admits an efficient
cross-check of the EP results.

Diagrammatics in the 45⊕ 126 scenario, the τ2-proportional polynomial piece: Finally, let us attempt

to evaluate some of the ∆
S[poly]
a and ∆

S[poly]
b terms in the 45 ⊕ 126 model of our main interest. Unfortunately, the

presence of two types of quartic interactions between a pair of 45 s and two 126 s, i.e., the β4 and β′4 terms in the
scalar potential (6), complicates the combinatorics of the VEV insertions in diagrams (41) to such an extent that here
we have managed to calculate just the universal τ2-proportional factor

∆S[poly],τ2

a = ∆
S[poly],τ2

b =
35τ2

8π2
, (46)

which, indeed, is identical to that obtained by the effective potential method earlier in this study, cf. Sect. III A 3 and
formulae (B7) and (B8).

Finally, it may be interesting to note that the parametrically higher level of complexity encountered in the 45⊕126
model in the relevant Feynman diagram combinatorics is reflected in the effective potential approach by the behaviour
of the nested commutators (23): the interplay between β4 and β′4 was indeed the main obstacle to writing the results of
the EP calculation of Sect. III A 3 in a more compact form, which would be otherwise possible if one of these couplings
was zero. In that respect, the simplicity of the diagrammatic calculation in the 16⊕ 45 case can be attributed to the
vanishing of the relevant nested commutators in the EP approach to this model.

C. Viability of the minimal SO(10) Higgs model at the one-loop level

With all this information at hand one can finally re-address the central question – whether the radiative corrections
can really provide a regularization of the supposedly fatal tachyonic instabilities of the tree-level scalar spectrum.
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Clearly, the first condition to be fulfilled is that there should exist a domain in the parameter space where the
loop contributions to the masses of the pseudo-Goldstone triplet and octet scalars, cf. (27)–(28), are large enough to
compete with the problematic tree-level expressions therein and where all the other scalar-sector masses-squares are
positive.

The former assumption is obviously attained in the regime when a2 is sufficiently small. Remarkably enough, this
is not only an option that one may choose at will, but rather a crucial ingredient of any perturbative account, see
inequality (12). In this respect, in the perturbative regime supporting a standard seesaw mechanism, the quantum
corrections exceed the tree level contribution and might hence regularize the notorious tachyonic instabilities of the
scalar spectrum. As for the latter, there seems to be no simple analytic parametrization of the non-tachyonicity
domain for the rest of the scalar spectrum. Hence, we provide a numerical example of a point in parameter space
where the entire scalar spectrum is perturbative and non-tachyonic, see Table IV. Note that the situation therein
corresponds to the simplified setting (29) in which SO(10) gets first broken to SU(3)c×SU(2)L×U(1)R×U(1)B−L
whose subsequent breaking to the SM gauge group is arbitrarily delayed (due to tiny σ) and, thus, there is an extra
virtually massless mode in Ms alongside the usual massless would-be Goldstones in matrices {Mc, Mp, Mq, Mr, Ms},
with multiplicities 1 for each.

To this end, it is also worth noting that there is yet another field for which the radiative corrections may be
important, namely, the lighter singlet scalar spanned predominantly on the upper-left 2 × 2 block of matrix (A37).
The point is that this state also becomes accidentally light in the potentially realistic a2 � 1 and |σ| � max{|ωr|, |ωb|}
regime. However, unlike the two pseudo-Goldstones of our main interest here, this state still receives tree-level mass
contributions from σ and, moreover, it is innocent from the gauge running perspective. Hence, we defer a thorough
scrutiny of this issue to the future phenomenological analysis.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have calculated the one-loop corrections to the masses of a pair of scalar fields (transforming
as (1, 3, 0) and (8, 1, 0) under the SM gauge group) in the spectrum of the minimal non-supersymmetric 45 ⊕ 126
SO(10) Higgs model which, at the tree level, cause a notorious tachyonic instability in all of its potentially realistic
vacuum configurations. That required considerable efforts due to large representations involved, presence of matrix
logarithms and infinite series of nested commutators. The calculation confirms the former expectation made on
qualitative grounds in [14] that the quantum effects can stabilize the phenomenologically viable vacua of the model at
the one-loop level. Hence, the 45⊕126 framework may be revived as a basis of a full-fledged SO(10) GUT construction
that may be worth a further scrutiny concerning, in particular, the fundamental signal of gauge unifications – the
proton lifetime. To this end, the current framework exhibits a particular robustness to various kinds of theoretical
uncertainties, essentially unattainable in other popular GUT scenarios, which makes it very special when it comes
to the exploitation of the information accessible in future megaton-scale experiments such as Hyper-Kamiokande or
DUNE.

The consistency of the effective potential approach adopted in this study has been demonstrated by a number of
explicit cross-checks of the results, including a thorough inspection of several of their enhanced-symmetry limits, a
semi-analytic proof of the absence of a one-loop mass term for a selected would-be Goldstone mode, as well as a
partial reconstruction of their purely polynomial parts by means of standard diagrammatic methods.

Future prospects

For minimal SO(10) GUTs featuring a 45 ⊕ 126 scalar sector, a detailed understanding of the scalar spectrum
behaviour (and in particular of its critical components) is of course vital for any future phenomenological analysis
going beyond the first rather simplified attempts [10, 17]. The obvious goal here is to provide really robust estimates
of the attainable proton lifetime with at least the leading theoretical uncertainties well under control, hopefully even
within the expected “sensitivity improvement window” of the upcoming facilities. For that sake, a detailed analysis of
the unification constraints including a two-loop renormalization group evolution of the gauge couplings is a particularly
important element which, as an input, among other things, requires exactly the information supplied by this study.

On the practical side, that demands an extensive numerical simulation which would go even beyond the limit (29)
in which the analytic results have been displayed in this work (due to the paramount complexity of the full results
which, however, are also available). This will also facilitate the calculation of the radiative corrections to the mass
of the third member of the potentially dangerous pseudo-Goldstone boson family which, in the physically interesting
σ < max{ωr, ωb} regime, can be identified among the SM singlets (A37). In spite of its practical irrelevance for the
gauge running, it may still represent an extra source of tachyonic instabilities that a decisive scrutiny of the minimal
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model under consideration should not neglect. This, however, is beyond the scope of the current work and will be
elaborated on elsewhere.
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Appendix A: The tree-level spectrum

1. Gauge bosons

The scalar sector of the model is spanned on a 45-dimensional 2-index antisymmetric real representation φij and a
126-dimensional 5-index antisymmetric self-dual complex representation Σijklm, defined as15

Σijklm =
1√
2

(
φijklm −

i

5!
εijklmabcde φabcde

)
, (A1)

where φijklm and εijklmabcde are the 252-dimensional 5-index antisymmetric tensor and the completely antisymmet-
ric Levi-Civita tensor with the positive signature ε12345678910 = +1, respectively. Under the infinitesimal SO(10)
transformations these objects change as

φij → φij + i [ϕ, φ]ij , (A2)

Σijklm → Σijklm + i (ϕia Σajklm + ϕjb Σibklm +

+ϕkc Σijclm + ϕld Σijkdm + ϕme Σijkle) , (A3)

where

ϕij ≡ 1
2 ϕαβ (T̂αβ)ij , (A4)

and ϕαβ are the infinitesimal antisymmetric real parameters, while T̂αβ are the generators in the fundamental repre-
sentation of SO(10) defined as:

(T̂αβ)ij ≡ −
i√
2

(δαiδβj − δαjδβi) , (A5)

that satisfy the SO(10) algebra[
T̂αβ , T̂ γδ

]
=

i√
2

(
δαγ T̂ βδ+ δβδT̂αγ− δβγ T̂αδ− δαδT̂ βγ

)
. (A6)

Consequently they are then canonically normalized to Dynkin index 1

15 This self-duality projection holds only when indices are in the real basis of the fundamental representation 10 of SO(10).
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TABLE V. SM representations of gauge bosons, using definitions from Table I. There are two kinds of contributions to the tree
level masses of gauge bosons: ∆φ

M2
G

coming from the kinetic term of the 45-dimensional Higgs (due to the VEVs of the SM

singlets
√

3ωb and
√

2ωr) and ∆Σ
M2

G
from the kinetic term of the 126-dimensional representations (due to

√
2σ and

√
2σ∗).

The final masses M2
G are the sums of both, producing 12 massless gauge bosons, corresponding to 12 unbroken generators

of the SM; the dagger † denotes the presence of a broken generator and consequently a massive gauge boson. We kept both
contributions ∆φ

M2
G

and ∆Σ
M2

G
separate only to make various limits more evident. For that reason we also indicated which

representations of the Pati-Salam gauge group G422 individual SM representations descend from. It is then easy to check that
for |σ| = 0 in the SU(5) × U(1)Z (ωr = ωb), flipped SU(5)′ × U(1)Z′ (ωr = −ωb), left-right G3221 (ωr = 0), G421 (ωb = 0)
and G3211 (ωr, ωb 6= 0) limits , all the states within the same multiplets have the same masses and we get 25, 25, 15, 19 and
13 massless gauge bosons, respectively. The two singlets (1, 1, 0) in different Pati-Salam representations mix; the two given
expressions are the two eigenvalues of the corresponding 2× 2 mass matrix.

R ∼ G321 R/C # size R ⊆ G422 ∆φ

M2
G

∆Σ
M2

G

(8, 1, 0) R 1 8 (15, 1, 1) 0 0

(1, 3, 0) R 1 3 (1, 3, 1) 0 0

(1, 1, 0) R 2† 1 (15, 1, 1), (1, 1, 3) 0; 0 10 g2|σ|2; 0

(1, 1,+1) C 1† 2 (1, 1, 3) 2g2ωr
2 2 g2|σ|2

(3, 1,+ 2
3
) C 1† 6 (15, 1, 1) 2g2ωb

2 2 g2|σ|2

(3, 2,+ 1
6
) C 1† 12 (6, 2, 2) 1

2
g2(ωr + ωb)

2 2 g2|σ|2

(3, 2,− 5
6
) C 1† 12 (6, 2, 2) 1

2
g2(ωr − ωb)2 0

Tr
(
T̂αβT̂ γδ

)
= δαγδβδ − δαδδβγ , (A7)

and, hence, the corresponding gauge coupling follows the usual SU(5)/ Standard Model normalization convention. The
Latin and the Greek indices all run from 1 to 10, while the summation over repeating indices is assumed everywhere.
The gauge bosons in the adjoint representation

(Aµ)ij ≡ 1
2 A

αβ
µ (T̂αβ)ij , (A8)

then transform as

(Aµ)ij → (Aµ)ij + i [ϕ,Aµ]ij +
1

g
(∂µϕij) . (A9)

Their mass term L ⊃ 1
2 M2

G(αβ)(γδ)A
(αβ)
µ Aµ(γδ) then originates from the kinetic terms for the scalar fields

Lkin ⊃
1

4
(Dµφij)

∗Dµφij +
1

5!
(DµΣijklm)∗DµΣijklm , (A10)

where the covariant derivatives are defined as

Dµφij ≡ ∂µφij − i g [Aµ, φ]ij , (A11)

DµΣijklm ≡ ∂µΣijklm − i g {(Aµ)iaΣajklm +

+(Aµ)jbΣibklm + (Aµ)kcΣijclm +

+(Aµ)ldΣijkdm + (Aµ)meΣijkle} , (A12)

and the subscripts (i1 . . . in) stand for the
(

10
n

)
ordered n-tuples of indices. For instance, (αβ) and (γδ) represent the

45 ordered pairs of indices that form the basis in which the 45 × 45-dimensional gauge boson mass matrix M2
G is
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expressed as

M2
G(αβ)(γδ) =

g2

2

{
1

2

[
T̂ (αβ), 〈φ〉

]
ij

[
T̂ (γδ), 〈φ〉

]
ji

+

+ δαγ〈Σ∗β(jklm)〉〈Σδ(jklm)〉+ δβδ〈Σ∗α(jklm)〉〈Σγ(jklm)〉−

− δαδ〈Σ∗β(jklm)〉〈Σγ(jklm)〉 − δβγ〈Σ∗α(jklm)〉〈Σδ(jklm)〉+
+ 〈Σ∗αδ(klm)〉〈Σβγ(klm)〉+ 〈Σ∗βγ(klm)〉〈Σαδ(klm)〉−

− 〈Σ∗αγ(klm)〉〈Σβδ(klm)〉 − 〈Σ∗βδ(klm)〉〈Σαγ(klm)〉
}

+

+

(
α↔ γ
β ↔ δ

)
. (A13)

Except for the 2×2 block of singlets, the matrix M2
G|v is already diagonal, which greatly simplifies the computation

and final form of the nested commutator and logarithmic contributions to the scalar masses at 1 loop. Its eigenvalues,
representing the actual physical masses of the gauge bosons, are collected in Table V. The 12 zero modes correspond
to the 12 generators of G321. The tree-level masses of the GUT-scale gauge bosons are

M2
G(3, 2,− 5

6 ) = 1
2 g

2 (ωr − ωb)2, (A14)

M2
G(3, 2,+ 1

6 ) = 2 g2
(

1
4 (ωr + ωb)

2
+ |σ|2

)
, (A15)

M2
G(3, 1,+ 2

3 ) = 2 g2 (ωb
2 + |σ|2), (A16)

M2
G(1, 1,+1) = 2 g2 (ωr

2 + |σ|2), (A17)

M2
G(1, 1, 0) = 10 g2 |σ|2. (A18)

2. Scalars

The tree level mass matrices of the various scalar fields belonging to φ, Σ and Σ∗ representations (whose decompositions
and possible mixings are explained in Table I; the states of a given SM rep. R in that table correspond to basis states
for rows in the mass matrices below, all in the same order, while columns have a basis of conjugate states R) are
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M2
a ≡M2

S(1, 3, 0) = +2a2ω
′w1

[1,2], (A19)

M2
b ≡M2

S(8, 1, 0) = −2a2ω
′w1

[2,1], (A20)

M2
c ≡M2

S(3, 2,− 5
6 ) = 0, (A21)

M2
d ≡M2

S(1, 1,+2) = 4 f(−ωr; 0, 6ωbωr) + 8s2
[1,1,4], (A22)

M2
e ≡M2

S(1, 3,−1) = 2 f(−w1
[3,1]; 0, 2ωrw

1
[3,1]) + 8s2

[2,3,2], (A23)

M2
f ≡M2

S(3̄, 1,+ 4
3 ) = 2 f(−w1

[1,2];ωb
2, 4ωbw

1
[1,2]) + 4s2

[3,3,4], (A24)

M2
g ≡M2

S(3, 3,− 1
3 ) = 2 f(−w1

[2,1];ωb
2, 2ωw1

[2,1]) + 4s2
[3,3,4], (A25)

M2
h ≡M2

S(6, 3,+ 1
3 ) = 2 f(−ω; 0, 2ωw1

[2,1]) + 8s2
[1,1,4], (A26)

M2
i ≡M2

S(6̄, 1,− 4
3 ) = 4 f(−ωb; 0, 2ωbw

1
[1,2]) + 8s2

[1,1,4], (A27)

M2
j ≡M2

S(6̄, 1,− 1
3 ) = 2 f(−w1

[2,1];ωr
2, 2ωw1

[2,1]) + 4s2
[3,3,4], (A28)

M2
k ≡M2

S(6̄, 1,+ 2
3 ) = 4 f(−ω; 0, 2ωωb) + 8s2

[2,3,2]. (A29)

M2
l ≡M2

S(1, 2,+ 1
2 ) =

(
f(−3ω;

1
2w

2
[7,−4,1],3ωw

1
[3,1])+4s2[3,3,4] −2γ2ωω

′

−2γ∗2ωω
′ f(−w1

[3,1];
1
2w

2
[7,4,1],3ωw

1
[3,1])+8s2[1,1,−2]

)
, (A30)

M2
m ≡M2

S(3, 2,+ 7
6 ) =

(
f(−w1

[1,3];
1
2ω
′2,w1

[1,3]w
1
[5,1])+8s2[1,1,4] −2γ2ωω

′

−2γ∗2ωω
′ f(−w1

[5,1];
1
2ω

2,w1
[1,3]w

1
[5,1])+4s2[3,3,4]

)
, (A31)

M2
n ≡M2

S(8, 2,+ 1
2 ) =

(
f(−3ω;

1
2ω

2,3ωw1
[3,1])+4s2[3,3,4] −2γ2ωω

′

−2γ∗2ωω
′ f(−w1

[3,1];
1
2ω
′2,3ωw1

[3,1])+8s2[1,1,4]

)
, (A32)

M2
o ≡M2

S(3̄, 1,+ 1
3 ) =(

f(−2ω;w2
[1,0,1],4ωw

1
[2,1])+8s2[1,1,2] −4γ∗2ωω

′ 2
√

2(β4ωbωr−8s2[0,0,1])

−4γ2ωω
′ f(−2w1

[2,1];w
2
[1,0,1],4ωw

1
[2,1])+4s2[3,3,4] 0

2
√

2(β4ωbωr−8s2[0,0,1]) 0 2f(−ω;w2
[1,0,1],2ωw

1
[2,1])+8s2[1,1,0]

)
. (A33)

M2
p ≡M2

S(1, 1,+1) =

(
−2a2ωωb+2s′2[1,−2] 2σf(1;−ωr,−2w1

[3,1])

2σ∗f(1;−ωr,−2w1
[3,1]) −2ωrf(1;−ωr,−2w1

[3,1])

)
, (A34)

M2
q ≡M2

S(3̄, 1,− 2
3 ) =

(
−2a2ωωr+2s′2[1,−2] −2σ∗f(1;−ωb,−4ω)

−2σf(1;−ωb,−4ω) −2ωbf(1;−ωb,−4ω)

)
, (A35)

M2
r ≡M2

S(3, 2,+ 1
6 ) =

 −4a2ωbωr+2s′2[1,−2] σf(2;−ω,−2w1
[5,3]) 4γ2σω

′

σ∗f(2;−ω,−2w1
[5,3]) −

1
2ωf(2;−ω,−2w1

[5,3]) −2γ2ωω
′

4γ∗2σ
∗ω′ −2γ∗2ωω

′ f(−w1
[5,3];

1
2ω
′2,ωw1

[5,3])+8s2[2,3,2]

 , (A36)

M2
s ≡M2

S(1, 1, 0) =
24a0ωb

2−2a2ω
′w1

[2,1]−12s′2[0,1] −
√

6(−8a0ωbωr+4s′2[0,1])
√

6σ(2αωb+f(1;0,−4ω))
√

6σ∗(2αωb+f(1;0,−4ω))

−
√

6(−8a0ωbωr+4s′2[0,1]) 16a0ωr
2+2a2ω

′w1
[1,2]−8s′2[0,1] 2σ(2αωr+f(1;0,−2w1

[3,1])) 2σ∗(2αωr+f(1;0,−2w1
[3,1]))√

6σ∗(2αωb+f(1;0,−4ω)) 2σ∗(2αωr+f(1;0,−2w1
[3,1])) 4λ0|σ|2 4λ0σ

∗ 2

√
6σ (2αωb+f(1;0,−4ω)) 2σ (2αωr+f(1;0,−2w1

[3,1])) 4λ0σ
2 4λ0|σ|2

 . (A37)
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In the expressions above (and in section III B 1) we have used the definitions

wn[an,...,a0] :=

n∑
i=0

an−i ωb
n−i ωr

i, (A38)

ω := ωb + ωr = w1
[1,1], (A39)

ω′ := −ωb + ωr = w1
[−1,1], (A40)

s2
[a1,a2,a3] := (λ2 a1 + λ4 a2 + λ′4 a3) |σ|2, (A41)

s′2[a1,a2] := (β4 a1 + β′4 a2) |σ|2, (A42)

f(z1; z2, z3) := τ z1 + β4 z2 + β′4 z3, (A43)

F (z1; z2, z3; z4, z5, z6) := τ2 z1 + τ(β4 z2 + β′4 z3)+

+β4
2 z4 + β4β

′
4 z5 + β′4

2 z6. (A44)

The rationale behind this notation is the following:

1. Labels ai enclosed in square brackets in subscripts of functions wn, s2 and s′2 are integers parametrising
the coefficients of the corresponding polynomial expressions, zi’s enclosed in round brackets are arguments of
functions f and F ; note that not all of them have the same mass dimension d because τ is a d = 1 parameter
while β4 and β′4 are dimensionless. Variables with the same mass dimensions are separated with commas and
groups with different mass dimensions are separated with semicolons.

2. Symbols ω and ω′ denote the sum and difference of the VEVs ωr and ωb, respectively; these were introduced
mainly for their relevance in the standard and/or the flipped SU(5)× U(1) limits.

3. In various limits of increased symmetry the RH sides of the equalities above simplify to

σ → 0 ⇒ s2
[a1,a2,a3] → 0, s′2[a1,a2] → 0, (A45)

ωr → 0 ⇒ wn[an,...,a0] → an ωb
n (A46)

ωb → 0 ⇒ wn[an,...,a0] → a0 ωr
n, (A47)

ωr → +ωb ⇒ wn[an,...,a0] →
∑
i

an−i ωb
n, (A48)

ωr → −ωb ⇒ wn[an,...,a0] →
∑
i

(−1)ian−i ωb
n. (A49)

For more details on these limits the reader is kindly referred to Table II and the discussion in Section III B 1.

A few other comments regarding the tree-level spectrum are worth making here:

1. There are 3 equations for the vacuum configuration of the 3 independent VEVs in the 45 ⊕ 126 model (let
us reiterate that ωr and ωb are real while σ can be complex). These quantities can be traded for the 3 mass
parameters (µ2, ν2, τ) via the eqs. (9)–(11). For the sake of simplicity, we shall sometimes use a hybrid
notation in which the τ parameter may appear in the relevant expressions alongside the three VEVs above, see
eqs. (A19)–(A37); however, in practice, the third condition of eq. (11) should always be used to eliminate τ .

2. The tree level scalar spectrum of this model has been previously calculated in [10]; our results agree with those
given there with the only exception of the numerical coefficients in front of λ4 terms, which have now been
corrected.

3. With no special correlation among the three VEVs above, the SO(10) → G321 breaking is achieved and one
should end up with 33 massless would-be Goldstone modes identified with the broken SO(10) generators cor-
responding to massive gauge bosons in eqs. (A14)–(A18). There is indeed a zero eigenvalue in each of the
following mass matrices above: M2

c , M2
p , M2

q , M2
r and M2

s , which together with the dimension of each of the
states and their conjugated counterparts (as indicated in the column “size” of Table I) gives the desired number
of would-be Goldstone modes.
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Appendix B: The one-loop contributions to the pseudo-Goldstone boson masses

In this Appendix, we present the full mathematical form of the ∆-terms entering the relevant formulae for the
one-loop pseudo-Goldstone triplet (1, 3, 0) and octet (8, 1, 0) masses (27) and (28). For that sake, it is convenient to
define the symbols:

C = −π2 ω′, R2 =
√
ωb4 + 34ωb2ωr2 + ωr4. (B1)

1. Gauge boson contributions

Here we present the 1-loop contributions to the scalar masses (27)–(28) coming from the gauge bosons running in
the loops. All the terms in this subsection have been computed in full generality, i.e., they are valid for arbitrary
values of all parameters. They agree16 with the previous results for the 45⊕ 16 [14, 30] and 45⊕ 126 [17] models —
the gauge sector polynomial contribution is the same in both models for those states which come solely from 45.

16 The agreement is up to the definition of g; we use the canonical normalization with Dynkin index 1 for the generators in the fundamental
representation, while the cited works use the normalization 2.
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∆G[poly]
a =

g4

16π2
w2

[19,1,16], ∆
G[poly]
b =

g4

16π2
w2

[22,1,13], (B2)

∆G[log]
a =

3g4

16C

(
− 8ωb

(
|σ|2 + ωb

2
)

log

[
2g2

(
|σ|2 + ωb

2
)

µ2
r

]
+ 4ωr

(
|σ|2 + ωr

2
)

log

[
2g2

(
|σ|2 + ωr

2
)

µ2
r

]
+

+
(

4|σ|2w1
[2,−1] + ω2w1

[5,−4]

)
log

[
2g2

(
|σ|2 + 1

4ω
2
)

µ2
r

]
− 2ω′3 log

[ 1
2g

2ω′2

µ2
r

])
, (B3)

∆
G[log]
b =

3g4

32C

(
− 4

(
|σ|2w1

[3,1] + ωb
2w1

[1,3]

)
log

[
2g2

(
|σ|2 + ωb

2
)

µ2
r

]
+ 8ωr

(
|σ|2 + ωr

2
)

log

[
2g2

(
|σ|2 + ωr

2
)

µ2
r

]
+

+
(

4|σ|2w1
[3,−1] + ω2w1

[7,−5]

)
log

[
2g2

(
|σ|2 + 1

4ω
2
)

µ2
r

]
− ω′3 log

[ 1
2g

2ω′2

µ2
r

])
. (B4)

2. Scalar contributions

Here we list the scalar-loop-induced contributions to the masses (27)–(28). The ∆SFIN[poly] structures are computed
for arbitrary values of parameters, while ∆SINF[poly] and ∆S[log] are only given in the limit (29). The tree-level value
of τ from eq. (11) should eventually be inserted into the expressions below.

∆SFIN[poly]
a = −

ω′w1
[1,2]

16π2

(
96a0a2 + 76a2

2 − 5(β4 − 10β′4)(β4 − 2β′4) + 560|γ2|2
)
, (B5)

∆
SFIN[poly]
b = +

ω′w1
[2,1]

16π2

(
96a0a2 + 76a2

2 − 5(β4 − 10β′4)(β4 − 2β′4) + 560|γ2|2
)
. (B6)

The polynomial parts of the nested commutator contributions computed in the limit (29) are

∆SINF[poly]
a =

1

8π2
F
(

35; 0, 0; 3w2
[6,0,5], 60ωr

2, 60w2
[4,0,1]

)
, (B7)

∆
SINF[poly]
b =

1

24π2
F
(

105; 0, 0; 216ωb
2 ωr

4

R4 + w2
[71,0,32], 180ωb

2, 60w2
[7,0,8]

)
, (B8)

and the log terms read

∆S[log]
a ≡

∑
x∈X

Tx log(m2
x/µ

2
r), ∆

S[log]
b ≡

∑
x∈X

Ox log(m2
x/µ

2
r), (B9)

where x runs over the set of indices X = {d, e, f , g, h, i, j, k, l1, l2,m1,m2, n1, n2, o1, o2, o3, p, q, r1, r2}.
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The Tx and Ox prefactors are

Td = 1
2C F

(
ωr; 0,−4ωrw

1
[3,−1]; 0, 0, 12ωbωrw

1
[3,−2]

)
, (B10)

Te = 1
8C F

(
− w1

[7,5]; 2ω′w1
[3,1],−2w2

[3,20,1]; 0,−4ω′ωrw
1
[3,1], 4w

3
[18,−3,17,4]

)
, (B11)

Tf = 1
2C F

(
w1

[1,2]; 2ωbωr,−2w1
[1,2]w

1
[3,−2];−ωb

3,−2ωb
2w1

[1,6], 8ωbw
1
[1,−2]w

1
[1,2]

)
, (B12)

Tg = 1
8C F

(
− 9ωr;

3
ωw

3
[−11,3,8,2],−18w2

[−4,2,1];− 6
ωωb

2ω′w1
[3,1], 6w

3
[9,2,−8,−2],−12w3

[4,3,−9,−4]

)
, (B13)

Th = 1
4C F

(
3w1

[3,−1]; 6ωω′,−6w2
[3,0,5]; 0,−12ωω′w1

[2,1],−12w3
[4,3,−9,−4]

)
, (B14)

Ti = 1
C F

(
− ωb; 0, 8ωbωr; 0, 0, 4ωbw

1
[1,−2]w

1
[1,2]

)
, (B15)

Tj = 1
4C F

(
− w1

[2,1];−ωrw
1
[12,5], 2ωrw

1
[2,1]; 6ωr

3, 2ωrw
2
[12,19,6], 4ωωbw

1
[2,1]

)
, (B16)

Tk = 1
C F

(
ω; 0, 4ωωr; 0, 0,−4ωωbw

1
[1,2]

)
, (B17)

Tl1 = 1
32C F

(
4w1

[2,1];w
2
[19,42,−13],−2w2

[3,2,7];− 1
3w

3
[95,−48,3,2],−4ωbw

2
[29,30,−5],−4w3

[9,12,1,2]

)
, (B18)

Tl2 = 1
16C F

(
− 2ω; 1

6w
2
[27,58,23], w

2
[15,10,7];− 1

6w
3
[11,48,39,10],−2w3

[11,14,13,4],−2w3
[9,12,1,2]

)
, (B19)

Tm1
= 1

32C F
(

4w1
[5,9];ω

′w1
[15,−31],−2w2

[81,134,9];−4ω′3,−2ω′w2
[25,−83,10], 4w

3
[79,108,−1,−18]

)
, (B20)

Tm2
= 1

32C F
(
− 4w1

[16,5];w
2
[−45,26,23], 2w

2
[−51,94,41]; 2ω2w1

[5,−4], 2w
3
[7,84,7,−22], 4w

3
[79,108,−1,−18]

)
, (B21)

Tn1
= 1

2C F
(

2w1
[2,1];− 1

2ωw
1
[5,1], w

2
[−3,−2,−7];

1
3ω

2w1
[5,−4], ωw

2
[11,1,−6],−2w3

[9,12,1,2]

)
, (B22)

Tn2
= 1

12C F
(
− 12ω;−ω′w1

[27,−11], 6w
2
[15,10,7];−4ω′3, 6ω′w2

[7,11,−2],−12w3
[9,12,1,2]

)
, (B23)

To1 = 1
32C F

(
4ω; 3w2

[1,−2,−5] − 1
R2w

4
[−9,98,68,−62,13],−8ωw1

[3,1];w
3
[−7,36,−23,12] − 3

R2w
5
[3,−28,38,−64,19,−4],

− 6w1
[3,4]w

2
[1,−2,−1] − 2

R2w
5
[19,−186,−200,90,37,−12], 16ωωbw

1
[2,1]

)
, (B24)

To2 = 1
16C F

(
−2w1

[2,1];
1
ωw

3
[93,43,−1,1], 4ωrw

1
[2,1];

ωb

ω w
1
[−23,1]w

2
[1,0,1],−2ωbw

2
[91,42,−3], 8ωωbw

1
[2,1]

)
, (B25)

To3 = 1
32C F

(
4ω; 3w2

[1,−2,−5] + 1
R2w

4
[−9,98,68,−62,13],−8ωw1

[3,1];w
3
[−7,36,−23,12] + 3

R2w
5
[3,−28,38,−64,19,−4],

− 6w1
[3,4]w

2
[1,−2,−1] + 2

R2w
5
[19,−186,−200,90,37,−12], 16ωωbw

1
[2,1]

)
, (B26)

Tp = 1
8C F

(
ωr;−3ωr

2,−2ωrw
1
[6,1]; 2ωr

3, 2ωr
2w1

[9,2], 12ωbωrw
1
[3,1]

)
, (B27)

Tq = 1
4C F

(
− ωb; 3ωb

2, 2ωbw
1
[3,4];−2ωb

3,−2ωb
2w1

[5,6],−8ωωbw
1
[1,2]

)
, (B28)

Tr1 = 1
32C F

(
4w1

[2,−1];−3ωw1
[7,−5],−2w2

[27,2,−1]; 2ω2w1
[5,−4], 2ωw

2
[43,−7,−14], 4w

3
[19,12,11,6]

)
, (B29)

Tr2 = 1
32C F

(
− 4w1

[1,3];−ω
′w1

[9,23], 2w
2
[39,−38,−33];−4ω′3, 2ω′w2

[35,−1,−2], 4w
3
[19,12,11,6]

)
, (B30)

Ts = 0 , (B31)
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Od = 1
2C F

(
ωr; 0, 4ωrw

1
[−3,1]; 0, 0, 12ωbωrw

1
[3,−2]

)
, (B32)

Oe = 1
8C F

(
− 3w1

[3,1]; 0,−6w1
[3,−1]w

1
[3,1]; 0, 0, 36ωbωrw

1
[3,1]

)
, (B33)

Of = 1
16C F

(
w1

[9,15];−2w2
[3,−9,−2],−48w2

[1,1,−1];−2ωb
2w1

[1,3],−4ωb
2w1

[1,27], 4w
3
[13,−9,−48,−4]

)
, (B34)

Og = 1
16C F

(
− 9ω; 6w2

[9,3,1], 36ωb
2;−6ωb

2w1
[1,3],−12w3

[4,12,6,1], 12w3
[1,3,6,2]

)
, (B35)

Oh = 1
16C F

(
3w1

[9,−1]; 18ωω′,−12w2
[6,3,7]; 0,−36ωω′w1

[2,1], 12w3
[−7,−3,24,10]

)
, (B36)

Oi = 1
16C F

(
− w1

[27,5]; 12ωbω
′, 4w2

[15,39,10]; 0,−24ωbω
′w1

[1,2], 4w
3
[17,−45,−48,−20]

)
, (B37)

Oj = 1
16C F

(
−3w1

[1,3];− 2
ωw

3
[6,27,4,−5], 12w2

[5,−2,−1];
6
ωωr

2w2
[1,4,−1], 4w

3
[6,27,3,2], 4w

3
[−7,−3,24,10]

)
, (B38)

Ok = 1
16C F

(
w1

[21,11]; 12ωω′, 4w2
[15,21,−4]; 0,−24ωωbω

′,−4w3
[31,33,12,20]

)
, (B39)

Ol1 = 1
288C F

(
54ω; 3

ωb
w3

[79,66,−57,−8],−54ωw1
[3,−1];− 1

ωb
w4

[350,−361,114,−7,−4],

− 12
ωb
w4

[75,76,−33,−18,−2],−108ωrw
2
[3,4,1]

)
, (B40)

Ol2 = 1
288C F

(
− 18w1

[3,1];
1
ωωb

w4
[147,361,105,27,8], 18w1

[3,1]w
1
[3,5];− 1

ωωb
w2

[7,4,1]w
3
[14,39,−3,4],

− 12
ωb
w4

[21,76,21,6,2],−108ωωrw
1
[3,1]

)
, (B41)

Om1
= 1

32C F
(

2w1
[9,19]; 3ω′w1

[3,−11], 2w
2
[−75,−150,1];−ω

′3,−2ω′w2
[13,−89,4], 4w

3
[76,135,−24,−19]

)
, (B42)

Om2
= 1

32C F
(
−6w1

[11,3];w
2
[−15,18,1], 6w

2
[−23,38,13];ω

2w1
[7,−5], 2ωbw

2
[43,54,−21], 4w

3
[76,135,−24,−19]

)
, (B43)

On1
= 1

12C F
(

9w1
[3,1];

ω
ωb
w2

[−29,14,1],−72ωr
2; ω2

6ωb
w2

[56,−47,−1],− ω
ωb
w3

[−69,31,17,1],−18w3
[9,9,−3,1]

)
, (B44)

On2
= 1

12C F
(
− 3w1

[3,5];− ω′

3ωωb
w3

[39,31,1,1], 12w2
[9,3,4];− ω′3

6ωωb
w2

[20,23,−1],
ω′

ωb
w3

[39,19,13,1],−18w3
[9,9,−3,1]

)
, (B45)

Oo1 = 1
32C F

(
2w1

[3,1];−3R2 + 16
R6ω

3ω′3ωr
2 − 6

R2ωω
′w2

[1,−16,1] − 3w2
[1,0,5],−8w2

[3,3,2];

− 12
R6 ω

2ω′3ωr
2w2

[1,0,1] + w3
[−1,30,−18,7] − 3

R2w
5
[1,−26,19,−45,18,−3],

− 32
R6 ω

3ω′3ωr
2w1

[2,1] + 6w3
[−2,1,10,5] − 2

R2w
1
[2,−1]w

4
[5,−92,−146,−28,9], 8w

3
[1,3,6,2]

)
, (B46)

Oo2 = 1
16C F

(
− 3ω; 1

ωw
1
[1,−5]w

2
[3,12,5], 12ωb

2; 1
ωw

4
[1,1,12,1,13], 2w

3
[2,3,54,27], 4w

3
[1,3,6,2]

)
, (B47)

Oo3 = 1
32C F

(
2w1

[3,1]; 3R2 − 16
R6ω

3ω′3ωr
2 + 6

R2ωω
′w2

[1,−16,1] − 3w2
[1,0,5],−8w2

[3,3,2];

12
R6 ω

2ω′3ωr
2w2

[1,0,1] + w3
[−1,30,−18,7] + 3

R2w
5
[1,−26,19,−45,18,−3],

32
R6 ω

3ω′3ωr
2w1

[2,1] + 6w3
[−2,1,10,5] + 2

R2w
1
[2,−1]w

4
[5,−92,−146,−28,9], 8w

3
[1,3,6,2]

)
, (B48)

Op = 1
8C F

(
ωr;−3ωr

2,−2ωrw
1
[6,1]; 2ωr

3, 2ωr
2w1

[9,2], 12ωbωrw
1
[3,1]

)
, (B49)

Oq = 1
16C F

(
− w1

[3,1]; 6ωωb, 8w
2
[3,3,1];−2ωb

2w1
[1,3],−4ωbw

2
[7,9,6],−4w3

[11,21,12,4]

)
, (B50)

Or1 = 1
32C F

(
2w1

[3,−1];−w
2
[15,6,−9],−2w2

[21,6,1];ω
2w1

[7,−5], 2ωw
2
[31,−1,−8], 4w

3
[16,15,12,5]

)
, (B51)

Or2 = 1
32C F

(
− 2w1

[3,5];−3ω′w1
[13,3], 2w

2
[21,−30,−23];−ω

′3,−2ω′w2
[1,−29,−20], 4w

3
[16,15,12,5]

)
, (B52)

Os = 0. (B53)
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The m2
x are the eigenvalues of the scalar mass matrices in eqs. (A19)–(A37), computed in the limit (29):

m2
d := f

(
−4ωr; 0, 24ωbωr

)
, (B54)

m2
e := f

(
−2w1

[3,1]; 0, 4ωrw
1
[3,1]

)
, (B55)

m2
f := f

(
−2w1

[1,2]; 2ωb
2, 8ωbw

1
[1,2]

)
, (B56)

m2
g := f

(
−2w1

[2,1]; 2ωb
2, 4ωw1

[2,1]

)
, (B57)

m2
h := f

(
−2ω; 0, 4ωw1

[2,1]

)
, (B58)

m2
i := f

(
−4ωb; 0, 8ωbw

1
[1,2]

)
, (B59)

m2
j := f

(
−2w1

[2,1]; 2ωr
2, 4ωw1

[2,1]

)
, (B60)

m2
k := f

(
−4ω; 0, 8ωωb

)
, (B61)

m2
l1 := f

(
−3ω; 1

2w
2
[7,−4,1], 3w

2
[3,4,1]

)
, (B62)

m2
l2 := f

(
−w1

[3,1];
1
2w

2
[7,4,1], 3w

2
[3,4,1]

)
, (B63)

m2
m1

:= f
(
−w1

[1,3];
1
2ω
′2, w1

[1,3]w
1
[5,1]

)
, (B64)

m2
m2

:= f
(
−w1

[5,1];
1
2ω

2, w1
[1,3]w

1
[5,1]

)
, (B65)

m2
n1

:= f
(
−3ω; 1

2ω
2, 3ωw1

[3,1]

)
, (B66)

m2
n2

:= f
(
−w1

[3,1];
1
2ω
′2, 3ωw1

[3,1]

)
, (B67)

m2
o1 := f

(
−2ω; 3

2w
2
[1,0,1]+

R2

2 , 4ωw
1
[2,1]

)
, (B68)

m2
o2 := f

(
−2w1

[2,1];w
2
[1,0,1], 4ωw

1
[2,1]

)
, (B69)

m2
o3 := f

(
−2ω; 3

2w
2
[1,0,1]−R2

2 , 4ωw
1
[2,1]

)
, (B70)

m2
p := f

(
−2ωr; 2ωr

2, 4ωrw
1
[3,1]

)
, (B71)

m2
q := f

(
−2ωb; 2ωb

2, 8ωωb
)
, (B72)

m2
r1 := f

(
−ω; 1

2ω
2, ωw1

[5,3]

)
, (B73)

m2
r2 := f

(
−w1

[5,3];
1
2ω
′2, ωw1

[5,3]

)
, (B74)

m2
s := 8a0w

2
[3,0,2]. (B75)

The labels in the subscript of masses correspond to those defined in Table I and they are further enumerated when
there is more than 1 non-vanishing eigenvalue in the relevant sector.

The structure of the results is as anticipated:

1. The tree-level masses of the pseudo-Goldstone triplet and octet are proportional to a2; the desired dominance of
the 1-loop contribution to the masses of these two states (and them alone) requires this parameter to be small.

2. The results above (in particular, the ∆SINF [poly] and ∆S[log] terms) are written in a simplified form corresponding
to the limit (29)17. Note, however, that in full generality a2 is strongly correlated to |σ|2 and τ (which has to be
well below MPl in order to retain the perturbative regime). At one loop, it is sufficient to insert the tree-level
expression (11) for τ into the 1-loop ∆-terms.

3. In the limit (29), the largest blocks of the scalar mass matrix evaluated in the vacuum are 2×2 and the only one
which is not diagonalized trivially is M2

o , see (A33). This is where the square-root (B1) may arise and it does

so in ∆
SINF [poly]
b due to the non-commutativity of the relevant M2

o block with the corresponding part of the
derivatives of the field dependent mass matrix (requiring diagonalization and normalization of the eigenmodes
as suggested by eqs. (24)–(25)). These purely polynomial terms emerge solely from the degeneracy of the scalar
spectrum in the SM symmetry limit along the lines described in Sect. III A 2. Furthermore, rational functions

including the R-factor also appear in the coefficients Tx and Ox of logarithmic contributions ∆
S[log]
a and ∆

S[log]
b

(in particular, in terms with x ∈ {o1, o3}).

4. The logarithmic terms in ∆G[log] and ∆S[log] have arguments of the form m2/µ2
r, where m is a mass of a physical

particle (gauge boson or scalar) and µr is the renormalization scale. Only terms corresponding to particles with
non-vanishing masses turn out to be present, i.e., there are no IR divergences in the results (for ∆S[log], the
limit (29) was used; in further limits of the regular- and flipped-SU(5) case IR divergences may appear, see
comments in Sections III A 4 and III B 1). From the list of massive particles, all have terms present except for
two exceptions: the remaining gauge singlet (A18) contribution in ∆G[log] and the massive singlet present in
M2
s (B75) is missing from ∆S[log], i.e. Ts = Os = 0. Note that the use of limit (29) gives an extra would-be

Goldstone singlet in M2
s (because the symmetry is increased), while states a, b and another singlet in M2

s become
massless due to their pseudo-Goldstone nature; the limit gives 22 massive fields instead of 26 which, given the
absence of m2

s, yields 21 contributions to ∆S[log], see eq. (B9).

17 Since the largest block in the mass matrix one needs to diagonalize is ‘only’ 4 × 4 (and in addition even contains a massless would-be
Goldstone mode), it is possible to write down the results also in the situation when the limit (29) is not imposed. However, as we plan
to use these mainly for the sake of a future numerical study where the diagonalization of such structures is trivial, there is no real reason
to do that here.
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Appendix C: The effective potential and nested commutators – further details

In this Appendix we intend to clarify several technical points related to the evaluation of the derivatives of the
effective potential, and especially, the traces of the infinite series of nested commutators (23).

The derivation of the basic formulae (20)–(23) for the derivatives of the one-loop effective potential (19) is straight-
forward, see also [26]. Essentially, the matrix logarithm is expanded into a power series around the identity matrix;
in doing so a particular attention should be paid to the ordering of the individual factors as matrix derivatives do not
necessarily commute with the original matrix. Although the cyclic property of the trace makes this issue irrelevant
for the first order derivatives of V1, cf. (20), it is of paramount importance for second order. In the latter case, it
is convenient to move all derivative factors to one side of the expression by repeatedly using the commutator rule
A B = B A + [A,B] where B is an arbitrary square matrix with appropriate dimension. Hence, powers of the basic
“binomial structure” (A − 1) can be isolated from the relevant expressions with pre-factors in the form of nested
commutators, cf. (23).

A direct term-by term evaluation of this series may be rather complicated due to the fact that there is no general
connection among A, Aa and Ab (which correspond to different orders in the Taylor expansion of the field-dependent
mass matrices M2

S,G(Φ) around the tree-level vacuum) and, on top of that, the expected a ↔ b symmetry is not

apparent on the RHS of the formula (23). The method described below and used to deal with this issue yields not
only an interesting analytic insight but it also provides a relatively simple procedure for the analytic evaluation that
becomes almost trivial in case of a numerical treatment.

The argument goes as follows: any of the n× n matrices A, Aa and Ab can be viewed as an element of the space
of endomorphisms End(Rn). Since A is proportional to the mass matrix, it is Hermitian and hence diagonalizable;

its spectral decomposition then reads A =
∑n
i=1 λi viv

†
i with dimensionless eigenvalues λi = m2

i /µ
2
r corresponding

to the normalized eigenvectors vi forming an orthonormal basis in Rn, v†ivj = δij . Consequently, the matrices viv
†
j

form an orthonormal basis of the n2-dimensional space of End(Rn), Tr
[
viv
†
j (vkv

†
l )
†
]

= δikδjl. Notice that the

commutator with A, defined as AdA(B) := [A,B], is a linear operator on the space of matrices End(Rn) and, hence

AdA ∈ End2(Rn). Crucially, the set of matrices {viv†j} forms a complete eigenbasis for the AdA operator, with
respective real eigenvalues λi−λj . The nested commutators with A are then easily evaluated on these basis elements:

[A, [A, . . . [A,viv
†
j ]]]︸ ︷︷ ︸

k−1 times

= Adk−1
A (viv

†
j) = (λi − λj)k−1 viv

†
j . (C1)

Expanding now Aa and Ab in the {viv†j} eigenbasis as Aa =
∑n
i,j=1M

a
ij viv

†
j , Ab =

∑n
i,j=1M

b
ij viv

†
j , with coefficients

Ma
ij and M b

ij (which can be alternatively viewed as the matrix elements of Aa and Ab rewritten in the eigenbasis of
A, cf. eq. (25)), one arrives at

Υ(A,Aa,Ab) =

n∑
p,q=1

n∑
i,j=1

Ma
pqM

b
ij

∞∑
m=1

(−1)m+1 1

m

m∑
k=1

(
m

k

){
A,vpv

†
q

}
Adk−1

A (viv
†
j) (A− 1)m−k

=

n∑
p,q=1

n∑
i,j=1

Ma
pqM

b
ij vpv

†
qviv

†
j (λp + λq)×

{
log λi−log λj

λi−λj
for λi 6= λj

1
λj

for λi = λj
. (C2)

In case of degenerate eigenvalues, i.e. λi = λj , only the k = 1 term gives a non-zero contribution. With this at hand
the trace of Υ is obtained readily:

Tr Υ(A,Aa,Ab) =
∑

i,j; λi 6=λj

Ma
jiM

b
ij

λi + λj
λi − λj

log
λi
λj

+

+
∑

i,j; λi=λj

2Ma
jiM

b
ij , (C3)

and one arrives at the formula (24). Note also that the a↔ b symmetry becomes manifestly apparent in this form.

Eq. (C3) gives some interesting insights into the contribution of the nested commutator series to the masses:

1. Notice that there are two types of contributions in equation (C3), polynomial and logarithmic. The arguments
of the logs are the eigenvalues of A = M2

S,G/µ
2
r, so they give rise to exactly the same types of logs as the usual
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matrix logarithms in the rest of eq. (21) and thus analytic results are again subject to the same limitation – the
diagonalization procedure, which for sufficiently complicated matter content cannot be worked out analytically
(but this represents no problem in numerical treatment). From this perspective, the result for Υ is as good as
could be hoped for.

2. The polynomial contribution is due to the degeneracy of the eigenvalues of A, which is generally the case of
any non-Abelian gauge theory with non-trivial matter content. More symmetry implies more degeneracy, and
thus more terms of the polynomial type. If one turns off certain VEVs in a spontaneously broken scenario, the
degeneracy of the masses increases and further logarithmic contributions transform into polynomials in that
limit. Some explicit examples of such behaviour can be found in Section III B 1.

3. Notice that the result is invariant under the rescaling λk → κλk with a common factor κ for all k, and thus does
not explicitly depend on the renormalization scale µr (unlike other terms in the 1 loop correction to the mass).

4. The form of the result (C3) admits for a simple isolation of the spurious IR divergences due to the vanishing
log arguments corresponding to Goldstone bosons, cf. Sect. III A 4.

Finally, let us remark that the ordering of the basic operations that we did in dealing with the second derivatives
of the EP, i.e., capturing first all the analytic complication into a series of nested commutators and only then going to
the mass basis, is not fundamental. An alternative approach in which the transition to the mass basis is performed
much sooner has been recently advocated in [31]; the main benefit of that scheme is namely its universality for all
derivative orders.

Nevertheless, there is a clear rationale in favour of the (perhaps somewhat less universal) former approach in the
situation of our interest: working with the commutator series offers a more direct comparison with the diagrammatic
method employed in Section III B 3 because the nested commutators reflect all the combinatorial difficulties in summing
diagrams in which the insertion of VEVs and an interaction vertex do not commute.
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