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Abstract
We consider the fragmentation of a parton into a jet with small radius R in the large z limit,

where z is the ratio of the jet energy to the mother parton energy. In this region of phase space, large

logarithms of both R and 1− z can appear, requiring resummation in order to have a well defined

perturbative expansion. Using soft-collinear effective theory, we study the fragmentation function

to a jet (FFJ) in this endpoint region. We derive a factorization theorem for this object, separating

collinear and collinear-soft modes. This allows for the resummation using renormalization group

evolution of the logarithms lnR and ln(1 − z) simultaneously. We show results valid to next-to-

leading logarithmic order for the global Sudakov logarithms. We also discuss the possibility of

non-global logarithms that should appear at two-loops and give an estimate of their size.
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I. INTRODUCTION

The fragmentation function (FF) [1], which describes an energetic splitting of a parton

into a final state, is a very important ingredient in understanding high-energy hadron pro-

duction. Using the FF we can systematically separate short- and long-distance interactions

related to the production. For instance, inclusive hadron production for e+e− annihilation

can be factorized as

dσ(e+e− → hX)

dEh
=

∫ 1

zh

dz

z

dσi(zh/z, µ)

dEi
Dh/i(z, µ), (1)

where i denotes the flavor of the produced parton, zh = 2Eh/Ecm, and z = Eh/Ei. Here,

Ecm is the center of the mass energy of the collision. The partonic scattering cross section

σi includes the hard interactions for e+e− → iX. Long-distance interactions describing the

fragmenting process from parton i to hadron h are encoded in the FF, Dh/i(z). The FF

is universal in the sense that it is independent of the hard process and can be applied to

other scattering processes. Hence, the FF has long been studied in order to understand its

properties. (For details we refer to a recent review [2] and the references therein.)

Because we can directly observe a jet using well-defined jet algorithms such as the ones

introduced in Refs. [3–7], it is possible to describe the fragmentation function to a jet (FFJ),

as long as the the jet radius, R, is enough small [8]. Moreover, once the FFJ for the isolated

jet is given, we can systematically investigate its substructures (e.g. hadron and subjet

fragmentations [9–14], and jet mass [15] and transverse momentum [16, 17] distributions),

constructing factorization theorems in connection with the frgmenting jet functions [18–20].

Analytical results of the FFJ have been calculated up to the next-to-leading order (NLO)

in αs [11, 13, 21]. Unlike the hadron FF, the FFJ does not have any infrared (IR) divergence

due to the finite size of the jet radius R. However, the presence of large logarithms of R does

not give a reliable result in perturbation theory and requires resummation to all order in αs.

As shown in Refs. [8, 11, 13, 21], resumming logarithms of R is equivalent to running down

to a scale µ ∼ QR using Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equations, where Q is a hard energy comparable to the jet energy, EJ . This resummed

result of the FFJ has been successfully applied to inclusive jet [21, 22] and hadron [14]

production, where the effects of various values of R have been investigated in detail.

If we observe a highly energetic jet, we would expect that most of the energetic splitting

processes are captured within the jet radius R since these processes favor small angle ra-

diation. This implies that the large z region gives the dominant contribution to the FFJ,

where z is the ratio of the jet energy fraction over the mother parton energy. Accordingly,

in the perturbative result for the FFJ there are large logarithms of 1− z, which need to be

resummed to all order in αs. Already at one loop order there appears a double logarithm

ln(1 − z)/(1 − z)+ ∼ L2, where L schematic represents a large logarithm. At leading loga-

rithm (LL) accuracy, the resummed can be represented as
∑

k=0 Ck(αsL
2)k ∼ exp(Lf0(αsL)),
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which gives the dominant correction to the perturbative expansion of the FFJ.

Thus, for a proper description of the FFJ in the large z limit, we have to systematically

handle large logarithms of 1−z as well as large logarithms of R. In general, if some quantity

involves several distinct scales, we try to factorize it so that each factorized part can be well

described at one properly chosen scale. Then performing evolutions between these largely

separated scales, we resum the large logarithms. For the FFJ, soft-collinear effective theory

(SCET) [23–26] provides the appropriate framework for factorization and enable us to resum

large logarithms automatically by solving the renormalization group (RG) equations for the

factorized parts.

Near the endpoint where z → 1, the FFJ consists of dynamics with two well-separated

scales. Since an observed jet carries most of energy of the mother parton, radiation outside

the jet should be soft with energy ∼ EJ(1 − z). Therefore the jet splitting process can be

initiated by soft dynamics, while radiation inside the jet is described dominantly by collinear

interactions. However, in the effective theory approach wide angle soft interactions are not

adequate for explaining the radiation outside the narrow jet because they cannot effectively

recognize the jet boundary characterized by the small radius R. Instead, we introduce

a more refined soft mode, namely the collinear-soft mode [27, 28], which can resolve the

narrow jet boundary and can consistently describe the lower energy, out-of-jet radiations.

The collinear-soft mode has previously been used to factorize the cross sections for a narrow

jet at a low energy scale [29–32].

In this paper, using SCET we construct a factorization theorem for the FFJ near the

endpoint considering collinear and collinear-soft interactions.1 Then we resum the large

logarithms of 1− z and R simultaneously. In sec. II we discuss the characteristics of large-z

physics for the FFJ and factorize it into the collinear and the collinear-soft pieces. Then,

we confirm our factorized result through NLO by an explicit calculation of each factorized

part. In sec. III, based on the factorization, we resum the large logarithms by performing

RG evolution. We also discuss large nonglobal logarithms (NGLs) that possibly contribute

to NLL accuracy. In sec. IV the numerical results of the FFJ to the accuracy of NLL plus

NLO in αs are shown. Finally in sec. V we conclude.

1 In a strict sense our factorization theorem would hold up to NLO in αs. Beyond NLO, large nonglobal

logarithms (NGLs) [33, 34] that are sensitive to a restricted jet phase space might appear and require

some modification of our factorization theorem presented here.
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II. THE FFJ IN THE LIMIT z → 1

Using SCET, the FFJ can be defined as [13]

DJk/q(z, µ) =
∑

X/∈J ,XJ−1

zD−3

2Nc

Tr〈0|δ
(p+

J

z
− P+

)n/
2

Ψn|Jk(p+
J , R)X/∈J〉〈Jk(p+

J , R)X/∈J |Ψ̄n|0〉,(2)

DJk/g(z, µ) =
∑

X/∈J ,XJ−1

zD−3

p+
J (D − 2)(N2

c − 1)
(3)

×Tr〈0|δ
(p+

J

z
− P+

)
B⊥µ,an |Jk(p+

J , R)X/∈J〉〈Jk(p+
J , R)X/∈J |B⊥anµ |0〉.

Here Ψn = W †
nξn and B⊥µ,an = inρgµν⊥ G

b
n,ρνWba

n = inρgµν⊥ W†,ban Gb
n,ρν are gauge invariant

collinear quark and gluon field strength respectively. Wn (Wn) is a collinear Wilson line

in the fundamental (adjoint) representation [24, 25]. These collinear fields have momentum

scaling pµn = (p+, p⊥, p−) = Q(1, λ, λ2), where λ is a small parameter comparable to small jet

radius R. p± are denoted as p+ ≡ n ·p = p0 + n̂J ·p and p− ≡ n ·p = p0− n̂J ·p, where n̂J is

a unit vector in the jet direction and two lightcone vectors nµ = (1, n̂J) and nµ = (1,−n̂J)

have been employed. The expressions for the FFJs in Eqs. (2) and (3) are valid in the jet

frame where the transverse momentum of the observed jet, p⊥J , is zero.

In this paper, we will consider inclusive kT-type algorithms [3–5, 7], where the merging

condition of two light particles is given by

θ < R′. (4)

Here θ is the angle between the two particles, and R′ = R for an e+e− collider and R′ =

R/ cosh y for a hadron collider, where y ∼ O(1) is the rapidity for the central region.

The definitions of the FFJs in Eqs. (2) and (3) hold for z ∼ O(1), but are not reliable

near the endpoint where z goes to 1. In the limit z → 1, the observed jet takes most of the

energy from the mother parton and hence the jet splitting (out-jet) contributions should be

described by soft gluon radiation. If 1−z is power counted as O(η) with η � 1, the relevant

soft mode would have momentum scaling k ∼ (k+, k⊥, k−) ∼ Q(η, η, η). However, for the

proper resummation of lnR, we need a mode that can probe the jet boundary expressed

in terms of R. This mode would have a lower resolution than the soft mode while the k+

component should still be power counted as O(η). Because the jet merging criterion for the

soft gluon radiation is given by [35]

tan2 R
′

2
>
k−
k+

, (5)

the proper mode should allow for the hierarchy, k− ∼ k+λ
2 � k+, where λ ∼ R. Thus

this mode should have scaling k ∼ Qη(1, λ, λ2). From now on we will call this mode the

collinear-soft mode.
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We can consistently separate the usual soft mode ∼ Q(η, η, η) and the collinear-soft mode

as was first done in the di-jet scattering cross section [29, 30]. Furthermore, the separation

of the collinear-soft mode from the collinear fields has been performed in the formulation of

SCET+ [27]. Because the collinear-soft mode can be considered as a subset of the usual soft

mode, we have to subtract the overlapped of the collinear-soft contribution from the soft

contribution in loop calculations similar to the usual zero-bin subtractions [36].

If we apply this process to the FFJ with z → 1, we see that the soft contributions

can be cancelled by the collinear-soft subtractions. Since the soft mode with a scaling

(k+, k−) ∼ Q(η, η) cannot resolve the jet boundary in Eq. (5), the real soft gluon radiation

does not contribute to the in-jet contribution of the FFJ, while the out-jet contribution

from real radiation covers the full phase space of (k+, k−). Thus, independent of R, the

total soft contributions will be expressed as a function of 1 − z, namely S(1 − z). For the

collinear-soft contribution that needs to be subtracted from the soft contribution, we apply

the same boundary conditions used for the soft mode. Hence the real collinear-soft radiation

have only the out-jet contributions, which are the same as the soft mode. Therefore the net

result of the collinear-soft contributions that are to be subtracted are the same as S(1− z),

canceling the soft contribution.

Finally we are left with a collinear-soft mode at the lower energy scale. When we apply

this to the FFJ, we have to keep the jet boundary constraint in Eq. (5). As a result the active

collinear-soft contributions can be expressed in terms of 1 − z and R simultaneously. As

we will see, the one loop collinear-soft contributions involve double logarithms of lnµ/((1−
z)EJR

′). This fact indicates that the collinear-soft interactions are responsible for large

logarithms of 1− z and its resummation would give the dominant contribution to the FFJ

near the endpoint.

A. Factorization of the FFJ when z → 1

With the above reasoning, we can systematically extend the FFJs to the endpoint region

including collinear-soft interactions. We first decouple the soft mode ∼ Q(η, η, η) from the

collinear mode ∼ Q(1, R,R2). Then we introduce the collinear-soft mode ∼ Qη(1, R,R2)

in the collinear sector, classifying collinear and collinear-soft gluons as Aµn → Aµn + Aµn,cs.

Accordingly the covariant derivative in the collinear sector decomposes as iDµ = iDµ
c +

iDµ
cs = Pµ+gAµn+ i∂µ+gAµn,cs, where Pµ (i∂µ) returns collinear (collinear-soft) momentum.

In this decomposition, the commutation relations, [Pµ, Aνn,cs] = [∂µ, Aνn] = 0, hold. For the

factorization of the FFJ, our strategy is simple: after the decomposition into the collinear

and collinear-soft modes, we first integrate out collinear interactions with p2
c ∼ Q2R2. As we

shall see, this gives an integrated jet function inside a jet. Then at the lower scale µcs ∼ QηR

we will consider the collinear-soft interactions for the jet splitting.

As performed in Ref. [27], at low energy we can additionally introduce so called ‘ultra-
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collinear’ modes after integrating out the collinear interactions with offshellness p2
c ∼ Q2R2.

These modes have energy of the same order as the collinear mode, but their fluctuations are

much smaller than Q2R2. Then at the low energy scale an external collinear field φ(= ξ, A)n

would be matched onto the ultra-collinear fields, φn = φn1 + φn2 + · · · , where the lightcone

vectors ni=1,2,··· reside inside the jet with radius R. Note that collinear interactions between

different ultra-collinear modes are forbidden since we have already integrated out the large

collinear fluctuations ∼ Q2R2. Moreover, as these ultra-collinear modes reside within the

collinear interactions, they cannot resolve the jet boundary. Therefore their interactions do

not contribute to the FFJs, at least to NLO in αs. So for simplicity we will not consider

ultra-collinear interactions in the FFJ. However, in a more refined jet observable identifying

subjets, these modes may have to be included.

Adding the collinear-soft mode, the quark initiated FFJ can be more generically expressed

as

DJk/q(z, µ) =
∑

X/∈J ,XJ−1

zD−3

2Nc

Tr〈0|δ
(p+

J

z
−n·iD

)n/
2
ξn|Jk(p+

J , R)X/∈J〉〈Jk(p+
J , R)X/∈J |ξ̄n|0〉. (6)

Compared to Eq. (2), Wnδ(p
+
J /z − P+)W †

n = δ(p+
J /z − n · iDc) has been replaced with

δ(p+
J /z − n · iD) in Eq. (6).

In order to satisfy gauge invariances at each order in λ ∼ O(R) and η, following the

procedure considered in Ref. [37], we redefine the collinear gluon field,

Aµn = Âµn + Ŵn[iDµ
cs, Ŵ

†
n], (7)

where Ân are newly defined collinear gluon fields and Ŵn is the collinear Wilson line ex-

pressed in terms of Ân. As a consequence the covariant derivative in Eq. (6) can be rewritten

as

iDµ = iDµ
c +WniD

µ
csW

†
n, (8)

where collinear fields on the right-hand side are the redefined fields and we removed the hat

for simplicity. Employing Eq. (8), the delta function in Eq. (6) can be rewritten as

δ
(p+

J

z
− n · iD

)
= Wnδ

(p+
J

z
− P+ − n · iDcs

)
W †
n . (9)

Similar to the decoupling of leading ultrasoft interactions from collinear fields [25], we

can remove collinear-soft interactions through the term gn · Acs in the Lagrangian of the

collinear sector. To accomplish this, the collinear quark and gluon fields can be additionally

redefined as

ξn → Y cs
n ξn, Aµn → Y cs

n A
µ
nY

cs†
n , (10)

where Y cs
n is the collinear-soft Wilson line that satisfies n · iDcsY

cs
n = Y cs

n n · i∂ and has the

usual form [25, 38]

Y cs
n (x) = P exp

[
ig

∫ ∞
x

dsn · Acs(sn)

]
. (11)
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Using Eqs. (8) and (10) we rewrite Eq. (6) as

DJk/q(z, µ) =
∑

X/∈J ,XJ−1

zD−3

2Nc

Tr〈0|δ
(p+

J

z
− P+ − i∂+

)n/
2
Y sc†
n Y sc

n W
†
nξn|Jk(p+

J , R)X/∈J〉

×〈Jk(p+
J , R)X/∈J |ξ̄nWnY

sc†
n Y sc

n |0〉, (12)

where we used the relation n · iDcs = Y cs
n i∂+Y

cs†
n and Y cs

n has the same form as Eq. (11) with

replacement of n → n. We also used the crossing symmetry φ · · · |Xφ〉 = 〈Xφ| · · ·φ, where

φ = Wn, Y
cs
n . The FFJ in Eq. (12) can describe regions of ordinary z ∼ O(1) and z → 1.

If z is ordinary and not too close to 1, we can suppress i∂+ in the argument of the delta

function, since p+
J /z−P+ ∼ O(Q) is power counted much larger than i∂+ ∼ O(Qη). Thus the

collinear-soft Wilson lines cancel by unitarity and we recover the form in Eq. (2). However,

when z → 1, p+
J /z − P+ becomes the same size as i∂+, and we cannot ignore the term i∂+

in the delta function, which gives nonzero contributions of collinear-soft interactions.

Since P+ returns collinear (label) momentum in Eq. (12), P+ can be fixed as p+
J near

the endpoint. Further, it means that collinear interactions are relevant only for jet merging

(in-jet) contribution to the FFJ. Therefore the FFJ in the limit z → 1 can be expressed as2

DJq/q(z → 1, µ) =
∑

X/∈J ,XJ−1

zD−3

2Nc

Tr〈0|Y cs†
n Y cs

n

n/

2
W †
nξn|Jq(p+

J , R)X/∈J〉

×〈Jq(p+
J , R)X/∈J |ξ̄nWnδ

(p+
J

z
− P†+ + i∂+

)
Y cs†
n Y cs

n |0〉

=
∑
Xc∈J

1

2Nc

Tr〈0|n/
2
W †
nξn|qXc ∈ J〉〈qXc ∈ J |ξ̄nWn|0〉 ·

∑
Xcs

1

Nc

Tr〈0|Y cs†
n Y cs

n |Xcs〉

×〈Xcs|δ
(
(1− z)p+

J + Θ(θ −R′)i∂+

)
Y cs†
n Y cs

n |0〉, (13)

where Θ is the step function and we reorganized the final states into collinear states (qXc)

in the jet and collinear-soft states Xcs in order to factorize collinear and collinear-soft in-

teractions. In the second equality we fixed the collinear label momentum P† as p+
J , and

then we put the jet splitting constraint in front of i∂+ because only the out-jet collinear-soft

radiation gives a nonzero contribution for the region z < 1. From Eq. (5), the jet split-

ting constraint Θ(θ − R′) is equivalent to tan2R′/2 < k−/k+, where k is the collinear-soft

momentum.

Eq. (13) shows that the quark FFJ in the limit z → 1 is factorized as

DJq/q(z → 1, µ;EJR
′, (1− z)EJR

′) = Jq(µ;EJR
′, θ < R′) · Sq(z, µ; (1− z)EJR

′), (14)

where Jq is the integrated jet function for the in-jet contribution, defined as

Jq(µ;EJR
′, θ < R′) =

∑
Xc∈J

1

2Nc p
+
J

Tr〈0|n/
2
W †
nξn|qXc ∈ J(EJ , R

′)〉〈qXc ∈ J |ξ̄nWn|0〉. (15)

2 Note that the splitting q → Jg in the limit z → 1 is power suppressed by O(1 − z) compared to the

splitting q → Jq. For q → Jg, the splitted parton away from the observed jet is the collinear-soft quark,

which gives a power suppression of O(η) compared to the collinear-soft gluon radiation. Similarly, for

gluon splitting, g → Jg dominants for the same reason.
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Sq is the dimensionless collinear-soft function. When we rewrite Sq = p+
J S̃q, the dimensionful

collinear-soft function S̃q can be expressed as

S̃q(`+, µ; `+t) =
∑
Xcs

1

Nc

Tr〈0|Y cs†
n Y cs

n |Xcs〉〈Xcs|δ
(
`+ + Θ(θ −R′)i∂+

)
Y cs†
n Y cs

n |0〉, (16)

where t ≡ tanR′/2, and `+t is the scale that will minimize large logarithms in the higher

order corrections, as we will see later.

Using the adjoint representation and taking a similar procedure as we did with the quark

case, we obtain the factorization formula for the gluon FFJ,

DJg/g(z → 1, µ) = Jg(µ;EJR
′, θ < R′) · Sg(z, µ; (1− z)EJR

′), (17)

where Jg is the gluon integrated jet function, and Sg is the collinear-soft function defined

similar to Eq. (16), with the Wilson lines in the adjoint representation replacing Y cs
n,n.

B. NLO calculation of the FFJ near the endpoint

The integrated jet functions shown in Eqs. (14) and (17) have been explicitly computed

at NLO [35, 39, 40] and partially computed at NNLO [30, 31]. The NLO results with the

constraint of Eq. (4) read

Jq(µ;EJR
′, θ < R′) = 1 +

αsCF
2π

[
1

ε2UV

+
1

εUV

(3

2
+ ln

µ2

p+2
J t2

)
+

3

2
ln

µ2

p+2
J t2

+
1

2
ln2 µ2

p+2
J t2

+
13

2
− 3π2

4

]
, (18)

Jg(µ;EJR
′, θ < R′) = 1 +

αsCA
2π

[
1

ε2UV

+
1

εUV

( β0

2CA
+ ln

µ2

p+2
J t2

)
+

β0

2CA
ln

µ2

p+2
J t2

+
1

2
ln2 µ2

p+2
J t2

+
67

9
− 23nf

18CA
− 3π2

4

]
, (19)

where p+
J t ∼ EJR

′, β0 = 11Nc/3− 2nf/3, CA = Nc = 3, and nf is the number of flavors.

For the NLO computation of the collinear-soft function in Eq. (16) we consider virtual

and real gluon contributions respectively. Separating ultraviolet (UV) and infrared (IR)

divergences carefully, the virtual contributions are given by

MS
V = −αsCF

π

( 1

εUV

− 1

εIR

)2

δ(`+). (20)

The real contributions at one loop can be written as

MS
R =

αsCF
π

(µ2eγE)ε

Γ(1− ε)

∫ ∞
0

dk+dk−(k+k−)−1−ε
[
δ(`+ − k+)Θ(k− − t2k+)

+δ(`+)Θ(t2k+ − k−)
]
≡MS

R1 +MS
R2, (21)
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k� = t2k+

k+

k�

out � jet (✓ > R0)

in � jet (✓ < R0)

`+ ⇤+

FIG. 1. Phase space for the real gluon emission in the collinear-soft function. In the (k+, k−)

plane, the region above the border line k− = t2k+ gives the out-jet contribution and the region

below gives the in-jet contribution. Λ+ is the maximum value for the distribution of `+ and can

be chosen arbitrarily.

where k is the momentum of the outgoing collinear-soft gluon and MS
R1 (MS

R2) indicates the

contribution from the first (second) term in the square brackets.

In Fig. 1 we show the possible phase space for the emitted collinear-soft gluon after the

integration over k⊥. MS
R2 covers region below the jet border line (k− = t2k+). Hence the

result is

MS
R2 =

αsCF
π

(µ2eγE)ε

Γ(1− ε)δ(`+)

∫ ∞
0

dk+

∫ t2k+

0

dk−(k+k−)−1−ε

=
αsCF

2π

[(
1

εUV

− 1

εIR

)2

−
(

1

εUV

− 1

εIR

)
ln t2

]
δ(`+). (22)

For MS
R1, k+ is fixed to be `+ by the delta function, and the possible phase space has

been denoted as a blue line in the upper plane in Fig 1. However we need to extract the IR

divergences as `+ → 0. In order to do so, we introduce the so called Λ+-distribution, which

is defined as ∫ L

0

d`+[g(`+)]Λ+f(`+) =

∫ L

0

d`+g(`+)f(`+)−
∫ Λ+

0

d`+g(`+)f(0), (23)

where f(`+) is an arbitrary smooth function at `+ = 0. Λ+ is an arbitrary upper limit for

Λ+-distribution and is power counted to have the same size as `+. We can write MS
R1 using

9



this distribution,

MS
R1 =

αsCF
π

(µ2eγE)ε

Γ(1− ε) `
−1−ε
+

∫ ∞
t2`+

dk−k
−1−ε
−

= δ(`+)IR1(Λ+, t) +
αsCF
π

(µ2eγE)ε

Γ(1− ε)

[
`−1−ε

+

∫ ∞
t2`+

k−1−ε
−

]
Λ+

, (24)

where the integration region for IR1 corresponds to the green region in Fig. 1. Integrating

over this region, we get

IR1 =
αsCF
π

(µ2eγE)ε

Γ(1− ε)

[∫ ∞
0

dk+

∫ ∞
t2k+

dk−(k+k−)−1−ε −
∫ ∞

Λ+

dk+

∫ ∞
t2k+

dk−(k+k−)−1−ε

]

=
αsCF

2π

[(
1

εUV

− 1

εIR

)2

+

(
1

εUV

− 1

εIR

)
ln t2 (25)

−
(

1

ε2UV

+
1

εUV

ln
µ2

Λ2
+t

2
+

1

2
ln2 µ2

Λ2
+t

2
− π2

12

)]
.

The second term in Eq. (24) is given by

αsCF
π

(µ2eγE)ε

Γ(1− ε)

[
`−1−ε

+

∫ ∞
t2`+

k−1−ε
−

]
Λ+

=
αsCF
π

[
1

`+

( 1

εUV

+ ln
µ2

`2
+t

2

)]
Λ+

. (26)

Finally combining Eqs. (20), (22), (25) and (26) we obtain the bare one loop result of S̃q,

MS = MS
V +MS

R1 +MS
R2

=
αsCF
π

{
δ(`+)

(
− 1

2ε2UV

− 1

2εUV

ln
µ2

Λ2
+t

2
− 1

4
ln2 µ2

Λ2
+t

2
+
π2

24

)
(27)

+

[
1

`+

( 1

εUV

+ ln
µ2

`2
+t

2

)]
Λ+

}
.

The one loop result of the collinear-soft function for gluon FFJ is the same if we replace CF

with CA = Nc in Eq. (27).

Since the dimensionless soft-collinear function, Sk=q,g(z) = p+
J S̃k(`+), is a function of z,

we need to express the Λ+-distribution in terms of the standard plus distribution of z. From

Eq. (23) we obtain the relation

[g̃(`+)]Λ+ =
1

p+
J

[g(z)]+ +
1

p+
J

δ(1− z)

∫ b

0

dz′g(z′), (28)

where `+ = p+
J (1 − z) and g(z) = p+

J g̃(`+). In the Λ+-distribution, Λ+ has been replaced

with p+
J (1− b), where b is a dimensionless parameter close to 1.

10



Finally, the dimensionless collinear-soft functions at NLO can be written as follows:

Sk=q,g(z, µ; (1− z)EJR
′) = δ(1− z) +

αsCk
2π

{
δ(1− z)

(
−1

2
ln2 µ2

p+2
J t2

+
π2

12

)
+ 2
[ 1

(1− z)

(
ln

µ2

p+2
J t2

− 2 ln(1− z)
)]

+

}
, (29)

where Cq = CF and Cg = CA. As can be seen in Eq. (29), the scale necessary to minimize the

large logarithms in the collinear-soft functions is (1 − z)EJR
′. In the limit z → 1, running

the collinear-soft function will be required to obtain a precise estimate of the FFJ.

In Eqs. (14) and (17) we have shown the factorization theorem near the endpoint. Com-

bining Eqs. (18), (19) and (29) we can easily check that the fixed NLO results of Eqs. (14)

and (17) recover the NLO results of FFJs for the full range [11, 13, 21] when we take the

limit z → 1.

III. RENORMALIZATION GROUP EVOLUTION AND RESUMMATION OF

LARGE LOGARITHMS

A. RG evolution from the factorization of the FFJ

Based on the factorized results in Eqs. (14) and (17), we can systematically resum the

large logarithms of lnR and ln(1−z) in the FFJ using the RG evolutions of the integrated jet

function Jk and the collinear-soft functions Sk. The FFJ in the limit z → 1 can be factorized

at an arbitrary factorization scale µf . Then Jk can be evolved from µf to collinear scale

µc ∼ EJR
′, where the large logarithms at the higher order in αs are minimized and the

perturbative expansion is safely convergent. Simultaneously we can evolve Sk from µf to

µcs ∼ (1− z)EJR
′ to minimize the large logarithms at µcs.

The anomalous dimensions of the integrated jet functions and the collinear-soft functions

defined by

d

d lnµ
Jk(µ) = γc,k(µ)Jk(µ), (30)

d

d lnµ
Sk(x, µ) =

∫ 1

x

dz

z
γcs,k(z, µ)Sk(x/z, µ), (31)

where k = q, g, are obtained from Eqs. (18), (19), and (29) at one loop,

γ(0)
c,q =

αsCF
2π

(
2 ln

µ2

E2
JR

′2
+ 3
)
, γ(0)

c,g =
αsCA

2π

(
2 ln

µ2

E2
JR

′2
+
β0

CA

)
, (32)

γ
(0)
cs,k(z) =

αsCk
2π

(
−2 ln

µ2

E2
JR

′2
δ(1− z) +

4

(1− z)+

)
, (33)

11



where p+
J t is approximated as EJR

′. When we combine Eqs. (32) multiplied by δ(1− z) and

Eq. (33), the logarithmic terms cancel and the well-known DGLAP splitting kernels in the

limit z → 1 are reproduced:

δ(1− z)γ
(0)
c,k + γ

(0)
cs,k(z) =

αs
π
P

(0)
kk (z → 1). (34)

Logarithmic terms in the leading anomalous dimensions indicate the presence of the cusp

anomalous dimension. Beyond LL accuracy, the anomalous dimensions can be expressed as

γc,k = AcΓC,k(αs) ln
µ2

E2
JR

′2
+ γ̂c,k(αs), (35)

γcs,k(z) = δ(1− z)
[
AcsΓC,k(αs) ln

µ2

E2
JR

′2
+ γ̂cs,k(αs)

]
− κcsAcs

ΓC,k(αs)

(1− z)+

, (36)

where ΓC,k =
∑

n=0 Γn,k(αs/4π)n+1 are the cusp anomalous dimensions obtained from cal-

culations of light-like Wilson loops [41, 42]. The first two coefficients are given by

Γ0,k = 4Ck, Γ1,k = 4Ck

[(67

9
− π2

3

)
CA −

10

9
nf

]
. (37)

From the LO results in Eqs. (32) and (33) we extract {Ac, Acs, κcs} = {1,−1, 2} and the

noncusp anomalous dimensions γ̂c,q = 3αsCF/(2π) +O(α2
s), γ̂c,g = αsβ0/(2π) +O(α2

s), and

γ̂cs,k = O(α2
s).

Using Eqs. (35) and (36) we perform RG evolutions of the integrated jet functions and

the collinear-soft functions up to next-to-leading logarithmic (NLL) accruarcy. For Jk the

result of the RG evolution from µf to µc can be written as

Jk(µf ) = exp
[
2AcSΓ(µf , µc) + Ac ln

µ2
f

E2
JR

′2
a[ΓC,k](µf , µc) + a[γ̂c,k](µf , µc)

]
Jk(µc). (38)

Here SΓ and a[f ] are

SΓ(µf , µc) =

∫ αf

αc

dαs
b(αs)

ΓC,k(αs)

∫ αs

αf

dα′s
b(α′s)

, a[f ](µf , µc) =

∫ αf

αc

dαs
b(αs)

f(αs), (39)

where αf,c ≡ αs(µf,c) and b(αs) = dαs/(d lnµ) is QCD beta function.

For the evolution of Sk, following the conventional method introduced in Refs. [43, 44],

we obtain

Sk(z, µf ) = exp
[
2AcsSΓ(µf , µcs) + a[γ̂cs,k](µf , µcs)

]( µ2
f

E2
JR

′2

)−ηS/κcs
(40)

× S̄k
[
ln

µ2
cs

E2
JR

′2
− 2∂ηS

]e−γEηS
Γ(ηS)

(1− z)(−1+ηS) ,

where ηS is defined as ηS = −κcsAcsa[ΓC,k](µf , µcs) and is positive for µf > µcs. S̄k is

S̄k[L] = 1 +
αsCk
2π

(
−1

2
L2 − π2

4

)
+O(α2

s). (41)

12



B. Contribution of nonglobal logarithms

When we extend the factorized result of the FFJ to the two loop or higher order in αs,

one important issue is the presence of nonglobal logarithms (NGLs) [33, 34]. Usually NGLs

appear when jet observables cover a limited phase space due to the jet algorithm and arises

from multiple gluon radiations near the jet boundary. Especially when there are large energy

differences between in-jet and out-jet radiated gluons, large NGLs are unavoidable.

For the FFJ near the endpoint there are two modes that could resolve the jet boundary

and give nonvanishing contributions. The collinear mode with large energy certainly radiates

only inside a jet, but the collinear-soft mode can radiate across a jet boundary and give a

nonvanishing result as z → 1 at the lower energy scale. So we conjecture there can exist

large NGLs in the FFJ in the large z limit.

In order to systematically resum large NGLs, we would need to modify our factorization

theorem as it is designed to resum global Sudakov logarithms. To include resummation of

NGLs using effective theory, at two loop order we might have to consider dressed collinear-

soft gluons decoupled from a (ultra-)collinear gluon along a certain direction inside a jet,

which could give rise to a new dipole operator other than Y cs
n,n at low energy. We will

not pursue such a refined factorization theorem here, but we mention that some advanced

treatments of NGLs have been recently introduced in Refs. [29, 31, 45–49].

To estimate the size of the NGLs in the FFJ, we note that they should have same form

as the endpoint logarithms, ln(1− z), which can be inferred from the ratio of scales between

the collinear scale µc ∼ EJR
′ and the collinear-soft scale µcs ∼ (1 − z)ER′. As seen in the

threshold expansion of inclusive jet production [50], leading NGLs start to appear at two

loops, α2
sL

2 ∼ α2
s(ln(1−z)/(1−z))+, where L schematically denotes a large logarithm. So at

NLL accuracy we have to resum these leading NGLs to all order in αs, i.e.,
∑

n=2C
n
NG(αsL)n.

For the hemisphere jet mass distribution in e+e− annihilation, the resummed result of

leading NGLs is known in the large Nc limit [33]. Interestingly the resummed result of

leading NGLs for an individual narrow jet is found to have the same form as the case of

the hemisphere jet mass, the only difference simply arising from the need to choose suitable

evolution scales [51, 52]. Therefore, using the result in Ref. [33] we conjecture the resummed

result of leading NGLs for the FFJ in the large Nc limit should be of the form

∆k
NG(µc, µcs) = exp

(
−CACk

π2

3

(1 + (at)2

1 + (bt)c

)
t2

)
, (42)

where k = q, g, and

t =
1

β0

ln
αs(µcs)

αs(µc)
∼ − 1

β0

ln
(

1− β0

4π
αs(µc) ln

µ2
c

µ2
cs

)
. (43)

The fit parameters from the Monte Carlo implementation of the parton-shower are given by

a = 0.85CA, b = 0.86CA, and c = 1.33 [33]. Note that our treatment of large logarithm

13



to NLL accuracy only holds for the anti-kT algorithm. As discussed in Ref. [51], for other

kT-type algorithms, such as kT and C/A, clustering effects [53, 54] give rise to additional

large logarithmic terms, which can be also present at NLL order.

Up to NLL accuracy (plus NLO) in αs, the resummation factor for NGLs in Eq. (42) just

multiplies the resummed results of the FFJ from the previous section, where the resummed

expressions of Jk=q,g and Sk=q,g are shown in Eqs. (38) and (40) respectively. In the next

section we show various numerical results for the FFJ in the large z region comparing the

results using only DGLAP evolutions and our resummed results of the large logarithms as

well as the NGLs.

IV. NUMERICAL RESULTS
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FIG. 2. DJq/q(z) (left panel) and DJg/g(z) (right panel) with different jet energies. Red, blue,

and black curves correspond to jet energy EJ equal to 500, 1000, and 2000 GeV, respectively. The

jet radius is chosen to be R = 0.2 and the factorization scale is µf = EJ . Error estimation is

described in the text.

In this section we show numerical results of the resummed FFJ focusing on the large

z region. For simplicity we set R′ = R. As shown in sec. III A, in order to resum large

logarithms in DJk/k(z, µf ), the integrated jet functions Jk are run from the jet scale µc = ER

to µf , and the collinear-soft functions Sk from µcs = ER(1 − z) to µf . Because the FFJ

is dependent upon the scale µf (actually following DGLAP evolution), the shape of the

FFJ varies for different choices of µf . For convenience we choose µf = EJ throughout this

section. Error estimations of the jet and the collinear-soft functions are obtained by varying

the jet scale and the collinear-soft scale within (µc/2, 2µc) and (µcs/2, 2µcs) respectively.

Then errors of DJk/k(z, µf ) are obtained by summing these in quadrature.

Based on the factorized expressions in Eqs. (14) and (17), Fig. 2 shows NLLG + NLO

results of DJq/q and DJg/g for different energies of jets with the same radius R = 0.2. Here

NLLG represents the NLL accuracy including only global logarithms from the factorization

14
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FIG. 3. DJq/q(z) (left panel) and DJg/g(z) (right panel) with different jet radii. Red, blue, and

black curves correspond to the jet radius R equal to 0.1, 0.2, and 0.4 respectively. The jet energy

is EJ = 1000 GeV and the factorization scale is µf = EJ .

approach in sec. III A. For the extreme endpoint region where µcs = EJR(1 − z) ≈ ΛQCD,

our description is not reliable because of nonperturbative contributions. Fig. 3 shows

NLLG + NLO results of DJq/q and DJg/g for different jet radii with the jet energy fixed

to be 1000 GeV. From Figs. 2 and 3 we can see the tendencies that energetic parton shower-

ing processes are captured more in the jet as the jet energy EJ and/or the radius R become

larger.

To see the importance of the factorization description on the FFJs, in Fig. 4 we compare

the resummed results at NLLG + NLO and the results using leading DGLAP evolution

naively. Here using only DGLAP evolution from µc = EJR to µf = EJ can be understood

as resumming only large logarithms of R. As z goes to 1, the resummed results of only lnR

blow up. However, when we do DGLAP evolution from µcs = EJR(1 − z) to µf = EJ , we

can see more realistic results. Compared with our factorization approach with the accuracy

of NLLG + NLO, both DGLAP evolved results involve much larger uncertainties.

Fig. 5 shows the resummed result of the FFJs with the accuracy of NLLG+NG + NLO

using our conjectured result for including leading NGLs discussed in sec. III B, obtained

by multiplication of the FFJ at NLLG + NLO by ∆k=q,g
NG (µc, µcs) in Eq. (42). The result

including leading NGLs gives rise to some suppression to the FFJs. A similar suppression

can be also seen in the light jet mass distribution for the hemisphere jet production when the

resummed results including the NGLs are compared with the case without the NGLs [49].

Because of additional dependences on both µc and µcs from ∆k=q,g
NG (µc, µcs), the result with

NGLs increases the errors. The errors might be reduced if we include the NNLO result in

αs, which is beyond the scope of our paper.

There is one more comment about error estimations used above. Since µcs = EJR(1− z)

is z dependent and bound to hit the Landau pole as z → 1, we have used the following
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FIG. 4. Comparison of the result using leading DGLAP evolution and the resummed result

at NLLG + NLO from the factorization approach. The orange (green) curves are obtained using

leading DGLAP evolution with FFJs running from µc = EJR (µcs = EJR(1 − z)) to µf = EJ .

Blue curves are the resummed result of the FFJs. The jet radius is R = 0.2 and jet energy is

EJ = 1000 GeV.

�=���� ���� �=��� �=���� ���� �=���

�
�
(�
)

����+���

����+��+���

0.80 0.85 0.90 0.95 1.00
0

2

4

6

8

10

�
�
(�
)

0.80 0.85 0.90 0.95 1.00
0.0

0.5

1.0

1.5

2.0

2.5

� �

FIG. 5. Comparison of the resummed results with (orange) and without (blue) resumming the

NGLs. Here R = 0.2 and EJ = 1000 GeV.

profile function to avoid the Landau pole:

µcs,PF (z) = (1 +
δ

1 + exp[(z − z1)/(1− z1)]
)

(1− z)µc if z < z1

µMin + a(1− z)2 if z ≥ z1

, (44)

where µMin = 0.3, µc = EJR, a and z1 are fixed by requiring that µcs,PF (z) and its first

derivative are continuous at z = z1. The profile function is shown in Fig. 6. To vary the

collinear-soft scale, we used δ = {0,−0.5, 1}. µcs,PF (z) is devised to ensure that the collinear-

soft scale freezes as it approaches the Landau pole and coincide with µcs(z) otherwise.
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FIG. 6. Profile function µcs,PF [solid black curve and gray band, defined in Eq. (44)] is used

to estimate errors due to variation of the collinear-soft scale. The dashed line is the z dependent

collinear-soft scale µc(1− z) with µc = 200 GeV.

V. CONCLUSION AND OUTLOOK

In this paper, as shown in Eqs. (14) and (17), we have developed a factorization theorem

of the FFJ with a small jet radius R in the large z limit. At the scale µ ∼ EJR
′ we first

integrate out collinear modes with offshellness p2
c ∼ (EJR

′)2, and obtain the integrated jet

functions, Jq,g. At the lower scale µ ∼ (1 − z)EJR
′ the collinear-soft mode can probe the

jet boundary and gives a nonvanishing result at higher order in αs. Combining NLO results

of the integrated jet function and the collinear-soft function, we can successfully reproduce

NLO result of the FFJ in the limit z → 1.

Performing RG evolutions of the factorized jet and collinear-soft functions we resummed

large logarithms of 1−z and R simultaneously. The anomalous dimensions of each factorized

function involves the cusp anomalous dimension, which enables us to systematically resum

large logarithms beyond leading order. As a result we have shown the resummed result at

NLL, which significantly modifies the large z behavior of the FFJ when compared to the

result of only resuming logarithms of R through naive DGLAP evolution. Large NGLs may

appear at NNLO in αs and could contribute to the resummed result at NLL accuracy. We

therefore have estimated NGL contributions to the FFJ applying the resummed formalism

in the large Nc limit [33].

The finite size of the jet radius R plays an important role in performing successful RG

evolution of the FFJ in the large z limit.3 Even though R is small, the radius makes it possi-

ble to have an observed jet with nonzero invariant mass and each factorized function for the

FFJ is IR finite. Similar results occur for the heavy quark fragmentation function (HQFF)

in the large z limit, where the HQFF can be factorized into the heavy quark function and

3 Compared to a massless jet, some differences of a jet with small and finite R have been discussed in the

resummation of threshold logarithms [50, 55].
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the soft shape function [56, 57]. Due to a nonzero heavy quark mass M , both functions are

IR finite and systematic RG evolutions to the scales M and M(1− z) can be done.

Note that the FFJ reduces to a light hadron fragmentation function if R goes to zero. In

this case the factorization to collinear and collinear-soft interactions breaks down because

the relevant anomalous dimensions blow up and RG evolutions become nonperturbative,

as can be checked from Eqs. (32) and (33). A similar result can be applied to the parton

distribution function (PDF) near the endpoint. Actually, in order to resum large logarithm

ln(1−z) in the PDF, a similar factorization approach to ours has been considered in Ref. [58],

where soft gluon radiation is responsible for the parton splitting. Interestingly the factorized

collinear and soft functions for the PDF contains rapidity divergences [59, 60] as well as UV

and IR divergences. However the rapidity RG evolution turns out to be IR sensitive and

become nonperturbative. (We checked if there exist rapidity divergences in the factorized

functions for the FFJ, but the finite size of R forbids rapidity divergences and guarantees

ordinary RG evolutions from pure UV divergences.)

Our factorized and resummed result analyzed here can be widely applied for energetic jet

productions. The resumming procedure of large logarithms of 1−z from the effective theory

approach can be used for systematic resummations of threshold logarithms for inclusive

jet [50, 61] and dijet production [55, 62]. However, for more precisely resummed results of

large logarithms, explicit calculations beyond NLO are required, and a thorough analysis of

factorization including NGLs is needed.
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