
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Perturbative renormalization and mixing of quark and glue
energy-momentum tensors on the lattice

Michael J. Glatzmaier, Keh-Fei Liu, and Yi-Bo Yang
Phys. Rev. D 95, 074513 — Published 20 April 2017

DOI: 10.1103/PhysRevD.95.074513

http://dx.doi.org/10.1103/PhysRevD.95.074513


Perturbative Renormalization and Mixing of Quark and Glue

Energy-Momentum Tensors on the Lattice

Michael J. Glatzmaier∗, Keh-Fei Liu†, and Yi-Bo Yang‡

Department of Physics and Astronomy,

& Center for Computational Sciences,

University of Kentucky, Lexington, KY 40506

(Dated: March 27, 2017)

Abstract

We report the renormalization and mixing constants to one-loop order for the quark and gluon

energy-momentum (EM) tensor operators on the lattice. A unique aspect of this mixing calculation

is the definition of the glue EM tensor operator. The glue operator is comprised of gauge-field

tensors constructed from the overlap Dirac operator. The resulting perturbative calculations are

performed using methods similar to the Kawai approach using the Wilson fermion and gauge actions

for all QCD vertices and the overlap Dirac operator to define the glue EM tensor. Our results are

used to connect the lattice QCD results of quark and glue momenta and angular momenta to the

MS scheme at input scale µ.
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I. INTRODUCTION

The nucleon spin problem is still an outstanding issue in QCD. The problem originated

from the European Muon Collaboration (EMC) experiment which indicated that the con-

tribution of the quark spin to the proton spin was only 25% of the theoretical prediction

in the quark model. To settle this issue, a more precise determination of both the quark

and glue contributions to the nucleon spin are necessary. But in addition to the increased

experimental precision, it is a difficult issue to address theoretically as well. In this regard,

lattice determinations of the momentum and angular momentum are indispensable.

Recent lattice calculations of the quark orbital angular momenta in the connected inser-

tion have been carried out for the connected insertions [1–8], and it was shown to be small

in quenched calculations [1] and near zero in dynamical fermion calculations [2, 3] due to

the cancellation between the u and d quarks. The disconnected insertion contribution is also

investigated on the lattice using dynamical fermions but the signal is noisy [9]. The Gluon

helicity distribution ∆G(x)/G(x) from COMPASS and STAR experiments was found to be

close to zero [10, 11] while the evidence of a non-zero ∆G(x) is confirmed recenetly [12, 13].

Additionally, it has been argued based on analysis of single-spin asymmetry in unpolar-

ized lepton scattering from a transversely polarized nucleon that the glue orbital angular

momentum vanishes [14], leaving us a in a ‘Dark Spin’ scenario.

A full lattice calculation of the quark and glue momenta and angular momenta has just

been completed with quenched Wilson fermion and gluon actions, where both the quark

connected and disconnected insertions are included [15]. In combining with earlier work

on the quark spin, a result for the quark orbital angular momentum was obtained. It was

found that the u and d quark orbital contributions indeed largely cancel in the connected

insertion, as in the dynamical fermion calculation [2, 3], however their contributions in the

disconnected insertion, including the strange quark, are on the order of 50% of the total

nucleon spin. Even though the glue momentum in proton have been studied in serval recent

works [16, 17], the glue angular momentum was obtained for the first time with the gauge

field strength tensor for the glue operators defined by the overlap Dirac operator.

Our aim in this paper is to calculate the renormalization and mixing constants neces-

sary to extract continuum physics from a lattice calculation of the quark and glue angular

momentum operators. These one-loop Z-factors calculated from lattice perturbation theory

are a crucial ingredient in computing the matching conditions between lattice calculations,

which are regulated with an explicit lattice spacing ‘a’, and experimental results, which are

quoted in the MS scheme. As the one-loop perturbative calculations involving the overlap

Dirac operator are lengthy, we have written several scripts in Mathematica and python to

carry out the calculation analytically as far as possible. At the end of all manipulations,

a final series of numerical integrations is necessary before quoting the renormalization con-

stants. The quark sector of this calculation follows closely the calculations in [18], and so
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the finite pieces of these results have been relegated to the appendices of this work. The

glue sector however is new and the finite pieces of those diagrams involving the glue angular

momentum operator ZG→Q and ZG→G have been listed in the conclusion.

We have organized this paper as follows, in section II, we outline the general aspects

of the mixing calculation and highlight terminology used for the remainder of the paper.

In section III we sketch the derivation of the Feynman rules used for the glue EM tensor

operator defined from the overlap Dirac derivative and give the details in section III as well as

Appendix A. In section IV we present the renormalization conditions used and in section V,

we detail our approach in extracting the finite contributions to the renormalization constants.

We present our results for each calculation in section VI. We conclude and summarize our

goals for future work in section VII.

II. FORMALISM

The QCD angular momentum operators are defined according to the generators of the

Lorentz transformation [19]

J i ≡ 1

2
ǫijk
∫

d3xM0jk(~x), (1)

where M0ij is the angular momentum density,

Mαµν(x) = T ανxµ − T αµxν , (2)

and here, T µν is the symmetric, gauge-invariant, QCD energy-momentum tensor.

One can then decompose the energy momentum tensor into a gauge-invariant sum of its

quark and glue contributions,

T µν = T µνq + T µνg , (3)

where the subscripts, q and g, stand for the quark and glue operators, respectively. Explicitly,

these operators are equivalent to the leading twist operators in unpolarized DIS in Euclidean

space,

T µνq =
1

4
S
∑

f

ψ̄f

(

γµ
−→
D ν − γµ←−D ν

)

ψf , (4)

where S denotes that T µν is symmetrized with respect to indices µ and ν and f denotes

quark flavor. For the glue operator,

T µνg =
1

2
S GµαGν

α, (5)
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where a trace over color indices has been suppressed, and G denotes the gauge field strength

tensor. These equations allow one to write ~J as a gauge invariant sum,

~JQCD = ~Jg + ~Jq, (6)

where, using Eq.(1), the ith component of J is,

J iq,g =
1

2
ǫijk
∫

d3x
(
T 0k
q,gx

j − T 0j
q,gx

k
)
. (7)

One can also re-express Jq and Jg into a form more suitable for physical interpretation using

the QCD equations of motion [19, 20], one arrives at the well known result,

~Jq =

∫

d3x
1

2

[

ψ~γ γ5 ψ + ψ†
(

~x× (i ~D)
)

ψ

]

, (8)

~Jg =

∫

d3x

[

~x× ( ~E × ~B)

]

. (9)

where both the color and flavor indices are suppressed. The first term of Eq. (8) is identified

as the quark spin operator 1
2
~Σq and the second term as the orbital angular momentum

operator (~Lq). Thus, we write the total angular momentum for quarks,

~Jq =
1

2
~Σq + ~Lq. (10)

Collecting the results found in Eqs. (6), (8) and (9), the angular momentum operator in

QCD can be expressed as a gauge-invariant sum [19],

~JQCD = ~Jq + ~Jg =
1

2
~Σq + ~Lq + ~Jg. (11)

One must measure all the three quantities in Eq. (11) on the lattice in order to address the

‘Dark Spin’ scenario from first principles. The first term appearing in Eq.(8) measures the

quark spin contribution to the proton spin and several studies have already computed this

operator on the lattice, the details can be found in [21–23] and the recent updates on the

disconnected contributions can be found in Refs. [9, 24–27]. For the second term appearing

in Eq.(8), it has been shown in [28] that a straight-forward lattice computation of the

moments of operators including a spatial coordinate ~x is complicated by periodic boundary

conditions on the lattice. Instead, this contribution has been computed by determining the

total angular momentum for the quarks and then subtracting the quark spin contribution

to arrive at Lq [1–4, 15].

On the lattice, the matrix element of T (0i)q,g between two nucleon states can be written

in terms of three form factors (T1, T2 and T3) as derived in [19],

〈p′, s′|T {0i}q,g|p, s〉 = 1

2
ū(p′, s′)

[

T1(q
2)(γ0p̄i + γip̄0) +

1

2m
T2(q

2)
(
p̄0)(iσiα) + p̄i(iσ0α)

)
qα

+
1

m
T3(q

2)q0qi
]q,g

u(p, s), (12)

4



where, p and p′ are the initial and final momenta of the nucleon, respectively, p̄ =
1

2
(p′ + p)

and qµ = p′µ− pµ is the momentum transfer, m is the mass of the nucleon, and u(p, s) is the

nucleon spinor. The indices s′ and s are the initial and final spins, respectively [15].

By calculating various polarized and unpolarized three-point functions for Eq. (12) at finite

q2,and (7), and then taking q2 → 0 limit, one obtains,

Jq,g =
1

2
[T1(0) + T2(0)]

q,g , (13)

〈x〉q,g = T1(0)
q,g. (14)

where, 〈x〉q,g = T1(0)
q,g is the first moment of the momentum fraction carried by the quarks

or glue inside the nucleon.

From Eqs. (13) and (14), we write the momentum and angular momentum sum rules as,

T1(0)
q + T1(0)

g = 1, (15)

[T1(0) + T2(0)]
q + [T1(0) + T2(0)]

g = 1. (16)

Thus it is clear that to evaluate Jq,g (or, Lq,g), one must compute both the T1(0) and T2(0)

form factors. And from Eq. (12), these form factors are extracted from the matrix element

〈p′, s′|T {0i}q,g|p, s〉. In this work, we compute the renormalization and mixing constants

associated with these operators at the one-loop level. As stated in the introduction, this

calculation follows similar calculations of the mixing of leading twist operators under the

renormalization group. The essential new piece in this calculation is the introduction of a

T µνg which is defined from the overlap Dirac operator. We discuss more details regarding

the momentum space operators T µνq,g in the next section.

III. EM TENSOR OPERATORS

In this section we outline the lattice operators we use for our renormalization calculations

based on the discussion in the previous section. The operators we investigate are similar to

leading twist operators in QCD, and can be written compactly,

Oqµν =
1

2
S
∑

f

ψ̄f

(

γµ
←→
D ν

)

ψf (17)

Ogµν =
1

2
S trc G

µαGν
α, (18)

where the symbol S instructs us to take the symmetrized and traceless piece of the operator,←→
D = 1/2 (

−→
D−←−D), and trc is a trace over color indices. These operators are gauge invariant

and we will assume in further discussions that they are symmetrized with respect to all

Lorentz indices.
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For the quark operator appearing in Eq.(17), the covariant derivative is defined from the

Wilson action,

−→
Dµψ(x) =

1

2a

(
Uµ(x)ψ(x+ aµ̂)− U †

µ(x− aµ̂)ψ(x− aµ̂)
)
, (19)

←−
Dµψ(x) =

1

2a

(
ψ̄(x+ aµ̂)Uµ(x)

† − ψ̄(x− aµ̂)Uµ(x− aµ̂)
)
. (20)

where Uµ(x) = exp (ig0aAµ(x)) is the link variable at lattice site x, with lattice spacing a

and coupling g0. In the quark operator, one can integrate by parts to remove the left-acting

derivative in favor of right-acting derivatives only. An expansion of the link variable in the

coupling g0 allows one to write the momentum space vertices necessary for the one-loop

renormalization of Oqµν [18, 29],

Oqµν = Oq,0µν +Oq,1µν +Oq,2µν + . . . , (21)

where,

Oq,0µν =
1

2a

∑

x

(
ψ̄(x)γµψ(x+ aν̂)− ψ̄(x)γµψ(x− aν̂)

)
(22)

Oq,1µν =
ig0
2
T a
∑

x

(
ψ̄(x)γµA

a
ν(x)ψ(x+ aν̂) + ψ̄(x)γµA

a
ν(x− aν̂)ψ(x− aν̂)

)
(23)

Oq,2µν = −ag
2
0

4
T aT b

∑

x

(
ψ̄(x)γµA

a
ν(x)A

b
ν(x)ψ(x+ aν̂)− ψ̄(x)γµAaν(x− aν̂)Abν(x− aν̂)ψ(x− aν̂)

)
.

(24)

In using the notation Oq,iµν , we denote the order in the QCD coupling by the power i. To

Fourier transform these operators into momentum space, we define the following Fourier

transformations on the quark and gauge fields,

ψ(x) =

∫ π/a

−π/a

d4k

(2π)4
eikxψ(k), (25)

Aµ(x) =

∫ π/a

−π/a

d4k

(2π)4
ei(x+aµ/2)kAµ(k). (26)

The complete Feynman rules for each order in the coupling are collected in appendix A.

The Feynman rules for the glue operator involve traces of the overlap Dirac derivative and

are thus more cumbersome to compute. Because of this, we provide more details on our

methodology in this section.

Specifically, the field strength tensors which compose the gluon operator Ogµν are con-

structed from the overlap Dirac derivative. The renormalization constants and mixing coef-

ficients of this operator have not yet been studied in the literature. Although this operator

has been defined from the overlap derivative, one can make contact with the classical field
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strength tensor. One can prove that the kernel of the overlap Dirac operator is equivalent

to the classical field strength tensor in the continuum limit [30],

trs σµνDov(x, x) = a2cT (ρ, r)Gµν(x) +O(a3), (27)

where trs denotes a trace over spinor indices, σµν = 1
2i
[γµ, γν], Gµν = g0∂[µAν] − g20[Aµ, Aν ],

and cT (ρ) is an integration constant given by,

cT (ρ, r) = ρ

∫ π

−π

d4k

(2π)4
2(Mcµcν + rs2µcν + rs2νcµ)

z3/2
, (28)

z =
∑

µ

s2µ +M2,

M = ρ+ r
∑

µ

(cµ − 1),

cµ = cos kµ, sµ = sin kµ.

For one-loop calculations, rather than a Taylor expansion in the lattice spacing ‘a’ in Eq.(27),

we need an order by order expansion in the coupling constant g0. For this, we project out

the diagonal component of Dov(x, y), compute the trace over Lorentz indices, and finally

Fourier transform the result in momentum space, order by order in the coupling.

We give here a brief sketch of the procedure used to compute the momentum space

Feynman rules of the gluon operator. The collected results for the lowest order vertices can

be found in appendix A. We follow the methods outlined in [30, 31], and write the diagonal

component of the overlap Dirac operator,

Dov(x, x) =
∑

y

D(x, y)δxy =
∑

y

∫ π/a

−π/a

d4k

(2π)4
eikxDov(x, y)e

−iky, (29)

where we use the following definition for the overlap operator,

Dov(x, y) =
ρ

a

(

1−X 1√
X†X

)

x,y

, (30)

and X(x, y) is the Wilson derivative, which has the discretized form,

X(x, y) =
1

2a

∑

µ

[
γµ
(
δx+µ̂,yUµ(x)− δx,y+µ̂U †

µ(y)
)

+r
(
2δx,y − δx+µ̂,yUµ(x)− δx,y+µ̂U †

µ(y)
)]
− ρ

a
δx,y. (31)

An expansion, order by order in the coupling constant g0, can be obtained by rewriting

the square root term as an integral over a σ parameter and Taylor expanding the resulting

rational function as a series in the coupling constant [29, 32],

1√
X†X

=

∫ ∞

−∞

dσ

π

1

σ2 +X†X
. (32)
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The product X†X can be expanded (in powers of g) order by order, we introduce the

following shorthand,

X†X =
∑

i

gi0(X
†X)i ≡

∑

i

gi0 Σi, (33)

to the lowest orders we have, then,

Σ0 = X†
0X0 (34)

Σ1 = X†
0X1 +X†

1X0 (35)

Σ2 = X†
0X2 +X†

2X0 +X†
1X1, (36)

where the subscripted Σi and Xi indicate at which order in the QCD coupling the various

Σ factors have been expanded . The expressions for the various Xi operators in momentum

space can be found in append A. With these results, we Taylor expand Eq.(32) order by

order in the coupling g0. For example, the zeroth, first and second order expansions are,

(
1

σ2 +X†X

)

0

=
1

σ2 + Σ0
(37)

(
1

σ2 +X†X

)

1

= − 1

σ2 + Σ0
Σ1

1

σ2 + Σ0
(

1

σ2 +X†X

)

2

=
1

σ2 + Σ0
Σ1

1

σ2 + Σ0
Σ1

1

σ2 + Σ0
− 1

σ2 + Σ0
Σ2

1

σ2 + Σ0
.

(38)

Examining the form of the Σi, we can see that the zeroth order expansion of Dov will vanish

when traced over σµν ,

(tr σµνDov)
0 ≡ G0

µν(x, x) =
ρ

πa
tr σµν

∫ ∞

−∞

dσ
∑

y

∫

k

eikxX0
1

σ2 + Σ0

e−iky. (39)

The Dirac structure of X0 is X0 = Aγµ + B where both A and B are Lorentz scalars, and

Σ0 = X†
0X0 is also a Lorentz scalar, see appendix A for details. Thus, when traced over σµν ,

this expression vanishes.

The various products X/
√
X†X expanded to the next three lowest orders in the coupling

g are listed below. The third order expansion is necessary to calculate tadpole contributions

to the renormalization constant ZG→G which contains a fourth-order vertex. After the taylor

expansion and noting that Σ0 is a commuting object we find for the first three orders of the
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expansion of tr σµνDov(x, x) ≡ Gµν(x, x) in Eq.(27),

(tr σµνDov)
1 ≡ G1

µν(x, x) = g0
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx Π̂

(

σ2X1 −X0X
†
1X0

)

Π̂ e−iky (40)

(tr σµνDov)
2 ≡ G2

µν(x, x) = g20
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx

(

Π̂
{

σ2X2 −X0X
†
2X0

}

Π̂

−Π̂
{

σ2(X1X
†
0X1 +X1X

†
1X0 +X0X

†
1X1)−X0X

†
1X0X

†
1X0

}

Π̂2
)

e−iky (41)

(tr σµνDov)
3 ≡ G3

µν(x, x) = g30
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx

(

Π̂
{
σ2X3 −A

}
Π̂ + Π̂2

{
σ2B + C

}
Π̂2
)

e−iky

, (42)

where again the power i in Gi denotes the order in the QCD coupling. We have made use

of the shorthand,
∫

k
≡
∫
d4k/(2π)4 and A,B and C in G3

µν are lengthy expressions involving

products of Xi, and Π̂ = 1
σ2+Σ0

. The exact forms for A,B and C can be found in appendix

A. Before we Fourier transform each order in the coupling g, we compute the action of the

various Xi derivatives on e
−iky as shown in Eq.(29), we have, using Eq.(31),

Xe−ikyf(x) = e−iky

{
∑

µ

γµ

(

Q̃µ −
i

a
sµ

)

− rw
∑

µ

(

−1

a
(1− cµ) + R̃µ

)

− ρ

a

}

f(x),(43)

where,

Q̃µ =
1

2

(
e−ikµ∇µ + eikµ∇∗

µ

)
(44)

R̃µ =
1

2

(
e−ikµ∇µ − eikµ∇∗

µ

)
(45)

and,

∇µψ(x) =
1

a
(Uµ(x)ψ(x+ aµ̂)− ψ(x)) (46)

∇∗
µψ(x) =

1

a

(
ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂)
)
. (47)

Eqs.(22-24) as well as Eqs.(A7-A9) are the main results for this section. For the glue

operator, what remains is to compute, order by order the products acting on the unit vector

1n,

Pi = X0X
†
iX0

1

σ2 +X†
0X0

1̂ (48)

which appear in Eqs.(A7,A8), Fourier transform all gauge fields to momentum space, and

finally compute the trace over the Dirac indices. These details are somewhat lengthy and
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are relegated to appendix A for the interested reader. We close this section by remarking

that once these calculations are performed, we can construct the full momentum space gluon

operator GµαG
α
ν order by order in the coupling by using our results for the field strength

tensor. We can write this expansion schematically,

Ogµν =
(
G0
µα + g0G

1
µα + g20G

2
µα + . . .

) (
G0,α
ν + g0G

1,α
ν + g20G

2,α
ν + . . .

)
. (49)

We note that the trace over σµν in Eq.(27) causes all terms involving G0
µα to vanish. At lowest

order, then, we have Feynman rules for two and three external gauge fields respectively,

Og,2µν = g20G
1
µα G

ν,1
α (50)

Og,3µν = g30
(
G1
µα G

ν,2
α +G2

µα G
ν,1
α

)
, (51)

where a symmetrization over Lorentz indices and a trace over color indices has been sup-

pressed.

IV. RENORMALIZATION

In this section we detail the renormalization conditions used in our calculations. We

remark that since we are calculating the one-loop corrections to flavor-singlet operators,

the gluon operator is allowed to mix with the quark operator beyond tree level. This

renormalization and mixing arise from diagrams like those shown in Figs.[1,4] and Figs.[2,3]

respectively. Due to these diagrams, the renormalization constants Z are in fact matrices

Zij, and we can organize our calculation in a 2× 2 matrix

Ori =
∑

j

ZijObj , (52)

where the superscript b denotes a bare operator and r on the LHS denotes the renormalized

operator. The indices i, j run over the operator basis. As in the continuum, we denote the

renormalization factors for the massless fermion wave function and strong coupling constant

as Zψ and Zg respectively,

ψb =
√

Zψψr, Ab =
√

ZAAr, gb = Zggr. (53)

For both the bare wave function and the bare coupling we have used the notation ψ0 and g0

respectively. These renormalization constants can be expanded around unity,

Zψ = 1 + δZψ, ZA = 1 + δZA, Zg = 1 + δZg, (54)

where δZψ and δZg denote the contributions from higher order diagrams. Similarly, the Zij

renormalization constants can be expanded around unity,

ZQ→Q = 1 + δZQ→Q, ZQ→G = 1 + δZQ→G, (55)

ZG→Q = 1 + δZG→Q, ZG→G = 1 + δZG→G. (56)
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I II III IV

FIG. 1: Feynman diagrams for the calculation of ZQ→Q. The circle represents an insertion of the

twist-2 operator.

I II III

IV V

FIG. 2: Feynman diagrams for the calculation of ZQ→G. The circle represents an insertion of the

quark angular momentum operator.
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I II

FIG. 3: Feynman diagrams for the calculation of ZG→Q. The circle represents an insertion of the

glue EM tensor operator defined from the overlap Dirac derivative.

A. Quark EM Tensor

The bare quark angular momentum operator has the schematic form,

ObQ = gbψ̄bψb, (57)

where the Lorentz structure and various derivative terms have been omitted. Throughout

the one-loop calculations, the renormalization constants Zij appearing in the previous section

are fixed by a set of renormalization conditions on the quark and gluon matrix elements.

For the quark operator, the renormalized and bare quark matrix elements are related as,

〈ψ̄r|OrQ(µ)|ψr〉|p2=µ2 = ZQ→Q(aµ, gb) Z
−1
ψ (aµ, gb) 〈ψ̄b|ObQ(a)|ψb〉1-loop

+ZQ→G(aµ, gb) 〈Ab, λ|ObQ(a)|Ab, λ〉1-loop

≡ 〈ψ̄b|ObQ(a)|ψb〉tree, (58)

where λ is a polarization index for the external gauge field. The tree level matrix element

〈ψ̄b|ObQ(a)|ψb〉tree, is defined by,

〈ψ̄|OQµν |ψ〉tree =
i

2
(γµpν + γνpµ) . (59)

With this renormalization condition, the renormalization constants ZQ→Q and ZQ→G are

fixed by computing the diagrams shown in Fig.[1] and Fig.[2] respectively. While, the Zψ is

fixed from wave function renormalization of the quark field. In Eq.[58], we have made use

of the fact that the tree-level matrix elements,

〈ψ̄b|ObG(a)|ψb〉tree, 〈Ab|ObQ(a)|Ab〉tree. (60)

both vanish.
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I II III

IV V

FIG. 4: Feynman diagrams for the calculation of ZG→G. The circle represents an insertion of the

gluon angular momentum operator defined from the overlap Dirac derivative.

B. Glue EM Tensor

The bare gluon operator has the schematic form,

ObG = G0G0. (61)

The renormalized and bare gluon operators are then related,

〈Ar, λ|OrG(µ)|Ar, λ〉|p2=µ2 = ZG→G(aµ, gb) Z
−1
A (aµ, gb) 〈Ab, λ|ObG(a)|Ab, λ〉1-loop

+ZG→Q(aµ, gb) 〈ψ̄b|ObG(a)|ψb〉1-loop

≡ 〈Ab, λ|ObG(a)|Ab, λ〉tree. (62)

As with the quark operator, the renormalization constant ZG→Q is an off-diagonal mixing

term fixed by the diagrams shown in Fig.[3], and the ZG→G renormalization constant is

computed from the diagrams shown in Fig.[4]. Again, the matrix element 〈Ab, λ|OQ|Ab, λ〉
vanishes at tree-level, but is non-zero at one-loop order. Here, the tree-level matrix element,

〈Ab, ρ|ObG(a)|Ab, τ〉tree, is defined by,

−2pµpνgρτ + pµpρgντ − pµpνgρτ − p2gρµgντ + pτpνgρµ + pνpρgµτ − p2gρνgµτ + pτpµgρν

−gµν(pτpρ − p2gτρ) . (63)

. We point out that in the final stages of all one-loop calculations we encounter complicated

expressions depending on the external momentum and possibly Dirac gamma matrices.

These expressions must be grouped into gauge-invariant terms representing the tree-level

matrix elements of the quark and gluon EM tensor operators defined in Eqs.(59, 63) before

we can extract the correct renormalization constants.

We can simplify the procedure greatly by exploiting our freedom to choose

µ 6= ν, σ = τ 6= µ, (64)
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in all calculations [18], and thus setting all δµν terms to zero. This has the benefit of avoiding

any mixing into lower dimensional operators which have the same symmetries under the

hypercubic group H(4) as our quark and gluon angular momentum operators. Note that

with such a condition the renormalization we obtained in this work cannot be used for the

operators OG, µν with µ = ν, since they belong to the different irreducible representation of

the hypercubic group [33]. But it is enough for the proton spin decomposition in Ref. [15]

since only the off-diagonal part of OG, µν are used there. See [34] for detailed discussion and

updates on this point.

We close this section by listing schematic forms for all renormalization constants. The

numerical results for the finite contributions of those Z-factors involving the glue operator

are found in Tabs.[II, III], and those involving the quark operator can be found in Tab.[I],

our results for the various ZA and Zψ are tabulated in appendix B. Schematically, we write,

ZQ→Q = 1 +
g20

16π2
CF

(

−8
3
log(a2p2) + FQ→Q(rw)

)

+O(g40) (65)

ZG→Q =
g20

16π2
CF

(
8

3
log(a2p2) + FG→Q(ρ, rw)

)

+O(g40) (66)

ZQ→G =
g20

16π2
NF

(
2

3
log(a2p2) + FQ→G(rw)

)

+O(g40) (67)

ZG→G = 1 +
g20

16π2

(

−2

3
NF log(a2p2) +NFFG→G(rw) +NcBG→G(ρ, rw)

)

+O(g40). (68)

V. METHODOLOGY

In this section we outline the methods used to compute the one-loop mixing coefficients

outlined in the previous section. At one-loop order, and after suitable simplification of all

Dirac and color matrices, all lattice integrations encountered in this mixing calculation can

be expressed in the schematic form,

I(p) =

∫ π/a

−π/a

d4k

(2π)4
N (k, p)

D(k, p) ≡
∫

k

I(k, p), (69)

where we have suppressed both the color and Lorentz indices. The integrand I is, in general,

a complicated rational function of both k and p involving many sin and cos terms. A direct

integration of such a function is typically impractical. Instead one can still achieve a high

accuracy result by ‘splitting’ the integrand in the following way,

I = J + (I − J), (70)

where J is given by a Taylor expansion in the external momentum p,

J =

N∑

n=0

pµ1 . . . pµn
n!

{
∂n

∂µ1 . . . ∂µn
I(k, p)

}

p→0

. (71)
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The order N in this expansion is set by the degree of divergence I(k, p). With this result,

using the power counting theorem of Reisz, we can compute the difference,

lim
a→0

(I − J), (72)

in the continuum limit. For these calculations, the one-loop calculations in the continuum

are straightforward. We point out, however, that the Taylor expansion and artificial splitting

of the integrand introduce an infrared divergence at intermediate stages of the calculations.

We have chosen to regulate this divergence using dimensional regularization in d = 4 − 2ǫ

dimensions. Thus, we expect both J and (I − J) to exhibit poles in epsilon which must

cancel to give a finite result for I at the end of the calculations.

The Taylor expansion has reduced J to an integral over the loop momentum k only,

greatly simplifying its calculation. However we must still isolate all pole terms and separate

them before passing J to any numerical integration routine. To do so, our scripts reduce J

to the following schematic form,

J =

∫
ddk

(2π)d
N (k)

Dnb

b (k)D
nq
q (k)

, (73)

where the exact form of the numerator is not important, only that it depends only on k,

and Db is the inverse gluon propagator and Dq is a generic inverse quark propagator. We

can isolate any divergent terms in this integrand by writing,

1

Dq(k)
=

1

Db(k)
+

(
1

Dq(k)
− 1

Db(k)

)

(74)

The degree of divergence of (1/Dq − 1/Db) is reduced by one. By iteratively applying this

kind of splitting and separating out integrals involving only powers of 1
Db
, all pole terms in

J can be isolated. In the end, any J integral involving arbitrary powers of quark and gluon

propagators can be expressed as a sum,

J =
∑ N (k)

Dnb

b (k)
︸ ︷︷ ︸

divergent

+
∑ N ′(k)

D
n′

b

b D
n′

q
q

︸ ︷︷ ︸

finite

. (75)

The divergent pieces of this sum can be computed to arbitrary accuracy by using the results

in [33]. The remaining finite piece is computed to 9-digit accuracy using the Clenshaw-

Curtis algorithm in Mathematica. At the end of the calculation, all J-type integrals can be

expressed in a schematic form,

J =
g20

16π2

(
N

ǫ
+ F

)

(76)

where N and F are numerical constants and any Lorentz or color indices have been sup-

pressed.
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As discussed in previous perturbative calculations on the lattice [18, 29], a major ob-

stacle in performing these calculations analytically is that gauge field theories regulated by

a lattice spacing respect hypercubic symmetries rather than the more restrictive Lorentz

symmetries. This is problematic when trying to apply pre-built packages such as FORM to

simplify intermediate expressions. For example, many terms common to lattice perturbation

theory, such as
∑

µ γµ sin kµ cos pµ are not properly handled by the existing index contrac-

tion methods designed for continuum calculations. Because of this, we have written several

separate scripts in python to aid in simplifying intermediate expressions involving products

of Dirac matrices in d-dimensions before passing the results to our integration routines.

The programs thus arrive at the final integrated result for I(p) shown in Eq.(69) by first

Taylor expanding the momentum space vertices in the external momentum to the desired

order. At this stage all d-dimensional gamma algebra is carried out in FORM with the aid

of several python scripts. Once this has completed, the lattice integral of interest has been

expressed as a sum of integrands of the following form,

I(µ1, . . . , µn) =

∫

d4k f

(
∑

λ

sin2 kλ

)
∏

i

sin kµi , (77)

where f denotes some even function of sin and odd powers of sin have integrated to zero

by symmetry. As outlined in [18], it is advantageous to simplify these products of sin

functions using hypercubic (H(4)) symmetries. We have written FORM routines to carry this

out automatically. The details of this stage of the calculation are the same as in [18] and

can be found there. Once these symmetry relations are applied, the integrands are ready to

be reduced to their divergent and finite parts. We have automated this procedure as well

with additional python code which follows the ‘splitting’ methods described previously in

this section. Finally when all finite pieces have been isolated from the divergent parts, all

divergent pieces are simplified analytically using the reduction methods described in [33],

and all finite pieces are passed to Mathematica to be integrated, which then collects the

final, simplified result. A crucial check on this method is that the continuum integration

(I−J) produces an ǫ-pole which cancels the pole computed in J , we show in the next section

that this is indeed the case for all the calculations performed.

We close this section with a brief comment regarding the gauge dependence of these

results. In all one-loop calculations, we have set the gauge parameter α appearing in the

gluon propagator (see appendix C) to unity, corresponding to the Feynman gauge. All the

calculation in this work are in the Feynman gauge and the self consistent check for the

general gauge will be addressed in the upcoming work [34].
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VI. RESULTS

In this section, we report the results for the ZQ→Q, ZQ→G, ZG→Q and ZG→G,

ZLatt.
Q→Q = 1 +

g20,Latt.
16π2

CF

(

−8

3
log(a2p2) + FQ→Q(rw)

)

+O(g40) (78)

ZLatt.
G→Q =

g20,Latt.
16π2

CF

(
8

3
log(a2p2) + FG→Q(ρ, rw)

)

+O(g40) (79)

ZLatt.
Q→G =

g20,Latt.
16π2

Nf

(
2

3
log(a2p2) + FQ→G(rw)

)

+O(g40) (80)

ZLatt.
G→G = 1 +

g20,Latt.
16π2

(

−2

3
Nf log(a

2p2) +NfFG→G(rw) +NcBG→G(ρ, rw)

)

+O(g40). (81)

where Nc and Nf are the number of colors and flavors respectively. The results of the finite

pieces F and BG are summarized in tables I, II, III. For completeness the expressions for Zg

and Zψ needed to compute the final values for the renormalization constants in Eq.[78] are

listed in appendix B.

For the case of ZQ→Q and ZG→Q, the related diagrams do not involve the glue EM

tensor operator, see Figs.[1, 2], and have been calculated in [18]. Our results of FQ→Q

have good agreement with those in [18], but the results of FQ→G are different. Due to the

mixing with the glue equation of motion term, the finite piece under RI-MOM scheme in

the continuum depends on the momentum on the external legs as −4
9
− 2

3
pµpνpρpτ where p

is the momentum of the external legs and µ/ν and ρ/τ are the indices of the operator and

external legs respectively. We confirm that our results have the same external momentum

dependence as that in the continuum and then the final renormalization constant underMS

scheme is a constant only related to the UV regulator. We take pρ/τ = 0 in the rest part of

this work to simplify the expression.

The results of those diagrams containing the glue EM tensor operator (for the case of

ZG→G and ZG→Q) are shown in Figs.[4, 3]. This operator has been constructed from the

overlap Dirac derivative and its renormalization has not yet been studied in the literature.

Our results depend on several parameters, specifically 0 < rw ≤ 1 and 0 < ρ < 2rw from

Eq.(31). We quote the results for several values of ρ and allow rw to vary from 0.2-1 in

increments of 0.2. We emphasize that all color factors have been divided out of these

results, along with an overall factor of 1/(16π2) and as well as the tree-level expression for

the operator of interest.
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ZLatt.
Q→Q (Fig.(1)) rw FQ→Q(rw)

0.2 7.5170

0.4 6.3690

0.6 5.1610

0.8 4.0900

1.0 3.1649

ZLatt.
Q→G (Fig.(2)) rw FQ→G(rw)

0.2 0.5542

0.4 -0.0960

0.6 -0.1111

0.8 0.0322

1.0 0.2078

TABLE I: Results for the ZQ→Q and ZQ→G mixing calculation. These results have been computed

previously in [18], we have found agreement for FQ→Q. However our FQ→G are different from those

in Ref. [18].
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ZLatt.
G→Q (Fig.(3)) rw FG→Q(ρ = 1, rw) –

0.2 4.06025

0.4 3.39754

0.6 2.88773

0.8 2.38546

1.0 1.90172

ZLatt.
G→G (Fig.(4)) rw FG→G(rw) BG→G(ρ = 1, rw)

0.2 −1.22383 1.18448

0.4 −1.36776 1.23117

0.6 −1.60728 1.28174

0.8 −1.97383 1.33272

1.0 −2.16850 1.38353

TABLE II: Results for the mixing constants ZG→G and ZG→Q. In this table, we have chosen ρ = 1

and have listed results for several values of the Wilson rw parameter.

ZLatt.
G→Q (Fig.(3)) rw FG→Q(ρ = 1.368, rw) –

0.2 5.28282

0.4 5.10614

0.6 4.96733

0.8 4.86544

1.0 4.82048

ZLatt.
G→G (Fig.(4)) rw FG→G(rw) BG→G(ρ = 1.368, rw)

0.2 −1.22383 0.104783

0.4 −1.36776 0.105484

0.6 −1.60728 0.106373

0.8 −1.97383 0.107885

1.0 −2.16850 0.108396

TABLE III: Results for the mixing constants ZG→G and ZG→Q. Here, we have chosen ρ = 1.368,

and have listed results for several values of the Wilson rw parameter.
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Here, we report the continuum MS finite contributions necessary to match our lattice

renormalization mixing constants to the continuum MS scheme with the mathematica pack-

age Package-X [35],

RMS
Q→Q = 1 +

g2
0,MS

16π2
CF

(

−8
3
log(µ2/p2)− 40

9

)

+O(g40) (82)

RMS
G→Q =

g2
0,MS

16π2
CF

(
8

3
log(µ2/p2)− 22

9

)

+O(g40) (83)

RMS
Q→G =

g2
0,MS

16π2
Nf

(
2

3
log(µ2/p2)− 4

9

)

+O(g40) (84)

RMS
G→G = 1 +

g2
0,MS

16π2

(

−2
3
Nf log(µ

2/p2)−Nf
10

9
−Nc

4

3

)

+O(g40). (85)

So the final matching factors are computed from the condition in Ref. [29] as,

ZLatt.→MS
i→j (aµ, g0) =

∑

k

RMS
i→k

(
µ2/p2, g0,MS

)
ZLatt.
k→j

(
p2a2, g0,Latt.

)
(86)

=

(

δi→j +
g20,Latt.
16π2

(γi→j log a
2µ2 + FMS

i→j+F
Latt.
i→j )

)

. (87)

In the above matching condition, we have chosen to take the coupling to be the lattice

coupling, as is conventional. The difference between the lattice and continuum couplings

only appears at two-loop order. For the specific case rw = 1.0, ρ = 1.368, we find,

ZMS,Latt.
Q→Q (aµ, g0) = 1 +

g20
16π2

CF

(

−8
3
log a2µ2 − 1.2795

)

+O(g40) (88)

ZMS,Latt.
G→Q (aµ, g0) =

g20
16π2

CF

(
8

3
log a2µ2+2.3760

)

+O(g40) (89)

ZMS,Latt.
Q→G (aµ, g0) =

g20
16π2

NF

(
2

3
log a2µ2+0.6522

)

+O(g40) (90)

ZMS,Latt.
G→G (aµ, g0) = 1 +

g20
16π2

(

−2
3
Nf log a

2µ2 − 3.2796Nf+0.0502Nc

)

+O(g40). (91)

VII. SUMMARY

In this work we have studied the renormalization and mixing constants for the glue EM

tensor operator built from the overlap Dirac derivative for the first time. These results

represent an indispensable piece of a complete calculation of the quark and glue momentum

and angular momentum in the nucleon on a quenched 163 × 24 lattice with three quark

masses [15]. There, it was found that reasonable signals were obtained for the glue operator

constructed from the overlap Dirac operator.

The finite contributions to our Z factors reported in the previous section are used to

match the lattice results reported in [15] to the continuum MS scheme at 2 GeV. We have
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commented in previous sections that throughout the course of the calculations we have

kept all analytic expressions before a final numerical integration using several python and

Mathematica scripts. Although this allowed us to control all Lorentz and color structures

at each stage of the calculation and check explicitly the cancellation of both 1/a and

infrared divergences at intermediate stages in the calculation, these benefits came at a cost.

When dealing with the overlap derivative, we found that many intermediate expressions

explode in size, requiring intermediate results to be written to disk, slowing down the code

substantially. For future work, we would like to extend our codes to incorporate more

complicated lattice actions involving several steps of HYP smearing for the overlap fermion

and improved gauge actions.
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Appendix A: Feynman Rules for the Gluon Operator from the Overlap Derivative

In this section we provide details on the derivation of the momentum space Feynman

rules for Gµν defined from the Dirac overlap operator. To start, we define some necessary

notation, the form of the Wilson derivative most convenient to these calculations is given

by the expressions,

X̂ =
∑

µ

1

2

{
γµ(∇∗

µ +∇µ)− arw∇∗
µ∇µ

}
− ρ

a
(A1)

∇µψ(x) =
1

a
(Uµ(x)ψ(x+ aµ̂)− ψ(x)) (A2)

∇∗
µψ(x) =

1

a

(
ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂)
)

(A3)

where the gauge-link Uµ(x) = exp(ig0aAµ(x)) admits an expansion in the coupling g0. We

denote this order in g0 by giving X̂ a subscript, thus X0 corresponds to a zeroth order

expansion in g0. In momentum space, the Xi for (i = 0, 1, 2) are,

X0(p) =
i

a

∑

µ

γµ sin apµ +
rw
a

∑

µ

(1− cos apµ)−
ρ

a
(A4)

X1(p1, p2) = −g0
(

iγµ cos

(
ap1 + ap2

2

)

µ

+ rw sin

(
ap1 + ap2

2

)

µ

)

(A5)

X2(p1, p2) = −ag
2
0

2

(

−iγµ sin
(
ap1 + ap2

2

)

µ

+ rw cos

(
ap1 + ap2

2

)

µ

)

, (A6)

where in these definitions, p1 is the momentum for the incoming fermion, and p2 is the

momentum of the outgoing fermion. We use momentum conservation, p2 = p1 + q where q

is the momentum of the incoming gluon frequently.

After following the procedure outlined in section III, we have the following expressions

for the first, second and third order Feynman rules for tr σµνDov(x, x)

(tr σµνDov)
1 ≡ G1

µν(x, x) =
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx Π̂

(

σ2X1 −X0X
†
1X0

)

Π̂ e−iky (A7)

(tr σµνDov)
2 ≡ G2

µν(x, x) =
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx

(

Π̂
{

σ2X2 −X0X
†
2X0

}

Π̂

−Π̂
{

σ2(X1X
†
0X1 +X1X

†
1X0 +X0X

†
1X1)−X0X

†
1X0X

†
1X0

}

Π̂2
)

e−iky (A8)

(tr σµνDov)
3 ≡ G3

µν(x, x) =
ρ

πa
tr σµν

∫ ∞

−∞
dσ
∑

y

∫

k
eikx

(

Π̂
{
σ2X3 −A

}
Π̂ + Π̂2

{
σ2B + C

}
Π̂2
)

e−iky

, (A9)
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where Π̂ = 1
σ2+Σ0

, Σ0 = X†
0X0 and A,B and C in G3µν are given by,

A = X2X
†
0X1 +X2X

†
1X0 +X1X

†
0X2 +X1X

†
2X0

+ X1X
†
1X1 +X0X

†
2X1 +X0X

†
1X2 +X0X

†
3X0 (A10)

B = X1X
†
0X1X

†
0X1 +X1X

†
0X1X

†
1X0 +X1X

†
1X0X

†
1X0 +X0X

†
2X0X

†
1X0

+ X0X
†
1X1X

†
0X1 +X0X

†
1X1X

†
1X0 +X0X

†
1X0X

†
2X0 +X0X

†
1X0X

†
1X1

+ Σ0

(

X2X
†
0X1 +X2X

†
1X0 +X1X

†
0X2 +X1X

†
2X0 + 2X1X

†
1X1 +X0X

†
2X1 +X0X

†
1X2

)

(A11)

C = Σ2
0

(

X2X
†
0X1 +X2X

†
1X0 +X1X

†
0X2 +X1X

†
2X0 +X1X

†
1X1 +X0X

†
2X1 +X0X

†
1X2

)

+Σ0

(

X0X
†
2X0X

†
1X0 +X0X

†
1X0X

†
2X0

)

−X0X
†
1X0X

†
1X0X

†
1X0. (A12)

We shall provide full details for the derivation of the first order result and only sketch the

derivation for the second and third orders, since the methods are the same and the inter-

mediate expressions are quite lengthy. For the third order calculation, we have automated

most steps using FORM.

For the first order Feynman rule, we begin by computing the action of X0X
†
1X0 on e

−ikx1̂,

and note that the σ2X1 contribution will not survive the trace as it only contains Lorentz

scalar and vector components. We make use of the general results,

Xe−ikyf(x) = e−iky

{
∑

µ

γµ

[

Q̃µ −
i

a
sµ

]

− rw
∑

µ

[

−1

a
(1− cµ) + R̃µ

]

− ρ

a

}

f(x)(A13)

Q̃µ =
1

2

(
e−ikµ∇µ + eikµ∇∗

µ

)
, R̃µ =

1

2

(
e−ikµ∇µ − eikµ∇∗

µ

)
,

sµ = sin kµ, cµ = cos kµ.

We can now compute the action of various Xi operators on 1̂eikx. For example, for the Π̂

terms acting on eikx1̂, we can show,

Π̂eikx =
1

σ2 +X†
0X0

eikx1̂ = eikx1̂
1

σ2 + ω2

ω2 =
1

a2

(
∑

µ

s2µ +
∑

µ

[rw(1− cµ)− ρ]2
)

, (A14)

where we have used the fact that the derivative terms Q̃µ and R̃µ appearing in X̂ acting on

1̂ vanish, and that one can write the Π̂ operator as a polynomial in X†
0X0. We are then left
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with computing the action of X0X
†
1X0 on 1̂eikx, calculating each term,

X0X
†
1X01̂e

−iky = 1̂eipy
1

a

∑

µ

(

iγµ sin(−k + p)µ + rw(1− cos(−k + p))µ −
ρ

a

)

× gT a (iγρ cos(−k + p/2)ρ + rw sin(−k + p/2)ρ)

× 1

a

∑

ν

(

−iγνsν + rw(1− cν)−
ρ

a

)

(A15)

≡ 1̂eipy
gT a

a2

∑

µν

(γµA
0
µ +B0

µ) (γρA
1
ρ +B1

ρ) (γνĀ
0
ν + B̄0

ν). (A16)

In the last line we have used the shorthand,

A0
µ = i sin(−k + p)µ, B0

µ = rw(1− cos(−k + p)µ)− ρ/a
A1
ρ = i cos(−k + p/2)ρ, B1

ρ = rw sin(−k + p/2)ρ

Ā0
ν = −isν , B̄0

ν = rw(1− cν)− ρ/a. (A17)

In these expressions, the momentum k is a dummy momentum which is to be integrated

and p (with Lorentz index ρ, and color index a) is the momentum of the incoming gauge

field. At this stage, we compute the trace over Lorentz indices, using the identity,

tr σµνγαγβ = 4i(δµαδνβ − δναδµβ) (A18)

as well as the fact that a trace over an odd number of gamma matrices will vanish. Per-

forming the trace gives the numerator at first order in the coupling g,

Nρ;αβ = tr σαβ
gT a

a2

∑

µν

(γµA
0
µ +B0

µ) (γρA
1
ρ +B1

ρ) (γνĀ
0
ν + B̄0

ν)

=
4igT a

a2

{
∑

ν

A1
ρB̄

0
ν

(
δρβA

0
α − δραA

0
β

)
+B1

ρ

(
A0
αĀ

0
β −A0

βĀ
0
α

)
+
∑

µ

B0
µA

1
ρ

(
δραĀ

0
β − δρβĀ

0
α

)

}

.

(A19)

We must still integrate over the σ-parameter appearing in the various Π̂ terms of G1αβ.
Integrating over σ gives,

G1,aρ;αβ(p) =
ρ

πa

∫

k

Nρ;αβ(k, p)
ω(k)3

. (A20)

Throughout the course of these calculations, we are not interested in the value of the integral

over the dummy momentum k, instead we are interested in just the renormalization factor

Z which multiplies this operator in momentum space, e.g. we are interested in extracting Z

in,
∫

l

∫

k

O(p, k; l) = Z

∫

k

O(p, k), (A21)
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where l is the loop momentum of the diagram, and the same integration over dummy k

is present on both sides of this equation. For this reason, we have expanded all N (k, pi)

numerators and collected all k dependent terms into coefficients multiplying the products

of sin l and cos l. This is made simpler by the fact that ω(k) is an even function of k and

so all odd functions of k in the numerator can be dropped immediately. In this way, no

integration over the dummy momenta k need be done at any point during the calculations.

The final expression for the zeroth order Feynman rule for the gluon operator is given by

the product,

Ogµν(p1, p2) = trc S
{
G1µα(p2) Gν,1α (p1)

}

= trc S
{

ρ2

π2a2

∫

k1,k2

N a
µ1;µα(k1, p1)

ω(k1)3
N b
µ2;αν(k2, p2)

ω(k2)3

}

, (A22)

where S reminds us to take the symmetrized and traceless piece of this operator, and trc is

a trace over the color indices. Contracting both sides with a light-like vector to project out

the symmetrized and traceless piece,

∆ · Og(p1, p2) =
ρ2δab

2π2a2

∫

k1,k2

∆ · Nµ1;α(k1, p1)
ω(k1)3

∆ · Nµ2;α(k2, p2)
ω(k2)3

. (A23)

Here, p1 and p2 are the incoming gauge-field momenta, and it is assumed that all terms odd

in k1 and k2 are dropped in the N (ki, pi) numerators.

For the second and third order Feynman rules, all steps of this procedure can be auto-

mated. FORM is used to handle all traces and subsequent simplifications. This is necessary

since the third order operator involves many traces over six gamma matrices, for example,

tr σαβ X1X
†
0X1X

†
0X1 (A24)

where each Xi = γµA
i
µ + Bi

µ. After expanding the traces, and integrating over the σ

parameter, we construct the full Feynman rule at the desired order from the expansion,

Ogµν =
(
G0
µα + g0G

1
µα + g20G

2
µα + . . .

) (
G0,α
ν + g0G

1,α
ν + g20G

2,α
ν + . . .

)
. (A25)

At lowest order, then, we have Feynman rules for two and three external gauge fields re-

spectively,

Og,2µν = g20G
1
µα G

ν,1
α (A26)

Og,3µν = g30
(
G1
µα G

ν,2
α +G2

µα G
ν,1
α

)
(A27)

Og,4µν = g40
(
G1
µα G

ν,3
α +G3

µα G
ν,1
α +G2

µα G
ν,2
α

)
. (A28)

We then symmetrize these results over all Lorentz and color indices as well as external

momenta.
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Appendix B: QCD Coupling and Wave Function Renormalization

For completeness, in this section we collect the expressions for ZA and Zψ in the Feynman

gauge used to fix the renormalization constants. Both of them are converted to that under

MS scheme. These expressions have been computed elsewhere using the Wilson action,

however they serve as an additional check on the accuracy of our codes. We write these

results in the following form,

Zψ = 1+
g20

16π2
CF
(
log a2µ2 + (Fψ(rw) + 1)

)
+O(g40) (B1)

ZA = 1− g20
16π2

(

(
5

3
Nc −

2

3
Nf) log a

2µ2 +Nf (FA(rw)−
10

9
) + (BA(Nc) +

31

9
)

)

+O(g40), (B2)

where

BA(Nc) =
2

9Nc
(7N2

c − 12π2) +
2

9
π2(1 +N2

c ) + 0.079805Nc (B3)

and Fψ, and FA are evaluated numerically as in Table [IV] for different rw.

rw Fψ(rw) FA(rw)

0.1 5.37037 1.18502

0.2 6.13073 1.22383

0.3 7.02470 1.28534

0.4 7.90649 1.36776

0.5 8.72568 1.47300

0.6 9.47224 1.60728

0.7 10.1503 1.77672

0.8 10.7677 1.97383

0.9 11.3326 2.15003

1.0 11.8524 2.16850

TABLE IV: Table for the finite contributions to the wave function renormalization constants Zψ,

ZA, and Zg used to renormalize the quark and gluon angular momentum operators.
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FIG. 5: Feynman diagrams for the calculation of Zψ.

FIG. 6: Feynman diagrams for the calculation of ZA. The straight, dashed and curly lines are the

quark, ghost and gluon lines respectively.

Appendix C: QCD Vertices and Operator Feynman Rules

In this section we collect the various Feynman rules used during the course of the calcu-

lations. For the QCD action, the fermion and gluon propagators take the form,

ka b aδaba
−i∑µ γµ sin akµ + 2rw

∑

µ sin
2 akµ/2 + amq

∑

µ sin
2 akµ +

(

2rw
∑

µ sin
2 akµ/2 +mq

)2 (C1)

k δab
4/a2

∑

ρ sin
2 kρ/2

{

δµν − (1− α)
sin

akµ
2 sin akν

2
∑

ρ sin
2 akρ

2

}

(C2)

p q

−g0T a
(

iγµ cos
apµ + aqµ

2
+ rw sin

apµ + aqµ
2

)

(C3)

p q
−ag20

{
T a, T b

}

2
δµν

(

−iγµ sin
apµ + aqµ

2
+ rw cos

apµ + aqµ
2

)

(C4)

p q

ig0
2

∑

µ,ν

T a
(

γν cos
apµ + aqµ

2
+ γµ cos

apν + aqν
2

)

(C5)
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