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Abstract

We discuss the computation of holographic entanglement entropy for interface con-
formal field theories. The fact that globally well defined Fefferman-Graham coordinates
are difficult to construct makes the regularization of the holographic theory challeng-
ing. We introduce a simple new cut-off procedure, which we call “double cut-oft”
regularization. We test the new cut-off procedure by comparing the results for holo-
graphic entanglement entropies using other cut-off procedures and find agreement. We
also study three dimensional conformal field theories with a two dimensional interface.
In that case the dual bulk geometry is constructed using warped geometry with an
AdSj3 factor. We define an effective central charge to the interface through the Brown-
Henneaux formula for the AdS3 factor. We investigate two concrete examples, showing
that the same effective central charge appears in the computation of entanglement

entropy and governs the conformal anomaly.



1 Introduction

The AdS/CFT correspondence provides the most well understood example of holography.
The degrees of freedom of a theory of gravity in a geometry that includes an asymptotically
AdS space are encoded in the degrees of freedom of a dual conformal field theory, living on
the boundary of the asymptotically AdS space [1, 2, 3].

The correspondence is mostly studied in the large N and large t'Hooft coupling limit,
when the the bulk side can be treated using semi-classical gravity. For example, the Ryu-
Takayanagi formula relates entanglement entropy on the field theory side to the area of the
minimal bulk co-dimension two surface anchored at the boundary of AdS on the entangling
surface [4]
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One should note that the entanglement entropy on the field theory and gravity side are
infinite and both require regularization. On the CFT side the divergence comes from the
short distance degrees of freedom entangled across the entangling surface, for this reason
a UV cut-off is required. On the gravity side the divergence arises from the fact that the
minimal surface is anchored on the boundary of the asymptotic AdS space, which has an
infinite volume. For that reason we need to regulate it by introducing a cut-off on the
holographic coordinate, this process is called holographic renormalization (for a review see
[5]). The regularization is based on the fact that an asymptotically AdS metric can be
expressed in terms Fefferman-Graham coordinates [6].
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Figure 1: The top surface represents the field theory side, the two different colors identify the
two sides of the interface (purple line). The vertical dimension represents the holographic
direction, there are two Fefferman-Graham coordinate patches (represented with different
colors) that do not cover the entire bulk geometry. In the gray wedge originating from the
interface the Fefferman-Graham coordinate expansion breaks down.



Where g;;(x, ) has a leading z independent term and terms falling off as = — 0, whose exact
form depend on the dimensionality and details of the theory.

The boundary of the asymptotic AdS metric is located at z = 0 and the theory is
regulated by imposing a cut-off at z = 4.

Unfortunately the construction of Fefferman-Graham coordinates which cover all of the
boundary can be difficult. One example are systems with an interface (ICFT) or a defect
(DCFT). In the present paper we consider holographic interface or defect solutions which
are commonly known as Janus solutions, where one solved the bulk gravitational equations
for a metric which is warped with an AdS factor. For some other approaches to describe
interface, defect or boundary CFTs holographically see e.g. [7, 8, 9, 10].

In these cases the small z expansion used for the Fefferman-Graham construction turns
out to be an expansion in small z/z |, where z; denotes the field theory direction perpen-
dicular to the defect. This dependence is dictated by scale invariance. The expansion breaks
down close to the defect, where z; — 0. Thus there is a wedge bulk region originating
from the defect that cannot be covered. In the case of a co-dimension one defect we have
two different Fefferman-Graham coordinates patches that cover some portion of the bulk
on the two sides of the defect and a region just behind the defect that cannot be covered.
A schematic representation is given in figure 1.

This problem has been faced in literature in different ways. The authors of [11] connected
the two Fefferman-Graham patches with an arbitrary curve, showing that any universal
quantity would not depend on the details of this curve. To avoid dealing with Fefferman-
Graham coordinates the authors of [12] simply imposed a cut off on the factor of the metric
that diverges as one moves to the boundary. We refer to this regularization procedure as
“single cut-off regularization”.

Recently, a third regularization procedure has been used in literature in the computation
of the quantum information metric of a conformal theory which is deformed by a primary
operator. Such a set up shares a lot of similarities with a DCFT [13, 14, 15| since it is
natural to express the bulk metric using an AdS slicing. In such coordinates one encounters
a divergence associated to the infinite volume of the AdS slice and a divergence associated to
the coordinate that slices the bulk geometry. It is then natural to introduce two cut offs. We
name this regularization procedure “double cut-off regularization”. Note that an analogous
cutoff was also used to regulate holographic duals of surface operators, i.e. defects of higher
co-dimensionality in [16, 17].

The purpose of this paper is to study the double cut-off regularization in more detail. We
will test it against several examples to show that it provides the same results as the other
regularization methods but involve much simpler computations.

The paper is organized as follows: after reviewing and discussing the main features of



different cut-off procedures in section 2, we move on to discuss specific examples provided
by ICFTs with a co-dimension one planar interface. In section 3 we discuss systems with
an interface extended along at least two spatial dimensions. The computation of the entan-
glement entropy in these cases has been carried out in [11] and we find agreement between
the calculations which utilize the old and new regularization methods. In section 4 we focus
on three dimensional CFTs with a two dimensional conformal interface. The bulk geome-
try dual to this systems is given by a warped space with a AdS;3 factor. We associate to
the interface an effective central charge through the Brown-Henneaux formula for the AdSs
factor. We study two concrete examples, showing that the effective central charge obtained
holographically appears also in the computation of the entanglement entropy and it is the
same quantity that governs the conformal anomaly associated with a two dimensional CFT
living on the interface. In appendix A we present a detailed computation of entanglement
entropy in bottom-up systems obtained as solutions of dilaton-Einstein theories.

2 Regularization prescriptions

In this paper we mainly focus on the computation of entanglement entropy for a ball shaped
region in a CFT with a co-dimension one interface. This quantity is divergent because of
the UV degrees of freedom entangled across the entangling surface. The regularization is
achieved by introducing a UV cut-off. Once this is done if we want to isolate the interface
contribution we need to subtract the entanglement entropy for the vacuum of the theory
without interface. In this way we are able to compute a quantity that is intrinsic to the
interface. To better explain this statement let us discuss in detail the divergence structure
of entanglement entropy. For the vacuum state of a pure CFT and a ball shaped region of
radius R we have:

R-2 A 4og, if d is odd
Spp = Ag_o——= + ... + o 2.1
BE 472 a2 {Ag?—j + slog(2R/0) + 8o if d is even (2.1)

where we have introduced the UV cut-off § [18]. Notice that in odd dimensions a rescaling
of the cut-off does not affect constant sq, while in even dimension it is the coefficient of the
logarithmic term, s, that is not sensitive to any rescaling of §. For this reason s and s, are
independent of regularization and are universal. Let us discuss how the presence of a defect
affects the structure of entanglement entropy. For definiteness we start with the vacuum state
of an even dimensional CF'T. We then turn on a co-dimension one interface that breaks the
full conformal symmetry group SO(2,d) down to SO(2,d — 1), interpreted as the conformal
symmetry restricted to the interface. When this is done we expect the entanglement entropy
to show terms typical of both even and odd dimensional CFTs [19]. That creates a problem
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Figure 2: Schematic representation of the AdSy slicing of the bulk geometry M. Each
colored line corresponds to a single AdS; slice located at a fixed value of the coordinate z.

in isolating the universal term characterizing the interface. In fact since the interface is
odd dimensional we expect that the universal term should be a constant, however since the
original CFT is even dimensional we have a logarithmic term in the divergence structure of
the entanglement entropy and we are free to change the additive constant by a rescaling of
the cut-off 9. The way to bypass this problem is to use the same cut-off for both the pure
CFT and the ICF'T, once that is done we can isolate the interface contribution by subtracting
the vacuum component. We refer to this procedure as vacuum subtraction.

Now that we have discussed regularization and vacuum subtraction on the CF'T side of
the duality let’s focus on the bulk side, where all the computations will be performed. First
of all we need to identify a bulk geometry dual to the interface CFT. This is realized by a
metric that is invariant under SO(2,d — 1) transformations. The natural way to do that is
to consider a bulk geometry M that can be written in AdSy slices:

ds® = A(z,y")*gags, + p(z,y*)2dz® + Gpe(z, y*)dy"dy". (2.2)

The coordinate x is taken to be non compact and as © — +oo we have A(x, y*) ~ Ly exp(£z+
c+)/2 and p(x,y*) ~ 1 such that the AdSy gets enhanced to AdSy;1. Unless otherwise stated
we will work in Poincaré coordinates for the AdS, slices

1
gAds, = ﬁ(22 — dt* + dr® + 1%ggas). (2.3)
The boundary is approached in different ways. Taking x — Fo0 we recover the CF'T region
on the right/left side of the interface, while taking Z — 0 we approach the CFT on the
interface itself. A schematic illustration is given in figure 2.

We will now describe how to regularize divergent quantities on the bulk side using three

different methods.

e Fefferman-Graham regularization: The traditional approach is to make use of
Fefferman-Graham coordinates. As mentioned in the introduction this is problematic



in a bulk geometry that is dual to a CFT with a defect or interface. There are two
Fefferman-Graham patches which do not overlap, so one cannot simply glue them
together. A possibility is then to interpolate with an arbitrary curve between these
two patches, this is the approach used in [11] where the authors were able to compute
universal quantities that do not depend on the interpolating curve. Even though this
approach is very rigorous it requires a heavy computational effort. For this reason we
want to explore other regularization procedures. A schematic representation of this
procedure is given in figure 3.

e single cut-off regularization: we follow the idea of [12], regularizing all the diver-
gent integrals by putting a cut-off at Z/A(x) = §/L. This is motivated by the study
of pure AdSyy1. In fact for pure AdS,;.; with unit radius one has A(x) = coshz, we
can then change coordinates to recover Poincaré AdSy, 1 by choosing:

A

coshz

z =

T = Ztanhz, (2.4)

where z is the holographic coordinate and z is the coordinate perpendicular to the
fictitious interface. The natural cut-off procedure z = ¢ corresponds, in the AdSy
slicing coordinates, to Z/A(xz) = 0. For the interface solution which can be viewed as
a deformation away from the AdS vacuum we keep the same regularization procedure.

e double cut-off regularization: this procedure is based on the observation that,
after one performs the vacuum subtraction, one should be left with a quantity that
is intrinsic to the interface. In that sense a cut-off should be imposed not on the
full bulk geometry but on the AdSy slices, at Z = §. Of course that cut-off does
not regulate all the possible divergences, since the metric factor in (2.2) diverges as
A(z) ~ Lyexp(£x+cy)/2 as x — £oo. What one should do is to introduce a second
cut-off €, such that A(x) = Lie™!, that regulates any x dependent divergence. The
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Figure 3: Schematic representation of the Fefferman-Graham regularization. Where the
Fefferman-Graham coordinates are available (red and blue regions) the cut off surface is
chosen to be z = €. In the middle region a Fefferman-Graham coordinate patch is not avail-
able. The cut off surface for this region is an arbitrary curve that continuously interpolates
between the left and right patches, this is represented by a black arc in the picture.



presence of two cut offs might seem odd since on field theory side there should we a
single cut off that regulates all the the UV divergences. In the presence of the interface
we can distinguish between degrees of freedom localized at or near the interface and
degrees of freedom in the bulk away from the interface. Hence both cutoffs § and €
have a physical interpretation.

In presence of Fefferman-Graham coordinates one should be able to relate § to e,
we would then be left with a single regulator also on the bulk side. However, as
mentioned above, the Fefferman-Graham coordinates do not cover the bulk geometry
near the interface. We are able to bypass the problem in the following way: we leave
the two cut offs § and e completely independent, any desired bulk quantities (such
that entanglement entropy) can then be computed, since all divergent terms have been
regulated by d and €. Once we subtract the vacuum contribution we will be allowed to
take € — 0, the result will be € independent. The cutoff ¢ is interpreted as a physical
cut-off in the usual sense, it regulates the bulk divergence associated to the AdSy
integration and it is interpreted as a UV cut-off for the degrees of freedom localized on
the interface.

This discussion applies to any divergent quantities that can be computed in a holographic
ICFT. Let us now focus on the computation of holographic entanglement entropy. We take
the entangling surface to be a ball shaped region of radius R centered on the interface (see
figure 4). The holographic entanglement entropy for these systems has been studied in [19],
where the authors were able to show that the RT surface is simply given by 12 + Z2 = R?,
giving the following expression for the entanglement entropy

VOISR [ ., L (R? = 22/
S = Gy / dy*drdZ/ detGpA?—2 i3 : (2.5)

This equation can be adapted also for d = 3 by taking Vol(S°) = 2.
Let us discuss how to regulate the entanglement entropy using the single and double
cut-off regularizations. For the double cut-off procedure we cut-off the x integral at x = 2/,

2

defined as the two roots of A(z') = Lie!. In most examples A(x)? is an even function, in

that case 2/, = —z’_, we can then focus only on x € [0, 2/, ] and we will drop the subscript.
Generally speaking the form of A might be very complicated, however since € eventually goes
to zero we can assume z’ large, allowing us to find 2/, = =+ (log(2/¢) — c4). We introduce a

cut-off for the Z integration at Z = d. We then get:

d—3 R 2 _ 72\(d—4)/2 T+
Ag = YUSTOR / iz =2 / dy* A / dzVdetGpA™? ), (2.6)
4GN 5 Zd=2 T_




where the A symbol denotes the vacuum subtraction. At this point we will take §,¢ — 0.
The divergence will come exclusively from the Z integral and the result will be € independent.
This statement can can be verified explicitly by similar arguments used in the appendix of
[11]. In particular after the vacuum subtraction the divergence structure of the result is

(2.7)

R4—3 01% + ¢o if d is even.
513

AS=Cyj 53—+ ..+ )
e Cy + clog(2R/6) + &  if d is odd.

Where all the dependence on the cutoff € has disappeared. For all the examples we have
studied the results we find agree with this general form. It would be interesting to show the
agreement independent of any specific example.

We will now discuss the single cut-off procedure for the entanglement entropy. In this
case we put a cut-off at Z/A(z) = §/L.. We will always proceed by performing the z
integral first and then the Z integral. To do so we start by fixing Z and integrating in = over
[Z_, ], where T4 are the solutions to Z/A(x) = 0/L+. At this point we might be tempted
to take ¢ small, however that is not possible. The reason for it is that the integration over
Z runs over [min(A)d/ L., R]|, where min(A) denotes the minimum of A (in most examples
that corresponds to = 0). Nonetheless we can expand exp(Z.) as a Laurent series in §/7.
Once this is done we will proceed to the integration, whose details depend on the concrete
examples we will examine.

Notice that one could work in different coordinates than (2.2). In particular one could
change coordinates from z to another coordinate, say gq. The function A(x) will then be
replaced with another function, say B(q). In that case the regularization procedures just
described will go through without any change, one would simply put a cut-off for the ¢
integration at B(q) = Lye~! for the double cut-off procedure and at B(q) = L+Z§" for the
single cut-off procedure.

3 Higher Dimensional Examples

In this section we discuss the computation of the holographic entanglement entropy for
ICFT that present an interface extended on at least two spatial dimension. We will leave
the discussion of lower dimensional cases in section 4.

3.1 Supersymmetric Janus

In this section we discuss the entanglement entropy for a ball shaped region for a Yang-Mills
interface that preserves 16 supercharges [20, 21]. That is realized in the bulk by a metric that
explicitly exhibits SO(2,3) x SO(3) x SO(3) symmetry where the first factor is associated
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Figure 4: Representation of a time slice of the field theory side. Two regions (blue and red)
are separated by a interface (purple). We compute the holographic entanglement entropy
for a ball centered on the interface. The Ryu-Takayanagi surface is represented in green.

to the conformal symmetry preserved on the interface and the other two factors are related
to unbroken R-symmetry. The full supergravity solution also has the dilaton, the three-form
and the five-form are turned on in the bulk, see [20] for details. In the following we will only
need the metric which is given by:

ds* = fidsys, + p°dvdv + fidss: + f7dsg. (3.1)

The coordinates v and v parametrize a two dimensional Riemann surface with boundary.
The functions fy, fo, f1 and p depend on v, ¥ and they can be obtained from two functions
hi and hsy in the following way:

o= 16h§F?F—V;2, 3= 16h§ﬂF—g/2 (3.2)
where
Fi = 2hho|O0ghil* — h2W, W = 0,05(h1hs). (3.3)
For the supersymmetric Janus solution we have:
hi = —iaqsinh (v — %) + c.c.
hy = aycosh (’U + %) + c.c. (3.4)
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with v = z + iy and z € R and 0 < y < 7/2. The asymptotic regions located at © — Fo00
correspond to the two sides of the interface, where the dilaton assumes different values
corresponding to different values of the Yang Mills coupling constant gi/[M. The constants
a1, ap and A¢ are reals and they are related to the AdS radius and to the Yang Mills coupling
constant by:

L* = 16|ajas|cosh Ag

021 g0 (3.5)

+ N2
= 4
(gYM) ™ o

Equation (2.5) gives the following expression for the entanglement entropy of a ball
shaped region centered on the interface:

Vol(SY) Vol (S?)2RL® ™% —  ,  , [® dz [ourof cosh 2z
— 2(1+ ———=)dux.
1Cn /0 dy sin” y cos” y / 272 + cosh Ad dx
(3.6)

We now need to specify the cut-off procedure. We dedicate the next two sections to two

S:

C

different regularizations.

Single cut-off

For the single cut-off procedure we have:

fi L
We start by fixing Z letting « varying from 0 to z, with = defined by:
- LZ
fa(@) = 5 (3.8)

Notice that even though we are going to let 6 — 0, we cannot assume z to be large, since
z € [6f4(x = 0)/L, R]. Nonetheless we can expand # = f~! (£2) in Laurent series of £. We

have:
— 2%/2 (cosh Ag) ( ) (1 + ch ( )k) : (3.9)
i= —log (23/2 cosh A¢ < ) ) + ch < )k (3.10)
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Of course the coefficients in the sum are going to be different with respect to the one of the
previous equations, but since we are not really interested in those coefficients we will adopt
a loose notation. We can now perform the integral over x:

2(Zy) cosh 2z
Z) = 2(1+—————|d
Ply.Z) /0 < T Cosh Agb) g

23/2 cosh ApZ? 23272 & 5\"
- log( = )+ = +) " ely) (Z) . (3.11)

k=2

We proceed with the integration over Z:

/R RdZ V2R |~ log (R\/icosh A¢23/4)
5
I

7) —
- (z=0)5/L 272 PQ(?/? )

Re_1(y) < 5\"
s+ > anly) 7 (3.12)
Integrating over y and taking 6 — 0 leads to:

1 Mn278 2 3/4
7 Vol(SY) Vol(S?)2L8 [ V2R g Ry/cosh Ag2Y*N | RC L (3.13)
64Gy 5? 0 0

S(A6) =

for some constant C. Subtracting the vacuum contribution leads to':

7 Vol(S!) Vol(S?)2L® 1 DR
—=1 hA —_—
64C~ i og cosh A¢p + 5 )

for some constant D, however note that D is non universal. The universal contribution is
given by the first term in (3.14):

AS = (3.14)

7 Vol(S') Vol(S?)?L®
128G n

ASynty = — log cosh A¢. (3.15)

Double cut-off

We introduce two different cut-offs § and e. We will use ¢ to regulate the integration over
Z and € to regulate the integration over x. Remember that by vacuum subtraction we are
going to obtain a result that is e-independent.
Let’s start with the z integration. We regularize it by cutting off the integral at x = a/,
where 2’ is defined by:
L_2 - 1 (3.16)
fi@) e '

!Note that we need to keep the AdS radius fixed when we perform the vacuum subtraction.
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Notice that since € — 0, ' — 00, thus we can use the following asymptotic expression for

Ja:

2
8(x) ~ 4 aras sz, 1
R (oh) . (3.17
We get:
1 23/2 cosh A¢
¢ = L (Peh0) o
We then have:
@ cosh 2z 23/2 cosh A¢ 23/2
2(1 =1 %). 1
/0 ( + coshA¢) dx og( = ) + 2 + O(€) (3.19)
For the Z integration we put a cut-off at Z = §. We have:
R
az R 1
-~ = _ 2
R/5 272 20 2 (3:20)

The y integration is finite and gives a 7/16 factor. We obtain:

1SY) Vol(S2)2 8 1 93/2 cosh A 23/2
7 Vol(S') Vol(S*#) R log cosh Ag 4 + 0 ). (3.21)
64Gy e €

26 2

S(A¢) =

Remember that in ICF'T the physical information can be extracted only after a background
subtraction. We obtain:

7 Vol(S') Vol(S?)2L8 (R 1
AS = — —— 1 h Ad. 22
S 64Gy 25 g ) loecoshae (322)
The universal contribution is
Vol(S') Vol(S?)2 L8
ASunTy = _rY () Vol(§') log cosh Ag. (3.23)

128G N

Notice that we get the same result independently of the regularization procedure adopted.
Moreover our result matches the expression found in literature using the Fefferman-Graham
regularization [11].

3.2 Non Supersymmetric Janus

The Non Supersymmetric Janus [22, 25] is a solution of type IIB supergravity where the
vacuum solution AdSs x S® is deformed into the following metric

ds* = L*(y7'h(£)?dE* + h(§)ds?yyg,) + Ldsgs, (3.24)
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where

B 4y —3
h(&) =~ (1 W GESETY 27) (3.25)

and g is the p-Weierstrass function obeying (9p)? = 4> — gap — g3, with gy = 167(1 — )
and g3 = 4(y — 1). The deformation depends on a real number v € [3/4,1] called Janus
deformation parameter. v = 1 corresponds to the vacuum solution. The metric is supported
by a non trivial dilaton and RR five-form. This solution breaks all supersymmetries. Notice
that h(&) diverges as & — +&, defined by (&) = 2y — 1. The dilaton takes two different
values in these asymptotic regions and the metric asymptotes to AdSs x S°. We interpret
the bulk configuration as being dual to a deformation of N'= 4 SYM, where an interface is
present and the Yang Mills coupling constant takes different values on the two sides of the
interface.

Once the metric is available we can use equation (2.5) to write the entanglement entropy
for a ball shaped region of radius R centered on the interface. We have:

o Vol(S') Vol(S®)RL® /Cut off 2h (3.26)
4G N cut-off Z
We now discuss in detail the two regularization procedures explained in 2.
Single cut-off
We introduce the cut-off § by
% _ 5% (3.27)

We start with the integration over £&. The cut-off for the ¢ integral is given by & = hil(g—;).
Notice that we cannot simply take 0 small, since eventually 0/Z is going to be O(1) when
performing the Z integral. Nonetheless we can perform a Taylor expansion in §/Z, we find:

Fog o—\g;f+§£ < ) (3.28)

We then get:

Pi(Z) = /0d52}$? ?—22+10g (%>+B+;ék (%)k (329)

for some coefficient ¢, and

B=—1 - ¢le) - v+ g log () - Yo (3.30)



We have now to perform the Z integral, in particular Z € [64/h(0), R]:

B dZR
P(Z2). 3.31
A (331)

Let’s look at the last term of P. When we integrate the generic k-th term we obtain two
terms, one behaving like §* and the other as §~', this means that the third term in P
contribute to the divergence structure of S with a term of the form ¢/§. Let’s now focus on

the remaining terms, the integration is straightforward, one gets

~ Vol(S") VoI(S°)L® (R* =~ RC, )
S(y) = G~ §+ 5 +log|=—=)—-1-8B), (3.32)

where we have dropped the terms that vanish as we take 6 — 0.
The vacuum entanglement entropy is given by taking v = 1:

Vol(SY) Vol(S°)L® [ R? RC, 4] 1
=1)= — 1 — | —-14=]. :
S(y=1) 1Gn 5 + 3 + log R + 5 (3.33)
We then have: Vol(SY) Vol(SF)L* ( R(Cs — (1)
o) o) 1—C, 1
= — - .34
AS yTe ( p +B+2>, (3.34)
the universal contribution is given by:
1(S*) Vol(S°) L8 1
ASonty = —YOUSIVOUSHLT (| 1Y (3.35)
4Gy 2

Double cut-off

We regulate the Z integral and the ¢ integral using two different cut-offs. Let’s start with
the integral over . This integral is divergent because h(£) blows up at £ = &, defined by
©(&) = 2v — 1. In order to regularize this integral we introduce a cut-off at £ = £, defined
in the following way:

A(E) = . (3.36)

solving for & one gets:
§=p! (@(fo) + W) . (3.37)

Expanding in € we get:
=&~ qe2. (3.38)



At this point we perform the integration over £ we get:

/05’ df%ﬁ - 612 +log (%) + B+ 0(e), (3.39)

where B has been defined in equation (3.30). and we have introduced the Weierstrass ¢ and
o functions. For the Z integral we place a cut-off at Z = ¢ we finally obtain

S(y) = VOl(Sligj)vl(S5)L8 (? - 1) (;2 +log (%) + B) . (3.40)

The holographic entanglement entropy for the vacuum is found by considering v = 1:

Vol(S!) Vol(S%)L® [ R 1 2 1
=1)= ——1 — +1 - —=. A1
After vacuum subtraction we obtain:
Vol(S*) Vol(S%)L? [ R 1
AS = ——1 — . A2
S 1Gn 5 B+ 5 (3.42)
The universal contribution is given by:
Vol(SY) Vol(S?) L3 1
ASunty = — YAUE)VOUENLT [ 1) (3.43)
4G N 2

Notice that we get the same result independently of the regularization procedure adopted.
Also in this case our result matches the expression found in literature using the Fefferman-
Graham regularization [11].

4 Two dimensional holographic interfaces

In this section we are going to focus on gravity solutions representing a two dimensional
interface. It has been observed in various contexts that in a three dimensional CFT with a
two dimensional conformal defect one can associate an effective central charge to the defect
[23, 24, 17]. This central charge appears both in the entanglement entropy and in the Weyl-
anomaly of the theory.

The fact that we can identify an effective central charge can be understood holographi-
cally. The argument is that when a 1+1 dimensional interface enjoys conformal symmetry we
expect the dual bulk geometry to present an AdS3 factor, we can thus associate an effective
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central charge to the interface through the Brown-Henneaux formula [26]. This was first
done in [17] in the context of type IIB supergravity solutions dual to half-BPS disorder-type
surface defects in N/ = 4 Super Yang-Mills theory. It was also observed that the effective
central charge arising from the Brown-Henneaux formula was the same quantity that appears
in the computation of the entanglement entropy. In this section we explore other examples
of a 1+1 dimensional interface which enjoys conformal symmetry.

In particular we focus on examples where the 1+1 interface is embedded in a 3 dimen-
sional theory. In addition to the computation of entanglement entropy we calculate the
conformal anomaly and show that it is governed by the same central charge appearing in the
entanglement entropy computation and arising from the Brown-Henneaux formula. Before
going over explicit examples we prove the following statement: in an ICF'T with an even di-
mensional interface embedded into an odd dimensional spacetime the universal contribution
of entanglement entropy for a spherical entangling surface centered on the interface is equal
to minus the universal term of free energy on a sphere.

We explicitly prove this statement for a 3 dimensional theory with a 2 dimensional in-
terface. The generalization to arbitrary dimensions is straightforward. The proof follows
closely section 4 of [28]. The field theory lives on a three dimensional spacetime given by:

ds® = —dt* + dp® + p*d¢?, (4.1)

where we have chosen polar coordinate for the spatial slice. The interface is located at
sin = 0. We perform the following change of coordinates:

; Rcosnsinh(7/R)
~ 1+cosncosh(r/R)
sin
p = ; (42)

1 4 cosncosh(r/R)

The spacetime is then given by

ds® = Q*(—cos’ ndr? + R*(dn® + sin® nd¢?))
Q = (1+cos’ncosh(r/R))™", (4.3)

which, after removing €2, corresponds to the static patch of de Sitter space with curvature
scale R. It can be shown (for details see [28]) that the new coordinates cover the causal
development of the ball p < R on the surface t = 0 (which is exactly our entangling region).
In addition one can show that the modular flow generated by the modular Hamiltonian in
the causal diamond corresponds to time flow in this new coordinate system and that original
density matrix can be written as a thermal density matrix with temperature 7" = 1/(27R).
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This implies that the entanglement entropy of the ball shaped region can be written as a
thermal entropy:

S=BE—W, (4.4)

where W is the free energy and F is the expectation value of the operator which generates
time evolution, explicitly:

b [ Evim) e = = [ Eay=gr7), (45)

where V' is a constant 7 slice, n is the unit normal n*d, = \/|g.-|0; and ¢ is the Killing
vector that generates 7 translations {40, = 0;.

To compute E we need to write an expression for (7). A powerful tool to do that is
symmetry. In fact we know that the interface is extended along the surface sin ¢ = 0 which
corresponds to a two dimensional de Sitter spacetime. The isometry of de Sitter space forces
the stress tensor to satisfy the following relations:

o(sin @)

<T > = 8 Cb
T%) = (T%) =0, (4.6)

7 5
(T% =

/\ [}

where o and [ denote any of the coordinates n and 7. This suffices to show that FE is finite.
On the other side, since the interface is even dimensional we expect a logarithmic divergence
in both S and W. This means that F does not contribute to the universal terms in equation
(4.4), thus:

Sunty = —Wunrv. (4.7)

In order to find Wynrv we go to imaginary time with periodicity 2w R. The metric becomes
ds® = cos® 0dr? + R*(d0* + sin® 0d¢?), (4.8)
which we recognize as the metric of S* once we identify 7 ~ 7 + 27 R. Thus:

SUNIV = _WUNIV(S3)7 (49)

as anticipated.

We would like to relate this quantity to an effective central charge (since we are in
presence of a two dimensional conformal field theory living on the interface). To do that we
focus on Wynry(S?). For definiteness let’s say we locate the interface at the equator of the
sphere. By the same symmetry arguments as in the de Sitter case we have:

(Tys) = (Tva) =0

Ceff 7
T - _T 4.1
Tao) = Gpppattasd (19 2) ’ (4.10)
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where o and [ denotes the directions along the interface and h is the metric of the sphere
dsg, = r* (dV + sin® ¥ds3.) , (4.11)

with ¥ € [0, 7] and ¥ = 7/2 corresponding to the location of the interface. If we change the
radius of the sphere by dr we have:

1 y .
6 Wty = 5 / PaVhoh (T;) = —S26r = —=255, log, (4.12)
S3

where we have used equations (4.10) to get the final result. This shows that the coefficient of
the logarithmic term of entanglement entropy is related to the coefficient of the Ricci scalar
in the conformal anomaly?.

Notice that a priori this is a non trivial fact. In a two dimensional CFT the only central
charge is the coefficient of the Ricci scalar in the trace anomaly, but in a ICFT the situation
is more complicated. In fact the 141 dimensional interface is embedded in a higher dimen-
sional spacetime where the theory lives, thus other terms, such as the trace of the extrinsic
curvature, could contribute to the trace anomaly.

In the following we are going to focus on specific examples. We are going to compute
both entanglement entropy and free energy holographically and we will show that equation
(4.9) holds. To find the free energy holographically write the metric in the same form as in
equation (2.2), replacing AdS; with its Euclidean counterpart, named Hj

1 :
dsty, = p—y (d6* + sin® fdss3, ) (4.13)

where 6 € [0,7/2] and we have sliced H3 using spheres. The free energy can then be
computed holographically as the on shell action I, shen- We are going to use ony the double
cut off procedure, one can obtain the same results using the single cut off regulator.

4.1 3 dimensional Einstein-Dilaton Janus

The first example we discuss is a bottom up system. We can construct an ICFT from a CFT
by considering a marginal operator O and assigning to it a coupling constant that jumps
across a 1+1 dimensional plane. We construct the bulk theory dual to this deformation by
solving the equations of motion derived from the action I of a massless field ®, dual to O,
minimally coupled to the metric. In particular one has

1

6
I =
167TGN

/d4x\/—g (R — 0,90"® + ﬁ) , (4.14)

2If the interface is even dimensional embedded into a odd dimensional spacetime of general dimension we
have that the coefficient of the logarithmic term is related to the A anomaly.
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from which one finds:

L? [ d¢g?
dsi - e (i + d8124d53)

gt \ P(g=)
D(gy) = By+ A Y dr, 415
(=) |, 77 1)

where P(z) =1— 2% + %xG and ¢, is defined by P(q.) = 0. The parameter A quantifies the
strength of the Janus deformation, A € [0,2+v/2/3] and one recovers AdSy for A = 0. Notice
that the bulk geometry is covered using two different patches, the patches smoothly join at
¢+ = ¢ while the boundary is located at g+ = 0. There are two boundary regions (glued
together at Z — 0) that correspond to the two different sides of the interface.

4.1.1 Holographic Entanglement Entropy

As usual we take the entangling region to be a ball or radius R centered on the interface.
From equation (2.5) we get:

412 B 2_ 79347 [+ d
S / R(R ) / d (4.16)
) €

4Gy 4 ¢*v/Plq)

Working with the double cut-off regulator requires to compute

G« dgq
T = -t 4.17
/e >/ P(q) 417

The expression of ¢, as a function of \ is:

i —2v2 % cos (é (27r — tan~! (\ / % — 1) )) ) (4.18)

We change variable of integration by introducing ¢ = ¢/q:

/ L (4.19)
e/a. Qxt2\/P(gst)
Using the fact that ¢ =1 + ’\6—qu one can write
)\2 6t2
Plat) = (=) (1- @ 1)
24 24
Nq Lyl % ERRRYA e
= 01—+ —t% +
6 2 2
/\2 6
- %(b )2 = d)(a— 1), (4.20)
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%

1+ 24 14 12
where b =1, d = _@ and a — 5 3248
we write the integral in the following form:

V6 [P ds
ANJu s\/(s—c)b—s)(s—d)(a—s)

with ¢ = 0 and u = (€¢/q,)?. We note that for A\ € [0,2v/2/3] we have d < ¢ < u < b < a.
This is an elliptic integral and can be found in [27]. It evaluates to:

VB ((a =0 (59 x [82) +bF (x |K?))
(@) (aby/ (=) - )

. Using the change of coordinate t? = s,

(4.21)

T =

B (a—d)(b—c)
ko= ¢m—@w—@' (4.22)
We expand (4.22) for small €, we get:
I = % + C(\) + O(e)
cO) = V6(a —ad)’? ((d— 1)E (L) — dK (= d))' (4.23)

d\a — d)?2

K (z) and E(z) denote the complete elliptic integral of first and second kind. The divergent
term is A independent, so taking into account that

R Rz O/R ~ oo [ 21
| o=t <1+vTra*> lg( >*“”® 2

and subtracting the background contribution we are left with:

L? 2R
AS = C(N)1 . 4.25
&-covoe (%) (4.25)
It is natural to identify an effective central charge as
L2
et = 2 O(N). (4.26)
Gy

The behavior of C'(\) is displayed in figure 5.
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Figure 5: Behavior of C'())
4.1.2 On shell Action
The Euclidean action of the bulk theory is given by:
I= —1673 o /M 4 (R — ¢™0,00,® + %) — 87T1GN » K, (4.27)

where the second term is the Gibbons-Hawking contribution, added to ensure a sensible
variational principle. It is then natural to decompose the on shell action into two contribu-
tions, one coming from the Gibbons-Hawking term and the other one coming from the bulk
integration. Using Einstein equation we have:

Ion shell — Ibulk + [surface
3
Ly _ d*
P T SrGy L2 /M4 9
1
Isur ace — K. 4.28
f 87TGN £M4 < )

It is easy to show that Igyface does not contain any logarithmic divergences. We focus only
on Ipyk. We write it as:

3L2 (% sin*@ [ 1
Ty = —/ g™ " dq——, (4.29)
Gy Jo cos3 0 /. q*\/P(q)
where cos 0y = g. Let’s look at the ¢ integration first
©=[" o (4.30)
J(e) = / dg———. 4.30
e ¢'VPq)
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We expand J in Laurent expansion?:

J(e) = A + ﬂ + AN+ A (Ne+ ... (4.31)

€3

We can perform the 6 integration, getting:

3L (1 /r\2 1 ) 1 A A,
]bulk = G_N (5 (5) + 5 10g (5) — Z) (6_3 -+ ? + A(/\)) (432)

The constant term in J gives a logarithmic divergence in the on shell action equal to

3L? )
2GNA(/\) log p (4.33)
Thus we find:
972
off = A(N). 4.34
cat = 55— AN (4.39)

In the following paragraph we show that this central charge matches equation (4.26) by
proving that

AN) = =C(N). (4.35)
This will imply that equation (4.9) is satisfied. We will also show that the divergent term

in equation (4.31) are A independent. We start as usual by changing variable ¢t = ¢/q. and
using equation (4.20):

7 /1 dt
e BN Pd
1/2 ¢\"
XU ()

1
/ At (2 4 DE(1L - %) 72 (4.36)
€/qx

where we have expanded P(q,t)~'/2 i

in series. We are interested in the divergent terms and in
the constant term. The divergent terms come from k£ = 0, 1, while to find the ¢ independent

contribution of this integral, we can simply evaluate the primitive of the integrand at ¢t = 1.

3The fact that the divergent pieces are not A dependent is showed in the following.
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One gets:

1
A,g - §
1 A2¢8 1
A, = 1 * = —
' 2q3< T ) 2
1 (1/2), [ A2¢5\"
AN = = *
AN = 2l ( 6 ) ™

1 -

where 5 F} (a, b; ¢; z) is the regularized hypergeometric function o F} (a, b; ¢; 2) /T'(c). Using the
same technique with Z one gets the following expression for C'(A):

) = —Z U72) ( 6)ka (4.37)

1 . 1 1
o ——\/_k( (1—kk —;k+1;—1>—22F1(k—é,—k;kJrl;—l))F(k—ﬁ).

By using the fact that ¢ = 1 + % and that ag = ¢y = 0 we can write:

AN = Z(lﬁ) ( 66)kak

k=1
1/2) (X2g%\" (1/2) k-1
CNg = ( —= ————kcp_1 ). 4.38
it = S (TR ) (ow e (1.33)
Using the properties of hypergeometric functions and gamma function one notes that
(1/2)k—1 3
————kcp_1 = = 4.39
Cr + (1/2) Ck—1 = 50k ( )
which proves equation (4.35).
Summing up we have:
3L? (1 /r\2 1 o 1 1 1
Iy = — —<—) =1 — == |l=+=+A4A0) ), 4.4
bulk GN<2 5 +20g<2r> 4><3e3+2e+ ()) (4.40)
once we subtract the vacuum contribution we get:
SLEAN) (1 /r\2 1 0 1
Al = =2 (D (5) + 5108 (52 ) = 5 ) 4.41
bulk =TT (2 5 +20g<2r) 4) (4.41)

Notice that the fact that the divergent terms in (4.31) are A independent makes the final
result depending only on the interface cut-off 9.
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4.1.3 Brown-Henneaux fomula

One last check we can perform is whether our effective charge could be derived from Brown-
Henneaux formula:

3L

= — 4.42
G (1.42)

Ceff

Of course the gravitational constant GGy that has appeared so far is a 4 dimensional Newton
constant. In order to obtain the three dimensional counterpart we reduce on the non compact
direction ¢. In order to obtain a finite result we subtract the vacuum contribution, from a
more physical point of view this is done to isolate the interface contribution. Note that we
have to take into account the non trivial g-dependent factor that appears in front of the
AdSs space in the metric (4.15). In particular we have:

r 2 Ldq

G o’ (/ q2s/_P(q)> 443
~ 200M\)L
= G (4.44)

where we have used the results derived in the computation of the holographic entanglement
entropy. Using Brown-Henneaux formula we then have:

Cot = - C(N), (4.45)

which agrees with effective central charge obtained in (4.26).

4.2 M-theory Janus

The M-theory Janus solution is a one parameter deformation of the AdS,; x S7 vacuum
solution of the eleven dimensional supergravity [29]. The dual field theory is ABJM theory
deformed by a primary operator of dimension two localized on a interface.

The bulk metric is given by
ds* = figaas, + [39s3 + [3gsy + 4p°(da® + dy?). (4.46)

where all the functions appearing in the metric depend on the coordinates = and y and on a
parameter \. The coordinates x,y parametrize a strip, while the deformation parameter is
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real and one recovers pure AdS,; x S7 for A = 0. In particular one has:

cosh(2x) 1
= —— F xZ, /GFf z, 1/
fo = 2cos(y)Fy(x, y)l/GF—<I> ?/)_1/3
fs = 2sin(y)Fy(z,y) V3F_(x,y)"/¢
F+($7y)l/6pf(33a 3/>1/6
1+ 2X(sinh(2x) + A) cos?(y)/ cosh?(27)

1 — 2A(sinh(2x) — ) sin?(y)/ cosh?(2x). (4.47)

=

F+(£I},y
Fo(z,y

~—
|

4.2.1 Holographic Entanglement Entropy

We can use equation (2.5) to find the entanglement entropy of a spherical region centered
on the interface, we find:

2 1 3)\2 R 2 ZQ —% 7
s - ZRCL [ BT [ agensir (4.48)
4GN cut-off Z

3\2 rR 2 _ p2y-1 /2 cut-off
_ 2 Vol(S?) / R(R* — Z7) dZ/ ay(2 sin(2y))3/ dxcosh(2x)
4GN cut-off Z 0 —cut-off V 1+ A2

We start by using the two cut-off procedure. We place two independent cut-off, one for
the Z integral located at Z = §, the other for the z integral, located at f; = 1/e, i.e
T = 2o0(\) = 1/2cosh™(v/1 + A2%). This procedure gives AA = 0. That is because

cosh(2x) oA e cosh(2z)

ViE® o VIEX (4.49)
_ A81nh<2xoo()\>> lim e—0 0
VI+ A2 '

In this case it is interesting to look also at the single cut-off procedure. We place the cut-off

at
1

Since we still have to integrate over Z (and the lower bound of the Z integral is linear in
J) we cannot assume Z/d << 1. However we can still express the solution of (4.50) as a
Laurent series with respect to 0/Z. In particular we have:

cosh(2x4) = ZlTw (1 + Z ce(y) (%) ) : (4.51)

k even
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where the summation index k is a positive even number. The z integration can now be
carried out, we obtain:

k

Teo cosh(2z) Z .0

PR 2 [ 2 4.52
ﬂmdx — 5( +) ck(y)Z> 7 (4.52)

k even

for some coefficients ¢ (y). We now proceed to the Z integration, we notice that:

R R(R?—Z7%):dZ TR 1
= —+—=+0()
5/VTTA 0 20 V1422
R 2 2\—1
R(R* - Z dz
(5k/ ( _ )22 o), (4.53)
§/VITA2 Z
where O(d) denotes linear and higher orders in ¢. Thus, neglecting all term O(J), we finally
get:
8 ™R 1
5= g Vol (e ). 154
ey STt e (4.54)

Note that, as in the two cut-off scheme, we don’t obtain a logarithmic term. One might
be worried that the constant term is different in the two schemes, however it has been
shown before that the constant appearing in the computation of holographic entanglement
entropy for this set up is not a universal quantity [11]. Hence different regularization schemes
determine that the effective central charge vanishes, i.e. cog = 0.

4.2.2 On shell Action

We look at the Euclidean on shell action for M-theory Janus. Since we want to place the
dual CFT on a sphere we choose global coordinates for the AdS factor. The Euclidean action
is given by:

1 1
I=—— [d"/g <R — EFMNPQFMNP@) —

2
2K,

?
12k

/C’/\FAF (4.55)

where C' is a 3-form potential and F' = dC'. Using the equation of motion we have R =
7 FrvnpoFMNPR. We then have:

1 1
263 Ion shetl = == | d" o\ /gFynpoFMNFQ + 5| CAFAF+ 263 Igu.  (4.56)

72 Ms My

Notice that we have introduced a cut-off 6 (we will be more precise about it later), the
regularized manifold has been named M. Furthermore we have included the Gibbons
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Hawing term. Let’s focus on the first two term first. By writing \/gFunpoF ™% as
A(xF N F), F = dC and integrating by parts one gets:

1 1
2631 Ton shell = -3 (/M d(xFANC)+ 5 /M d(CNF AN C)> + 2x1, Ign, (4.57)
§ é

where we have omitted the terms that vanish due to the equations of motion. We can now
use Stokes theorem to express this integral as a boundary term. Notice also that since F' is
a 4-form and C'is a 3-form we have CAFAC =FANCANC =—-FANCAC =0. Thus we

have:
1

262 Ion shell = -3 ( / *F A (J) + 263, Icn. (4.58)
IMs

We work in the two cut-offs scheme. This means that we place a cut-off at # = 6y = arccosd
and we compute all quantities with respect to vacuum solution. The § cut-off is a natural
physical cut-off for the interface, of course generally speaking before the vacuum subtraction
we have another source of divergence (coming from the = integration), we then introduce
a cut-off also at large x. That cut-off is not physical since will be removed by the vacuum
subtraction.

The expression for C' in our set up is given by:

C = bi(z,y)Waas; + b2(,y)ws + bs(x, y)wss, (4.59)

the @w’s are the volume forms of the AdS space and 3-spheres with unit radii. Notice that
since the boundary is cos@ = § the only non zero term is of the form e! A e A e3... A elt
(the index 0 refer to the coordinate #), however that term does not appear in *F A C. This
means

Ton shen = IGH' (460)
Using the explicit solution of [29] we find that:

sin 90

Vol(S?) Vol(S?)? dxdy cosh z sin® y. (4.61)

128 /

K = —

IM; VI cos? by V1422
Notice that the x integral is divergent this is because we are working in the two cut-off scheme
and we should always perform a vacuum subtraction before declaring a quantity physical.

Subtracting the vacuum contribution gives and using that cosfy = o:

A JIK =0. (4.62)
oM

It is clear that there isn’t any logarithmic divergence in §. This means that the on shell action
does not change as we vary the radius of the sphere where the CFT lives, i.e. c.ry = 0.
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4.2.3 Brown-Henneaux formula

The fact that ceq is zero can be understood also using Brown Henneaux formula:
2
Coff = —HA/davdyflfQ3 Sp?=0. (4.63)
3Gy

Where we have used the same technique used in equation (4.49). Notice that the fact that
the effective charge is zero does not imply the absence of conformal anomaly in general. In
fact the interface is embedded in a higher dimensional space, this means that one can make
scalar quantities (such as the trace of the extrinsic curvature) which can contribute to the
conformal anomaly.

5 Conclusions

In this paper we have presented a new cut-off procedure (called “double cut-off” regular-
ization) that can be used to regularize divergent bulk quantities in holographic spacetimes
which realize interface CF'Ts.

The motivation for this cut-off procedure relies on the fact that a d-dimensional conformal
field theory with a d — 1 dimensional interface, has a bulk dual can be constructed using a
warped spacetime an AdSy factor . This choice of coordinates makes manifest the symmetry
group that characterizes the set up. In particular it is natural to regard the AdS slices as
dual to the interface, since they share the same symmetry. There is then a natural bulk
cut-off realized by limiting the holographic coordinate of the AdS slice. We expect this
cut-off procedure to be well defined only when computing quantities that are intrinsic to the
interface. A physical quantity can be made intrinsic by subtracting the vacuum contribution.
To make this quantity finite before the vacuum subtraction we need to introduce a second
cut-off which we consider as a mere tool for intermediate steps.

We tested this procedure for set ups where the holographic entanglement entropy is
already known, finding agreement with the results available in the existing literature [11].
Of particular interest is the case of 1+ 1 dimensional interfaces. In that case it is natural to
associate a central charge to the set up through the Brown-Henneaux formula. We verified
that this effective central charge plays the role one would naively expect in the computation
of entanglement entropy and conformal anomaly.

We stress that the main advantage of the double cut-off regularization procedure is to
simplify considerably the computations one needs to perform to calculate any quantity (such
as entanglement entropy and on shell action) on the bulk side. This provides a new method to
explore more complicated solutions that have been beyond reach due to the lack of Fefferman-
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Graham coordinates. Examples of such solutions are multi Janus solution [20, 30], which
correspond to junctions of several CFTs.
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A Appendix: Einstein-Dilaton Janus

In this appendix we discuss the d dimensional generalization of the Einstein-Dilaton system
studied in section 4.1. The expressions for the fields are given by [14]:

L2 d 2
dsi - - (i + dsidsd)

¢t \ P(gx)
qx :Cd_l
= /P()
where P(z) = 1—2%+ d(c/z\—in'r% and ¢, is defined by P(q,) = 0. As in the 3 dimensional case

the parameter A\ quantifies the strength of the Janus deformation, A € [0,v/d — 1 (%1)%]
and one recovers AdSy,, for A = 0. The bulk geometry is covered using two different
patches that smoothly join at g+ = ¢, while the boundary is located at ¢+ = 0. There are
two boundary regions (glued together at Z — 0) that correspond to the two different sides
of the interface.

Choosing as usual the entangling surface to be a sphere of radius R one can use equation
(2.5) to write the following expression for the entanglement entropy:

S

2L Vol (843 /R R(R? - 7%)%"dZ /q* dq

_— A2
4GN ut-off Zd_2 cut-off qd_l P(Q) ( )

We are going to study this expression up to second order in the Janus deformation parameter
A. Independently of the cut-off procedure we will choose we start by performing the ¢ integral:

. qx dq
733(6’05)2/6 m (A.3)

where € = §/Z in the case of the single cut-off regularization, while € is simply a constant
for the double cut-off regularization.

To order \? we find
/\2

"=
In order to work perturbatively in A we change variable of integration by defining ¢ = ¢/q..
We then write

g =1 (A.4)

! dt
Ps(e,d) = / — : (A.5)
e/a. @2t/ P(qut)

where:

)\2 2dt2 tQ(d—l) -1
a ) (A.6)

P(q.t) = (1 —1%) (1—d<d*_1) o
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We now use the expression for ¢, and expand everything uo to order A2. We obtain:

Ps(e,d) = /61 h(t,d)dt + \? (a(e,d)+/61f(d,t)dt),

tl—d
h(t,d) = i
627d

7d - Y

wed = Vi e
d—2 ¢ 1 1 — 201

t.d) = — A.

f(t,d) 2d—1) VI 2d[d—1) 131 =)~ (A7)

The contribution coming from h(t¢,d) is A independent. Let’s focus on the contribution
coming from f(t,d). We start by rewriting f(t,d) as:

da(t, d) 1 t2d=1)

Jhd) = =5~ 2d(d — 1) t4-3(1 — 2)3/2° (A.8)
We define:
1 {2(d-1) - 3/2 k 2k+1+d
9(t,d) = 2d(d — 1) t4=3(1 — ¢2)3/2 N -1) Z t (A-9)

k=0

where we made use of a series representation for g(t, d).

We want to perform the integral of f(¢,d). Notice that a term of f(¢,d) is the derivative
of a(t,d), however a(t, d) has a singularity ¢ = 1, for this reason we evaluate the integral over
(€,u), taking the limit u — 1 in a second step.

We have:

o 3/2 t2k+2+d u A
- 1
/ftd a(u,d) — a(e,d) — _122,%“%) (A.10)

Notice that since u < 1 the sum converges. By defining

o0 3/2 2k+2+d

d) A1l
afu, ;; 12k + 1 + d) (A.11)
we write
1 ) i 3/2 2k:+2+d
Ps(e,d) = / hdt + A* [ a(e,d) + a(u, d) — a(e, d) — a(u,
. -1) — El(2k +1+d)

1 1 0 2 2k+2+d
— / hdt + \? <c+ (8/2), ¢ >

2d(d — 1) &= KI(2k + 1+ d)
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£2(d—1)

where ¢ = 11}_)11% (a(u,d) — a(u,d)). a(t,d) is the primitive of ¢(t,d) = 2d(;71) TSR One
finds:
1 td+2 F 3’ d+2’ d+2 1 t2
a(t,d) = Ll Gl vt ik ), (A.12)
2d(d—1) d+2
then:
1 I(¢+
. val (5+1) ' (A.13)

2a(d—1) T (&)

Notice that the divergent terms are A independent. A comes in only multiplying a constant

2+d

and terms of order e**¢ and above (this is going to be important later). We summarize our

results by writing:

7)3 (6, d) = ,P() (6, d) + /\2(0 + md+2€d+2 + md+4ed+4 + )
nloge + nge? 4 ... for d even

(A.14)
n+ne+ ... for d odd

Poled) = =g+ +. +{

where we have made all the dependence on A explicit.

Single cut-off renormalization

We now want to compute the following integral:

1 2) 44
(1—wu?)> ( J )
I:/ ——Ps | —.,d | du, A.15
sr w27\ Ru (5.15)

where we have introduced u = Z/R. We split this integral into three contributions we discuss
separately:

1 = I)+1,+1s

N 5
Il — / %Pﬁ' (_7d) )
5/(g.R) U Ru

d—4

1 2\ 55—
_ 2 (1—w?)
I, = )\c//R i,

d
! 1—u

d—4 oo 5 2i+d
I3 = )\2 // Z mMoi+d ( > du. <A16>
0/R

Notice that since Z, and Z3 contain an explicit factor of A\? we can take ¢, = 1.
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Let’s start with Z;, by expanding ¢;! =1 — WQ—D we have:

d—4

1 1_ 2\ ==
I, = / U=w) = p (i,d) du
5/(g.R) U Ru

4

_ /1 ﬂ%(a d)du_ SN2 (1—(5/3)2)%—4%(1’@
6

m ud? Ru’ 2Rd(d—1)  0/R¥?
5 —d+2i+1
=1

Notice that Zy doesn’t contain any A dependence, so it is going to be removed by vacuum
subtraction, as we will discuss it later. Note also that in the limit 6 — 0 the logarithmic
term gets killed by a ¢ in front of it, that’s why we haven’t included in the sum. For d odd
the sum contains a constant term we don’t bother to compute it since we will see later it is
not universal.

We proceed now to the computation of Z,. The result depends on d being even or odd
in particular we get:

3-d\p(d=2
5 12 )\20%\;(2) for d even
L,=X)>» Nig <—> + ), A18
: ; TR A2 & log (£) for d odd (A.13)
where in the case of d odd we used the following expansion
(*z9)
(1—u’)™ =) %u%, (A.19)

k=0

where (a);, denotes a Pochhammer symbol.
Let’s now look at the last contribution, Z3. Expanding again (1 — u2)d%4 one can easily

show that we get:
5\ 1t
Ty =N Mi_asa (E) : (A.20)

notice in particular integration doesn’t produce any logarithmic divergence.
Summing up we have:

3—d\p(d=2
5\ L2 )\QCF( 222;( ) for d even
I=To+ ) Ciq (—) + 5) 4 (A.21)
’ zz: TR e (;—,Tg’ log (%) for d odd
3



The holographic entanglement entropy is obtained as:
Lol (S43)
2G N
In order to obtain physical information we need to perform a vacuum subtraction, we have:
2 ()

2y

L1V ol (ST3) 5\
s e (L
2G Z i A2 % log (%) for d odd

S:

T. (A.22)

for d even

In particular the universal contribution is given by:

Ld_1V0l<Sd_3))\2 T for d even
ASUNIV = & (%);3 R (A23)
2GN —=s= | log (¥) for d odd

Double cut-off renormalization

In this renormalization procedure € is regarded as constant, we use another cut-off Z = 4 to
regulate the integration over Z. We then have:

1 d—4
(1 —wu®)>2
7- /5 i Pledide (A.24)
with u = Z/R. Taking the difference with respect to the vacuum solution and then letting

€ — 0 we are left with: d-a

1 a2\
AT = / U=u) > e, (A.25)

sp ud?
This is the same expression of the integral Z, in (A.16), which is the term containing the
universal contribution. This means the two regularizations lead to the same result.

Notice that the d = 4 case can be viewed as the non-supersymmetric Janus set up
studied in section 3.2. As a check we want to verify that taking v — 1 in equation (3.35)
gives (A.23) for d = 4. Fist of all we need to find the appropriate relation between A and
~. This can be done by observing that the jump of the dilaton across the interface is a
coordinate independent quantity. As we are interested in the perturbative regime we take A
close to 0 and « close to 1, this gives*:

M =12(1 — 7). (A.26)

4The explicit expression for the dilaton in the coordinates used in section 3.2 can be found in [25]. Notice
that in order to compare it with equation (A.1) we have to multiply it by a factor of /2.
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Figure 6: The orange line represents the perturbative result for the entanglement entropy
in the non Susy Janus solution computed in this appendix, while the blue line corresponds
to the non perturbative computation performed in section 3.2. The two results agree in the
perturbative regime (y &~ 1).

We can now write equation (A.23) in terms of ~:

B Vol(Sl)L?’ 8
ASunty = Tg\?) <—§(1 - 7))
Vol(S') Vol(S%)L? [ 8
405\1[0) _5(1 - 7) ) (A'27)

where we have used dimensional reduction to relate the 5 dimensional Newton constant to
the 10 dimensional one. In figure 6 we show the perturbative result derived in this section

and the exact computation derived in section 3.2. There is agreement close as v approaches
1.
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