
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Subleading power corrections for N-jettiness subtractions
Ian Moult, Lorena Rothen, Iain W. Stewart, Frank J. Tackmann, and Hua Xing Zhu

Phys. Rev. D 95, 074023 — Published 18 April 2017
DOI: 10.1103/PhysRevD.95.074023

http://dx.doi.org/10.1103/PhysRevD.95.074023


MIT–CTP 4855
DESY 16-229

Subleading Power Corrections for N-Jettiness Subtractions

Ian Moult,1, 2, 3 Lorena Rothen,4 Iain W. Stewart,1 Frank J. Tackmann,4 and Hua Xing Zhu1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Berkeley Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA

3Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4Theory Group, Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg, Germany

The N -jettiness observable TN provides a way of describing the leading singular behavior of the
N -jet cross section in the τ = TN/Q → 0 limit, where Q is a hard interaction scale. We consider
subleading power corrections in the τ � 1 expansion, and employ soft-collinear effective theory
to obtain analytic results for the dominant αsτ ln τ and α2

sτ ln3 τ subleading terms for thrust in
e+e− collisions and 0-jettiness for qq̄-initiated Drell-Yan-like processes at hadron colliders. These
results can be used to significantly improve the numerical accuracy and stability of the N -jettiness
subtraction technique for performing fixed-order calculations at NLO and NNLO. They reduce the
size of missing power corrections in the subtractions by an order of magnitude. We also point out that
the precise definition of N -jettiness has an important impact on the size of the power corrections and
thus the numerical accuracy of the subtractions. The sometimes employed definition of N -jettiness
in the hadronic center-of-mass frame suffers from power corrections that grow exponentially with
rapidity, causing the power expansion to deteriorate away from central rapidity. This degradation
does not occur for the original N -jettiness definition, which explicitly accounts for the boost of the
Born process relative to the frame of the hadronic collision, and has a well-behaved power expansion
throughout the entire phase space. Integrated over rapidity, using this N -jettiness definition in the
subtractions yields another order of magnitude improvement compared to employing the hadronic-
frame definition.

I. INTRODUCTION

Precision QCD calculations play an essential role at the
Large Hadron Collider (LHC), both for interpreting the
measurement of Standard Model parameters, as well as
in searches for new physics. In many cases, calculations
at next-to-next-to-leading order (NNLO) in perturbative
QCD are required for an accurate description of kine-
matic distributions and to be competitive with the ever
increasing experimental precision.

Higher-order calculations in perturbative QCD involve
infrared (IR) singularities arising from both real and vir-
tual radiation, which cancel in the final result for any
infrared and collinear safe quantity. Practical calcula-
tions require some method to isolate and cancel these
IR singularities. At NLO, this is very well understood
and the standard method is to use FKS [1, 2] or CS [3–
5] subtractions, which construct local subtraction terms
that approximate the real-emission amplitude in the IR
limit point-by-point and whose integral can be carried
out analytically and is added to the virtual contributions,
such that the real and virtual contributions are separately
rendered finite. Significant work has been focused on ex-
tending these subtraction techniques to NNLO, where
the singularity structure is more complicated [6–39], re-
sulting in several approaches which have been succesfully
applied to NNLO calculations with colored particles in
the final state [19, 30, 32, 36].

An alternative to fully local point-by-point subtrac-
tions is to use a physical jet-resolution variable to con-
trol the IR behaviour and construct suitable subtraction
terms. This idea was originally applied to color-singlet
production using the transverse momentum of the lep-

tonic final state as a resolution variable [40], and has
also been used for top quark decays [41] using inclusive
jet mass, and for e+e− → tt̄ using radiation energy [42].
Since all IR singular contributions are projected onto a
single variable or dimension, such physical subtractions
are intrinsically nonlocal, which may result in slower nu-
merical convergence. Their key advantage is that by us-
ing a physical observable the subtraction terms are equiv-
alent to the singular limits of a physical cross section,
whose IR-singular structure is typically much easier to
understand. Another benefit is that they allow one to
directly reuse the existing NLO calculations for the cor-
responding Born+1-jet process. They are also conceptu-
ally straightforward to extend to even higher orders.

Recently a general subtraction framework based on the
resolution variable N -jettiness TN [43] was proposed [44–
46]. It is applicable for an arbitrary number of jets in
the final state. As explained in detail in Ref. [46], N -
jettiness subtractions can be implemented either as dif-
ferential subtractions in TN or as global subtractions,
which amounts to a phase-space slicing. The differen-
tial subtractions are effectively the basis of the Geneva
method to match resummed NNLO calculation with par-
ton showers [47, 48]. Implemented as a global subtrac-
tion, they have been applied to calculate W/Z/H+ jet
at NNLO [44, 45, 49, 50], and have been implemented in
MCFM for color-singlet production [51–53]. They have
also been applied to single-inclusive jet production in ep
collisions [54].

N -jettiness subtractions are based on parametrizing
the phase space by the N -jettiness resolution variable,
which is designed to vanish for an N -jet Born configu-
ration. Explicitly, a generic N -jet cross section σ(X),
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defined with Born level measurements and cuts X can
be written in terms of the integral of the corresponding
differential cross section dσ(X)/dTN as

σ(X, Tcut) ≡
∫ Tcut

dTN
dσ(X)

dTN
,

σ(X) = σ(X, Tcut) +

∫
Tcut

dTN
dσ(X)

dTN
. (1)

From here on we will suppress the dependence on X. We
can now add and subtract a subtraction term dσsub/dTN
to obtain

σ =
[
σ(Tcut)− σsub(Tcut)

]
+ σsub(Toff)

+

∫
Tcut

dTN
[

dσ

dTN
− dσsub

dTN
θ(T < Toff)

]

= σsub(Tcut) +

∫
Tcut

dTN
dσ

dTN
+
[
σ(Tcut)− σsub(Tcut)

]
≡ σsub(Tcut) +

∫
Tcut

dTN
dσ

dTN
+ ∆σ(Tcut) , (2)

where in the last line we define ∆σ(Tcut). The value of
Toff is arbitrary and determines the range over which the
subtraction acts differentially in TN . In the last two lines
we have set T off = Tcut. This reduces the subtraction to
a global phase-space slicing which is our focus here.

For TN > Tcut an additional emission off of the N -jet
Born configuration must be present and the calculation
reduces to an N + 1-jet perturbative calculation at one
lower perturbative order. For NNLO calculations, the
integral over TN > Tcut can thus be obtained from an
existing NLO calculation. On the other hand, for TN <
Tcut the cross section is dominated by singular emissions
from the Born configuration and can be approximated by
σsub(X), which by construction reproduces its singular
behaviour for TN → 0. Hence, for sufficiently small Tcut

the difference ∆σ = σ(Tcut)−σsub(Tcut) in Eq. (2) scales
as Tcut and can be neglected.

In the limit of small TN , the cross section can be ex-
panded in powers of τN = TN/Q, where Q is a typical
hard scale inserted to make τN dimensionless, as

dσ

dτN
=

dσ(0)

dτN
+

dσ(2)

dτN
+

dσ(4)

dτN
+ · · · , (3)

σ(τcut) = σ(0)(τcut) + σ(2)(τcut) + σ(4)(τcut) + · · · .

Here, dσ(0)/dτN and σ(0)(τcut) contain the leading-power
(singular) terms which have the scaling

dσ(0)

dτN
∼ δ(τN ) +

[
O(1)

τN

]
+

,

σ(0)(τcut) ∼ O(1) . (4)

The O(1) factors include powers of ln τN and ln τcut re-
spectively. As indicated, the singular terms in the spec-
trum are divergent for τN → 0 and are written in terms of

distributions, which encode the cancellation of real and
virtual IR divergences. The subtraction terms in Eq. (2)
must be equivalent to these leading-power terms, up to
possible power-suppressed terms,

σsub(Tcut) = σ(0)(τcut = Tcut/Q) [1 +O(τcut)] . (5)

The dσ(2k)/dτN and σ(2k)(τcut) terms with k ≥ 1 are
referred to as power corrections and contain the contri-
butions that are suppressed by powers of τN relative to
the leading-power terms,

τN
dσ(2k)

dτN
∼ O(τkN ) , σ(2k)(τcut) ∼ O(τkcut) . (6)

The terms with k = 1 are the next-to-leading power
(NLP) contributions. Note that the counting used here
follows the standard power counting in soft-collinear ef-
fective theory (SCET), where the power counting param-
eter is λ ∼ √τN . The power corrections have at most in-
tegrable divergences for τN → 0, i.e. they do not depend
on purely virtual corrections to the Born process and can
thus be computed from the corresponding N + 1-jet pro-
cess. (This is also why they do not necessarily have to
be included in the subtractions.)

By using a physical observable like TN , the leading
singular terms dσ(0)/dτN can be computed using a fac-
torization theorem for the cross section [43, 55] derived in
SCET [56–60], in terms of universal jet, soft, and beam
functions describing the soft and collinear limits of QCD.
This provides explicit analytic control over the infrared
divergent contributions. The required ingredients to ob-
tain σ(0)(τcut) to NNLO are the NNLO jet [61, 62] and
beam [63, 64] functions, which are fully known, as well as
the soft function which is fully known to NNLO for two
external partons [65–68]. The soft function for arbitrary
N is currently known to NLO [69]. The soft function for
three external partons, as relevant for color singlet plus
jet production at the LHC, was computed numerically
at NNLO in Ref. [70] and for a massive third parton in
Ref. [71].

When employing the subtraction method, the size of
the neglected contributions below Tcut determine the er-
ror one makes in the calculated cross section, which is
given by

∆σ(τcut) = σ(τcut)− σsub(τcut) = σ(2)(τcut) + · · · , (7)

and is thus controlled by the NLP corrections σ(2)(τcut) ∼
O(τcut). As discussed in detail in Ref. [46], the expected
error can thus be estimated based on the perturbative
structure of the neglected NLP corrections. Writing the
perturbative expansion in αs as

dσ(k)

dτN
=
∑
n=0

dσ(k,n)

dτN

(αs
4π

)n
, (8)

the perturbative structure of the dominant power correc-
tions is given by

τN
dσ(2,n)

dτN
= τN

2n−1∑
m=0

C(2,n)
m lnm τN ,
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FIG. 1. Estimate of the missing power corrections ∆σ(τcut) below τcut for the NLO (green), NNLO (blue), and N3LO (orange)
contributions without including (solid) and including (dashed) the leading power correction in the subtractions. On the left,
the estimate is relative to the full NnLO contribution itself, on the right relative to the LO cross section. The bands show a
factor of three variation in the estimate around the solid lines. A similar variation should be considered to apply to the dashed
lines, but for simplicity is not shown.

σ(2,n)(τcut) = τcut

2n−1∑
m=0

A(2,n)
m lnm τcut , (9)

where the A
(2,n)
m coefficients are straightforwardly related

to the C
(2,n)
m′ coefficients by integration.

Hence, the dominant behaviour of the power correc-
tion is αs τcut ln τcut at NLO and α2

s τcut ln3 τcut at NNLO,
and so forth. While these corrections vanish in the limit
τcut → 0, they do so slower and slower at higher orders
due to the strong logarithmic enhancement, requiring
very small values of τcut to be used in the subtractions.
In Fig. 1 we show an estimate of the error due to missing
power corrections ∆σ(τcut) as a function of τcut, based
on the form of their leading-logarithmic term relative to
the leading-power αns coefficient σ(0,n) (on the left) and
relative to the LO cross section (on the right, assuming
a 10% correction at each order in αs). The bands show a
variation of the estimate by a factor of three. We see that
for a fixed value of the cutoff, the size of the missing terms
grows rapidly with the loop order. On the other hand,
in practice reducing τcut comes at the price of a reduced
numerical stability in the NLO N + 1-jet calculation and
quickly increasing computational time required to obtain
small statistical uncertainties in the Monte-Carlo integra-
tion. The typical values used in current implementations
are in the τcut ' 10−3 to 10−4 range.

A possibility to greatly improve the numerical stabil-
ity of the subtraction, which was already put forth in
Ref. [46], is to explicitly compute the dominant power
corrections and include them in the subtractions. The
dashed lines in Fig. 1 show an estimate of the error
∆(σcut) when including the leading-logarithmic power

correction, C
(2,k)
2k−1, in the subtractions σsub(τcut). Based

on this simple estimate, for small values of τcut, this

can reduce the error by about an order of magnitude, or
equivalently for fixed error allow one to raise τcut by an
order of magnitude. This trend continues with each log-
arithm that is added to the subtraction. Therefore, both
the numerical stability and accuracy of the subtraction
can be significantly improved by computing the power
corrections. Note that the power corrections would give
an O(1) error to the N3LO coefficient even for very small
values of τcut, and therefore to make the application fea-
sible at this order it will be absolutely essential to include
the leading-power corrections in the subtractions.

The goal of this paper is to analytically calculate the

leading-logarithmic (LL) terms C
(2,1)
1 and C

(2,2)
3 at NLO

and NNLO for 0-jettiness, which is equivalent to beam
thrust [55, 72], for qq̄-initiated Drell-Yan-like processes.
Like at leading power, this is made feasible by virtue
of the fact that TN is a physical observable. Our cal-
culation will be performed in SCET, which features a
systematic power expansion. To ensure that we have
identified all sources for the power corrections we exploit
the recently determined complete basis of hard scatter-
ing operators for e+e− → dijets and Drell-Yan from qq̄
annihilation [73]. We will emphasize more generally how
SCET can be used to analytically compute power cor-
rections for physical resolution variables. By calculating
the LL terms exactly, we will also be able to numerically
extract the next-to-leading logarithmic (NLL) contribu-
tions from the full fixed-order results. We study in detail
their effect on improving N -jettiness subtractions. Our
numerical results also confirm the naive scaling estimates
shown in Fig. 1.

We will also highlight an important point regarding the
precise definition used for TN , which can strongly impact
the size of the power corrections as a function of the
Born phase space. We show that the definition of TN in
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the hadronic (lab) frame utilized in some applications of
N -jettiness subtractions, suffers form exponentially en-
hanced power corrections at large rapidities, leading to a
deterioration of the power expansion and thus the util-
ity of the N -jettiness subtractions there. This is avoided
by employing the original and more natural definition
of N -jettiness that incorporates the boost of the Born
system relative to the frame of the hadronic collisions.
Compared to the hadronic definition, this alone leads to
a reduction of the power corrections by an order of mag-
nitude, as well as stable behavior throughout the entire
phase space.

In this work we focus on the main ideas, results, and
analysis, leaving a detailed exposition of the SCET based
organization and calculational techniques to a future
publication. The remainder of this paper is organized
as follows. In Sec. II, we present our calculation. We
derive general consistency relations for the cancellation
of infrared poles at subleading power, which can both be
used as a check on the calculation, as well as a simplifi-
cation. We then calculate the terms

C
(2,1)
1

αs
4π

τ ln τ , C
(2,2)
3

(αs
4π

)2

τ ln3 τ , (10)

for both thrust in e+e− and 0-jettiness in pp collisions.
We present numerical results at NLO and NNLO and
perform a detailed comparison with the numerical fixed-
order results for Z + 1 jet from MCFM [53, 74–76]. In
Sec. III, we discuss the dependence of the power cor-
rections on the N -jettiness definition, and discuss the
implications of our calculations for future use of the N -
jettiness subtractions. We conclude in Sec. IV.

II. CALCULATION

In this section, we present our calculation of the

C
(2,1)
1 and C

(2,2)
3 coefficients for 0-jettiness. We begin in

Sec. II A by deriving general consistency constraints on
our calculation arising from the cancellation of 1/ε poles.

In Sec. II B we calculate the coefficients C
(2,1)
1 and C

(2,2)
3

for thrust in e+e− → dijets, which removes any complica-
tions related to the parton distribution functions (PDFs).
Finally, in Sec. II C we cross our results from thrust to
the case of 0-jettiness, and present numerical results.

We organize our calculation using SCET [56–60], which
is an effective field theory of QCD describing the inter-
actions of collinear and soft particles in the presence of a
hard interaction. It is formulated as an expansion about
the soft and collinear limits in a power counting parame-
ter λ, which in our case corresponds to λ2 ∼ τN . SCET is
explicitly constructed to maintain manifest power count-
ing in all stages of a calculation. In particular, all fields
and Lagrangians are assigned a definite power count-
ing [58]. The effective theory provides a natural organiza-
tion of the different sources of power corrections. It also
allows for the use of symmetries, such as reparametriza-
tion invariance (RPI) [77, 78], to relate certain power-

suppressed contributions to leading-power results. It has
been used to study factorization theorems at subleading
power for B decays [79–86], to study subleading soft lim-
its at the amplitude level [87], and subleading factoriza-
tion and resummation of the event shape thrust in e+e−

[88, 89].
Power corrections arise from three sources in the ef-

fective theory: universal subleading Lagrangian inser-
tions, which correct the dynamics of the soft and collinear
fields, subleading-power hard scattering operators, which
describe local corrections to the hard scattering vertex,
and subleading terms in the expansion of the measure-
ment functions and phase space. Power-suppressed La-
grangians have been studied in the literature [77–79, 90–
92], and the SCET Lagrangian is known to O(λ2) [92].
For the processes we consider here, e+e− → dijets and
Drell-Yan from qq̄ annhilation, a complete basis of SCET
hard scattering operators was presented in Ref. [73].
The subleading power expansion for the measurement
function for thrust has also been derived, originally in
Ref. [88] with a different formalism than the one em-
ployed here, and also in Ref. [73].

Our calculation is carried out by using SCET as a
means to organize the fixed-order calculation for the per-
turbative power corrections, and identify the most singu-
lar terms. For the observables discussed here this involves
considering real-emission diagrams involving soft and/or
collinear particles, as well as virtual corrections from soft
and collinear loops, plus short-distance hard loops. The
hard, collinear, or soft loops or emissions each only in-
volve a single scale. For this purpose, we do not need
to make use of factorization theorems for these power
corrections.

A. General constraints from consistency

We first discuss general constraints arising from the
cancellation of 1/ε poles on the subleading power cross
section. In SCET these poles are ultraviolet in origin and
arise from scale separation in the hard, collinear, and soft
regions. (From a full theory point of view these poles are
tracking infrared scales, and hence cancel because the
subleading power cross section is free of non-trivial in-
frared divergences.) Here we consider a generic dimen-
sionless SCETI observable τ , which we will later take to
be thrust or 0-jettiness in our explicit calculations. The
consistency relations are, however, generic. If we com-
pute the cross section using bare contributions from both
the hard Wilson coefficients and collinear and soft phase
space and loop integrals, then the O(τ) correction to the
cross section has the following general expression,

dσ(2,n)

dτ
=
∑
κ

2n−1∑
i=0

cκ,i
εi

(
µ2n

Q2nτm(κ)

)ε

+
∑
γ

2n−2∑
i=0

dγ,i
εi

(
µ2(n−1)

Q2(n−1)τm(γ)

)ε
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+ . . . . (11)

Here κ and γ label the scalings obtained from the con-
tributing particles, i.e., hard, collinear, or soft, and
m(κ) ≥ 1 is an integer. For example, at one loop (n = 1)
there is a single additional particle, which is either

soft: κ = s , m(κ) = 2 ,

collinear: κ = c , m(κ) = 1 , (12)

while at two loops (n = 2), the possible contributions are

hard-collinear: κ = hc , m(κ) = 1 ,

hard-soft: κ = hs , m(κ) = 2 ,

collinear-collinear: κ = cc , m(κ) = 2 ,

collinear-soft: κ = cs , m(κ) = 3 ,

soft-soft: κ = ss , m(κ) = 4 . (13)

In general the number of terms in κ indicates the loop or-
der. The extension to determine scalings at higher loops
should be obvious. In the first line of Eq. (11) the cκ,i
are the coefficients of the poles for each different contri-
bution. Starting from the second line the contribution
from UV renormalization, and collinear PDF renormal-
ization in the case of hadronic collisions, is taken into
account. Here γ is similar to κ but with one less h, c, or
s in it at each order in αs. For example, for 0-jettiness
at a hadron collider, schematically we have

dγ,2 = −β0cγ,1 +
∑
f

(P (0) ⊗ cγ,1)f , γ = s, c , (14)

where β0 is the one-loop beta function coefficient, and
P (0) is the LO splitting function with appropriate par-
tonic flavor, and the

∑
f denotes summation over dif-

ferent flavor combinations and incoming legs. We should
point out that the dγ,i coefficients, as well as higher-order
terms shown by the ellipses in Eq. (11) are completely
fixed by the known beta function, splitting functions, and
lower-order terms.

At subleading power there are no purely hard correc-
tions, which means m(κ) ≥ 1. Demanding that the pole
terms cancel in Eq. (11) gives rise to a number of con-
straints on the coefficients cκ,i, which can be exploited to
drastically simplify the calculation, as well as to provide
cross checks on the result.

At one loop, where there is either a single soft or
collinear emission in SCET, the cancellation of the pole
terms in Eq. (11) yields the simple constraint

cs,1 = −cc,1 . (15)

At two loops we find the following nontrivial constraints
on the coefficients

chc,3 =
ccs,3

3
= −css,3 = −1

3
(chs,3 + ccc,3) ,

ccs,2 = chc,2 − 2css,2 + dc,2 , (16)

chs,2 + ccc,2 = −2chc,2 + css,2 − dc,2 ,

chs,1 + ccc,1 = −(ccs,1 + chc,1 + css,1 + dc,1 + ds,1) ,

which apply separately in each color channel. Note that
we have applied the relation ds,2 = −dc,2 which is a con-
sequence of Eq. (14) and Eq. (15).

These consistency relations allow us to reduce the num-
ber of unknown coefficients at two loops. We can express
the two-loop result for the subleading power correction
as

dσ(2,2)

dτ
= chc,3 ln3 τ + (chc,2 + css,2 + dc,2) ln2 τ

+ (−ccs,1 + chc,1 − 2css,1 + dc,1) ln τ

+ dc,2 ln
Q2

µ2
ln τ + const . (17)

Here we have chosen to write the result in terms of hard-
collinear terms whenever possible, as these terms have
the simplest phase-space integrals. For other applica-
tions, other organizations may prove more convenient.
Interestingly, for the ln3 τ term, on which we focus here,
the consistency relations imply that we only need to cal-
culate a single two-loop coefficient, chc,3 (alternatively
css,3 or ccs,3). By calculating more coefficients the con-
straints of Eq. (16) can then provide a powerful check on
our calculation.

Although the focus of this paper is on the leading-
logarithmic term, ln3 τ , the consistency relations also sig-
nificantly reduce the number of unknown coefficients for
the ln2 τ and ln τ terms. Scale dependence first appears
in the coefficient of ln τ , as expected. In the future,
we hope to exploit these relations to analytically com-
pute the lower-order terms. We also believe that these
relations may prove useful in the extension of our cur-
rent calculation to the case of processes involving jets in
the final state. In particular, the coefficient of the ln3 τ
term is determined entirely by the hard-collinear contri-
bution. Understanding the universality of the sublead-
ing collinear limits may therefore allow for calculations
at subleading power to be extended straightforwardly to
final states involving additional jets.

B. 2-jettiness in e+e− → jets (thrust)

We begin by computing 2-jettiness in e+e− to jets.
For massless partons this is equivalent to thrust [93], for
which the exact one-loop result is known, and will provide
a cross check on our results. The thrust measurement
function is defined by

τ = 1−maxt̂

∑
i |t̂ · ~pi|∑
i |~pi|

. (18)

We focus on the leading-logarithmic terms in σ(2,n) at
one and two loops, which scale as αs ln τ and α2

s ln3 τ , re-
spectively. We will discuss in some detail the structure of
the calculation at NLO, focusing on the different types of
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power corrections, and the cancellation of 1/ε poles. We
then use the result of Eq. (17) to extend this calculation
to NNLO.

1. Power Corrections at NLO

By studying contributions from the complete basis of
SCET operators and possible Lagrangian insertions, we
determine that there are four contributions to the leading
logarithm at NLO that must be computed. These can be
grouped into two categories, that separately exhibit the
cancellation of 1/ε poles

• Category 1: A gluon becomes collinear with a
quark, or becomes soft.

• Category 2: Two quarks becomes collinear, or a
quark becomes soft.

Category 1 is of course familiar from the leading-power
case, while Category 2 first appears at subleading power
and will give rise to a CA color factor in the leading loga-
rithm. In the effective field theory organization, there are
two classes of diagrams which contribute to each of these
categories at NLO, corresponding to a soft or collinear
emission as enumerated in Eq. (12). We discuss the con-
tributions from the two categories in turn. We carry out
our calculations in Feynman gauge, and note that the
contributions from the categories and classes are individ-
ually gauge invariant.

First consider Category 1. The nonzero subleading
power corrections in the case that a gluon becomes soft
are reproduced by an SCET Lagrangian insertion correct-
ing the collinear quark propagator (which is equivalent
to the Low-Burnett-Kroll theorem [94, 95] interfered with
an eikonal emission, see Ref. [87]), while the subleading
power corrections to the collinear limit are reproduced by
a power suppressed hard scattering operator. These both
correspond to corrections to the amplitudes, and are il-
lustrated in Fig. 2, where the power suppression of the
hard scattering operators, and Lagrangian insertions are
indicated. The power suppression of a diagram is given
by the sum of the power suppression of the Lagrangian
insertions, and the hard scattering operators. Collinear
particles are shown in light blue, while soft particles are
shown in orange. Since both these limits exist at leading
power, there are also potentially subleading power cor-
rections from the expansion of the thrust measurement
function, and the phase space. The subleading power ex-
pansion of the thrust measurement function was given in
Refs. [73, 88], and does not contribute a leading logarith-
mic divergence. On the other hand, corrections to the
phase space do give rise to a leading logarithmic diver-
gence. In the effective field theory, we are free to choose
the routing of residual momenta. Considering as an ex-
ample the graph with a single soft gluon in Fig. 2a, and
let the momentum of the collinear particles be in the
n and n̄ directions, where n denotes a lightlike vector,

(a) (b)

FIG. 2. Representative NLO diagrams where a gluon becomes
either soft (a) or collinear (b) with a quark. Collinear particles
are shown in light blue, soft particles in orange. The cross
represents a Lagrangian correction to the propagator, and
the power suppression of the hard scattering operators and
Lagrangian insertions is explicitly indicated.

(a) (b)

FIG. 3. Representative NLO diagrams when a quark becomes
either soft (a) or two quarks becomes collinear (b). The power
suppression of the hard scattering operators and Lagrangian
insertions is explicitly indicated.

and n̄ its spatial conjugate. We can then route the n
component of the soft gluon’s momentum through the n
collinear quark, the n̄ component through the n̄ collinear
quark, and the perp component through the incoming off-
shell propagator. This then trivially corrects the phase
space integrals for the two collinear particles.

At NLO, we find for Category 1

1

σ0

dσ
(2,1)
Cat.1

dτ
= 8CF

[(
1

ε
+ ln

µ2

Q2τ

)
−
(

1

ε
+ ln

µ2

Q2τ2

)]
= 8CF ln τ , (19)

where in the first equality we have separated the contri-
butions from soft and collinear graphs. This result can
also be obtained by expanding the appropriate QCD am-
plitudes in the limit that the gluon becomes collinear or
soft. Note that the 1/ε poles cancel amongst the dia-
grams in this category, in agreement with the constraint
of Eq. (15). We also see the appearance of the character-
istic soft scale Q2τ2 and collinear scale Q2τ in the result
in Eq. (19).

The analysis of the two classes of diagrams in Category
2 is a bit simpler, since in this case there are no correc-
tions to the phase space. In the effective theory, the
soft quark limit is reproduced by a subleading power La-
grangian insertion, while the limit of two collinear quarks
is reproduced by a hard scattering operator. Representa-
tive diagrams are shown in Fig. 3, and indicate the source
of power suppression.
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The result for the Category 2 contributions is given by

1

σ0

dσ
(2,1)
Cat.2

dτ
= 4CF

[
−
(

1

ε
+ ln

µ2

Q2τ

)
+

(
1

ε
+ ln

µ2

Q2τ2

)]
= −4CF ln τ . (20)

We again see the cancellation of 1/ε poles. Also in this
case, the result can be obtained by expanding the relevant
QCD diagram in the limit of a quark going soft, or two
quarks becoming collinear.

Adding the contributions from the two categories, we
find that the soft and collinear coefficients are

cs,1 = −4CF = −cc,1 , (21)

and the final result for this term in the cross section is

1

σ0

dσ(2,1)

dτ
= 4CF ln τ , (22)

which agrees with the well-known exact one-loop result
for thrust [96]. This result was also reproduced in a some-
what different SCET framework in Ref. [88], where the
organization is different and there are more distinct con-
tributions (17 terms) that add up to this leading loga-
rithm result.

2. Power Corrections at NNLO

Having understood the structure at NLO, we can
now extend our calculation to NNLO. The leading-
logarithmic divergence at NNLO, α2

s ln3 τ can be ob-
tained by dressing the NLO diagrams with a single
leading-power correction that is either hard, collinear, or
soft and could be virtual or real. From the consistency
relations, summarized in Eq. (17), it suffices to calculate
only the hard corrections to the collinear diagrams. This
is shown schematically in Fig. 4. The loop corrections
for e+e− → 3 partons are known analytically at both
one [97] and two loops [98], which we use to derive our
result. We find

1

σ0

dσ(2,2)

dτ
=
[
−32C2

F + 8CF (CF + CA)
]

ln3 τ

= 8CF (CA − 3CF ) ln3 τ . (23)

In the first line we have separated the result into the
contributions from Category 1, which have a C2

F color
structure, as is the case for the leading logarithm at
leading power, and the contribution from Category 2,
which has a CF (CF + CA) color structure, which is not
present at leading power. The appearance of this gen-
uinely new color structure at subleading power is not
surprising, due to the contribution from the limit where
the two quarks become collinear, effectively giving rise
to a CA like cusp, as seen in Fig. 4. It would be inter-
esting to understand how this result can be derived from
renormalization group evolution.

(a) (b)

FIG. 4. Representative diagrams of the two-loop hard
collinear contributions which contribute at subleading power.
Here the grey circle represents a one-loop hard virtual correc-
tion. There are contributions when either a gluon becomes
collinear with a quark (a) or two quarks become collinear (b).
The power suppression of the contributing operators is indi-
cated.

We have performed an explicit calculation of the dou-
ble soft coefficient css,3 and the collinear-soft coefficient
ccs,3, and confirmed that the consistency relation in
Eq. (16) indeed holds, providing a highly non-trivial
check of our calculation. Knowing the double collinear
coefficient ccc,3 explicitly would further check the consis-
tency relation, which we leave for future work.

C. 0-jettiness in qq̄ → color-singlet production
(beamthrust)

We now turn to computing the dominant subleading
terms for 0-jettiness or beam thrust. We define qµ, Q,
and Y as the total momentum, invariant mass, and ra-
pidity of the color-singlet system,

Q =
√
q2 , Y =

1

2
ln
q−

q+
. (24)

The incoming partonic momenta are

pa = xaEcm
n

2
, xaEcm = QeY ,

pb = xbEcm
n̄

2
, xbEcm = Qe−Y , (25)

where nµ = (1, ẑ), n̄µ = (1,−ẑ), and ẑ is the beam axis.
It is important to distinguish different definitions of

0-jettiness, which we refer to as leptonic and hadronic.
The dimensionful and dimensionless versions are defined
as

T x0 =
∑
k

min
{
λx p

+
k , λ

−1
x p−k

}
, τx ≡ T

x
0

Q
, (26)

where the sum runs over all particles in the final state
excluding the hard color-singlet system. The momenta
pk are defined in the hadronic center-of-mass frame and
the measures are then defined as

leptonic: λ =

√
q−

q+
= eY ,
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hadronic: λhad cm = 1 . (27)

For simplicity we will not include a superscript on our

default variable T0 ≡ T lept
0 , which employs λ = eY . The

eY factor in the leptonic definition is explicitly included
to take into account the boost of the leptonic center-
of-mass frame. It effectively defines T0 in the leptonic
center-of-mass frame where p̂±k = e±Y p±k and so T0 =∑
k min{p̂+

k , p̂
−
k }. This is the more natural definition, as

was discussed in detail already in Refs. [43, 55, 72], and it
is the definition used in Geneva [48] and the numerical
results in Ref. [46].

The hadronic definition, which effectively defines
T had cm

0 in the hadronic center-of-mass frame, was dis-
cussed in Refs. [43, 55, 99] (called Tcm there) for the
purpose of experimental measurements where the total
rapidity Y is not known, e.g. due to the neutrinos in W
production or H → WW . It is the definition currently
used in MCFM8 [53].

In the context of N -jettiness subtractions, taking into
account the boost Y of the Born system is essential for
ensuring that the power corrections are independent of
Y . We therefore focus on the leptonic definition in this
section. In Sec. III we also discuss and compare to the
hadronic definition, showing that it induces power cor-
rections that are exponentially enhanced at large Y .

The hadronic cross section can be written as

dσ =
∑
ij

∫
dξadξb fi(ξa) fj(ξb) dσ̂ij(ξa, ξb) , (28)

where fi are the PDFs, and dσ̂ij(ξa, ξb) are the partonic
cross sections. We write the leading-order partonic cross
section as

dσ̂
(0,0)
qq̄ (ξa, ξb;X)

dQ2 dY dτ
= σq0(Q,X) δaδb δ(τ) , (29)

where we abbreviated

δa ≡ δ(ξa − xa) , δb ≡ δ(ξb − xb) . (30)

In Eq. (29), σq0(Q,X) is the Born cross section for the
relevant qq̄ → color-singlet process mediated by the qq̄
vector current we consider. It encodes the process de-
pendence as well as all additional measurements and/or
kinematic cuts X applied to the color-singlet final state.

We note that for the NLP leading logarithms, the
renormalization of the PDFs does not play a role, as they
contain at most a single logarithm of τ . This differs from
the case of threshold resummation, where PDF renormal-
ization contributes already to the leading logarithms.

A new feature at subleading power is that the PDF
arguments develop sensitivity to the small momentum
components in the form

fi

[
ξ
(

1 +
k

Q

)]
= fi(ξ) +

k

Q
ξf ′i(ξ) + · · · , (31)

where k/Q ∼ τ . These are analogous to the phase space
corrections for thrust discussed above, but arise due to

the routing of a small momentum component through
the incoming collinear lines. The PDF must thus be
Taylor-expanded to achieve a homogeneous expansion in
τ . The first term corresponds to the leading-power con-
tribution, while the second term contributes at next-to-
leading power. It yields a O(1) correction to the NLP co-
efficients even for small values of ξ, since ξf ′i(ξ) ∼ fi(ξ).

1. Results

We write the partonic cross section at subleading O(τ)
as

dσ̂
(2,n)
ij (ξa, ξb;X)

dQ2 dY dτ
= σq0(Q,X)

2n−1∑
m=0

C
(2,n)
ij,m (ξa, ξb) lnm τ ,

(32)

where σq0(Q,X) is the Born cross section for the quark-
initiated process, defined via Eq. (29). For the coeffi-
cients we are interested in, there are in total six different
partonic channels, σ̂qq̄, σ̂q̄q, σ̂qg, σ̂gq, σ̂q̄g, σ̂gq̄. They are all
trivially related to the two basic channels σ̂qq̄ and σ̂qg,
on which we will focus.

To compute the leading-logarithmic coefficients C
(2,1)
ij,1

and C
(2,2)
ij,3 , we cross our results for thrust computed in

Sec. II B. Taking into account the modified definition of
the measurement function as well as the corrections from
PDFs, we find for the NLO coefficients

C
(2,1)
qq̄,1 (ξa, ξb) = 8CF

(
δaδb +

δ′aδb
2

+
δaδ
′
b

2

)
, (33)

C
(2,1)
qg,1 (ξa, ξb) = −2TF δaδb , (34)

where TF = 1/2. The qg channel has a different color
factor due to differences in the averages over initial state
colors. The derivatives of the delta functions are defined
as

δ′a ≡ xa δ′(ξa − xa) , δ′b ≡ xb δ′(ξb − xb) , (35)

which translate into the above-mentioned PDF deriva-
tives in the hadronic cross section. They only appear
in the qq̄ coefficients, because the qg coefficient has no
analog at leading power that is sufficiently singular.

Repeating the analysis at NNLO, we obtain for the
leading-logarithmic coefficients

C
(2,2)
qq̄,3 (ξa, ξb) = −32C2

F

(
δaδb +

δ′aδb
2

+
δaδ
′
b

2

)
, (36)

C
(2,2)
qg,3 (ξa, ξb) = 4TF (CF + CA) δaδb , (37)

which are one of the main results of this paper. The
result for the qq̄ channel has a C2

F color structure, which
is analogous to the leading logarithm at leading power.
On the other hand, the qg channel has a TF (CF + CA)
color structure. This arises from the one-loop corrections
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(a) (b)

FIG. 5. Diagrams contributing to σqg, where either a soft
quark crosses the cut (a), or a collinear quark crosses the cut
(b). The one-loop corrections to these diagrams give rise to
the TF (CF + CA) ln3(τ) correction to beam thrust.

to the diagrams in Fig. 5, where a soft or collinear quark
crosses the cut.

We have also analytically calculated the α2
s ln3(1 − z)

corrections to Drell-Yan production in the threshold limit
for both the qq̄ and qg channels, for which we find agree-
ment with the known NNLO results [100] for all color
structures in both channels. This provides a highly non-
trivial cross check of our approach. While subleading
power corrections in the threshold limit have been well
studied for the qq̄ channel [101–105], we are not aware of
studies for the qg channel.

Further details of the SCET-based NNLO analysis dis-
cussed here for both 0-jettiness and the threshold limit
will be provided in a future dedicated publication.

2. Numerical results

We now present a comparison of our results with nu-
merical fixed-order results. On the one hand, this serves
as a numerical cross check on our calculated coefficients
for the leading logarithm at subleading power. On the
other hand, using our exact results for the calculated co-
efficients allows us to numerically extract the NLL cor-
rections of O(αsτ) and O(α2

sτ ln2 τ), and to study the
numerical relevance of both the LL and NLL terms at
subleading power.

For our numerical analysis we consider the process
pp → Z/γ∗ at Ecm = 13 TeV. We always use the
MMHT2014 NNLO PDFs [106], fixed scales µr = µf =
mZ , and αs(mZ) = 0.118. We work at fixed Q = mZ

in the narrow-width approximation, which avoids the
numerical phase-space integral over Q. We integrate
over the full range of rapidity ln(mZ/Ecm) ≤ Y ≤
− ln(mZ/Ecm) and are fully inclusive over the vector-
boson decay. (We include the branching ratio to leptons
in σq0, but this only affects the overall cross section and
is irrelevant for our studies.) The leading-order cross sec-
tion following from Eq. (29) is then given by

σLO = πΓZmZ

∑
q

σq0(mZ)

∫
dY fq

(
mZe

Y
)
fq̄
(
mZe

−Y ) ,
(38)

where the sum over q runs over all quark flavors q =
{d, u, s, c, b, d̄, ū, s̄, c̄, b̄}.

We normalize all our results to σLO, which removes
a large part of the dependence on the explicit process
that is mediated by the underlying qq̄ vector current.
The only leftover dependence is related to the PDFs and
comes from the effective x-range in the PDFs probed
by the rapidity integration, which is determined by the
value of Q = mZ , as well as the included quark flavors.
These PDF effects primarily determine the size of the
qq̄ and qg channels relative to each other, but only to a
small extent the size of the corrections within a channel.
(The PDF derivative contributions in the qq̄ channel are
slightly different for valence and sea quarks.)

We also note that for discussing the size of the power
corrections in this context the LO cross section actually
provides a better reference value than the full NLO or
NNLO corrections. The reason is that the size of the
latter relative to the LO cross section can itself strongly
depend on the process. Furthermore, at the typical τcut

values of interest the logarithms are so large that they
essentially compensate any αs suppression in the power
corrections. Finally, this allows us to directly compare
the numerical size of the corrections for different orders
and channels, and also makes it simple to add the chan-
nels.

We calculate the full T0 spectrum at O(αs) and O(α2
s)

using the Z + 1-jet (N)LO calculation from MCFM8 [53,
74–76], which allows one to generate points down to very
small values of T0 ' 10−3 GeV. We then subtract the
known singular (leading-power) terms in the T0 spec-
trum [55, 99, 107] to obtain the complete nonsingular
(subleading-power) contributions,

1

σLO

dσnons

d ln T0
=

1

σLO

dσ

d ln T0
− 1

σLO

dσ(0)

d ln T0
. (39)

This is done separately for the αs (NLO) and pure α2
s

(NNLO) contributions and separately for the qq̄ and qg
channels.1 The qq̄ channel includes the sum over all fla-
vors, as in σLO. The qg channel includes the sum of the
qg and gq contributions with q summed over all quarks
and antiquarks.

By construction the nonsingular cross section starts at
subleading power and contains terms of all orders in the
power expansion. By considering dσ/d ln T0 = T0 dσ/dT0

the leading nonsingular contribution scales ∼ T0 and
must therefore go to zero for small T0. These are the
dominant terms we want to study. Note that computing
σnons also provides an easy cross check that all leading-
power singular terms are correctly calculated and exactly
cancel in Eq. (39), since any miscancellation would spoil

1 At NLO this distinction is unique, since these are the only two
combinations of incoming partons. At NNLO, the qq̄ channel is
defined to include all contributions that do not have incoming
gluons, while the qg channel also includes all gg contributions.
The LL coefficient at subleading power does not depend on this
choice of grouping since it is absent for the gg channel.
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FIG. 6. Illustration of the fit to the O(αs) nonsingular in the qq̄ channel (top row) and the qg channel (bottom row). The plots
on the right are equivalent to those on the left and show the absolute value on a logarithmic scale. A detailed explanation of
the fit function, as well as the plotted curves, is given in the text.

this scaling behaviour and would be immediately visible
in the nonsingular data.

Due to the huge numerical cancellations between the
full and singular results at small T0, the full result has
to be generated with extremely high statistical precision
in order to obtain the nonsingular result with sufficiently
high precision to allow for precise checks and fits of the
subleading contributions.

We perform a standard χ2 fit to the nonsingular NLO
and NNLO data in both channels using the functional
forms

FNLO(τ) =
d

d ln τ

{
τ
[
(a1 + b1τ + c1τ

2) ln τ

+ a0 + b0τ + c0τ
2
]}
,

FNNLO(τ) =
d

d ln τ

{
τ
[
(a3 + b3τ) ln3 τ + (a2 + b2τ) ln2 τ

+ a1 ln τ + a0

]}
, (40)

with τ ≡ T0/mZ . The coefficients at the same order in τ

tend to be highly correlated, since the different powers of
ln τ have very similar shapes. To obtain reliable fit results
it is thus crucial to ensure that the fit is unbiased. An
important consideration is the choice of fit range in T0

and the number of fit coefficients.

Regarding the fitted coefficients, we are ultimately in-
terested in the leading coefficients a1 and a0 at NLO
and a3 and a2 at NNLO. When fitting the leading co-
efficients, neglecting higher-power corrections in the fit
(which are of course present in the data) corresponds to
a theoretical uncertainty in the fit model. We take this
uncertainty into account, with the correct correlations
among the bins, by including the higher-power bi and ci
coefficients as additional nuisance parameters in the fit.
With the very precise data needed to get a precise de-
termination of the ai coefficients, it is essential to do so,
because even in a region in τ where the higher-power con-
tributions might naively seem negligible, they can have
a nontrivial influence on the fit as soon as their nomi-
nal contribution becomes comparable with the statistical
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FIG. 7. Illustration of the fit to the O(α2
s) nonsingular in the qq̄ channel (top row) and the qg channel (bottom row). The plots

on the right are equivalent to those on the left and show the absolute value on a logarithmic scale. A detailed explanation of
the fit function, as well as the plotted curves, is given in the text.

uncertainties in the data. (In other words, the correlated
theory uncertainties must be taken into account as soon
as they become of similar size to the statistical uncertain-
ties.) At NLO, the data is precise enough to require (or
allow) including both bi and ci coefficients. At NNLO,
we include b3 and b2 since we are interested in unbiased
results for a3 and a2. (The NNLO data is not precise
enough to require or allow including corresponding b1
and b0 terms.)

Regarding the fit range, in principle the best sensitivity
comes from the smallest possible τ values so we always fit
down to the lowest available τ values. However, the data
is much less precise toward smaller τ values due to the
larger numerical cancellations, and much more precise to-
ward larger τ values. The precision in the fit results thus
benefits significantly as the fit range is extended toward
large τ , but at the same time is in danger of becoming
biased. To achieve a precise but still unbiased fit, we
increase the fit range until including an additional data
point would reduce the standard p-value of the fit. Be-
yond this point, the p-value rapidly deteriorates giving a

clear indication that the fit becomes biased and the fit
model is not able to describe the data any longer. As a
cross check, we also check that including an additional
coefficient for the selected fit range does not increase the
p-value of the fit (while it does so when including the next
data point). As further cross checks on the fit results, we
divide the data into two independent subsets and perform
separate fits for each subset. We also perform several ad-
ditional fits with both fewer and more coefficients, using
the same procedure to select the fit range in each case,
and check that we find compatible fit results.

order and channel fitted calculated

NLO qq̄ a1 +0.25366± 0.00131 +0.25509

NLO qg a1 −0.27697± 0.00113 −0.27720

NNLO qq̄ a3 −0.01112± 0.00150 −0.01277

NNLO qg a3 +0.02373± 0.00247 +0.02256

TABLE I. Comparison of fitted and calculated values for the
LL coefficients.
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FIG. 8. Power corrections ∆σ(τcut) for the O(αs) contributions in the qq̄ channel (top row) and the qg channel (bottom row).
The plots on the right are equivalent to those on the left and show the absolute value on a logarithmic scale.

order and channel fitted

NLO qq̄ a0 +0.13738± 0.00057

NLO qg a0 −0.40062± 0.00052

NNLO qq̄ a2 −0.04662± 0.00180

NNLO qg a2 +0.04234± 0.00242

TABLE II. Fit results for the NLL coefficients using the cal-
culated LL coefficients in table I as input.

As a check of our calculation we first fit the LL coef-
ficients (a1 at NLO and a3 at NNLO). The results from
our default fit for both qq̄ and qg channels are given in
table I along with the predicted values from our calcula-
tion. In all cases we find excellent agreement. To extract
the NLL coefficients (a0 at NLO and a2 at NNLO), we
then repeat the fit with the LL coefficients fixed to their
predicted values, which allows for a precise determina-
tion of a0 and a2, respectively. The results are shown in
table II. If we approximate the ξa and ξb dependence of
the NLL coefficients in the partonic cross section by the
corresponding dependence at LL, we can translate the

fitted values for a0 and a2 into the approximate results

C
(2,1)
qq̄,0 (ξa, ξb) ≈ 16.4

(
δaδb +

δ′aδb
2

+
δaδ
′
b

2

)
,

C
(2,1)
qg,0 (ξa, ξb) ≈ −2.45 δaδb ,

C
(2,2)
qq̄,2 (ξa, ξb) ≈ (378± 8)

(
δaδb +

δ′aδb
2

+
δaδ
′
b

2

)
,

C
(2,2)
qg,2 (ξa, ξb) ≈ (42.3± 0.9)δaδb , (41)

where the uncertainties for the NNLO coefficients arise
from the fit uncertainties in the a2.

In Figs. 6 and 7 we show the nominal fit results for
both channels at NLO and NNLO, respectively. The
black points show the nonsingular data. The statistical
uncertainties are (much) smaller than the size of the data
points, except for the lowest points in the NNLO data,
where the error bars become visible. (This means that
while in all cases the fit quality is good, this fact cannot
be judged by eye, so these plots should just be taken as
illustration.) The plots on the left are on a linear scale
to show the shape and relative signs of the contributions,



13

10-5 10-4 10-3 10-2
-1.0

-0.5

0.0

0.5

1.0

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

10-5 10-4 10-3 10-2
-1.0

-0.5

0.0

0.5

1.0

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

10-5 10-4 10-3 10-2
-1.0

-0.5

0.0

0.5

1.0

10-5 10-4 10-3 10-2 10-1
10-5

10-4

10-3

10-2

10-1

FIG. 9. Power corrections ∆σ(τcut) for the O(α2
s) contributions in the qq̄ channel (top row), the qg channel (middle row), and

the sum of both channels (bottom row). The plots on the right are equivalent to those on the left and show the absolute value
on a logarithmic scale.

while the plots on the right show the same results but
taking the absolute value and using a logarithmic scale
to highlight the behaviour at small values of T0. The solid
orange line shows the final fit and represents the full non-
singular piece σnons. The short-dashed extensions show

the extrapolation of the fit result beyond the fit range. To
illustrate the contribution from each logarithmic order,
the dashed green lines show the LL contributions. The
dashed blue lines show the sum of the LL and NLL con-
tributions. In the NLO fits these make up the complete
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result at O(τ), while at NNLO they lack terms scaling
as τ ln τ and τ . In the NNLO fits, the dotted red line
shows the full O(τ) contribution including all fitted ai
coefficients (at their central values for illustration only).
In both cases, the difference to the full result is due to
the higher-power contributions. As expected, the LL and
NLL results approach the full nonsingular result toward
small values of T0.

In Figs. 8 and 9 we show the corresponding results
for the missing power corrections ∆σ(τcut) for τcut =
Tcut/mZ at NLO and NNLO respectively, again on a lin-
ear scale on the left and logarithmic scale on the right. In
terms of the dimensionless quantity τcut, the results are
essentially independent of the precise value of Q (apart
from the indirect dependence due to the PDF x-range
mentioned above and the lnQ scaling-violation term).
The solid orange, blue dashed, and green dotted lines
have the same meaning as in Figs. 6 and 7, showing the
full nonsingular result together with its NLL and LL ap-
proximation, respectively. The solid green lines show the
difference between the full nonsingular and its LL approx-
imation, which corresponds to the new missing contribu-
tion ∆σ when the LL subleading contribution is included
in the subtractions. Similarly, the blue solid line shows
the difference between the full nonsingular and its NLL
approximation, where the light-blue band shows the ef-
fect of the fit uncertainty on the NLL coefficient. This
represents the missing power correction ∆σ when the two
leading coefficients are included in the subtractions.

At NLO, shown in Fig. 8, we see an improvement by
almost an order of magnitude from including each log-
arithmic order, as expected from our scaling arguments
illustrated in Fig. 1. At NNLO, shown in Fig. 9, for the
qg channel we see the expected hierarchy between LL
and NLL terms. For the qq̄ channel, the LL and NLL
terms happen to largely cancel numerically, such that
the full nonsingular correction is accidentally small, and
including only the LL subleading contribution actually
increases the size of the missing power corrections, while
including both terms leads to an improvement (except
where the full corrections happens to cross through zero).
Since the contributions in both channels have the oppo-
site sign, when adding the two channels they partially
cancel, and they do more so for the higher-logarithmic
pieces. As a result, in the total we see a clear hierarchy:
Including the LL coefficient yields a substantial improve-
ment by an order of magnitude. Including the NLL con-
tributions leads to some further improvement, although
due to the cancellations between the channels the rela-
tive uncertainties from the fit are noticeably larger. This
motivates an analytic calculation of the NLL term at sub-
leading power.

Overall, we can conclude that for the range of τcut

values of relevance for N -jettiness subtractions for color-
singlet production, the inclusion of the analytically com-
puted LL power correction significantly improves the nu-
merical behaviour both at NLO and NNLO. We observe
a reduction in the error induced due to missing power

corrections by about an order of magnitude by includ-
ing the LL power correction in the subtraction. The
inclusion of the NLL contributions, which we are able
to extract numerically with good precision, leads to fur-
ther improvement. This clearly demonstrates how the
analytic calculation of subleading power corrections can
be used to significantly improve the achievable numerical
accuracy and/or the required computational time for the
application of N -jettiness subtractions.

III. DEPENDENCE OF POWER
CORRECTIONS ON N-JETTINESS DEFINITION

In this section we discuss how the structure of power
corrections depends on the definition of the N -jettiness
observable, both for the specific case of 0-jettiness for
which we have computed the power corrections analyti-
cally, as well as for N -jettiness subtractions more gener-
ally.

A. 0-jettiness

In Sec. II C we considered the leptonic definition of
N -jettiness, which explicitly accounts for the boost of
the Born system due to the eY factor in the measure.
As shown by the results in Eqs. (33) and (36), the power
corrections in this case are independent of the Born kine-
matics, up to the dependence on the PDFs, the numerical
impact of which we will study in this section.

It is also interesting to consider the hadronic defini-
tion of beam thrust, T had cm

0 given in Eq. (27), which has
been used in some applications of N -jettiness subtrac-
tions. The calculation proceeds identically to the case of
the leptonic definition, T0, with only a difference in the
measurement function. For T had cm

0 , we find at NLO

C̃
(2,1)
qq̄,1 (ξa, ξb) = 4CF

[
eY δa(δb + δ′b) + e−Y (δa + δ′a)δb

]
,

C̃
(2,1)
qg,1 (ξa, ξb) = −2TF e

Y δaδb ,

C̃
(2,1)
gq,1 (ξa, ξb) = −2TF e

−Y δaδb , (42)

and at NNLO

C̃
(2,2)
qq̄,3 (ξa, ξb) = −16C2

F

[
eY δa(δb + δ′b) + e−Y (δa + δ′a)δb

]
,

C̃
(2,2)
qg,3 (ξa, ξb) = 4TF (CF + CA)eY δaδb ,

C̃
(2,2)
gq,3 (ξa, ξb) = 4TF (CF + CA)e−Y δaδb . (43)

Here, the O(τhad cm) power corrections grow like e±Y ,
and are thus exponentially enhanced at forward rapidi-
ties. The reason for this can be easily understood as
follows. In SCET, the collinear and soft particles are
assigned a scaling pc = (p−c , p

+
c , p

⊥
c ) ' (1, λ2, λ) and

ps ' (λ2, λ2, λ2), and the power expansion is in terms
of λ2 ' p+

c /p
−
c ' ps/p

−
c . For the leptonic definition,

it is effectively performed in the frame where the Born
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FIG. 10. Comparison of the missing power corrections ∆σ(τcut) for the hadronic (dashed) and leptonic (solid) definitions of
T0. The curves are equivalent to those on the right in Figs. 8 and 9, and a detailed explanation is provided in the text.

system is at rest, and where the large minus momen-
tum of the colliding partons are fixed to p̂−a = p̂+

b = Q.
At the same time, T0 scales as T0 ' min{p̂+

c , p̂
−
c }, so

the effective expansion parameter is λ2 ' T0/Q. In
contrast for the hadronic definition, the expansion is
effectively performed in the hadronic frame and is in

terms of T had cm
0 /p−a = eY T had cm

0 /Q or T had cm
0 /p+

b =

e−Y T had cm
0 /Q. This is precisely what leads to the e±Y

factors in Eqs. (42) and (43). This also means that the
power expansion for T had cm

0 actually significantly dete-
riorates at forward rapidities, with the nth-order power
corrections scaling as enY (τhad cm)n. (This deterioration
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FIG. 11. Leading-logarithmic power correction in the rapidity spectrum at O(αs) (top row) and O(α2
s) (bottom row), using

τcut = 10−3. The colored curves show the default definition of T0 in the leptonic frame. The gray curves show the definition
T had cm
0 in the hadronic frame, for which the power corrections grow exponentially with rapidity. The plots on the right are

equivalent to those on the left and show the absolute value on a logarithmic scale.

causes power corrections in T had cm
0 to be much larger

than those for T0, but does not change the fact that for
both variables in the small τ region the nonsingular cor-
rections are still much smaller than the leading power
singular corrections.)

The sensitivity of the power correction to the boost
of the partonic frame can also be understood physi-
cally by considering a soft emission from the incoming
collinear partons. At leading power, this is described
by the eikonal matrix element, which is independent of
the large momentum fraction of the collinear parton. At
subleading power, this is no longer true, and the matrix
element depends explicitly on the momentum fraction of
the collinear parton.

We have also performed our numerical analyses of the
previous section for T had cm

0 . The much larger size of the
nonsingular corrections are clearly visible in the nonsin-
gular data. However, the fit range cannot be extended
above Tcut = 10−2 GeV, beyond which the power expan-

sion deteriorates. As a result, we are only able to obtain
a qualitative cross check for the leading coefficients. Fix-
ing the leading coefficient to the analytic prediction, the
fit provides a good interpolation of the nonsingular data,
but we were not able to extract a meaningful result for
the NLL coefficients.

In Fig. 10, we compare the leptonic (solid) and
hadronic (dashed) definitions of 0-jettiness, showing the

cumulant σnons(τcut) as a function of τcut = T (had cm)
0 /Q

for the qq̄ and qg channels at NLO and NNLO. The or-
ange curves show the full nonsingular result, while the
green curves show the result removing the LL contribu-
tion. For the leptonic definition we also show the result
removing the fitted NLL contributions in blue, i.e., the
solid curves are equivalent to those in Figs. 8 and 9. In all
cases the power corrections are about an order of magni-
tude larger for T had cm

0 than for T0, independently of τcut

(except in the region where the result happens to cross
through zero). In fact, in many cases, the power correc-
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tions for T had cm
0 even after removing the leading-power

contribution is larger than the full nonsingular leptonic
result. Thus by switching from the hadronic definition
to the leptonic definition and including the analytic cal-
culation of the leading power correction, one can gain an
improvement in the precision of the N -jettiness subtrac-
tions by two orders of magnitude.

To illustrate the rapidity dependence, in Fig. 11 we
show the size of the leading-logarithmic power correc-
tions as a function of the vector-boson rapidity (using a
fixed value τcut = 10−3) on a linear and logarithmic scale.
The results for T0 are shown in dotted green for the qq̄
channel, dashed blue for the qg channel, and solid orange
for their sum. For comparison, the corresponding results
for T had cm

0 with the same dashing are shown in grey. As
expected, the power corrections for T0 are essentially flat
in rapidity, except for the qq̄ channel at the very end-
point due the sensitivity of the contributions involving
PDF derivatives to the PDF endpoint. In contrast, for
T had cm

0 the exponential growth of the power corrections
with rapidity is clearly seen. This explains the numer-
ical behavior that was observed in Ref. [53], where the
convergence of the N -jettiness subtractions strongly de-
pended on the application of rapidity cuts. On the other
hand, in Ref. [46] where the leptonic definition was used,
the rapidity spectrum was completely well-behaved for
any Y .2

Since the purpose of the N -jettiness subtractions is to
perform NNLO calculations fully differential in the Born
phase space, it is of course quite undesirable to have a
strong dependence of the size of missing power correc-
tions on the Born phase space as is the case for T had cm

0 .
Hence, a beneficial feature of the leptonic definition is
that the relative size of missing power corrections and
thereby the accuracy of the subtraction method is essen-
tially independent of the Born phase space and thus also
of additional Born level cuts. In practice this means that
the numerical accuracy does need to be reevaluated on a
case-by-base basis depending on the applied cuts.

B. N-jettiness

The above considerations regarding the size of power
corrections are not limited to the case of qq̄-initiated
color-singlet production and can be applied more gen-
erally to ensure a well-behaved power expansion.

2 Recently, the pp → H + 1-jet NNLO calculation in Ref. [108]
found a disagreement with the results in Ref. [45] based on 1-
jettiness subtractions, amounting to a ' 30% difference in the
NNLO coefficient. The Tcut values used in Ref. [45] were between
0.05−0.1 GeV which for typical Q ' 150−200 GeV corresponds
to τcut >∼ 3×10−4. From our scaling estimates and the fact that
Ref. [45] appears to use a hadronic-frame definition for T1, for
which one can expect the power corrections to be enhanced, it
is possible that this size of difference in the NNLO contribution
could be caused by the power corrections.

Since N -jettiness subtractions are applied at the level
of a theoretical calculation, it is always possible to use
a definition of N -jettiness that incorporates the boost of
the Born system relative to the frame of the hadronic
collision, as discussed in Ref. [43],

TN =
∑
k

min
i

{2qi · pk
Qi

}
, (44)

where the minimum runs over i = {a, b, 1, . . . , N}. In
principle, more general N -jettiness measures di(pk) are
possible as well. The above choice di(pk) = (2qi · pk)/Qi
is convenient for theoretical calculations, because it is
linear in the momenta pk [69, 109]. The qi are massless
reference momenta corresponding to the momenta of the
hard partons present at Born level,

qµi = Ein
µ
i , nµi = (1, ~ni) , |~ni| = 1 . (45)

In particular, the reference momenta for the incoming
partons are given by

qµa,b = xa,b
Ecm

2
nµa,b , nµa,b = (1,±ẑ) , (46)

where

2Ea = xaEcm = nb · (q1 + · · ·+ qN + qL) = QeY ,

2Eb = xbEcm = na · (q1 + · · ·+ qN + qL) = Qe−Y ,

Q2 = xaxbE
2
cm , Y =

1

2
ln
xa
xb
. (47)

Here, qL is the total momentum of any additional color-
singlet particles in the Born process, and Q and Y now
correspond to the total invariant mass and rapidity of the
Born system. A more detailed discussion of the construc-
tion of the qi in the context of fixed-order calculations
and N -jettiness subtractions can be found in Ref. [46],

The measure factors Qi influence the singular be-
haviour of the TN cross section and therefore also the
power expansion. Several choices have been discussed in
Ref. [69, 109]. The invariant-mass measure is given by
choosing a common Qi = Q, and this automatically in-
corporates correctly the boost Y of the Born system via
Eq. (47). A class of geometric measures is obtained by
choosing Qi = ρi 2Ei, where the ρi are dimensionless.
This is convenient in that it makes TN independent of
the energies Ei and only dependent on the directions ni.
In this case, a simple way to correctly incorporate the
boost Y is to choose ρi ≡ 1 in the Born frame, i.e., the
frame where the Born system has Y = 0, such that

TN =
∑
k

min
i

{
n̂i · p̂k

}
, (48)

where p̂k and n̂i are the final-state momenta and ref-
erence directions in the Born frame. For the beam
contributions, this reduces to the leptonic definition
min{p̂+

k , p̂
−
k }. In the hadronic frame this corresponds to
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choosing ρa,b = e±Y , while the ρi≥1 are more compli-
cated.

By the same scaling arguments as for T0, taking into
account the boost Y in the definition of TN as described
above, one ensures that the power expansion is well be-
haved, and that power corrections do not grow exponen-
tially with Y , which would be the case for example if TN
was defined as in Eq. (48), but in the hadronic frame.
In particular, this applies to processes such as pp →
W/Z/H+ jet, to which N -jettiness subtractions have al-
ready been applied. This definition also applies to pro-
cesses involving only jets at Born level, such as pp →
dijets which is an obvious next target for the application
of N -jettiness subtractions. Analytic calculations of the
leading power corrections can then be used for further
improvements, as they become available. It would also
be interesting to study the definition of the N -jettiness
axes for the final-state jets in more detail, to understand
if they can be chosen in such a manner as to further re-
duce the power corrections.

IV. CONCLUSIONS

We have presented an analytic calculation of the αs ln τ
and α2

s ln3τ power corrections for thrust in e+e− colli-
sions and 0-jettiness (beam thrust) for qq̄ annihilation in
pp collisions. We showed how subleading power correc-
tions for event shape observables can be systematically
computed using SCET, and derived general consistency
relations of the subleading coefficients from the cancella-
tion of 1/ε poles. We have checked our analytic expres-
sions by comparing with numerical fixed-order results, as
well as analytically, by comparing with the known NNLO
result in the threshold limit, finding excellent agreement
in all cases.

Our calculation clearly shows the advantage of using
SCET for calculating power corrections. Besides a sys-
tematic organization of operators and Lagrangian inser-
tions, the consistency relations in Eq. (11) lead to a sig-
nificant simplification and a valuable cross check of the
calculation. Already at NLO, the SCET calculation con-
tains divergences in both the collinear and soft matrix
element, whose cancellation leads to the nontrivial con-
straint in Eq. (15). In contrast, the full NLO QCD cal-
culation does not have 1/ε poles and a priori does not
provide similar constraints. At higher orders, the im-
portance of the consistency constraints becomes evident,
as they lead to a significant reduction in the number of
matrix elements that are needed for the leading and sub-
leading logarithms, as shown in Eq. (17). Furthermore,
checking the relations in Eq. (16) provides an important
cross check of our calculation.

Our analytic results have a number of interesting fea-
tures, including the appearance of a CA color structure
in the coefficient of the α2

s ln3τ term in the qg channel.
This color structure arises from a limit in which a quark
becomes soft, or two quarks become collinear, which does

not have an analog at leading power. It would be inter-
esting to understand this structure also at higher orders
in αs, and how it arises from the renormalization group
evolution at subleading power.

Our computation of the leading power corrections al-
lows for the improvement of the N -jettiness subtractions
for Drell-Yan-like color-singlet production. Including the
LL power correction in the subtractions reduces the er-
ror due to missing power corrections by about an order of
magnitude. The analytic calculation of the LL contribu-
tions also allowed us to numerically extract the NLL con-
tributions, further reducing the error. We find that these
contributions are desirable to have a stable reduction in
all channels, emphasizing the importance of computing
the NLL coefficient analytically. Our numerical results
also confirm well the naive scaling estimates for their size.
Moreover, the explicit knowledge of the dominant power
corrections allows for an a priori determination of the
error induced by missing power corrections.

Finally, we have emphasized the importance of the def-
inition of the N -jettiness variable for ensuring a well-
behaved power expansion, which applies to any N . In
particular, we found that defining N -jettiness in the
hadronic center-of-mass frame artificially induces power
corrections that grow exponentially with rapidity. On
the other hand, this does not happen when taking into
account the boost of the Born system in the definition
of N -jettiness (as was done in the original definitions of
beam thrust and N -jettiness [43, 55]). This stability of
the power corrections with rapidity is important for the
applicability of the N -jettiness subtractions for comput-
ing arbitrary differential distributions.

There are a number of interesting directions that we
plan to address in future work. While we have focused
here on the power corrections for qq̄-initiated Drell-Yan-
like processes, the same approach can be used to calcu-
late the power corrections for gg-initiated color-singlet
production, as relevant for gluon-fusion Higgs produc-
tion. It would also be interesting to extend our calcula-
tion to subleading logarithms, which would be facilitated
by exploiting the consistency relations, and it would be
interesting to derive renormalization group equations to
predict the series of logarithms at subleading power. Fi-
nally, a key feature of the N -jettiness subtraction method
is that it extends to processes involving final-state jets.
It will be important to extend our results to calculate
power corrections for TN with N > 0, allowing for ana-
lytic control over the power corrections for general NNLO
N -jettiness subtractions.
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