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We study the universal contributions to the entanglement entropy (EE) of 2+1d and 3+1d holo-
graphic conformal field theories (CFTs) on topologically non-trivial manifolds, focusing on tori. The
holographic bulk corresponds to AdS-soliton geometries. We characterize the properties of these
regulator-independent EE terms as a function of both the size of the cylindrical entangling region,
and the shape of the torus. In 2+1d, in the simple limit where the torus becomes a thin 1d ring, the
EE reduces to a shape-independent constant 2γ. This is twice the EE obtained by bipartitioning an
infinite cylinder into equal halves. We study the RG flow of γ by defining a renormalized EE that 1)
is applicable to general QFTs, 2) resolves the failure of the area law subtraction, and 3) is inspired
by the F-theorem. We find that the renormalized γ decreases monotonically at small coupling when
the holographic CFT is deformed by a relevant operator for all allowed scaling dimensions. We also
discuss the question of non-uniqueness of such renormalized EEs both in 2+1d and 3+1d.
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I. INTRODUCTION

One can obtain fresh insight into strongly interacting
quantum systems by directly studying one of their most
basic properties: their quantum entanglement. In recent
times, the subject of entanglement has attracted a lot of
interest in several areas of physics including: condensed
matter [1–8], quantum field theory (QFT) [9–14], and
quantum gravity, e.g., [15–25].

A simple and useful measure of entanglement is the
entanglement entropy (EE) associated with a spatial bi-
partition of a state described by a density matrix ρ =
ρA ⊗ ρĀ, where Ā is the complement of region A. In
the case of a pure density matrix ρ = |ψ〉〈ψ|, the EE
quantifies the amount of entanglement between A and
its complement, which in turn can yield deep physical
insight. The definition of the von Neumann EE is

S(A) = −Tr (ρA log ρA) , (I.1)

where ρA = TrĀ ρ is the partial trace density matrix
obtained by integrating out the degrees of freedom in
the complementary region Ā. Focusing on the ground-
state |ψ〉 of a local Hamiltonian, ρ = |ψ〉〈ψ| will gener-
ally have an EE that scales with the area of the bound-
ary, S(A) = B · Area(∂A)/εd−2 + · · · , where d is the
spacetime dimension, and ε is a short distance regula-
tor. A log(Area(∂A)) enhancement appears when a fi-
nite fermion density is present. The general idea is to
study the subleading terms, which in many cases contain
well-defined, i.e., regulator-independent, information. A
particularly relevant instance corresponds to the EE of a
disk in a CFT defined in infinite Minkowski space R1,2.
In that case, the EE contains a subleading term, −F ,
which is both independent of ε and the disk’s radius. It
further coincides with the free energy of the same the-

ory on S3 [26]. As proven by Casini and Huerta [27]
— see also [28] — a renormalized version of this quan-
tity [29] is monotonously decreasing under the entire RG
flow connecting two fixed points, and it coincides with
F at fixed points. This “F-theorem” is one of the most
celebrated applications of EE to QFT, and generalizes
the earlier EE-based proof of the two-dimensional “c-
theorem” [30, 31]. Extensions of these monotonicity the-
orems to CFTs defined on R1,d≥3 relying on the EE of
smooth surfaces — typically spheres — have been also
proposed, see e.g., [32–35].

Note however that smooth curved surfaces are not ide-
ally suited for finite-size numerical calculations. For ex-
ample, the pixelization of a disk in d = 3 leads to cor-
ners that obscure the constant part of the EE as they
contribute log(L/ε) terms (in a scale-invariant theory),
see e.g., [14, 36–41]. Further, one needs to ensure that
the entire space is sufficiently large compared with the
region A under study, otherwise finite-size effects will
alter S(A). A natural alternative is to work with en-
tirely flat but finite entangling surfaces, which can be
realized on topologically non-trivial spaces. In this pa-
per we shall work with space being compactified into a
torus, Td−1 = Lx×L1×· · ·×Ld−2, and we take region A
to be a cylinder wrapping (d−2) cycles: A = LA×Td−2,
where LA is the length of the cylinder. Region A will
thus have two flat and compact entangling surfaces. We
illustrate the geometry in Fig. 1 for d = 3. The EE cor-
responding to this geometry, computed for the vacuum
state of a theory at its conformal fixed point, is

S(A) = B
Area(∂A)

εd−2
− χ(θ; bi) + · · · (I.2)

The subleading term, −χ, is the regulator-independent
(universal) contribution that will be at the center of our
discussion. In the presence of zero energy modes on the
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FIG. 1. a) In a d = 3 spacetime, we compactify space into
a 2-torus. The entangling region A is the cylinder extending
along the x-direction. b) Since the spatial manifold is flat,
a more faithful depiction is on the plane, with opposite sides
identified.

torus, χ can depend on the regulator [42], but this sit-
uation is not generic and we shall not encounter it in
this paper. It is a dimensionless function that depends
on (d− 1) aspect ratios: θ = 2πLA/Lx is the angle that
specifies how much of the cycle A covers, Fig. 1, and the
bi = Lx/Li are the (d − 2) aspect ratios that character-
ize the shape of the entire torus, Td−1. Different CFTs
will have different functions χ(θ; bi), which means that
χ can be used as a highly non-trivial fingerprint of the
state. The structure in (I.2) arises because each of the
two boundaries of A is a flat, smooth, and compact man-
ifold.

For fixed aspect ratios, one can ask how χ behaves
under renormalization group (RG) flow. Indeed, it has
a non-trivial potential to count degrees of freedom since
on one hand it is finite for a large class of topological
quantum field theories (TQFT), such as Chern-Simons
theories in 3d [43, 44]. On the other hand, it is also finite
at massless conformal fixed points [6, 45–47].

We shall mainly study χ in holographic theories. The
EE of CFTs dual to Einstein gravity in the bulk and de-
fined in the boundary of locally-asymptotically AdSd+1

spacetimes can be obtained using the extremal-area pre-
scription of Ryu and Takayanagi [22, 25]:

S(A) = ext
M∼A

Area(M)

4G
, (I.3)

whereM is a codimension-2 bulk surface homologous to
A in the boundary (in particular ∂M = ∂A). We will
study the EE in the vacuum state, for which the relevant
geometries with Td−1 topology in the spatial dimensions
are the so-called AdS solitons — see (III.1).

Outline & summary: In section III A we give gen-
eral properties of the AdS-soliton geometries. Then, in
section III B we study the properties of χ as a function
of the angle θ and the aspect ratio b for 3d holographic
theories (4d bulk). The cases b ≤ 1 and b ≥ 1 are treated
in subsections III B 1 and III B 2 respectively, while we
study the thin torus limit b→∞ in section III B 3. The
analogous analysis is performed for 4d CFTs in section

III C.
In section IV we define new families of renormalized

EE in 3d and 4d, which allow one to study the RG flow
of the torus entanglement quantity χ. This can be ap-
plied to general QFTs, not only holographic ones. In
section V, we apply this renormalization prescription in
3d by considering the simple limit where the torus be-
comes a thin one-dimensional ring. The EE χ reduces
to a shape-independent constant 2γ; twice the EE ob-
tained by bipartitioning an infinite cylinder in two. We
then deform our holographic CFT with a scalar pertur-
bation and compute the change of the REE along the RG
flow. We show that at leading order in the deformation,
γ decreases monotonically from its fixed point value. In
section VI we present an intuitive estimate of γ in 3d/4d
using the thermal entropy of the infinite cylinder, and
find that it is very close to the exact value. Appendix A
contains a derivation of the renormalized entanglement
entropy for a disk in a three-dimensional holographic the-
ory deformed by a relevant operator, which we contrast
with our more involved torus calculation. Finally, in Ap-
pendix B we study the properties of the holographic χ in
general dimensions.

II. BASIC PROPERTIES OF ENTANGLEMENT
ENTROPY ON TORI

We review basic properties of the EE associated with
a 2-cylinder bipartition of a torus in general dimensions.
This discussion applies to all CFTs, not only those with
a classical holographic description. Given the ground-
state of a CFT in d > 2 defined on the torus Td−1, the
EE takes the form (I.2), where −χ(θ; bi) is the universal,
i.e., cutoff-independent contribution. By purity of the
groundstate, this function is symmetric under reflection
about π, χ(2π − θ) = χ(θ). The strong subadditivity
of the EE implies that χ(θ) is convex decreasing on for
0 < θ ≤ π [46]:

χ′(θ) ≤ 0, χ′′(θ) ≥ 0 . (II.1)

We now discuss the limits where region A is either of
maximal length (θ = π), or shrinks to zero (θ → 0). In
the former case, the θ → π limit is non-singular, which
when combined with the reflection symmetry about θ =
π, leads to the following expansion [46]

χ(θ) =
∑
`=0

c` · (θ − π)2` , (II.2)

c0 = χ(π) ,

where only even powers appear; we have omitted the de-
pendence on the bi = Lx/Li. By virtue of (II.1), the
c1 coefficient must be non-negative for all values of bi.
We note that nothing constrains the sign of χ(π), and it
can be either positive, negative or zero. In the so-called
“thin-slice” limit, θ → 0, we instead get the divergence
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[46]

χ(θ → 0) =
(2π)d−2 κ

θd−2 b1 · · · bd−2
, (II.3)

which is independent of the boundary conditions along
the cycles. This limit produces the universal coefficient
κ, which also arises for different entangling geometries.
Indeed, in this limit the EE reduces to the EE of a thin
slab of width LA = θLx/(2π) embedded in Rd−1. The
slab has infinite area, but the entropy per unit area is
finite, Sslab = 2B/εd−2 − κ/Ld−2

A . (In d = 3, the slab is
a thin strip in R2.)

A particularly important limit is the thin-torus one,
where Li≥1 → 0 at fixed LA and Lx, which means
bi≥1 = Lx/Li →∞. The system thus effectively reduces
to a one-dimensional ring. In the absence of zero energy
modes (which is the generic case), the short dimensions
lead to a large “compactification” gap, and χ reduces to
a (LA, Lx)-independent quantity:

χ = 2γ(L2/L1, . . . , Ld−2/L1) , (II.4)

where the factor of 2 arises from the two boundaries of A.
Since γ is dimensionless it only depends on the (d−3) as-
pect ratios characterizing each component of the bound-
ary ∂A. In d = 3, γ is thus a pure constant independent
of any length scale, just like the F term for the disk EE.

Another limit discussed in [42] is the wide torus, where
Lx → 0, which means bi≥1 = Lx/Li → 0. Alternatively,
we can think of this limit as arising from diverging Li at
fixed LA and Lx. The EE is thus expected to be domi-
nated by the diverging length scales, χ ∼ L1 · · ·Ld−2, or
more precisely [42]

χ(bi → 0) =
f(θ)

b1 · · · bd−2
, (II.5)

where f(θ) is a function that depends only on θ, and was
made dimensionless by factoring out 1/Ld−2

x . We note
that for the above equation to be consistent with the thin
slice limit (II.3), we have f(θ → 0) = (2π)d−2κ/θd−2.
In addition, this leads to the following small-bi scal-
ing for the smooth limit coefficients defined in (II.2),
c` = c̄`/(b1 · · · bd−2), where the c̄` are pure constants in-
dependent of the geometry. It would be interesting to
understand their relation to CFT data.

A. Relation to corner entanglement

In the d = 3, when working in infinite space R2, and
with a region A containing a corner (kink) with opening
angle θ, the EE acquires a logarithmic correction:

S = B
L

ε
− a(θ) log(L/ε) + · · · (II.6)

where the corner coefficient a(θ) is regulator-independent
and contains non-trivial information about the ground-
state [14, 36–41]. a(θ) shares many connections with χ(θ)
[46]. First, it is symmetric about π, a(2π−θ) = a(θ), and
decreasing convex on (0, π], (II.1). Further, a(θ) behaves
the same way in the θ → π limit: it obeys Eq. (II.2),
but with a(π) = 0. In the sharp limit, it also has a 1/θ
divergence: a(θ → 0) = κ/θ, which is the analogue of
Eq. (II.3). We emphasize the fact that it is the same
constant κ that appears in both divergences because the
small-angle corner coefficient is also directly related to
the EE of a thin strip [39, 41]. It would be interesting
to see if other connections exist between a(θ) and χ(θ),
such as some of the bounds that apply to a(θ) [48].

In d > 3, one can also make connections between χ
and higher dimensional analogues of a(θ), such as the
coefficient associated with cones in 4d, however we shall
not describe them here.

III. HOLOGRAPHIC TORUS ENTANGLEMENT

In this section we study the properties of the torus EE
χ in three and four-dimensional CFTs with holographic
duals as a function of both the size of the cylindrical en-
tangling region, and the shape of the torus. We study in
detail the different regimes, and provide analytic expres-
sions in certain cases. We start with a quick review of
AdSd+1 solitons, which are the bulk geometries relevant
for our calculations.

A. AdS solitons

AdS solitons are locally asymptotically AdS(d+1) so-
lutions to Einstein’s equations with negative cosmolog-
ical constant with a non-trivial topology in — at least
— one of their spatial directions, which is compactified
on a circle. One can also consider the additional trans-
verse directions to be periodic, so the conformal bound-
ary is foliated by spacelike tori Td−1. These geometries
can be obtained by a double-Wick rotation of the usual
planar Schwarzschild-AdS metric (also known as AdS
black brane), t → ix and x → it, where x is one of
the transverse spatial dimensions [49, 50], so their metric
in Poincaré coordinates reads

ds2 =
1

z2

[
dz2

f(z)
+ f(z) dx2 + d~y 2

(d−2) − dt
2

]
, (III.1)

where f(z) = 1−(z/zh)d, z is the holographic coordinate
and yi are the remaining (d− 2) transverse spatial direc-
tions. Regularity in the bulk — which in the (x, z) plane
looks like a cigar ending at z = zh — fixes the x period
in terms of zh as Lx = 4πzh/d. The notation zh alludes
to the connection with the horizon of the black brane; we
shall refer to zh as the pinching point. The background
(III.1) dominates the bulk gravitational partition func-
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tion only when x corresponds to the compact direction
with the smallest length — see e.g., [51]. Otherwise, the
relevant solution will be the one in which f(z) appears
in gyjyj when Lj is the smallest length, and so on.

In the context of the AdS/CFT correspondence, solu-
tions of the form (III.1) have been interpreted as dual
to states of Yang-Mills theories in which anti-periodic
boundary conditions have been imposed on the fermions
around the x direction, thus breaking supersymmetry
and giving rise to a mass gap and confinement [49]. In
[50], it was shown that AdS solitons have negative en-
ergy, as expected for the Casimir energy of the putative
dual gapped theory. Further, it was conjectured that in
fact they are the lowest energy solutions sharing their
boundary conditions [52]. Strong evidence in favor of
this conjecture was recently provided in [53].

LA

y

LA = Lx θ/(2π)

z✻

zh

FIG. 2. Torus in 2 spatial dimensions for Ly ≥ Lx, including
a schematic representation of the minimal surface (blue) in
the bulk. The holographic direction z fills the inside of the
torus, which represents an equal-time slice of the AdS-soliton.
z∗ is the turning point of the minimal surface. The soliton
spacetime pinches off at a “horizon” depth zh = 3Lx/(4π).
The minimal surface remains connected when Ly ≥ Lx.

B. Three dimensions

In this section we study the holographic EE of a cylin-
der A of size LA × Ly wrapping one of the cycles of a
rectangular 2-torus with aspect ratio b = Lx/Ly — see
Fig. 1. In the first two subsections we review and extend
the results of [45] on the properties of χ(θ). In subsection
III B 3 we study the limit in which the spatial manifold
becomes an infinite cylinder. In that limit, when in addi-
tion LA/Ly → ∞, χ reduces to a constant, independent
of any length scale — see (III.21).

As explained in section III A, the relevant bulk solu-
tions are the AdS4 solitons [49, 50]:

ds2 =
1

z2

[
dz2

f
+ gxx dx

2 + gyy dy
2 − dt2

]
, (III.2)

where we work in units where the AdS radius is set to

unity, LAdS = 1. The spatial components of the metric
read

gxx = f(z) , gyy = 1 , if b ≤ 1 , (III.3)

gxx = 1 , gyy = f(z) , if b ≥ 1 , (III.4)

with f(z) = 1 − (z/zh)3. Depending on whether b is
larger or smaller than 1, the ground state of the system is
described by the first solution or the second, respectively.
This can be seen by comparing the energy densities of
both solutions

∆E = −4π2LxLy
9G

[
1

L3
x

− 1

L3
y

]
. (III.5)

Whenever 1/L3
x > 1/L3

y i.e., whenever b ≤ 1, the first
solution dominates the partition function, and vice versa.

As explained in the previous subsection, the soliton
geometries (III.2) look like “cigars” in the (x, z) and
(y, z) planes, respectively, with the tip being at z = zh.
Regularity at that locus imposes zh = 3Lx/(4π) and
zh = 3Ly/(4π), respectively. This can be seen most
easily by treating the contracting direction (x or y) as
Euclidean time, and recalling that the time coordinate
in a Wick-rotated AdS4-Schwarzschild background is pe-
riodic with period given by the inverse temperature,
β = 4πzh/3, where zh is the location of the black brane’s
horizon. Here the role β is played by Lx or Ly, depending
on which one is the smallest.

1. Ly ≥ Lx

Let us start considering the case in which the torus
aspect ratio satisfies b ≤ 1. As explained above, we need
to consider the soliton geometry corresponding to (III.3).
The holographic EE of the cylinder A can be now com-
puted using the Ryu-Takayanagi prescription (I.3), where
the minimal surface is sketched in Fig. 2. The result reads
[45]

S =
Ly
2Gε

− χ , (III.6)

where ε is a short distance (UV) cut-off (z → ε as we
approach the boundary). We note that area law term
does not depend on the aspect ratio of the torus, nor on
LA. The universal term is

χ(θ) =
2π

3bξ1/3G

[
1 +

∫ 1

0

−dζ
ζ2

(
1√

P (ξ, ζ)
− 1

)]
,

(III.7)
where P (ξ, ζ) = 1 − ξζ3 − (1 − ξ)ζ4, ζ = z/z∗ and ξ =
(z∗/zh)3. Here, z∗ is the value of z corresponding to the
turning point of the holographic surface, see Fig. 5. In
the above expression we have written χ as a function of
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the ratio ξ, which is related to the angle

θ = 2π
LA
Lx

(III.8)

through

2πLA
Lx

= θ(ξ) = 3ξ1/3

∫ 1

0

dζ ζ2
√

1− ξ√
P (ξ, ζ)(1− ξζ3)

. (III.9)

Hence, in order to write χ as a function of θ, one needs
to invert (III.9) and then substitute back ξ(θ) in (III.7).
Note that the dependence on the aspect-ratio factorizes
out from χ(θ), which seems to be a non-generic feature.

In general, it is not possible to write down the function
χ(θ) explicitly. However, it is possible to find an analytic
expansion around the so-called “thin slice” limit θ → 0:

χ(θ) =

[
2πκ

b

]
1

θ
+

[
Γ( 1

4 )12

1306368π7 bG

]
θ5 + · · · , (III.10)

where

κ =
2π3

Γ( 1
4 )4G

(III.11)

is the quantity that controls the universal coefficient to
the EE of a strip region in flat space, as discussed in
general in Section II, see Eq. (II.3). Indeed, in the
θ → 0 limit, the torus EE reduces to that of a thin
strip of width LA and length Ly � LA. In our exam-
ple, this can be verified holographically [45] since the
strip EE is given by [22] Sstrip = Ly/(2Gε) − κLy/LA,
with κ exactly as in (III.11). Going beyond the lead-
ing term, χ(θ) in our holographic CFT can be expanded
as χ(θ) = 1/(bG)

∑
k=0 ak θ

3k−1, where the ak are pure
numbers. Interestingly, a1 = 0 whereas a0 and a2 are
given in (III.10). The 2-term expansion (III.10) fits the
exact function (which we can only access numerically)
very accurately even for intermediate values of θ, as
shown in Fig. 3.

In the opposite limit where region A is of maximal
length, θ → π, the minimal surface fills the entire soliton,
z∗ → zh, and we find

χ(π) =
2π3/2Γ( 2

3 )

3Γ( 1
6 )

1

bG
, (III.12)

which yields approximately 0.90307/(bG). We recall from
Section II that χ(θ) is an even analytic function around
π. The expansion about this limit is thus χ = χ(π) + c1 ·
(θ−π)2 +· · · , as given in Eq. (II.2). We have analytically
obtained the coefficient of the quartic term by expanding
(III.7):

c1 =
π

18bG
. (III.13)

We stress that c1 is always non-negative, as required by

FIG. 3. Main: χ(θ)b/(2πκ) as a function of θ for b ≤ 1.
The green dashed line corresponds to the first two terms of
the small θ approximation in (III.10). The red dashed line
corresponds to the first two terms of the expansion around
θ = π, Eq. (II.2). Observe that the factorization of b from
χ(θ) implies that the normalized curve χ(θ)b/(2πκ) is the
same for all values of b ≤ 1. Inset: Ratio z∗/zh as a function
of θ.

strong subadditivity of the EE [46].

2. Lx ≥ Ly

As observed in [45], the situation is more subtle when
b ≥ 1. This is because of the existence of a disconnected
holographic minimal surface that becomes minimal be-
yond a certain value of the ratio LA/Ly. This connected-
to-disconnected transition is illustrated in Fig. 5. The
transition will have important consequences on the EE
[45], as we now review. The final result for the holo-
graphic EE is again given by (III.6), where now [45]

χ(θ) = χ̃(θ) , 0 <
θ

2π
≤ p

b
, (III.14)

χ(θ) =
2π

3G
,

p

b
<

θ

2π
≤ 1

2
,

where

χ̃(θ) =
2π

3Gξ1/3

[∫ 1

0

−dζ
ζ2

[√
1− ξζ3√
P (ξ, ζ)

− 1

]
+ 1

]
,

(III.15)

and the ratio ξ is related to θ through

2πLA
Lx

= θ(ξ) =
3ξ1/3

b

∫ 1

0

dζ ζ2
√

1− ξ√
P (ξ, ζ)(1− ξζ3)

. (III.16)

χ for π < θ < 2π is obtained by using the reflection prop-
erty χ(2π − θ) = χ(θ). We have defined the numerical
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FIG. 4. Main: χ(θ)/(2πκ) as a function of θ for b = 1+, 2, 4
(from right to left) and the saturation value: χ(θ)/(2πκ) =
Γ[1/4]4/(6π3). The green dashed lines correspond to the first
two terms of the small θ approximation in (III.18). Inset:
Ratio z∗/zh as a function of θ (also from right to left). At
θ = 2πp/b ' 1.1867/b, the turning point z∗ jumps to zh.

constant

p ' 0.1889 . (III.17)

Hence, when LA = pLy there is an abrupt transition and
χ(θ) stops changing as LA, i.e., θ, increases further. χ
is shown in Fig. 4 for 3 aspect ratios, b = 1+, 2, 4. The
reason for the observed saturation is that the minimal
surface becomes the sum of two disconnected surfaces,
each one of which would correspond to the entangling
surface for a semi-infinite cylindrical entangling region
— see next subsection for a discussion of this specific
limit. The torus EE χ thus obtained in holography is
singular: not only is there a cusp as a function of θ at
the transition point, but also χ(θ; b) is discontinuous at
b = 1, taking different values at b = 1− (Fig. 3) and 1+

(Fig. 4). This singular behavior is not generic, and for
instance is absent in the free scalar [46, 47, 54] and Dirac
fermion [45] CFTs, at the large-n O(n) Wilson-Fisher
fixed point [47], and in the so-called Extensive Mutual
Information model [46]. It would be interesting to see to
what extent it becomes smoothed out by including 1/N
corrections.

Observe that, as opposed to the b ≤ 1 case, now the
dependence on b appears through θ(ξ) and not through
the dependence of χ̃ on ξ. This implies, in particular,
that b does not factorize from χ̃(θ).

We now examine the thin slice limit, θ → 0, where we
find

χ(θ) =

[
2πκ

b

]
1

θ
+

[
Γ( 1

4 )4b2

432πG

]
θ2 + · · · (III.18)

Observe that while the leading term coincides with the
b ≤ 1 case in (III.10), as expected, the subleading con-

tribution is of order θ2 instead of θ5. The full series can
be now written as χ̃(θ) =

∑
k=0 ak (bθ)3k−1, where the

ak are pure numbers. As we can see from Fig. 4, the
approximation given by (III.18) fits the exact curve with
great accuracy for all values of θ < 2πp/b in each case.

z✻

y

LA

LA ≫ Ly

zh

FIG. 5. Schematic representation of the minimal surface
(blue) in the bulk, in the limit where the spatial manifold
is a thin torus, Lx � Ly. We only show the portion near
region A, which is a cylinder of length LA � Lx. The holo-
graphic direction z fills the inside of the cylinder. z∗ is the
turning point of the minimal surface. The soliton spacetime
pinches off at a depth zh = 3Ly/(4π). We note that the
minimal surface undergoes a transition from being connected
when LA < pLy (top), to being disconnected when LA > pLy

(bottom).

3. Infinite cylinder & thin torus limits

When Lx → ∞, the torus becomes an infinitely long
cylinder, and the EE only depends on LA/Ly. This limit
was previously studied for the free scalar CFT [55], and
for the Extensive Mutual Information model [46]. The
expansion for the full EE S, (III.6), remains valid and
needs to use (III.16) to express ξ as a function of LA/Ly
instead of θ, i.e.,

2πLA
Ly

= 3ξ1/3

∫ 1

0

dζ ζ2
√

1− ξ√
P (ξ, ζ)(1− ξζ3)

. (III.19)

Then, χ(LA/Ly) is given by

χ(LA/Ly) = χ̃(LA/Ly) , 0 <
LA
Ly

< p , (III.20)

χ(LA/Ly) =
2π

3G
, p <

LA
Ly

<∞ ,

where χ̃ is again given by (III.15), but now
with ξ(LA/Ly) computed using (III.19). Hence,
χ(LA/Ly)/(2πκ) exactly corresponds to the b = 1 curve
in Fig. 4, with the difference that the saturation regime
would extend all the way to LA/Ly → ∞. In this limit
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LA

L1
L2

LxA

FIG. 6. Flat torus in 3 spatial dimensions; opposite faces are
identified. The entangling region A is the cylinder along the
x-direction. Each of the 2 boundaries of A is a 2-torus, T2.

where region A becomes very long, χ→ 2γ, where γ is a
universal constant independent of any length scale. The
factor of 2 comes because region A is a finite cylinder with
two boundaries. In our holographic CFT, γ = π/(3G).
More simply, one can consider the new situation where
space is an infinite cylinder of circumference Ly and re-
gion A is a semi-infinite cylinder, in which case the EE
becomes

S =
Ly
4Gε

− γ . (III.21)

With respect to (III.20), this contains an additional fac-
tor 1/2 because here A has a single boundary.

Observe that the structure of (III.21) is very similar
to the EE of a radius-R disk in a three-dimensional CFT
in flat space, which reads Sdisk = BR/ε− F , where F is
independent of both the regulator and the disk’s radius
— when computed with sufficient care [28].

C. Four dimensions

We now turn to the case of a four-dimensional bound-
ary theory. We will study the EE of a cylinder A with
dimensions LA × L1 × L2 wrapping two of the cycles of
the spatial manifold, a 3-torus T3 = Lx × L1 × L2, with
aspect ratios bi = Lx/Li, i = 1, 2 — see Fig. 6. The first
two subsections will be devoted to the general properties
of χ(θ). In subsection III C 3, we will consider the case in
which Lx becomes infinite with special emphasis on the
LA/L1,2 → ∞ limit, for which χ(θ) becomes a function
of the single ratio, L2/L1, i.e., χ→ 2γ(L2/L1).

As explained in the introduction, we need to consider
AdS5 solitons, whose metrics are given by

ds2 =
1

z2

[
dz2

f
+ gxxdx

2 + g11(dy1)2 + g22(dy2)2 − dt2
]
,

(III.22)

where the components of the metric read

gxx = f , g11 = 1 , g22 = 1 , if L1, L2 ≥ Lx ,
(III.23)

gxx = 1 , g11 = f , g22 = 1 , if Lx, L2 ≥ L1 ,
(III.24)

gxx = 1 , g11 = 1 , g22 = f , if Lx, L1 ≥ L2 .
(III.25)

The blackening factor is in turn given by f(z) = 1 −
(z/zh)4. In the cases (III.23), (III.24) and (III.25),
regularity at the tip of the cigar imposes respectively
zh = Lx/π, zh = L1/π, and zh = L2/π, respectively.
Just like in the d = 3 case, the conditions (III.23), (III.24)
and (III.25) correspond to the solutions with the smallest
energy density in each case. Explicitly, one finds

E = −L1L2π
3

16GL3
x

, E = −LxL2π
3

16GL3
1

, E = −L1Lxπ
3

16GL3
2

,

(III.26)
respectively for (III.23), (III.24) and (III.25).

Observe that in principle there is no reason to treat
the x direction differently from y1 and y2. The reason
why we do so is that A covers the y1 and y2 directions
entirely, but not x. In particular, this will imply that the
cases (III.24) and (III.25) will be equivalent — the only
modification in the results being the switch L1 ↔ L2

— but of course different from the one corresponding to
(III.23).

1. L1, L2 ≥ Lx

Let us start with the case b1, b2 ≤ 1, for which we
need to pick (III.23). Using the RT prescription (I.3),
one finds the following expression for the holographic EE
of the cylindrical region A,

S =
L1L2

4G

1

ε2
− χ(θ) . (III.27)

The first term is the boundary law contribution, propor-
tional to the area of each T2 boundary of A, L1L2. Being
local in nature, it is independent of the aspect ratios b1,2
and of LA. The universal subleading term is

χ(θ) =
π2

4b1b2ξ1/2G

[∫ 1

0

−2dζ

ζ3

[
1√

P (ξ, ζ)
− 1

]
+ 1

]
,

(III.28)
with ξ = (z∗/zh)4, ζ = z/z∗ and where now P (ξ, ζ) = 1−
ξζ4− (1− ξ)ζ6. Again, z∗ is the value of z corresponding
to the turning point of the holographic surface. In this
case, the dependence of χ on the angle θ can be obtained
from

2πLA
Lx

= θ(ξ) = 4ξ1/4

∫ 1

0

dζ ζ3
√

1− ξ√
P (ξ, ζ)(1− ξζ4)

. (III.29)
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FIG. 7. Main: χ(θ)b1b2/(2πκ) as a function of θ. The green
dashed line corresponds to the first two terms of the small θ
approximation in (III.30). The red dashed line is the leading
term in the expansion around θ = π, (III.33). Observe that
in this case χ(π)=0. Inset: Ratio z∗/zh as a function of θ.

From (III.28), we note that b1 and b2 factorize from χ(θ),
in a similar fashion to the AdS4 case.

At this point it is worth recalling that in the standard
discussion of EE in 4d CFTs, where the spatial mani-
fold is infinite flat space R3, the subleading contribution
associated with a generic smooth surface has a logarith-
mic dependence on the cut-off: Suniv = I(a, c) log(l/ε).
I(a, c) is universal (ε-independent) and consists of an in-
tegral over the entangling surface ∂A of certain geometric
quantities controlled by the central charges a and c [33].
Note however that if the intrinsic and extrinsic curva-
tures of ∂A vanish, I(a, c) is zero, and the subleading
contribution to the EE will now be a universal constant
instead. This is the case when A is an infinite flat slab,
for instance. In our case, A can be understood as a slab in
flat space with the peculiarity that the spatial dimensions
have been compactified. As a consequence, the universal
contribution in (III.27) is constant, and does not grow
logarithmically with the cutoff.

Again, it does not seem possible to write a general
explicit expression for χ(θ) in terms of basic functions.
We can nevertheless analytically obtain the leading term
in the thin slice θ → 0 limit. In this regime, χ(θ) admits
an expansion of the form

χ(θ) =
1

b1b2G

[
4π7/2Γ( 2

3 )3

Γ( 1
6 )3

1

θ2
+
∑
k=1

ak θ
4k−2

]
,

(III.30)
where the ak are pure numbers, the first of which reads
a1 ' −0.116305. As shown in Fig. 7, the first two terms
in (III.30) fit the exact curve rather accurately for rea-
sonably large values of θ.

Note that the leading term in (III.30) was to be ex-
pected from the fact that, in this limit, A becomes
a thin slab with thickness LA, whose EE is given by

FIG. 8. Main: χ(θ)/(4π2κ) as a function of θ for b1 =
3/2, b2 = 3/4; b1 = 2, b2 = 1; b1 = b2 = 2; (from
right to left) and the saturation values χ(θ)/(4π2κ) =

Γ(1/6)3b1/(16π3/2Γ(2/3)3b2). The green dashed lines are the
small-θ approximations in (III.30) including the first 2 terms.
Inset: z∗/zh as a function of θ. The right curve corresponds
to b1 = 3/2, b2 = 3/4, while the left one to b1 = 2, b2 = 1
and b1 = b2 = 2. At θ = 2πp/b1 ' 1.3/b1, respectively, the
functions jump to the value z∗/zh = 1.

Sstrip = L1L2/(4Gε)− κL1L2/L
2
A [22], where

κ =
π3/2Γ( 2

3 )3

Γ( 1
6 )3G

. (III.31)

Quite remarkably, χ(θ) exactly vanishes when LA is half
of Lx, i.e., when θ = π,

χ(π) = 0 . (III.32)

Observe that this behavior differs from the three-
dimensional case, (III.12), for which a positive value is
found. Around that limit, χ(θ) behaves as

χ(θ) =
∑
`=1

c` · (π − θ)2` , (III.33)

where the leading coefficient reads in this case

c1 =
π2

32b1b2G
. (III.34)

Just as in 3d, this coefficient is always non-negative, as
required by strong subadditivity of the EE [46].

2. Lx, L2 ≥ L1

Let us now consider the case given by (III.24), corre-
sponding to b1 ≥ b2, 1, i.e., L1 is smaller than L2 and Lx.
Some of the results of this section in the limit Lx → ∞
were previously presented in [56], where the authors were
interested — among other things — in the interpretation
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of the AdS5 soliton as a holographic dual of certain four-
dimensional non-supersymmetric gapped Yang-Mills the-
ories [49]. Indeed, the AdS-soliton background that we
study corresponds to anti-periodic boundary conditions
for the fermions, leading to a breaking of supersymmetry.

The result for the EE of a cylindrical region A is again
given by (III.27), where now

χ(θ) = χ̃(θ) , 0 <
θ

2π
≤ p

b1
, (III.35)

χ(θ) =
b1π

2

4b2G
,

p

b1
<

θ

2π
≤ 1

2
. (III.36)

Again, χ for π < θ < 2π is obtained by using the reflec-
tion property χ(2π − θ) = χ(θ). Here

p ' 0.1958 , (III.37)

— a value which is quite close to the d = 3 one — and

χ̃(θ) =
π2b1

4ξ1/2b2G

[∫ 1

0

−2dζ

ζ3

[√
1− ξζ4√
P (ξ, ζ)

− 1

]
+ 1

]
,

(III.38)

2πLA
Lx

= θ(ξ) =
4ξ1/4

b1

∫ 1

0

dζ ζ3
√

1− ξ√
P (ξ, ζ)(1− ξζ4)

. (III.39)

Observe that when LA = pL1, a phase transition sim-
ilar to the one found in d = 3 occurs in χ(θ). Indeed,
when LA is larger than such value, the minimal surface
no longer connects the two boundaries ofA. The reason is
the same, namely after that point one is left with two dis-
connected surfaces each one of which would correspond
to the entangling surface for a semi-infinite cylindrical
entangling region. We expect that the non-smoothness
of χ(θ) is partly an artifact of the large-N limit of the
present holographic theory. For instance, in the free bo-
son CFT in d = 4, χ varies smoothly as a function of
both θ and b [46], which is also the case in the Extensive
Mutual Information Model [46].

Note that even though the value of θ for which the
saturation occurs depends only on b1, the value that χ(θ)
takes at that point depends on the ratio b1/b2. Hence,
for instance, the saturation value for b1 = 3/2, b2 = 3/4
coincides with the one corresponding to b1 = 2, b2 = 1,
while the value of θ at which the latter saturates is the
same as for b1 = b2 = 2, namely θ = πp — see Fig. 8.

Observe also that for small values of θ, χ̃(θ) satisfies

χ̃(θ) =
b1
b2G

[
4π7/2Γ( 2

3 )3

Γ( 1
6 )3b21

1

θ2
+
∑
k=1

ak (b1θ)
4k−2

]
,

(III.40)

where the coefficient of the subleading term reads a1 '
0.23261. Again, the ak are pure numbers. As expected,
the leading term in (III.40) coincides with the one in
(III.30). The agreement between the first two terms in
(III.40) and the exact curve is extremely good in the

whole range, as shown in Fig. 8.
As we explained before, the case Lx, L1 ≥ L2 is com-

pletely equivalent to the one considered here (replace
1↔ 2 everywhere).

3. Infinite cylinder & thin torus limits

We consider a special limit of the full torus function,
in which the spatial manifold becomes an infinite cylin-
der R × T2, where Lx → ∞ while L1,2 remain finite.
We first assume L2 ≥ L1. Analogously to the three-
dimensional case, (III.27) remains valid, while we need
to replace (III.39) by

2πLA
L1

= 4ξ1/4

∫ 1

0

dζ ζ3
√

1− ξ√
P (ξ, ζ)(1− ξζ4)

, (III.41)

so we can write ξ as a function of LA/L1. Then,
χ(LA/L1) reads

χ(LA/L1) = χ̃(LA/L1) , 0 <
LA
L1

< p , (III.42)

χ(LA/L1) =
π2L2

4L1G
, p <

LA
L1

<∞ , (III.43)

where χ̃(LA/L1) is given by (III.38) with the exception
that ξ(LA/L1) should be now computed using (III.41).
Note that the function χ(LA/L1) is identical to χ(θ) if
in the latter we make the replacements b1 → 1 and b2 →
L1/L2, with the constant value region extending all the
way to LA/L1 =∞. In that limit, χ→ 2γ, where

FIG. 9. γ ·(8G/π2) as a function of L2/L1. There is an abrupt
change at L1 = L2.

γ =
π2

8G

L2

L1
, L2 ≥ L1 , (III.44)

is a positive function of the dimensionless ratio L2/L1.
One could obtain γ more directly by considering region
A to be a semi-infinite cylinder spanning half of R× T2,
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in which case the EE becomes

S =
L1L2

8Gε2
− γ , (III.45)

without the factor of 2 because A has a single boundary.
The above expression was obtained for the first time in
[56], where it was conjectured that the geometry (III.22)
with (III.25) minimizes the value of −γ within the class
of locally asymptotically AdS5 geometries.

Observe that we are considering the case L2 ≥
L1. When L1 ≥ L2 instead, γ naturally reads γ =
π2L1/(8L2G). This means that the dependence of γ on
the quotient L2/L1 is linear, γ ∝ L2/L1, for L2 ≥ L1,
while it is, γ ∝ 1/(L2/L1), when L1 ≥ L2. We plot
such behavior in Fig. 9. The function is continuous ev-
erywhere, but non-differentiable at L2 = L1 = L. For
that value, the dependence on L disappears from γ, re-
sembling the three-dimensional result (III.21)

S =
L2

8Gε2
− π2

8G
. (III.46)

IV. RENORMALIZED ENTANGLEMENT
ENTROPIES & RG

We now turn to the RG flow of the EE on the torus.
As a theory flows away from its CFT fixed point, one
is faced with the challenge of characterizing the EE in
a universal way, i.e., independent of the short-distance
cutoff δ. Indeed, the naive subtraction of the area law
is no longer reliable [29], since the UV cutoff entering
in the calculation of the EE can also flow. In [29] (see
also [27]), a useful notion of renormalized entanglement
entropy (REE) was introduced for general QFTs living
in d-dimensional Minkowski space, R1,d−1. This REE
thus not directly apply to our situation since our spatial
manifold is a torus instead of the infinite plane. After
reviewing the Minkowski space results, we will discuss
its application to the torus.

A. Three dimensions

For three-dimensional QFTs in R1,2, given a smooth
entangling region A characterized by a unique length
scale R, the REE is defined as [27, 29]

F(R) = −S(R) +R
∂S(R)

∂R
, (IV.1)

where S(R) is the full EE associated with region A. Cru-
cially, A is assumed to be “scalable” [29], meaning that
its shape does not change as R is varied. This guarantees
that we can meaningfully compare the entanglement as-
sociated with A at different length scales. When applied
to a disk-shaped region A of radius R, cut out of the
vacuum of a CFT [27, 29], F isolates the regulator- and

R-independent term, i.e., F(R) = F . In fact, F(R) in-
terpolates between FUV and FIR when evaluated along a
RG flow linking the UV and IR CFTs. As proved in [27],
it does so in a monotonously decreasing manner, which
establishes a “c-theorem” for general three-dimensional
CFTs, called the F-theorem (in its strong form).

When considering the spatial manifold to be a torus
T2 instead of R2, and region A to be a cylinder (Fig. 1),
we need to keep θ and the aspect ratio b constant as Ly
(which plays the role of R) changes, in order to have a
scalable region. In other words, we fix the dimensionless
shape parameters {θ, b} and let LA = Ly ·θb/(2π) as well
as Lx = Ly ·b. In analogy with F(R) (IV.1), we can then
define a renormalized torus EE:

χr(Ly; θ, b) = −S(Ly) + Ly
∂S(Ly)

∂Ly
, (IV.2)

where we have omitted the dependence of the full EE, S,
on the constants θ, b. χr explicitly depends on the scale
Ly when the theory is away from a conformal fixed point.
Since χr is dimensionless, Ly will appear in combination
with the coupling constants that determine the RG flow.
At a CFT fixed point, χr naturally reduces to the Ly-
independent value encountered earlier, χ(θ).

In the limit in which the spatial torus becomes very
thin, Ly → 0, χ reduces to a constant, χ = 2γ, when
evaluated at a CFT fixed point — see section III B 3.
This universal constant γ can be more directly isolated by
considering an entangling region A that is a half-infinite
cylinder cut out of an infinite cylinder, (III.21), which
we will focus on. A definition of the REE for this semi-
infinite cylindrical region will then be

γr(Ly) = −S(Ly) + Ly
∂S(Ly)

∂Ly
. (IV.3)

Notice that unlike for the torus function, there is no de-
pendence on shape parameters. Further, just like for
the EE of a disk, when (IV.3) is applied to the CFT
expression (III.21), it isolates the universal term, i.e.,
γr(Ly) = γ. In fact, the previous definition can be gen-
eralized as follows:

γ(α)
r (Ly) = −S + Ly

∂S

∂Ly
+ αL2

y

∂2S

∂L2
y

. (IV.4)

Compared with (IV.3), γ
(α)
r contains a new second-

derivative term parametrized by α; it reduces to the pre-
vious definition when α = 0. We see that the second
order derivative term annihilates the area law contribu-
tion, meaning that it is cutoff independent as ε→ 0. We
can view (IV.4) as a natural extension of γr in terms of a
gradient expansion in Ly. One could in principle consider
higher order terms, but we shall restrict our analysis to

the present truncation. γ
(α)
r is well-defined in the ε → 0

limit, and takes the value γ at CFT fixed points. Further,
just like γr, it is linear in S, implying that is is additive
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for decoupled theories. In section V we will compute
γr(Ly) for a 3d CFT deformed by a relevant scalar op-
erator of scaling dimension 1/2 < ∆ < 3. As we shall
see, this quantity will be well-defined for all the allowed
values of ∆ and, in particular, independent of the cut-off
ε.

B. Four dimensions

Let us now explore the four-dimensional case. We are
interested in the behavior of the EE under RG flows
on T3. In this case, the REE introduced in [29] for
four-dimensional QFTs in infinite Minkowski space, R1,3,
given a scalable smooth entangling region A with a char-
acteristic length scale R, reads

S(R) =
1

2

[
R2 ∂

2S(R)

∂R2
−R∂S(R)

∂R

]
, (IV.5)

where S(R) is the full cutoff-dependent EE associated
with A. When computed in a CFT, S(R) isolates the
corresponding universal contribution: the coefficient of
log(R/ε). As we mentioned before, the situation for the
entanglement on T3 that we have considered (Fig. 6) is
quite different from the situation just described, because
in that case the CFT universal term is constant as a
function of ε, (III.27), and not logarithmic.

Anticipating our discussion of renormalized entropies
on tori, we note that the above definition of S(R) is
somewhat unique, in the sense that the only combination
of the form 1/2(α1R

2∂2
RS(R) + α2R∂RS(R) + α3S(R))

which isolates the universal term for a CFT is given by
α1 = −α2 = 1, α3 = 0, i.e., the function defined in
(IV.5).

In the case of interest for us, in which the spatial man-
ifold is T3 and the entangling region A wraps two of its
cycles (Fig. 6), the role of R in the definition of the REE
can be played by one of the 4 length scales, Lx, L1, L2 or
LA. However, in order to have a “scalable” region (look-
ing the same for all sizes), we need to fix the 3 shape
parameters {θ, b1, b2}, leaving us with a single character-
istic length scale. For example, choosing L1 as our vari-
able length, all the other lengths will scale linearly with
L1: LA = L1 · b1θ/(2π), Lx = L1 · b1, L2 = L1 · b1/b2.
We can now define the following family of renormalized
torus functions as

χ(α)
r (L1; θ, b1, b2) =

1

2

[
αL2

1

∂2S(L1)

∂L2
1

(IV.6)

+(1− α)L1
∂S(L1)

∂L1
− 2S(L1)

]
,

where we omitted the dependence of S on θ, b1 and b2.
We have introduced the free parameter α. At a confor-

mal fixed point, χ
(α)
r reduces to χ(θ) as given in (III.27).

Note also that (IV.6) is rather different from (IV.5), as it
always contains a term involving S(L1) while S(R) does

not involve S(R), but only its derivatives. Besides, there
does not seem to be any reason to prefer any particular

value of α in χ
(α)
r , as opposed to S(R) which is uniquely

defined. Particularly simple cases correspond to α = 0
and α = 1, for which one finds

χ(0)
r (L1) =

L1

2

∂S(L1)

∂L1
− S(L1) , (IV.7)

χ(1)
r (L1) =

L2
1

2

∂2S(L1)

∂L2
1

− S(L1) . (IV.8)

Just like in three-dimensions, let us comment on the
RG flow of a simpler quantity, obtained by considering
the thin torus limit: L1,2 → 0, but with the ratio L2/L1

held fixed. In this limit, χ→ 2γ, where γ can be obtained
more simply by considering a half-infinite cylindrical re-
gion A, as discussed in section III C 3. As opposed to the
three-dimensional case, γ depends in this case on a sin-
gle shape parameter, namely r = L2/L1 — see (III.44).
Hence, we define the renormalized γ as

γ(α)
r (L1; r) = −S(L1)

+ (1− α)
L1

2

∂S(L1)

∂L1
+ α

L2
1

2

∂2S(L1)

∂L2
1

(IV.9)

which of course reduces to γ when applied to the CFT
expression (III.45). Indeed, at a CFT fixed point
∂nγ/∂Ln1 = 0 for n ≥ 1, since at that point γ only de-
pends on the ratio r = L2/L1, which is held fixed.

V. HOLOGRAPHIC RG FLOW

We now analyze the RG flow of the universal EE asso-
ciated with the bipartition of an infinite cylinder into two
equal halves, γ, for a 3d CFT holographically dual to Ein-
stein gravity in 4d [57]. In order to do so, we perturb our
original holographic UV CFT by a relevant bosonic scalar
operator O(x), with scaling dimension 1/2 ≤ ∆ < 3 (the
lower bound follows from unitarity). This corresponds to
the following deformation on the CFT side of the duality:

S = SCFT + λ

∫
d3xO(x) , (V.1)

where λ is the uniform coupling constant. According
to the holographic dictionary [58–60], O(x) is dual to a
mass-m bulk scalar field with m2 = ∆(∆ − 3). Recall
that we have set LAdS = 1. The bulk action now reads

I =

∫
d4x
√
−g

16πG

[
6 +R− 1

2
∂µφ∂

µφ− m2

2
φ2 + · · ·

]
.

(V.2)
As a result, the scalar field φ will perturb the bulk AdS-
soliton geometry; we parametrize the perturbed metric



12

as

ds2 =
1

z2

[
dz2

f · g1(z)
+ dx2 + f · g2(z) dy2 − dt2

]
, (V.3)

where again f = 1−z3/z3
h and gi(z) = 1+O(zσi) as z →

0, with σi > 0, i.e., we require that AdS4 is recovered
(locally) on the boundary. Imposing regularity at z = zh
leads to the relation

zh =
3Ly
4π

√
g1(zh)g2(zh) . (V.4)

The EE for a cylinder region cut out of the torus, (V.3),
is given by

S =
Ly

2Gzhξ1/3

∫ 1

ε/(zhξ1/3)

dζ
√

(1− ξζ3)g2(ζ)

ζ2

√
g1(ζ)P̃ (ξ, ζ)

, (V.5)

where now P̃ = (1−ξζ3)g2(ζ)−(1−ξ)ζ4, and the relation
between LA and ξ reads in this case

LA
2

=

∫ 1

0

ξ1/3zh
√

1− ξ ζ2dζ√
g1(ζ)(1− ξζ3)

√
P̃ (ξ, ζ)

. (V.6)

These expressions reduce to (III.6) with (III.14) and
(III.16) respectively when g1 = g2 = 1. In the thin torus
limit, S will contain a constant term corresponding to
2γ that we wish to extract. This can be extracted from
(V.5) by setting ξ = 1:

S(ξ = 1) =
Ly

2Gzh

∫ 1

ε/zh

dζ

ζ2
√
g1(ζ)

. (V.7)

To make further progress in evaluating this integral, we
expand in the coupling λ, (V.1). The dimensionless ex-

pansion parameter is λz3−∆
h0 ∝ λL3−∆

y , since Ly is the
only remaining IR scale in the problem. We define the
location of the unperturbed “horizon”

zh0 =
3Ly
4π

, (V.8)

to distinguish it from zh. The latter will be altered from
its bare value zh0 due to the backreaction of the scalar
on the metric. Expanding in λz3−∆

h0 , the EE becomes

S =
Ly
2Gε

− Ly
2G

[
1

zh
+

∫ 1

ε/zh0

dζ

ζ2

h1(ζ)

2zh0
z

2(3−∆)
h0 λ2

]
,

(V.9)

where we expanded the functions appearing in the metric
as

gi(z) = 1 + hi(ζ) z
2(3−∆)
h0 λ2 , i = 1, 2 , (V.10)

anticipating that the leading correction will be at order
λ2, a fact we shall soon confirm. In (V.9) and it what

follows,

ζ = z/zh0 (V.11)

is defined using the bare “horizon” value (V.8). From
(V.9), we see that in order to determine the universal
EE, we need to obtain 1) the λ-corrected value of zh, 2)
the full ζ-dependence of h1(ζ) in the bulk, 0 ≤ ζ ≤ 1.
The situation is thus more complicated than in the anal-
ogous holographic RG calculation for the disk EE, where
one only needs to know the near boundary behavior of
the metric correction (a single one suffices in that case).
These extra complications arise because of the additional
length scale, zh, arising from the compactification.

From (V.4), the value of zh including corrections of

O
(
z

2(3−∆)
h0 λ2

)
is

zh
zh0

= 1 +
h1(1) + h2(1)

2
z

2(3−∆)
h0 λ2 . (V.12)

In order to get the full ζ-dependence of the hi(ζ), we
need to solve the equation of motion of the scalar field
on the entire spacetime, not only near the boundary. The
equation for φ reads

�φ = ∆(∆− 3)φ . (V.13)

Assuming φ depends only on the holographic coordi-
nate z, the general solution to this equation in the
unperturbed soliton background — i.e., in (V.3) with
g1(z) = g2(z) = 1 and zh = zh0 — reads

φ = φ̃(ζ) · z3−∆
h0 λ , (V.14)

where the dimensionless function φ̃(ζ) is λ-independent,
and given by (∆ 6= 3/2)

φ̃(ζ) = ζ3−∆ · 2F1

[
1− ∆

3 , 1−
∆
3 ; 2

(
1− ∆

3

)
; ζ3
]

− a ζ∆ · 2F1

[
∆
3 ,

∆
3 ; 2∆

3 ; ζ3
]
. (V.15)

When ∆ = 3/2, the two terms become degenerate, and
the solution contains another term (see [61] for example).

2F1[z1, z2; z3; z4] is the ordinary hypergeometric function.

φ(z) scales as λ(z3−∆ +az3−2∆
h0 z∆ + · · · ) near the bound-

ary, where we have used the holographic dictionary to
relate λ to the parameters entering in the solution of the
equation of motion, (V.13). The constant a is found by
asking that φ be regular near ζ = 1,

a =
Γ
(
2− 2∆

3

)
Γ
(

∆
3

)2
Γ
(
1− ∆

3

)2
Γ
(

2∆
3

) , (V.16)

which is strictly positive in the range 1/2 ≤ ∆ < 3,
and vanishes linearly approaching ∆ = 3. In order to
determine the backreaction on the metric, we need to
solve Einstein’s equations in the presence of this profile
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FIG. 10. The metric perturbations h1(ζ) (top, blue) and h2(ζ)
(bottom, red) for ∆ = 2.8. Both vanish at the boundary ζ=0.

for φ(ζ). These read

Gµν − 3gµν =
1

2
∂µφ∂νφ (V.17)

− 1

4
gµν

[
gρσ∂ρφ∂σφ+ ∆(∆− 3)φ2

]
.

There are three non-trivial equations in (V.17) — cor-
responding to the zz, tt and yy components — but
it can be shown that only two of them are indepen-
dent when (V.15) holds. We therefore have two equa-
tions for the two unknown functions, hi(ζ). After some
simplifications, those equations can be written at order

O(z
2(3−∆)
h0 λ2) as

h′1 −
3h1

ζ(1− ζ3)
= Q(ζ) , (V.18)

h′2 − h′1 = −ζ (φ̃′)2

2
, (V.19)

where

Q(ζ) =
ζ

4

[
(φ̃′)2 +

∆(∆− 3)φ̃2

ζ2(1− ζ3)

]
, (V.20)

and where all functions depend on ζ and we used the
notation ()′ = ∂()/∂ζ. The first equation is solved by

h1(ζ) =

∫ ζ

1

dζ̄
1− ζ̄−3

1− ζ−3
Q(ζ̄) , (V.21)

which can be used to write h2(ζ) as

h2(ζ) = h1(ζ)− 1

2

∫ ζ

0

dζ̄ ζ̄ φ̃′(ζ̄)2 . (V.22)

Both in (V.21) and (V.22), we have imposed the bound-
ary conditions h1(0) = h2(0) = 0, which is consistent
since φ(0) = 0. In Fig. 10, we plot these functions for a
particular value of the operator dimension, ∆=2.8.

From (V.21) it is possible to obtain the small ζ behav-
ior of h1(ζ):

h1(ζ) =
(3−∆)

4
ζ2(3−∆)

[
1 + 9−2∆

6 ζ3 + · · ·
]

+ ζ2∆
[
D0∆ +D1∆ζ

3 + . . .
]

+ ζ3
[
C0∆ + C1∆ζ

3 + . . .
]
, (V.23)

where the dots mean O(u3k) terms with k = 2, 3 . . . , and
where

D0∆ = a2∆/4 , (V.24)

with a defined in (V.16). The other constants can also
be explicitly given, but we refrain from doing so here.

Since we need to evaluate
∫ 1

ε/zh0
dζ h1(ζ)/ζ2 in (V.9), we

observe from (V.23) that the only terms susceptible of
producing divergences in the ε→ 0 limit (for 1/2 ≤ ∆ <
3) are those corresponding to ζ2(3−∆) and ζ2∆. Indeed,
we note that∫ 1

ε/zh0

dζ
ζ2(3−∆)

ζ2
=

1

5− 2∆

[
1−

z2∆−5
h0

ε2∆−5

]
, (V.25)

∫ 1

ε/zh0

dζ
ζ2∆

ζ2
=

1

2∆− 1

[
1−

z1−2∆
h0

ε1−2∆

]
,

so the terms involving ε will diverge when ε → 0 for
∆ ≥ 5/2 and ∆ ≤ 1/2 respectively — in the limiting
cases, the divergences will be logarithmic instead. Taking
this into account, we can rewrite (V.9) as

S =
Ly
2Gε

− (3−∆)

32(∆− 5/2)

Lyλ
2

ε2∆−5G
(V.26)

+
( 3

4π )6−4∆D0∆

4(2∆− 1)

L7−4∆
y λ2

ε1−2∆G
− 2γ + · · · ,

where the dots denote terms subleading in ε, and

γ =
π

3G

[
1− η(∆)L2(3−∆)

y λ2
]
, (V.27)

and the ∆-dependent constant η(∆) reads
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η(∆) =

(
3

4π

)2(3−∆)[
h1(1) + h2(1)

2
+

3−∆

16(∆− 5/2)
− D0∆

2(2∆− 1)
−
∫ 1

0

dζ

2ζ2

(
h1(ζ)− 3−∆

4
ζ2(3−∆) −D0∆ζ

2∆

)]
.

(V.28)

As we anticipated, (V.26) contains two new possible di-
vergences ∼ ε2∆−1 and ∼ ε5−2∆. Let us start by em-
phasizing that neither violates the area law. The first
divergence only arises when ∆ ≤ 1/2, which corresponds
to the unitarity bound for scalar operators. Therefore
we shall work with ∆ > 1/2. The second divergence is
more important because it occurs in the allowed range,
5/2 ≤ ∆ < 3. We thus see that the naive subtraction of
the area cannot yield a well-defined universal EE in this
case. However, since this term scales linearly with Ly,

any of the REE γ
(α)
r defined in (IV.4) will make it disap-

pear. Using the minimal prescription defined in (IV.3) —
corresponding to α = 0 in (IV.4) — we find the following
renormalized EE

γr(Ly) =
π

3G

[
1− ηr(∆)L2(3−∆)

y λ2
]
, (V.29)

where

ηr(∆) = (2∆− 5)η(∆) . (V.30)

In Fig. 11 we compare η(∆) with the renormalized ver-
sion ηr. η(∆) has an unphysical divergence at ∆ = 5/2,
which is cured in ηr(∆). Note that such a spurious diver-
gence appears as well in the non-renormalized universal
term of the disk EE F [29, 62] — see Appendix A. This is
an indication that the naive subtraction of the divergent
terms in the EE away from a conformal fixed point leads
to unphysical results. Further, the factor of (2∆ − 5)
allows us to to obtain the analytical result at ∆ = 5/2:
ηr(5/2) = 3/(64π) ≈ 0.0149, in agreement with our nu-
merical solution shown in Fig. 11.

Interestingly, ηr(∆) ≥ 0 for all dimensions in the range
1/2 < ∆ < 3 — it vanishes at ∆ = 3, i.e. for a marginal
deformation, and at ∆ = 3/2. Due to the positivity of
ηr, the renormalized version of γ decreases for all possible
deformations with 1/2 < ∆ < 3. In fact, the same de-
crease was recently obtained for the free scalar and Dirac
fermion CFTs under under mass deformations (and for
all boundary conditions around the circle) [42]. It might
be possible to prove this for general CFTs using methods
of [63]. However, in going beyond the leading λ correc-
tion to γr, the free CFTs exhibit an increase for certain,
but not all, boundary conditions. It would be interesting
to verify whether this occurs in holography as well.

It is also worth noting that ηr diverges as one ap-
proaches the unitarity bound ∆ = 1/2; such a divergence
was also found in the study of metric perturbations on
the EE of spheres in holography [64]. It would be of in-
terest to understand the physical mechanism behind this
divergence at the unitary bound, especially since not all
quantities computed in such holographic theories will dis-
play it (see Ref. [61] for example). Further, for this RG
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FIG. 11. Renormalized EE. a) We plot the bare η(∆) as
defined in (V.28) for the allowed range 1/2 < ∆ < 3. At
∆ = 1/2+ and ∆ = 5/2− the function diverges to −∞ and
conversely, it approaches +∞ for ∆ = 5/2+. b) We plot the
renormalized version of the same quantity, ηr(∆), as defined
in (V.30). The unphysical divergence at ∆ = 5/2 is cured
and the function is positive for all values of ∆ except for
∆ = 3/2 and ∆ = 3, where it vanishes. Also, it diverges as ∆
approaches the unitary bound 1/2, as explained in the text.

flow, γr is stationary at the UV fixed point:

∂γr(t)

∂t

∣∣∣∣
t=0

= 0, t ≡ λL3−∆
y , (V.31)

The renormalized disk EE F is also stationary for the
analogous holographic RG flow [65], when 3/2 < ∆ < 3,
see Appendix A.
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VI. ENTANGLEMENT ESTIMATE USING THE
THERMAL ENTROPY

We now use a simple approximation to get an estimate
for the EE associated with a bipartition of the infinite
cylinder R× Td−2 into equal halves. Region A is a half-
infinite cylinder defined for x ≥ 0, say. In this case, the
Bisognano-Wichmann theorem [66] (here adapted from
the infinite plane to the infinite cylinder) states that the
reduced density matrix of A is

ρA = C exp

(
−
∫
x>0

dxdd−2y (2πx) H(x, y)

)
, (VI.1)

where H = T00 is the energy density operator of the
CFT on the cylinder R × Td−2; C is a constant. We
can thus write the modular or entanglement Hamil-
tonian, defined via ρA = C exp(−HE), as HE =∫
x>0

dxdd−2y β(x)H(x, y), where 1/β(x) = 1/(2πx) is
the x-dependent “local temperature”. The following
heuristic picture emerges: degrees of freedom closer to
the cut x = 0 are at a higher “local temperature” and
thus contribute more to the EE compared to colder de-
grees freedom far from it. One can make the local picture
more quantitative via the following ansatz for the EE,
S = −Tr(ρA ln ρA):

S =

∫
x>0

dxdd−2y stherm

(
1

2πx

)
, (VI.2)

where stherm(T ) is the thermal entropy density of the
system at temperature T on the infinite cylinder. In
(VI.2), the entropy is evaluated at a local temperature
T (x) = 1/(2πx). This is in essence a Thomas-Fermi
approximate treatment of the exact ρA given in (VI.1):
after the trace over Ā, one assumes that the system is
locally in thermal equilibrium at temperature 1/(2πx).
Such an ansatz has proven useful in various entanglement
calculations. For instance, it yields the exact leading EE
for the half-infinite interval in 1+1d CFTs [67].

We test these ideas using holographic CFTs. We first
work in d = 3, where the thermal entropy on the infinite
cylinder reads — see e.g., [51, 68],

stherm =
4π2

9G
T 2, if T > 1/Ly , (VI.3)

= 0 , if T < 1/Ly . (VI.4)

It thus has an abrupt jump when TLy = 1, vanishing
at small temperatures, where the AdS soliton dominates
the partition function. The large temperature value is
naturally the entropy density of the finite-T CFT in in-
finite flat space. By substituting (VI.3) into (VI.2), we

obtain the EE:

S = Ly

∫ Ly/(2π)

ε

dx
4π2

9G

(
1

2πx

)2

=
Ly
9Gε

− 2π

9G
. (VI.5)

We thus recover the leading area law term. The sublead-
ing term is the universal EE, γloc, which has the same
sign as in the exact holographic calculation, leading to

γloc =
2π

9G
< γexact =

π

3G
. (VI.6)

We thus find that the local entropy ansatz is lesser but
close to the correct answer, γloc/γexact = 2/3.

In d = 4, the thermal entropy on the infinite cylinder
reads in turn — see e.g., [51, 68],

stherm =
π3

4G
T 3, if T > 1/L1, 1/L2 , (VI.7)

= 0 , if T < 1/L1 or T < 1/L2 . (VI.8)

In the above expressions, (VI.7) is nothing but the ther-
mal entropy of a black brane in AdS5, which dominates
the partition function over the corresponding soliton so-
lutions for sufficiently high temperatures. The thermal
entropy vanishes instead when either of the two soliton
geometries dominates. This difference in the thermal en-
tropies of both solutions can be traced back to the fact
that for the Euclidean black brane, regularity is achieved
by imposing zh ∼ T−1, while for the solitons one sets
zh ∼ Li instead (where Li is the smallest dimension).
This gives rise to a qualitatively different dependence on
the temperature of the on-shell actions of both kinds of
solutions — and consequently, of the corresponding free
energies and thermal entropies. Analogous comments ap-
ply in the 3d case discussed before, as well as for general
higher dimensions, which we consider in Appendix B.

Now, in the case L2 > L1, using (VI.7) we obtain from
(VI.2)

S =
L1L2

16Gε2
− π2L2

16L1G
. (VI.9)

The L1 > L2 case is completely analogous: interchange
L1 ↔ L2 in the above expression. Thus the universal
term as obtained from the thermal Ansatz is again lesser
than the exact result (III.44), this time by a factor 1/2,
i.e., γloc/γexact = 1/2. We emphasize that that ther-
mal entropy Ansatz yields exactly the same dependence
on L1,2. In Appendix B, we show that the discrepancy
is given by γloc/γexact = 2/d in general dimensions. It
would be interesting to see if the thermal entropy esti-
mate yields a lower bound for γ in other CFTs.
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VII. SUMMARY & OUTLOOK

We have studied the universal contribution to the EE
of 2+1d and 3+1d holographic CFTs on topologically
non-trivial geometries, with a focus on tori. More pre-
cisely, we have taken the spatial part of spacetime to be
a torus Td−1, and have computed the EE for a biparti-
tion of this space into two cylinders, −χ. The cylindrical
entangling region wraps (d − 2) of the non-contractible
cycles. The geometries are illustrated in Fig. 1 and Fig. 6
for the d = 3, 4 cases, respectively.

We then studied the questions of how to characterize
the RG flow of the torus EE χ in general QFTs (not
only holographic ones). We introduced a renormalized
EE in 3d and 4d that 1) is applicable to general QFTs,
2) resolves the failure of the area law subtraction away
from fixed points, and 3) is inspired by the F-theorem.
We have then employed this renormalized EE to study a
simple RG flow for a 3d CFT with a holographic dual.
The calculation was performed for a thin torus, in which
case χ reduces to a geometry-independent constant 2γ at
conformal fixed points. The renormalized γ was found to
decrease monotonically for small deformations by a rel-
evant operator (with any allowed dimension) away from
the CFT fixed point. This is reminiscent of the results
of Ref. [6], where γ was compared between the Gaussian
(free) and the Wilson-Fisher CFT fixed point using the ε-
expansion. It was found that |γWF| < |γGauss|, where for
some choice of boundary conditions the inequality holds
without the absolute values. In line with this, recently it
was shown [47] that in the large-n limit of the Wilson-
Fisher fixed point, γWF = O(n0) while the UV Gaussian
fixed point has γ scaling linearly with n. However, in
those works the value of γ along the flow was not deter-
mined. As we saw, one is faced with the general ques-
tion of how to define a suitable renormalized EE away
from fixed points. This question holds for essentially any
entangling region, not only on the torus/cylinder. The

prescription we have used are sensible but a broader un-
derstanding is lacking, especially about the uniqueness of
the renormalization procedure.

Various concrete extensions of our work are possible.
For one, it would also be interesting to extend our
RG analysis to regimes beyond the thin-torus limit
considered, and to d = 4. This would be particularly
interesting because, as opposed to the REE of disk
regions in d = 3, the EE of spherical regions cannot
be used to prove the four-dimensional “a-theorem”
[69], since non-monotonic examples are known for the
corresponding REE in that case — see e.g., [29]. More
generally, extensions to other classes of deformations
and to different holographic bulk theories in general
d — e.g., including higher-order gravity terms — are
conceivable. It would also be interesting to study the
dependence of the torus EE on the boundary conditions
along the different cycles. In this respect, the twisted
AdS soliton solutions [56] (obtained by a double-Wick
rotation of a rotating black brane) could be useful.
Finally, one could study how the EE changes as the
torus becomes non-rectangular, i.e., sheared.
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Appendix A: Disk EE in a perturbed holographic CFT

We review the calculation of the renormalized EE of a disk region, F(R), in a three-dimensional holographic CFT
deformed by a relevant scalar operator [29, 62]. In doing so, we shall emphasize the fact that the cutoff-independent
term in the EE obtained by a naive subtraction of the area law, the “naive F”, acquires an unphysical divergence
for operators with scaling dimension ∆ = 5/2, which disappears when considering F(R) instead. Other spurious
cutoff-dependent divergences are also cancelled by F(R).

The set-up is similar to the one in section V, i.e., we consider a CFT dual to the bulk theory (V.2), where the
mass-m scalar field φ is dual to an operator O(x) with scaling dimension 1/2 ≤ ∆ < 3 satisfying ∆(∆−3) = m2. The
background spacetime is in this case pure AdS4, and the perturbed metric can be parametrized in terms of a single
function g(z) as

ds2 =
L2

z2

[
dz2

g(z)
+ dr2 + r2dθ2 − dt2

]
, (A.1)

where g(z) = 1 +O(zσ) as z → 0, with σ > 0. Now, assuming ∆ > 3/2, the solution of the scalar equation of motion
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(V.13) in the unperturbed background — namely, (A.1) with g = 1 — reads

φ(z) = λ · z3−∆ . (A.2)

Using this expression in Einstein’s equations (V.17), one can find the backreaction on the metric, which is encoded
in g(z). The result is

g(z) =
1 + ∆(3−∆)z2(3−∆)λ2/12

1− (3−∆)2z2(3−∆)λ2/12
. (A.3)

We will not expand in λ at this point; we shall do so when we evaluate the EE. Using the Ryu-Takayanagi prescription
(I.3), it is possible to show that the entanglement entropy of a disk region of radius R is given by

Sdisk =
π

2G

∫ 1

ε/R

dζ

√
1− ζ2(1− g(ζ))

ζ2
√
g(ζ)

, (A.4)

where we made the change of variables

ζ = z/R . (A.5)

The above integral can be evaluated in powers of the dimensionless constant R2(3−∆)λ2, which we take to be small.
We find g = 1 + ζ2(3−∆)λ2R2(3−∆)(3 − ∆)/4 + O(λ4R4(3−∆)), and so the result for the EE at order O(R2(3−∆)λ2)
reads

Sdisk
2G

π
=
R

ε
− 1− (3−∆)λ2R2(3−∆)

8

[
−
∫ 1

0

dζζ2(3−∆) +

∫ 1

ε/R

dζζ4−2∆

]
+ · · · , (A.6)

where the dots denote terms subleading in ε (at this order in λ2R2(3−∆)). Simplifying, we find

Sdisk =
πR

2Gε
− π(3−∆)

32(∆− 5/2)

Rλ2

Gε2∆−5
− F + · · · , (A.7)

with the ε-independent part:

F =
π

2G

[
1− (3−∆)

16(∆− 5/2)(7/2−∆)
λ2R2(3−∆)

]
. (A.8)

This F contains the same suspicious divergence at ∆ = 5/2 as was found for the non-renormalized γ in section IV A.
In fact, for ∆ < 5/2, this F obtained by naively subtracting the area law would grow under RG flow, thereupon
violating the F-theorem [27]. There is an even more important problem with the naive subtraction of the R/ε area
law: when 5/2 < ∆ < 3, (A.7) contains a term that diverges as (R/ε)2(∆−5/2) [65], exactly like in the torus calculation,
(V.26). Both problems are resolved by considering the REE, F(R) = (R ∂

∂R − 1)S [27, 29]. The renormalized answer
becomes [62]

F(R) =
π

2G

[
1− (3−∆)

8(7/2−∆)
λ2R2(3−∆) + · · ·

]
, (A.9)

which contains a correction due to λ that is negative, in agreement with the F-theorem [27]. We note that (A.9)
actually holds [63] for general CFTs in the case of a relevant deformation with ∆ > d/2, Eq. (V.1).

Appendix B: Holographic torus entanglement in higher dimensions

In this appendix we extend the results of section III to an AdS(d+1) soliton spacetime, i.e., we consider a d-

dimensional holographic theory whose spatial dimensions form a T d−1 torus and a cylindrical entangling region A of
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dimensions LA × L1 × L2 × · · · × Ld−2, i.e., wrapping d− 2 of the torus cycles. The relevant solutions have the form

ds2 =
1

z2

[
dz2

f
+ gxxdx

2 + gii(dy
i)2 − dt2

]
, (B.1)

with i = 1, . . . , (d−2) and where f = 1− (z/zh)d can appear in gxx or in one of the gii. In the former case, we require
Lx = 4π/d zh. For the (d− 2) additional solutions, corresponding to writing f in gii, we need to impose Li = 4π/d zh
instead. The relevant solution is determined again by the minimal free energy condition. Analogously to the d = 3, 4
cases, when Lx is the smallest in the set {Lx, L1, . . . , Ld−2}, we need to consider the solution with gxx = f . The
same applies completely analogously for the Li. So in general we have d− 1 different solutions which can be relevant
depending on the case.

Let us start assuming that Lx is the smallest length. The metric is (B.1) with gxx = f and the rest equal to 1. The
final result for the cylinder holographic EE is

S =

[
L1 · · ·Ld−2

2(d− 2)G

1

εd−2
− χ(θ)

]
, (B.2)

where

χ(θ) =
22d−5(π)d−2

dd−2b1 · · · bd−2(d− 2)Gξ
(d−2)

d

[∫ 1

0

−(d− 2) dζ

ζd−1

[
1√

1− ξζd − (1− ξ)ζ2(d−1)
− 1

]
+ 1

]
, (B.3)

with ξ = (z∗/zh)d and where bi = Lx/Li satisfies bi ≤ 1 for all i. The function χ(θ) can be obtained using

2πLA
Lx

= θ(ξ) = d · ξ1/d
√

1− ξ
∫ 1

0

dζ ζd−1 (1− ξζd)−1√
1− ξζd − (1− ξ)ζ2(d−1)

. (B.4)

When the cylinder length is small, θ << 1, it is possible to find a closed-form expression for χ(θ). It reads

χ(θ) =
1

b1 · · · bd−2G

[
(2π)d−2κ(d−2)G

θd−2
+
∑
k=1

ak θ
d(k−1)+2

]
, (B.5)

where the ak are pure numbers, and κ(d−2) is the universal coefficient in the holographic EE of a multidimensional

slab of dimensions `× Ld−2, which reads [25]

Sstrip = −κ(d−2)
Ld−2

`d−2
, where κ(d−2) =

2d−3π
d−1
2 Γ

[
d

2(d−1)

]d−1

(d− 2)GΓ
[

1
2(d−1)

]d−1
. (B.6)

When L1 is the smallest direction instead, (and analogously for any of the other d− 3 extra directions different from
x), we need to consider the geometry with g11 = f and the rest equal to 1. The result for the entanglement entropy
of the cylinder is again given by (B.2), where now

χ(θ) = χ̃(θ) , 0 <
θ

2π
<

p

b1
, (B.7)

χ(θ) =
22d−5πd−2bd−3

1

G(d− 2)dd−2b2 · · · bd−2
,

p

b1
<

θ

2π
<

1

2
,

and

χ̃(θ) =
22d−5πd−2bd−3

1

G(d− 2)dd−2b2 · · · bd−2ξ
(d−2)

d

[∫ 1

0

−(d− 2)dζ

ζd−1

[ √
1− ξζd√

1− ξζd − (1− ξ)ζ2(d−1)
− 1

]
+ 1

]
, (B.8)

2πLA
Lx

= θ(ξ) =
d · ξ1/d

b1

√
1− ξ

∫ 1

0

dζ ζd−1 (1− ξζd)−1/2√
1− ξζd − (1− ξ)ζ2(d−1)

. (B.9)

Again, χ for π < θ < 2π can be obtained using the reflection property χ(2π − θ) = χ(θ). It can be checked that for
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θ → 0, the behavior of χ̃(θ) reads

χ̃(θ) =
1

b2 · · · bd−2G

[
(2π)d−2κ(d−2)G

θd−2b1
+
∑
k=1

ak b
dk−1
1 θd(k−1)+2

]
, (B.10)

whose leading term is the same as that of χ(θ) in (B.10), and where the ak are pure numbers. The value of p is ∼ 0.2
at least for the first higher-dimensional cases d ≥ 4.

In the cylinder limit, which corresponds to Lx � Li for all i, the result is also (B.2), where now

χ(LA/L1) = χ̃(LA/L1) , 0 <
LA
L1

< p , (B.11)

χ(LA/L1) = 2γ , p <
LA
L1

<∞ ,

where

χ̃(LA/L1) =
22d−5πd−2L2 · · ·Ld−2

G(d− 2)dd−2Ld−3
1 ξ

(d−2)
d

[∫ 1

0

−(d− 2)dζ

ζd−1

[ √
1− ξζd√

1− ξζd − (1− ξ)ζ2(d−1)
− 1

]
+ 1

]
, (B.12)

2πLA
L1

= d · ξ1/d
√

1− ξ
∫ 1

0

dζ ζd−1 (1− χζd)−1/2√
1− ξζd − (1− ξ)ζ2(d−1)

, (B.13)

and where

γ =
22d−6πd−2L2 · · ·Ld−2

(d− 2)dd−2GLd−3
1

(B.14)

is the constant contribution corresponding to the case in which the entangling region A becomes a semi-infinite
cylinder. Note again that we are considering here the case for which L1 is the smallest dimension. Analogous
expressions hold whenever any of the remaining (d− 3) dimensions is the smallest one.

Finally, let us point out that the thermal entropy estimate explained in section VI yields in general dimensions

S =
L1 · · ·Ld−22d−3

dd−1(d− 2)G

[
1

δd−2
− (2π)d−2

Ld−2
1

]
, (B.15)

where we used the thermal entropy expression on the infinite cylinder at sufficiently high temperatures, given by

s =
4d−2πd−1

dd−1G
T d−1 . (B.16)

We observe that the value of γ obtained in this case reads

γloc =
22d−5πd−2L2 · · ·Ld−2

(d− 2)dd−1GLd−3
1

. (B.17)

We thus find that the local entropy ansatz gives an answer surprisingly similar to the correct one, namely γloc/γexact =
2/d.
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