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1Instituto de F́ısica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo
Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México
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The γγ∗ → ηc,b transition form factors are computed using a continuum approach to the two
valence-body bound-state problem in relativistic quantum field theory, and thereby unified with
equivalent calculations of electromagnetic pion elastic and transition form factors. The resulting
γγ∗ → ηc form factor, Gηc(Q2), is consistent with available data: significantly, at accessible momen-
tum transfers, Q2Gηc(Q2) lies well below its conformal limit. These observations confirm that the
leading-twist parton distribution amplitudes (PDAs) of heavy-heavy bound-states are compressed
relative to the conformal limit. A clear understanding of the distribution of valence-quarks within
mesons thus emerges; a picture which connects Goldstone modes, built from the lightest-quarks in
Nature, with systems containing the heaviest valence-quarks that can now be studied experimentally,
and highlights basic facts about manifestations of mass within the Standard Model.

PACS numbers: 13.40.Gp, 11.10.St, 12.38.Aw, 12.38.Lg

1. Introduction. The properties of pseudoscalar me-
sons provide a unique window on the Standard Model.
For example, γγ∗ → π0, neutral pion production in
two photon fusion [1–4], ties physics associated with a
nonperturbative anomaly [5–7] to that connected with
collinear factorisation in hard-scattering processes as
demonstrated through the application of perturbative
quantum chromodynamics (pQCD) [8–11]. Simultane-
ously, pion properties provide a clean probe of the mech-
anisms responsible for the generation of more than 98%
of visible mass in the universe [12–14]; and yet, from
another perspective, one might view the production of
charm-anticharm systems via gluon-gluon fusion as yield-
ing valuable, complementary information on this same
subject [15, 16]. Such processes are echoed in the reaction
γγ∗ → ηc: measured at photon virtualities in the range
2 . Q2 . 50GeV2 [17], a subject of phenomenological
analyses [18–20], it is often supposed to yield informa-
tion on the strong running-coupling at the charm-quark
mass, which can be used to inform and refine effective
field theories developed for application to systems involv-
ing heavy quarks [21, 22].

Measurements of pseudoscalar meson production via
two-photon fusion are challenging. They typically involve
the study of e−-e+ collisions, in which one of the outgoing
fermions is detected after a large-angle scattering whilst
the other is scattered through a small angle and, hence,
undetected. The detected fermion is assumed to have
emitted a highly-virtual photon, the undetected fermion,
a soft-photon; and these photons are supposed to fuse
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and produce the final-state pseudoscalar meson. There
are many possible background processes and loss mecha-
nisms in this passage of events, and thus ample room for
systematic error, especially as Q2 increases [22]. The po-
tential for such errors plays a large part in the controversy
surrounding the most recent measurements of γγ∗ → π0

[3, 4], which exhibit incompatible trends in their evolu-
tion with photon virtuality [23]. It does not, however, ap-
pear to play a significant role in the debate over whether
effective field theory methods can be used to understand
contemporary γγ∗ → ηc data [17]: whilst leading-order
(LO) and next-to-leading-order (NLO) analyses in non-
relativistic QCD (nrQCD) seem adequate, next-to-next-
to-leading-order (NNLO) corrections very seriously dis-
rupt agreement with experiment [24]. One should there-
fore also question related predictions for γγ∗ → ηb.

A consolidated explanation of all three transition form
factors within a single theoretical approach would fa-
cilitate a resolution of these disputes. Herein, there-
fore, we employ a symmetry-preserving framework for
the study of strong-interaction bound-states [12, 13] in an
attempt to provide a unified description of the γγ∗ → π0

and γγ∗ → ηc transitions, along with a prediction for
γγ∗ → ηb. In so doing, we will reveal how these form fac-
tors provide insights into the nature of momentum shar-
ing between the valence quanta in these bound-states.

2. Transition Form Factors: Formulation. The
transition γγ∗ →M5, M5 = π0, ηc, ηb, is described by a
single scalar function, required to express the amplitude:

Tµν(k1, k2) = e2

4π2 εµναβk1αk2β GM5(k2
1, k1 · k2, k

2
2) , (1)

where the pseudoscalar meson’s momentum P = k1 +k2,
k1 and k2 are the photon momenta. We compute GM5

using the Dyson-Schwinger equations (DSEs) [12, 25], a
symmetry-preserving framework whose elements have an
explicit connection with QCD [26]. At leading-order in
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this approach (rainbow-ladder, RL, truncation) [27]:

Tµν(k1, k2) =tr

∫
d4`

(2π)4
iQχµ(`, `1)

× ΓM5
(`1, `2)S(`2) iQΓν(`2, `) , (2)

where `1 = ` + k1, `2 = ` − k2, and the kinematic con-
straints are k2

1 = Q2, k2
2 = 0, 2 k1 · k2 = −(m2

M5
+Q2).

In Eq. (2), ΓM5 is the meson’s Bethe-Salpeter ampli-
tude [28, 29]; Q is a matrix that associates an electric
charge with each of the meson’s valence constituents,
whose propagation is described by S; and Γ, χ are, re-
spectively, amputated and unamputated photon-quark
vertices. The momentum-dependent elements indicated
here have long been the subject of careful scrutiny, so
that the character of each is deeply understood, and ac-
curate numerical results and interpolations are available.
Many of these things are detailed in Ref. [27], which ex-
amines the γγ∗ → π0 transition and unifies its treatment
with that of the pion’s elastic electromagnetic form factor
[30]. We now capitalise on those insights and methods in
computing and interpreting the γγ∗ → ηc,b transitions.

The dressed c- and b-quark propagators and ηc,b Bethe-
Salpeter amplitudes in Eq. (2) were computed in Ref. [31],
and used to predict the leading-twist parton distribution
amplitudes (PDAs) of these heavy pseudoscalar mesons
and a range of other quantities. For example, from
the decay constants reported therein [fηc = 0.26 GeV,
fηb = 0.54 GeV] one obtains the following widths [eM5 =
(2/3), (−1/3) for ηc,b, respectively]:

Γ[M5 → γγ] = 1
4πα

2
emm

3
M5
|GM5

(Q2 = 0)|2 (3a)

=
8πα2

eme
4
M5
f2
M5

mM5

{
ηc
= 6.1 keV
ηb
= 0.52 keV

, (3b)

where the formula in Eq. (3b) is drawn from Ref. [32].
The ηc width compares favourably with a world average
[33]: Γ[ηc → γγ] = 5.1 ± 0.4 keV, but the ηb → γγ de-
cay has not yet been seen. In Eqs. (3), one has a useful
constraint on |Gηc,b(Q2 = 0)|.

It is difficult to reliably compute integrals like that in
Eq. (2) on the entire domain of experimentally accessible
momentum transfers if the propagators, amplitudes and
vertices are only known numerically [34, 35]. Therefore,
following Refs. [27, 30], we have developed perturbation
theory integral representations (PTIRs) of these elements
using the gap and Bethe-Salpeter equation solutions com-
puted in Ref. [31]. The PTIRs are fully specified in the
Appendix. Here we only note that they are merely accu-
rate, algebraic interpolations of the dressed propagators
and Bethe-Salpeter amplitudes appearing in Eq. (2).

The photon-quark vertices in Eq. (2) remain unspeci-
fied. We pursue a unified treatment and hence use those
forms detailed in Refs. [27, 30], which are expressed com-
pletely via the functions that characterise the dressed-

quark propagator involved, Eq. (A1a). Namely,

χµ(ko, ki) = γµ∆k2σV
+ [s γ · koγµγ · ki

+ s̄γ · kiγµγ · ko]∆σV
+ [s (γ · koγµ + γµγ · ki)

+ s̄ (γ · kiγµ + γµγ · ko)] i∆σS
, (4)

where ∆F = [F (k2
o) − F (k2

i )]/[k2
o − k2

i ], q = ko − ki,
s̄ = 1−s , and the flavour label is implicit. Our Ansatz for
Γµ, Eq. (3.84) in Ref. [36], is an analogue for the ampu-
tated vertex. Up to transverse pieces associated with s ,
χµ(ko, ki) and S(ko)Γµ(ko, ki)S(ki) are equivalent. Noth-
ing material is gained by making them identical because
any difference is power-law suppressed in the ultraviolet;
but computational effort would increase substantially.

Owing to the Abelian anomaly [5–7], it is impossible
to simultaneously conserve the vector and axial-vector
currents associated with Eq. (2). This has a measurable
effect in the neighbourhood of Q2 = 0, which diminishes
with increasing current-quark mass. We have thus in-
cluded a momentum redistribution factor in Eq. (4) [27]:

sf = 1 + sf0 exp(−EM5/M
E
f ) , (5)

where EM5 = [ 1
4Q

2 + m2
M5

]1/2 − mM5
is the meson’s

Breit-frame kinetic energy and ME
f is the Euclidean

constituent-mass associated with the valence-quark in
the M5-meson [31, 37]: ME

f = {p|p2 = M2(p2), p > 0},
where M(p2) = σS(p2)/σV (p2) is computed using the
dressed q = c- or b-quark propagator, as appropriate.
This mass is similar to the MS-mass often used in con-
nection with heavy quarks and, using the results in the
Appendix, we compute Mc = 1.28 GeV, Mb = 4.30 GeV.

3. Transition Form Factors: Calculation. With
each element in Eq. (2) now expressed via a generalised
spectral representation, computation of G(Q2) reduces to
the task of summing a series of terms, all of which involve
a single four-momentum integral. The integrand denom-
inator in every term is a product of `-quadratic forms,
each raised to some power. Within each such term, one
uses a Feynman parametrisation in order to combine the
denominators into a single quadratic form, raised to the
appropriate power. A suitably chosen change of variables
then enables routine evaluation of the four-momentum
integration using algebraic methods. After calculation
of the four-momentum integration, evaluation of the in-
dividual term is complete after one computes a finite
number of simple integrals; namely, the integrations over
Feynman parameters and the spectral integral. The com-
plete result for G(Q2) follows after summing the series.
Following this procedure, one may fix the redistribution
factors in Eq. (5) using Eq. (3): sc0 = 0.78, sb0 = 0.23.

Our complete result for Gηc(Q2) is displayed in Fig. 1.
It was obtained via the procedure detailed above sup-
plemented by the inclusion of leading-order QCD evolu-
tion [9–11] of the meson’s Bethe-Salpeter amplitude, the
nature and necessity of which is described in Ref. [27].
In this case such evolution produces a Q2-dependent
enhancement, which grows logarithmically from 1.0 on
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FIG. 1. Transition form factors: γγ∗ → ηf , f = c, b. Curves:
dashed (blue) curve – our prediction for ηb; (grey) band –
NNLO nrQCD result for ηb [24] (the band width expresses
the sensitivity to the factorisation scale); dotted (dark-green)
curve – NLO nrQCD result for ηc [24] (the NNLO result is
omitted because it is vastly different from the data and ex-
hibits marked sensitivity to the assumed factorisation and
renormalisation scales); and solid (black) curve – our predic-
tion for ηc. Data from Ref. [17].

Q2 ' 0 to a value of ≈ 1.05 at Q2 = 60 GeV2, i.e. on the
domain depicted, it has a noticeable impact. We note,
too, that Γ[ηc → γγ] = 5.1 ± 0.4 keV can be obtained
using sc0 = 0.67± 0.04, but this value yields a practically
identical result for the Q2-dependence of Gηc(Q2): the
curves agree within a line-width. Our result for the ηc
interaction-radius is rηc = 0.16 fm = 0.23rπ0 , computed
from the slope of the transition form factor. Experimen-
tally [17], rηc = 0.17± 0.01 fm.

No parameters were varied in order to obtain the
solid curve in Fig. 1. The evident agreement with the
data from Ref. [17] is therefore invested with consider-
able meaning. For example, the prediction derives from
an ηc Bethe-Salpeter amplitude that produces a leading-
twist PDA for this meson, ϕηc , which is piecewise convex-
concave-convex and much narrower than the conformal
limit result ϕcl(x) = 6x(1 − x). Hence, the favourable
comparison with data confirms the associated prediction
for ϕηc in Ref. [31]. In addition, the framework used
to produce Gηc(Q2) is precisely the same as that em-
ployed for the pion transition form factor in Ref. [27],
and, consequently, the two transitions are simultaneously
explained. Hence, agreement herein with the data from
Ref. [17] may equally be interpreted as confirmation of
the results in Ref. [27], from which it follows that the
γγ∗ → π0 data in Ref. [4] should be considered as the
most reliable available measurement of this transition on
Q2 & 10 GeV2. It follows that the agreement in Fig. 1
between data and our result provides further support for
the prediction in Refs. [13, 38, 39], viz. at scales typical of
modern hadron physics, the pion’s leading-twist PDA is
dilated, such that, unlike ϕηc , ϕπ is significantly broader
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FIG. 2. Q2GM5(Q2) for γγ∗ → M5, M5 = π0, ηc. Dotted
and dot-dot-dashed curves display the respective conformal
limits, Eq. (6). ηc data drawn from Ref. [17]. π0 data are
omitted owing to controversy at large-Q2 [23, 27, 40–44].

than ϕcl. Furthermore, the agreement between data and
our prediction, the qualitative agreement between both
and the NLO nrQCD result, and the disagreement be-
tween data and our result on one hand, and the NNLO
nrQCD result on the other, suggest that one must seri-
ously question the usefulness of nrQCD in applications
to exclusive processes involving charmonia [24].

It is natural at this point to consider the asymptotic
behaviour of the π and ηc transition form factors, which
can be determined following Ref. [11], viz. ∀Q2 � 1 GeV2

Q2GM5(Q2) = uM5fM5

∫ 1

0

dxϕM5(x;Q2)/x , (6)

where M5 = π, ηc and uπ = 2 cf. uηc = 8/3 reflects
differences between the electric charges of the relevant
valence-quarks. Since ϕπ,ηc → ϕcl in the conformal limit,

lim
Q2→∞

[R(Q2) := Gηc(Q2)/Gπ(Q2)] =
4

3

fηc
fπ

. (7)

In our unified treatment, we can evaluate this ratio:
R(Q2

35 := 35 GeV2)=2.4. Extant data are consistent with
our prediction, which, however, is just 64% of the con-
formal value in Eq. (7). This mismatch occurs despite
the fact that Q2

35Gπ(Q2
35) ≈ 2fπ. The discrepancy thus

owes to Gηc(Q2). Digging deeper, one finds that with
ϕηc(x;Q2) being much narrower than ϕcl(x), a repre-
sentation of ϕηc(x;Q2) in terms of eigenfunctions of the
one-loop QCD evolution operator must involve a large,
negative first “subleading” coefficient. It is then unsur-
prising that Gηc(Q2) should lie far below its conformal
limit value at currently accessed momentum transfers.
(For the pion, the same correction is smaller in magni-
tude and positive.) Moreover, given that QCD evolu-
tion is logarithmic, this must remain the case even at
Q2 & 1000 GeV2 [25]. (With this prediction we con-
tradict the sum rules study in Refs. [19], which employs
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adjustable parameters.) These points are illustrated in
Fig. 2. It is worth remarking that the mismatch between
our computed ηb transition form factor and its conformal
limit (2fηb/3) is even more noticeable on this Q2-domain.

A physical context is readily established for these pre-
dictions. Since m2

π/Q
2
35 = 0.0008, m2

ρ/Q
2
35 = 0.02, the

hard-photon “perceives” an almost scale-free system and
the π0 transition form factor lies in the neighbourhood of
its conformal limit. On the other hand, m2

ηc/Q
2
35 = 0.4,

m2
ηb
/Q2

35 = 3.5, values which reveal that mass-scales in-
trinsic to the related transitions are commensurate with
(ηc) or greatly exceed (ηb) those of the probe. Conse-
quently, at accessible momenta, γγ∗ → ηc,b cannot pos-
sibly match expectations based on conformal symmetry.

Our prediction for Gηb(Q2) also appears in Fig. 1. In
this case the computational procedure is indirect because
the b-quark-related PTIRs (see Appendix) are inade-
quate to the task of eliminating all spurious singularities
from the vast integration domain explored by the inte-
gral in Eq. (2) when m2

M5
= m2

ηb
= 88 GeV2 [33]. They

are nevertheless quite efficient, allowing a direct compu-
tation of the transition form factor on m2

M5
≤ 71 GeV2.

We therefore computed a pseudo-ηb transition form fac-
tor as a function of mM5

= mηpb
∈ [7.0, 8.4] GeV. Then, at

each value of Q2, the on-shell form factor was determined
by extrapolation of the ηpb results, treated as a function
of mηpb

. Padé-approximants of order [k, k], k = 1, 2, 3, 4,
were employed, with the difference between their extrap-
olated values being used to estimate the error in the pro-
cedure. That error is small, lying within the line-width
of the dashed (blue) curve in Fig. 1. The interaction ra-
dius is rηb = 0.041 fm = 0.26 rηc . Notably, the ordering of
radii follows the pattern: rηc/rπ0 ≈ ME

u /M
E
c , rηb/rηc ≈

ME
c /M

E
b , where ME

f is the Euclidean constituent-quark
mass explained above.

Concerning γγ∗ → ηb, it is worth remarking that the
differences between LO, NLO and NNLO nrQCD results
are modest [24], suggesting that this effective field the-
ory might be a useful tool in connection with analyses of
exclusive processes involving bottomonia. That possibil-
ity is supported by the fact that our prediction for this
transition form factor lies completely within the (grey)
band demarcating the NNLO nrQCD result.

4. Conclusion. This study of γγ∗ → ηc,b transitions
achieves, within a single computational framework that
possesses a traceable connection to quantum chromo-
dynamics (QCD), the unification of a wide variety of
ground-state 1S0 quarkonia properties – masses, decay
constants, parton distribution amplitudes (PDAs), tran-
sition form factors, etc. – with an even wider array of
properties of QCD’s archetypal Goldstone modes, ex-
tending to, e.g. ππ scattering lengths [45], and electro-
magnetic pion elastic and transition form factors [27, 30].
No parameters were varied in order to achieve agree-
ment with the experimental value of any quantity dis-
cussed herein and hence the computed results may validly
be described as predictions. The calculations are built
upon the leading-order term in a systematic, symmetry-

preserving truncation of those equations in quantum field
theory which describe bound-states, their constituents,
and the interactions of those constituents with electro-
magnetic probes. Quantitative corrections to the results
must therefore be expected; but in the channels upon
which this study focuses, those corrections are known to
be small for reasons that are well understood [12].

The predicted γγ∗ → ηc form factor, Gηc(Q2), matches
available data. It is thus significant that on Q2 .
100 GeV2, Q2Gηc(Q2) does not exceed 70% of the confor-
mal limit result. We attribute this behaviour to compres-
sion of the leading-twist PDAs describing heavy-heavy
bound-states cf. the conformal limit. Such compression
is anticipated [31, 46, 47], but the agreement between our
predictions and data provides quantitative confirmation.

In confirming the data [17] as a reliable measure of the
γγ∗ → ηc transition form factor, our study strengthens
claims [24] that non-relativistic QCD (nrQCD) is not a
reliable effective field theory for analyses of exclusive pro-
cesses involving charmonia. Regarding γγ∗ → ηb, on the
other hand, there is good agreement between our predic-
tion and the result obtained at next-to-next-to-leading
order in nrQCD. Thus, in this case one should view the
theoretical predictions as well-founded and look for them
to be verified at a new generation of e− e+ colliders [48].

One can now draw various threads together and ar-
gue that, with the predictions described herein, we have
reached a sound understanding of the distribution of
valence-quarks within mesons, a picture which smoothly
joins Goldstone modes, constituted from the lightest-
quarks in Nature, with systems containing the heaviest
valence-quarks that can today be studied experimentally.
Data confirms both that the PDAs of light-quark mesons
are dilated with respect to the conformal limit and those
for heavy-heavy systems are compressed, becoming nar-
rower as the current-mass of the valence-quarks increases.
(In this connection, the boundary between light and
heavy lies just above the strange-quark mass [31].)

These visible features express basic facts about the
origin and manifestation of mass within the Standard
Model [14]. Namely, in systems formed by those quarks
with the weakest coupling to the Higgs boson, dynamical
mass generation via strong-interaction processes (dynam-
ical chiral symmetry breaking – DCSB) is the dominant
effect, and it is revealed in a marked dilation of the PDAs
associated with these systems [38]. Moreover, DCSB en-
sures that this dilation persists even when coupling to
the Higgs vanishes. On the flip-side, the leading-twist
PDA for a system constituted from valence-quarks with
a strong-coupling to the Higgs is narrow, it becomes nar-
rower as that coupling increases, and there is no mass-
scale within the Standard Model which can prevent the
PDA approaching a δ-function as the Higgs coupling con-
tinues to grow. It follows that the root-mean-square rel-
ative velocity of valence-constituents within a meson has
a nonzero, finite upper bound, fixed by the strength of
DCSB, but must vanish with increasing current-mass of
the meson’s valence-quarks.
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TABLE A1. Interpolation coefficients for PTIRs. Upper
panel : dressed propagators for c- and b-quarks – the pair
(x, y) represents the complex number x+ iy; and lower panel :
Bethe-Salpeter amplitudes of ηc,b mesons. (These interpola-
tions are drawn from Ref. [26]; and mass-dimensioned quan-
tities are listed in GeV).

z1 m1 z2 −m2

c (0.49, 1.12) (1.75, 0.26) (0.028, 0) (2.36, 0)

b (0.49, 0.97) (5.06, 0.50) (0, 0.0018) (2.45, 1.91)

ci cu νi νu a Λi Λu

Eηc 0.88 0.15 3 1 2 1.7 0.77

Fηc 0.22 0.012 3 1 3/[Λi
F ] 1.5 0.73

Gηc −0.018 −0.0015 3 1 4.4/[Λi
G]3 1.3 0.92

Eηb 0.77 0.38 7 1 5 2.5 1.0

Fηb 0.037 0.013 7 1 20/Λi
F 2.5 0.82
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Appendix: Interpolating Functions. The dressed-
quark propagator is represented as

S(p) = −iγ · p σV (p2, ζ2) + σS(p2, ζ2) , (A1a)

=

jm∑
j=1

[
zj

iγ · p+mj
+

z∗j
iγ · p+m∗j

]
. (A1b)

We find that jm = 2 is adequate, i.e. with the param-
eters listed in the top panel of Table A1, one obtains
interpolations of the dressed c- and b-quark propagators
computed in Ref. [30] that are accurate throughout the
domains sampled by the integral in Eq. (2).

Any meson’s Bethe-Salpeter amplitude may be writ-

ten:

ΓM5
(k̂;P ) = γ5

[
iEπ(k̂;P ) + γ · P Fπ(k̂;P )

+γ · k̂k̂ · P Gπ(k̂;P ) + σµν k̂µPν Hπ(k̂;P )
]
. (A2)

In connection with Eq. (2), `1 = k̂ + ηP , `2 = k̂ − (1 −
ηP ), η ∈ [0, 1]; and Poincaré covariance entails that no
observable can depend on η, i.e. the definition of the
relative momentum. With relative momentum defined
via η = 1/2, we represent the scalar functions in Eq. (A2)
(F = E,F,G) as a sum of two terms:

F(k;P ) = F i(k;P ) + Fu(k;P ) , (A3)

where that describing the infrared behaviour, labelled
“i”, is expressed via the following PTIR:

F i(k;P ) = ciF

∫ 1

−1

dz ρνi
F

(z)

[
aF∆̂4

Λi
F

(k2
z)

+ a−F∆̂5
Λi

F
(k2
z)

]
, (A4)

and the ultraviolet “u” term is expressed analogously:

Eu(k;P ) = cuE

∫ 1

−1

dz ρνu
E

(z) ∆̂
1+g
Λu

E
(k2
z) , (A5a)

F u(k;P ) = cuF

∫ 1

−1

dz ρνu
F

(z) Λu
F k

2∆
2+g
Λu

F
(k2
z) , (A5b)

Gu(k;P ) = cuG

∫ 1

−1

dz ρνu
G

(z) Λu
G∆

2+g
Λu

G
(k2
z) , (A5c)

with ∆̂Λ(s) = Λ2∆Λ(s), k2
z = k2 + zk · P , a−E = 1 − aE ,

a−F = 1/Λi
F − aF , a−G = 1/[Λi

G]3 − aG, g = 0.085, and

ρν(z) =
Γ( 3

2 + ν)
√
π Γ(1 + ν)

(1− z2)ν . (A6)

As elsewhere [30, 38], H(k;P ) is small, has little impact,
and is thus neglected.

Used with the appropriate entries in the lower panel
of Table A1, Eqs. (A2)–(A6) define interpolations of the
Bethe-Salpeter equation solutions in Ref. [30] that are ac-
curate throughout the domains sampled when evaluating
the integral in Eq. (2). At this point it is worth remark-
ing that in the pseudoscalar channel: (a) heavy-heavy
mesons are predominantly S-wave in character; and (b)
the G-components of meson Bethe-Salpeter amplitudes
correspond to P -waves in the bound-state rest-frame.
These observations explain the small size of Gηc , defined
by the values of ci,u in Row 3, lower-panel, Table A1, and
the complete neglect of Gηb .
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