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The aim of this work is to provided the details of a calculation summarized in the recent paper
by Maltz and Susskind which conjectured a potentially rigorous framework where the status of de
Sitter space is the same as that of a resonance in a scattering process. The conjecture being that
transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain
resonant poles characteristic meta-stable intermediate states. A calculation employing constrained
instantons is presented that illustrates this idea.

I. INTRODUCTION AND MOTIVATIONS

String/M-theory is the leading candidate for a for-
malism of quantum gravity [1–9], having had many suc-
cesses in providing an ultraviolet (UV) completion of
gravitational phenomenon which are described to high
experimental precision in the infared (IR) by General
Relativity (GR) [10, 11]. Reproducing the spectrum
of 10D supergravity at low energies, providing con-
trolled calculations of black hole microstate counting
[12], and introducing new notions into physics such as
Holographic Complementarity, Matrix model descrip-
tions of gravity [13–15], and the AdS/CFT correspon-
dence (Gauge/Gravity Duality)[16]. In describing cos-
mological spacetimes however, the theory is in a deep
morass and descriptions reduce to Jabberwocky.

Starting with supernova Ia measurements in 1987 [17–
19] and concurrent CMB measurements [18, 20, 21] it
has become apparent that the universe’s expansion is ac-
celerating. Our explanation for this within the Λ -CDM
model of cosmology is that the mass-energy density of
the universe is dominated by dark energy in the form of
a small Cosmological Constant (Λ ) [22–26] [27]. This
second exponential expansion phase separate from the
initial inflationary epoch [24, 28] that occurred just after
the big bang [17, 18, 29, 30], implies that our universe
is best described as being asymptotically de Sitter (dS)
[29–33] from 10−33s after the big bang until into the far
future. If string theory is going to directly address the is-
sues of cosmology it is necessary to formulate a quantum
definition of asymptotically dS spacetimes within string
theory.

Computation of observable quantities in string the-
ory typically rely on computing asymptotic states on
what has been colloquially referred to asymptotically cold
backgrounds [34] such as symptotically Anti de Sitter
(AdS) or asymptotically Flat spacetimes i.e. the energy
density and therefore fluctuations of the geometry go to
zero asymptotically or at the boundary where applicable,
and gravity decouples. Due to the exponential expan-
sion of the spacetime, dS possesses cosmological horizons.
This implies that only a portion of the spacetime is ever
accessible to any given observer and there is no asymptot-
ically cold boundary region on which to define correlation

functions [35]. The region within the observer’s horizon,
referred to as the observer’s causal patch [35, 36], pos-
sesses a finite entropy and temperature [37, 38]. The fi-
nite entropy of the causal patch suggests that the causal
patch of dS does not support exact states on its own and
should be described by a large finite discreet spectrum
of states which is incompatible with a continuum CFT
description [35] and the dS symmetries [35, 39][40].

Finally, String/M-Theory possesses a vast set of vac-
uum solutions known as the String Theory Landscape,
with estimates of ∼ 10500 vacua [39, 41–47]. The most
well understood subset of these solutions are referred to
as The Moduli Space of Supersymmetric Flat Vacua (Su-
permoduli space) which are continuously connected to
the five perturbative string theories [39, 41, 48]. Vacua in
supermoduli space are supersymmetric preserving com-
pactifications with V (ϕn) = 0, (Λ = 0). At low enough
energies these moduli can be approximated by massless
scalar fields that are under the influence of an effective
potential V (ϕn). Vacua are local minima of V (ϕn) with
Λ equal to the value of the minima. Moving through
moduli space means varying the dynamical moduli of the
compactification which changes the value of the effective
fields ϕn [49]. Minima of the potential where V (ϕ] 6= 0
are obtained non-perturbatively. dS vaccua, those with
positive Λ , are in the landscape [50, 51], however they
unstable to vacuum decay via Coleman de Luccia (CDL)
tunneling [42, 52–56] to flat or AdS vacua [57]. The CDL
decay complicates the structure of timelike future infin-
ity I+ of dS, changing it to a history dependent fractal
structure of many different types of bubbles of different
cosmological constants [58, 59] [60] in a quantum super-
position.

The decay to Hats—FRW bubbles of vacua in the su-
permoduli space, Λ = 0— provides an opportunity to de-
fine a rigorous framework for dS. This conjectured frame-
work known as FRW/CFT [34, 55, 56, 61–67][68].

In this work we will provide the technical details of the
computation inspired by FRW/CFT and summarized in
[69] to define a transition amplitude between supersym-
metric flat vacua and show that resonant poles which we
associate with dS meta-stable states exist in its spectral
representation. To show this we consider a configuration
looking like a time-symmetric slice of the dS vacuum and



2

evolve the state in a time symmetric manner to yield the
past and future infinity boundaries; which as previously
stated are fractal superpositions containing an infinite
number of hats as well as other vacua. Picking a past
and future hat and invoking the gauge choice that they
nucleate at the spatial center of a causal diamond, we
will define a transition amplitude and compute a spec-
tral representation for this transition. This will require
constructing a deformation of the CDL spacetime which
we will refer to as a constrained CDL instanton. This
spacetime, which is constructed via the Barrabès-Israel
Null junctions conditions [70], has the status of a con-
strained instanton [71–73] and is the result of the CDL
instanton equations with a constraint that the FRW re-
gions are separated in the dS region by a fixed proper
time, see Fig 4. A regulated action is computed for this
spacetime and a path integral for the transition ampli-
tude is performed using the mini-superspace approxima-
tion in the thin wall limit. Here the path integral over all
deformations of the metric is constrained to only vary-
ing the time between the bubbles. Fourier transforming
this amplitude with respect to this time in order to get
a spectral representation, we find that the spectral rep-
resentation contains resonant poles. We will associate
these poles to dS intermediate states. The idea that dS
might be viewed as resonance has been suggested before
in [39, 55, 56]; however there is to the author’s knowledge
no explicit calculation to establish dS as a resonance or
direct computation of the pole in the literature. We will
present the details of one in this paper.

This paper is organized as follows: first in section II
will introduce dS and CDL instanton spacetime [55, 56,
74]. In III we will define the transition amplitude and
spectral representation [75]. In IV we will motivate the
calculation and action prescription. Sections V-VII con-
tain the main bulk of the paper where we first compute
the amplitude in 1 + 1 Liouville gravity and 3 + 1 Ein-
steinian Gravity in order to establish the existence of the
pole. 1 + 1D, the Gauss-Bonnet theorem implies that
the boundary contributions may be neglected and the
regulation of the action is simplified. In section VI we
compute the action in 3 + 1 Einsteinian gravity taking
into account the boundary terms. In the discussion we
will interpret this result and discuss its implications as
well as present our conclusions. In appendix A an explicit
construction of the constrained CDL spacetime employ-
ing the null junction conditions is presented. In B, an
argument justifying the proposed integration region is
presented. Finally in C we give some useful relations for
the geometry.

II. DE SITTER SPACE AND THE COLEMAN
DE LUCCIA AMPLITUDE

de Sitter space is a maximally symmetric solution of
the Einstein Field equations [76–81],

Gµν = Rµν +
1

2
Rgµν + Λgµν = 0, (1)

where the Cosmological Constant is given by Λ yielding

a dS radius of ldS =
√

3
Λ ; for our universe Λ ∼= 1.7 ×

10−121 ∼ 1/tU ∼ 10−122 in Planck units [23, 82][83].
Asymptotically dS spacetimes (Cosmological space-

times) add to (1) a stress tensor to describe the matter
and radiation content of the universe

Gµν = Rµν +
1

2
Rgµν + Λgµν = κTµν . (2)

Solving (1), the metric for dS, written in global coordi-
nates [84] is

ds2 = −dt2 +
3

Λ
cosh2

[√
Λ

3
t

](
dψ2 + sin2 ψ dΩ2

2

)
. (3)

Using the relation

tanh

[√
Λ

3

t

2

]
= tan

[η
2

]
, (4)

[85], we can reexpress (3) into conformal time coordinates

ds2
dS =

3

Λ cos2 η

{
− dη2 + dψ2 + sin2 ψ dΩ2

2

}
, (5)

with −π/2 ≤ η ≤ π/2 and 0 ≤ ψ ≤ π. These are the
coordinates generally used to label the Penrose diagram
for dS, shown in Fig. 1. Pure dS (3) can be regarded as a

4d hyperboloid, −(X0)2 +
∑4
i=1(Xi)2 = l2dS , embedded

in 5d Minkowski space ds2 = −(dX0)2 +
∑4
i=1(dXi)2

[79–81].
Instead of ∼ 10500 vacua let us follow [55] and consider

a far smaller Landscape which possesses only two vacua
as a starting point for our construction. This effective
potential will have only two minima, one corresponding
to a positive Λ and the other at zero. In [55], a O(D− 1)
symmetric spacetime resulting from the CDL nucleation
process was worked out, the Penrose diagram for it is
given in Fig. 2. For convenience we will reproduce the
solution from [55] for D = 4, which is the metric for
Region III in Fig. 2,

ds2 = c2dy2+a(y)2
[
dα2+(sin2 α)dβ2−(sin2 α sin2 β)dt2

]
.

(6)
Here 0 ≤ y < π, 0 ≤ α < π, 0 ≤ β < 2π, and
−∞ < t <∞; c is a constant that depends on Λ The solu-
tion (6) was obtained by solving the eucliedan CDL equa-
tions [87]. The solution is then continued to Lorentzian
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FIG. 1. Penrose diagram of de Sitter space. The north and
south poles of the S3 are at ψ = 0 and ψ = π respectfully.
Timelike future infinity I+ is the line at conformal time η =
π/2 and similiarly timelike past infinity I− is located at η =
−π/2. The diagonal lines represent the horizons of the static
patch. Note that a timelike observer can only access a portion
of the space irrespective of their starting point.

signature. The metric for the other regions can be ob-
tained by geodesically completing (6) as is detailed in
[55]. The spacetime consists of an asymptotically dS
spacetime with an open hyperbolic Λ = 0 FRW bubble
inside it. The domain wall (green curve in Fig. 2) is the
transition region between the finite Λ and Λ = 0 regions;
its position and thickness are dependent on specifics of
the potential barrier of V [ϕ] [88].

The analysis is simplified by taking the thin-wall limit
[55, 89, 90] —having the value of the potential barrier’s
maximum Vmax large compared to the value of positive
minima, i.e. Λ � Vmax). This makes the domain wall
region sharp and thin. In this limit the solution for ϕ
is simplified; outside of the domain wall, ϕ = ϕ0 where
the constant ϕ0 is the position of the positive minimum
V [ϕ0) = Λ yielding a classical dS region; inside the do-
main wall (within the open FRW region), ϕ is at the
position of the zero minimum, i.e. V [ϕ] = 0. Surpris-
ingly there is not a singularity caused by the collapsing
FRW geometry as can be seen from the euclidean geom-
etry. The Lorentzian and Euclidean geometries agree on
the spacelike slice in the middle of Fig. 2 and along this
slice it is possible to construct a Hartle-Hawking state
[55, 56, 91] to define states for a transition process [92].
The position and shape of the domain wall is determined
by its tension σ which is determined by the width the po-
tential barrier (which is set by the micro-physics of the
string compactification). For finite σ the domain wall
is timelike; in taking the limit σ → 0 the throat of the
FRW region goes to zero size and the domain wall be-
comes light like, see Fig. 3.

FIG. 2. The Penrose diagram of the Lorentzian continuation
of CDL instanton solution [55, 56, 86]. Region I and Region
II are an open (k = -1) FRW universes which are asymptot-
ically flat. Region IV and Region V are asymptotically de
Sitter. Σ is the conformal 2-sphere defined by the intersection
of the lightlike infinity of Region I and the spacelike infinity
of Region IV. The blue curves indicate orbits of the SO(3, 1)
symmetry, which act as the conformal group on Σ [56]. The
red lines between Region III, Region IV, and Region V rep-
resent the cosmological horizons in the dS of the observer at
r = 0. The green curve in Region III represents the domain
wall between the FRW and dS regions.

III. THE TRANSITION AMPLITUDE

The amplitude for the transition is computed as path
integral over all histories that connect the in and out
states, including all possible spacetime configurations,
field configurations as well as configurations of the hori-
zons which would represent the information from the
outside multiverse. We must determine the appropriate
spacetime region that contains all the information of dS
(for example from a Hartle Hawking state on a spacelike
slice in the middle or Region III of Fig. 2). After picking
the gauge choice that a past and future hat are moved
to the spacial center of a causal patch; assume that on
the spacelike slice in the middle of the center of Fig. 2
we construct a Hartle Hawking state for the spacetime
and determine an out state. The information within the
causal patch is then all that is needed to capture all the
information if Horizon Complementarity is correct. Any-
thing that passes out of the causal patch (goes into Re-
gion IV) will have a complementary description in terms
of the highly scrabbled Hawking radiation which will go
into Region I. Therefore region Region I will contain all
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the information from the Hartle Hawking state in the
middle of Region III [93]. In FRW/CFT the spacelike

slice is usually taken to be a late time slice which is an
EAdS3 that is dual to the CFT on Σ [94].

FIG. 3. Penrose diagrams of the CDL instanton with finite domain wall tension (Left), the limit of the instanton at zero tension
(Center) and the constrained CDL instanton (Right).

Let us consider CDL instanton in this thin-wall ten-
sionless domain wall limit. We will compute a spectral
representation of a transition amplitude between In and
Out states, 〈Out|In〉, and show that it contains a pole
characteristic to a dS intermediate state [95, 96][97] .

A resonance is an intermediate meta-stable state which
can occur between any initial and final states. Many can
be used to establish the existence of a resonance [98] and
we only need to compute one possible channel that leads
to the dS resonance to establish its existence. A math-
ematically tractable, although not a realistic channel, as
it is entropically suppressed, is to construct the In and
Out channels in a time symmetric manner from a semi-
classical slice in the middle of Region III.

This is not to suggest this channel could be the true
cosmological history of our universe. We are proposing
that the existence of a pole in this Rube-Goldberg con-
struction of the channel provides a precise quantum defi-
nition in the context of supersymmetric backgrounds of a
dS space [99]. This same logic applies to any meta-stable
state in quantum mechanics.

We will define the transition amplitude as a path in-
tegral over the histories of the causal patch containing
the hats. We will not try to justify this; but study this
object’s spectral representation and show that it possess
a pole which we associate with dS. This eliminates the

need to deal with the complicated fractal boundaries, I+

and I− or Region IV and Region V.

The full path integral over all histories contains all
fluctuations of the geometry including metric and field
configurations about the CDL instanton as well as non-
perturbative effects, such as further vacuum decay of the
regions outside the hats. In what follows we will truncate
this path integral to only the η0 dependence. This mini-
superspace approximation focuses the discussion on the
first contribution of the transition amplitude, where the
only histories that are integrated over are those when no
particle content is excited. The “off shell” continuation
of the CDL instanton in the thin-wall tensionless domain
wall limit has the two FRW regions with their nucleation
points separated by a conformal coordinate time 2η0İn
the limit that η0 → 0 the on shell CDL instanton with
zero tension domain wall is restored; see the right dia-
gram of Fig. 3. This geometry is not a true solution of
the CDL equations and has the status of a constrained
instanton solution [71–73]. It must be created through
cutting and pasting employing the Barrabés-Israel junc-
tion conditions [70] which is demonstrated in appendix
A. We will refer to this off shell continuation as the con-
strained CDL instanton. Defining the proper time along
the geodesic ψ = 0 to be 2t0, employing (4), we can ex-
press the path integral (7) as an integration over proper
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time between the bubbles t0.

〈hout, ϕout|hin, ϕin〉 =

∫ hout,ϕout

hin,ϕin

DgDϕei S[g,ϕ] ∼ N
∫

d t0 e
i S[t0](1 + ∆fluc.[δgµ,ν , δϕ] . . .)

+ ∆pert + instanton/non-perturbative contrib. (7)

Here ∆fluc.[δgµ,ν , δϕ] refers to perturbative fluctuations
about the constrained CDL and ∆pert refers to all other
perturbative “off shell” history contributions to the path
integral. This expresses the amplitude as an integral over
the relative time between the initial and final hats. The
Fourier transform of the t0 dependence defines the spec-
tral representation of 〈Out |In〉. The terms of the ex-
pansion are weighted in powers of ldS , which control the
expansion.

FIG. 4. constrained CDL

IV. REGULATION OF THE AMPLITUDE AND
η0 DEPENDENCE

In the limit and approximations that we are employ-
ing, only the η0 dependence of the action contributes to
the amplitude. In order to compute the action for the
causal region of the constrained CDL instanton, (the re-
gion within the red curve of Fig. 4), we must determine
the relevant contributions to the action.

The action contribution of the stress-tensor of the do-
main wall does not depend on η0 as can be seen from
the boost symmetries of dS. Consider a dS with one hat
on I+ that nucleates at a time η0 in a particular coor-
dinate frame. Varying the nucleation time, changing η0,
is equivalent to boosting the frame in the dS. The action
contribution of the stress tensor will be invariant under

these boosts as the action will be diffeomorphism invari-
ant. The contribution of the stress tensor is just the stress
energy required to change the cosmological constant from
Λ to 0 as one crosses the domain wall and does not de-
pend on the nucleation time in this limit [100]. Therefor
we do not need to include its contribution to the action
in the time reversal symmetric amplitude [101]

The hats of the constrained CDL instanton in the ap-
proximation that there are no particles excited are de-
scribed by Milne universes [102], ds2

FRW-Milne = −dτ2 +

τ2
(
dχ2 + sinh2 χdΩ2

2

)
, with 0 ≤ τ < ∞ and 0 ≤

χ < ∞. Using the coordinate change t = τ coshχ and
r = τ sinhχ, we can see that this is simply a portion of
Minkowski space—the interior of the forward light cone
of the origin, r ≤ t—with hyperbolic slicing. This means
the action contribution of these regions are also η0 inde-
pendent in the limits we are employing, in fact their bulk
contributions are semi-classically zero in the limit of no
particles as R = 0 in this case.

Therefore we only need to consider the action contri-
bution of the dS region of the causal patch (Region III
of Fig. 4) in order to get η0 dependence of the transition
amplitude in this approximation.

The action of Region III is divergent due to the infi-
nite volume located at the blue dots in Fig. 4, and must
be properly regulated. This divergence is present for all
values of η0 and in all dimensions. The regulator must
respect the Lorentz and dS symmtries of the spacetime in
order to separate the divergence and η0 dependence of the
action in an invariant way [103]. Under boosts and rota-
tions, spacetime points move along surfaces of constant

r2
0 = 3 sin2 ψ

Λ cos2 η . For D > 2, surfaces of constant r0 are those

of constant transverse sphere size. When r0 <
√

Λ
3 = ldS ,

constant r0 surfaces are timelike and the can be identi-
fied with the r coordinate of the static patch metric of

dS, ds2
static = −

(
1− r2

l2dS

)
dt2 +

(
1− r2

l2dS

)−1

dr2 + r2 dΩ2
d .

For r0 >
√

Λ
3 the constant r0 surfaces are spacelike and

can be identified with the now timelike r coordinate of
the future triangle metric, which is identical in form to
the static patch metric except r > ldS and is hence time-
like [81]. The appropriate cutoff procedure is then toe
restrict the integration region to the portion of Region
III in Fig. 4 that is between the spacelike surface of a
fixed given r0 > ldS . Region III is restored in the limit
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that the cutoff r0 → ∞. One further regulator will be
added for convenience here but will be necessary in higher
dimensions. The two null boundaries of the casual patch
intersect in the middle of Region IIIat ψ = π − η0 we
will limit the the integration range of ψ to only go to
ψ = π− η0 − γ0, with γ0 a small positive constant which
avoids the intersection of the null surfaces. In the limit
γ0 → 0 along with r0 → ∞ Region IIIis restored. The
regulated integration region, V, is then regions enclosed
by the red curves in Fig. 5 in 1+1D and Fig. 6 in higher
dimensions.

V. THE 1 + 1 D ACTION IN LIOUVILLE
GRAVITY

We will first compute the amplitude in the context of
dS2. This can be described by lorentzian timelike Li-
ouville gravity [104–110] which contains dS2 as solution
[111–113][114]. This dramatically simplifies the calcula-
tion since in 1 + 1 dimensions the Gauss-bonnet theorem
implies that the contribution of the boundary of V inte-
grates to V’s euler characteristic and is η0 independent.
In 1 + 1D we therefore only need to consider the bulk
contributions of the action.

FIG. 5. Penrose diagram of the 1 + 1D constrained in-
stanton with the integration region shaded in blue. The

slices of constant r2
0 = 3 sin2 ψ

Λ cos2 η
are the curved surfaces in-

tersecting the null lines at ψ1 = arctan

[
cos [η0]

sin η0+
√

3
Λr20

]
and

ψ2 = π
2
− arctan

[
sin η0−

√
3

Λr20

cos η0

]
as well as their reflection

about ψ = 0. The null domain walls dividing the dS and
FRW regions intersect ψ = 0 at conformal time η = η0 and
η = −η0. The regulated integration region, V, is the volume
enclosed by the red curve. Take the cutoff r0 → ∞ restores
the entire integration region.

The timelike liouville action is then,

SL = − 1

16πb2

∫
V
d2ξ
(
ηab∂aφc∂bφc − 16λeφc

)
. (8)

Here the the metric is put into conformal gauge [66,
107, 113, 115] gab = eφcηab and eφc = 3

Λ cos2 η . Via the

Liouville equation of motion we have

1

4
ηab∂a∂bφc = −2λeφc = − 2 · 3 · λ

Λ cos2 η
, (9)

which gives λ = Λ
3·4 .

In D spacetime dimensions the regulated boundary —
red curve in Fig. 5 and Fig. 6— is the surface described
by the following curves times the transverse SD−2,

η1 = ψ + η0 ψ ∈ [0, ψ1] (10)

η2 = arccos

[√
3

Λ

sinψ

r0

]
ψ ∈ [ψ1, ψ2] (11)

η3 = π − (ψ + η0) ψ ∈ [ψ2, π − η0 − γ0] (12)

ψ4 = π − γ0 − η0 η ∈ [−γ0, γ0] (13)

η5 = −(ψ + η0) ψ ∈ [0, ψ1] (14)

η6 = − arccos

[√
3

Λ

sinψ

r0

]
ψ ∈ [ψ1, ψ2] (15)

η7 = (ψ + η0)− π ψ ∈ [ψ2, π − η0− γ0] (16)

Here ψ1 = arctan

[
cos η0

sin η0+
√

3

Λr20

]
and ψ2 = π

2 −

arctan

[
sin η0−

√
3

Λr20

cos η0

]
are where the constant r0 surfaces

intersect the null boundaries. In 1 + 1D the transverse
sphere is an S0 which is just two points, leading to the
Penrose diagram in Fig. 5 Therefore V in 1 + 1 dimen-
sions is the region enclosed by (10)-(16) and its reflection
across ψ = 0. Inserting this into (8) we have
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SL =
4

16πb2

∫
V
dψ dη

(
1 + sin2 η

cos2 η

)
=

1

πb2

{∫ ψ1

0

dψ

∫ ψ+η0

0

dη

(
1 + sin2 η

cos2 η

)

+

∫ ψ2

ψ1

dψ

∫ arccos
[√

3
Λ

sinψ
r0

]
0

dη
1 + sin2 η

cos2 η
+

∫ π−η0−γ0

ψ2

dψ

∫ π−(ψ+η0)

0

dη

(
1 + sin2 η

cos2 η

)}
. (17)

After preforming the η integration in all three terms
of (17), we see that integrand resulting from the second
term in (17) is bounded within its ψ integration range. In
the cutoff limit r0 → ∞, ψ1 → ψ2, therefore the middle
integral goes to zero in the limit and can be ignored.

After computing the (17) and taking the γ0 → 0 limit
we can Laurent expand (17) in w0 = 1/r0 up to O[w0];
Resulting in,

SL = − 1

πb2

{
4 log

∣∣∣∣∣
√

3

Λ
w0

∣∣∣∣∣−4+
π2

4
− η

2
0

2
+2 log cos η0

}
.

The − 4!µ
2Λ

{
log
∣∣∣√ 3

Λw0

∣∣∣−4+ π2

4

}
term is the divergent

contribution of the action which remains when η0 = 0.
This divergence, resulting from the infinite volume of Re-
gion III, was to be expected and is just the action of the
lorentizan tensionless domain-wall CDL instanton, S0, in
this limit. When exponetiated it can be absorbed into
the overall normalization factor of (7).

Defining S̃L = SL−S0 and re-expressing this in-terms
of proper time t0 using (4) results in [116],

S̃L=
2

πb2

{
arctan2

[
tanh

[√
Λ

3
t0

]]
+log cosh

[√
Λ

3
t0

]}
=

4!µ

4Λ

{
arctan2

[
tanh

[√
Λ

3
t0

]]
+log cosh

[√
Λ

3
t0

]}
. (18)

The log cosh
[√

Λ
3 t0

]
=
√

Λ
3 t0 + log |1 + e−2

√
Λ
3 t0 | −

log 2 term in (18) is the only t0 dependent term which

is not bounded. We see that for large values of t0 the
action grows linearly with t0.

Treating the bounded term as a perturbation and
fourier transforming with respect to t0 yields,

∫ ∞
0

d t0 e
i(S̃L[t0]−ω t0) =

∫ ∞
0

d t0 e
i(2µ
√

3
λ t0−ωt0)

(
1 + i

3 · 2µ
Λ

{
log
∣∣∣1 + e−2

√
Λ
3 t0

2

∣∣∣+ arctan2

[
tanh

√
Λ

3
t0

]}
+ . . .

)

=
i

ω − 2µ
√

3
Λ

+ ρ1[ω] + . . . . (19)

thus revealing a pole in the spectral representation. One

notes that, 2µ
√

3
Λ , is the energy of the static patch of

dS, we take the existence of this pole to the indication of
an intermediate dS vacuum.

This indicates that the dS can be thought of as a res-
onance in a transition amplitude.

The pole in (19) occurs at a real value of ω but this is an
approximation. When the meta-stable character of the
dS vacuum is accounted for the cosmological constant will
obtain a small imaginary part determined by the CDL
decay rate. This will shift pole by a slightly imaginary

amount, which is standard in the analysis of resonances
[96, 117].

ρ1[ω] is the contribution of the O
[
µ
Λ

]
term in (19). The

first term which can be integrated employing 2F1 Hyper-
geometric functions and the Lebesgue dominant conver-
gence theorem, the second term is a bounded function of
t0 and gives further contributions to the spectral repre-
sentation along with the rest of the expansion.
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FIG. 6. V for the d+ 1 space time.

VI. THE AMPLITUDE COMPUTATION IN
THE CONTEXT OF 3 + 1 DIMENSIONS

Now that we have established that the spectral rep-
resentation of the 1 + 1D amplitude possesses poles as-
sociated with dS, let us repeat this in 3 + 1D in GR
limit. Again we employ the cutoff region to be V with

the r2
0 = 3 sin2 ψ

Λ cos2 η . Which respects the lorentz and dS

symmetries. Here surfaces of constant r0 are surfaces of
constant transverse S2. This implies that the region of
integration is V, which is the red curve in Fig. 6. In or-
der to properly compute the action we must include the
boundary contributions. Therefore we must append to
the Einstein-Hilbert action [118], the Gibbons-Hawking-
York (GHY) spacelike boundary term [119, 120], its null
generalization [121, 122], and the contribution of corner
terms [123–125]. This leads to the action

S =
1

2κ

∫
V
d4x
√
−g
(
R− 2Λ

)
−
∑

i=2,4,6

1

2κ

∫
∂Vi

d3x2
√
h(i)K(i) +

∑
i=1,3,5,7

1

2κ

∫
∂Vi

d2x
√
q(i)Θ +

5∑
j=1

Scorner,(j). (20)

Here the GHY term is composed the extrinsic curva-
ture Kab = eµae

ν
b∇νnµ,(i) with i = 2, 4, 6 referring to the

normals, (25) (27) (29) and hab is the intrinsic metric
on the boundary. On the null boundaries i = 1, 3, 5, 7
with normals (24) (26) (28) and (30), the null general-
ization consists of the metric of the transverse S2, qAB ,
and the second fundamental form on the null surface
Θab = qcaq

d
b∇cld, with resulting scalar Θ = qabΘab =

1
2q
ABLlqAB = 1√

q
d
dψ

√
q following the conventions of

[121, 122].

A. Bulk Action

The bulk integration in V is the regions bounded by
the surfaces in (10)-(16), this makes the bulk action con-
tribution,

SBulk =
1

2κ

∫
V
d4x
√
−g
(
R− 2Λ

)
=

2 · 4π · 2Λ

2κ

{∫ ψ1

0

dψ

∫ ψ+η0

0

dη
( 3

Λ

)2 sin2 ψ

cos4 η

+

∫ ψ2

ψ1

dψ

∫ arccos

[√
3

Λr20
sinψ

]
0

dη
( 3

Λ

)2 sin2 ψ

cos4 η
+

∫ π−η0−γ0

ψ2

dψ

∫ π−(ψ+η0)

0

dη
( 3

Λ

)2 sin2 ψ

cos4 η

}
. (21)

When integrated this yields

SBulk =
4π4!

2κΛ

{(
2− 2 log

∣∣ cos η0 + ψ
∣∣+

sin2 η0

cos2 [ψ + η0]
− cos [2ψ] tan2 [ψ + η0]

)∣∣∣∣∣
ψ1

0

+
1

12
√

3

(
− 2r3

0Λ3/2arctanh

[ √
2Λr0 cosψ√

2Λr2
0 + 3 cos [2ψ]− 3

]
− 3 cosψ

√
4r2

0Λ + 6 cos [2ψ]− 6
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+ 6
√

3 log

∣∣∣∣∣
√

6 cosψ +
√

2r2
0Λ + 3 cos [2ψ]− 3√
Λr0

∣∣∣∣∣
)∣∣∣∣∣

ψ2

ψ1

+
1

4

(
− 2 + 2 log

∣∣ cos η0 + ψ
∣∣

− sin2 η0

cos2 [ψ + η0]
+ cos [2ψ] tan2 [ψ + η0]

)∣∣∣∣∣
π−η0−γ0

ψ2

}
. (22)

Taking the cutoff limit r0 →∞ and γ0 → 0 makes V into
Region III. If we express (22) as a Laurent expansion
of w0 = 1

r0
after taking the γ0 → 0, combining terms,

and exploiting trigonometric identities; we finally get to
O[ω0],

SBulk =
4π4!

2κΛ

{
Λ

2w2
0

+
1

2
log

Λ

3w2
0

+
5

24

+
1

8
cos [2η0]− 1

2
log | cos η0|

}
. (23)

B. Boundary Action

The boundary contributions of the action (20) depends
on the normals of the boundaries detailed in (24)-(30).

The outward [126] directed normal one-forms and their
associated vectors are

n(1)α =
(
δηα − δψα

)
nα(1) = −Λ cos2 (ψ + η0)

3

(
δαη + δαψ

)
(24)

n(2)α =

√
3

Λ

√
Λr2

0 − 3 sin2 ψ

cos η
√

Λr2
0 − 3

(
δαη +

√
3 cosψ√

Λr2
0 − 3 sin2 ψ

δαψ
)

nα(2) =

√
Λ

3

√
Λr2

0 − 3 sin2 ψ cos η√
Λr2

0 − 3

(
− δαη +

√
3 cosψ√

Λr2
0 − 3 sin2 ψ

δαψ
)

(25)

n(3)α =
(
δηα + δψα

)
nα(3) =

Λ cos2 (ψ + η0)

3

(
− δαη + δαψ

)
(26)

n(4)α =

√
3

Λ

1

cos η
δψα nα(4) =

√
Λ

3
cos η δαψ (27)

n(5)α =
(
− δηα + δψα

)
nα(5) =

Λ cos2 (ψ + η0)

3

(
δαη + δαψ

)
(28)

n(6)α =

√
3

Λ

√
Λr2

0 − 3 sin2 ψ

cos η
√

Λr2
0 − 3

(
− δαη +

√
3 cosψ√

Λr2
0 − 3 sin2 ψ

δαψ
)

nα(6) =

√
Λ

3

√
Λr2

0 − 3 sin2 ψ cos η√
Λr2

0 − 3

(
δαη +

√
3 cosψ√

Λr2
0 − 3 sin2 ψ

δαψ
)

(29)

n(7)α =
(
− δηα − δψα

)
nα(7) =

Λ cos2 (ψ + η0)

3

(
δαη − δαψ

)
. (30)

With the scalar extrinsic curvature defined as K =
−∇αnα

We have

Θ(1) =
1
√
q(1)

d

dψ

√
q(1)

K(2) =
cosψ

√
6 cos [2ψ] + 4Λr2

0 − 6−3
√

3 cos [2ψ]−
√

3

2r0

√
Λr2

0 − 3

Θ(3) =
1
√
q(3)

d

dψ

√
q(3)
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K(4) = −2

√
Λ

3
cot [π − η0 − γ0] cos η

this make the boundary action

SBoundary = −
∑

i=2,4,6

1

2κ

∫
∂Vi

d3x2
√
h(i)K(i)

+
∑

i=1,3,5,7

1

2κ

∫
∂Vi

d2x
√
q(i)Θ(i) (31)

equal

SBoundary =
4 · 4π

2κ

{∫ ψ1

0

dψ

2

∂

∂ψ

(
3 sin2 ψ

Λ cos2 [ψ + η0]

)
−
∫ ψ2

ψ1

(
3 sin3 ψ

Λ cos2
[√

3
Λ

sinψ
r0

]
)3/2

K(2)

+

∫ π−η0−γ0

ψ2

dψ

2

∂

∂ψ

(
3 sin2 ψ

Λ cos2 [ψ + η0]

)
+

∫ 0

γ0

dη

(
3

Λ cos2 η

)3/2

sin2 [π − η0 − γ0]K(4)

}
. (32)

In the cutoff limit r0 → ∞, ψ1 → ψ2 and K(2) → 0.
Therefore the second term in (32) does not contribute.

Upon integration (32) yields

SBoundary =
4!4π

2κΛ

{
Λr2

0

3 · 2 · 2
+

3Λ sin2 η0

2 · 2 · 3Λ
− Λr2

0

2 · 2 · 3

− 3Λ · 2
3 · 2Λ

log 4 sin2 η0

}

=
4!4π

2κΛ

{1

4
− log 4

}
sin2 η0. (33)

C. Corner terms

Finally we must speak of the contributions of the cor-
ner terms. I will argue that with the exception of the
corner term on the waist of the dS hyperboloid, the ac-
tion contributions of corner terms are independent of η0.
The action contribution of the corner resulting from two
intersecting hyper-surfaces depends on the boost angle
and the area of the S2 at the intersection point [123, 125].
In our set up there are six corner contributions: the in-
tersection of the constant r0 surface with the null walls
at ψ1 and ψ2 and two at the waist. For the four non
waist contributions the corner is on the curve of constant
S2 radius r0 which is independent of η0 (r0 can be var-
ied without changing η0). The boost angle at these four
points while infinite are independent of η0; this can be
seen by treating the null surface as the limit of a sequence
of spacelike surfaces that emanate from the nucleation
point of the respective hat and intersect the constant r0

surface at a point in between ψ1 and ψ2, see Fig. 7.
The boost angle for this corner term is finite and is in-
dependent of η0 as the intersection point can be varied

without moving η0. In the limit that the spacelike sur-
faces become null, the corner contributions become in-
finite but are remain η0 independent and can absorbed
in the divergent η0 independent action term that comes
from the original CDL instanton. Hence the only trou-
blesome point is the corner terms at the waist which have
infinite boost angles times an η0 dependent finite S2 size.
For paths close to the CDL instanton, t0 → 0, this term
vanishes exponentially. In the large t0 limit the deriva-
tive of this term with respect to t0 goes to zero implying
this term becomes constant in the large t0 limit. This
term is not well understood and relates to the specfica-
tion of microstates of the horizon and requires a better
understanding of the horizon degrees of freedom perhaps
employing some stretched horizon analysis. The calcula-
tion employed here in 2 + 1D is is closely related to wick
rotations of those in [123–125, 127] which relate complex-
ity and action. This term also appears in their analysis
of the null and corner terms, and an analysis of it was
carried out employing the spacelike cutoffs in Fig. 8.

VII. TOTAL ACTION AND THE POLE

Combining the terms (23) and (33) we have the total
action, which after Laurent expanding in w0 = 1

r0
up to

O[w0] results in,

S =
4π4!

2κΛ

{
− 1

2
log | cos η0|+

{1

4
− log 4

}
sin2 η0

+
1

8
cos [2η0] +

Λ

2w2
0

+
1

2
log

Λ

3w2
0

+
5

24

}
+ Scorner.

Re-expressing S in-terms of the proper time t0 using (4)
and renaming the divergent t0 independent constant in
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FIG. 7. The four divergent corner terms that occur are inde-
pendent of η0. The corner contribution is dependent on the
boost angle and S2 area, neither of which depend on η0. This
can be seen as r0 can be varied independently of η0, implying
the S2 area is independent of η0. The boost angle is also η0 in-
dependent; this can be seen by deforming the boundaries of V
to spacelike curves (red curves) which intersect the r0 surface
at finite η0 independent boost angle. In the limit that this
spacelike parametrically becomes null the integration region
V is restored.

(34) to S0, we can define S̃ = S − S0 resulting in,

S̃ =
4π4!

2κΛ

{
1

8

(
1− sinh2

[√
Λ
3 t0

]
cosh2

[√
Λ
3 t0

] )

+
1

2
log

∣∣∣∣∣ cosh

[√
Λ

3
t0

]∣∣∣∣∣
+

{
1

4
− log 4

}
tanh2

[√
Λ

3
t0

]}
, (34)

with S0 = 4π4!
2κΛ

{
Λ

2w2
0

+ 1
2 log Λ

3w2
0

+ 5
24

}
+Scorner. Apart

from the log cosh
[√

Λ
3 t0

]
term the t0 dependent terms

of (34) are bounded and monotonic for t0 > 0.

S̃ =
4π4!

2κΛ

{
1

2
log | cosh

[√Λ

3
t0

]
|+

1− sinh2
[√

Λ
3 t0

]
8 cosh2

[√
Λ
3 t0

]
+
{1

4
− log 4

}
tanh2

[√Λ

3
t0

]}
(35)

S̃ =
4π4!

2κΛ

{
1

2
log

∣∣∣∣∣1 + e−2
√

Λ
3 t0

2

∣∣∣∣∣+
1− sinh2

[√
Λ
3 t0

]
8 cosh2

[√
Λ
3 t0

]

FIG. 8. If the integration region V is deformed to the spacelike
surfaces, red curves, the divergence of the remaining corner
term can be analysised. In 2 + 1D the wick rotation of this
analysis was carried out in [124, 127].

+
1

2

√
Λ

3
t0 +

{1

4
− log 4

}
tanh2

[√Λ

3
t0

]}

Fourier transforming the amplitude with S̃ = S − S0

and employing a similar expansion as (19) reveals the
pole again,∫ ∞

0

d t0 e
i(S̃[t0]−ω t0) =

∫ ∞
0

d t0 e
i(2 4π

κ

√
3
λ t0−ωt0)

(
1

+ i
3 · 2
Λ

4π

κ

{
log
∣∣∣1 + e−2

√
Λ
3 t0

2

∣∣∣+
1− sinh2

[√
Λ
3 t0

]
8 cosh2

[√
Λ
3 t0

]
+
{1

4
− log 4

}
tanh2

[√Λ

3
t0

]}
+ . . .

)
=

i

ω − 2 4π
κ

√
3
Λ

+ ρ1[ω] + . . . . (36)

Again we have a pole in the spectral representation at

the energy of the static patch, 24π
κ

√
3
Λ . This term will be

present in d+1 dimensions. The pole in (36) occurs again
at a real value of ω but this is an approximation. This
pole will also be shifted by a slightly imaginary amount,
which is standard in the analysis of resonances [96, 117].
To the order we are studying here the rate will just be
that of the standard CDL instanton [55, 56, 74].

VIII. DISCUSSIONS AND CONCLUSIONS

In this paper we presented the technical details of the
computations summarized in [69]. The main implication
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of this is: There exist transition amplitudes between ex-
cited states of supersymmetric flat vacua employed in
string theory, that possess dS vacua as resonances. Al-
though we have not mentioned it a given dS vacuum con-
tains an exponentially large number of almost degener-
ate states and in a real quantum theory we would ex-
pect a correspondingly dense collection of poles. This
is analogous to the idea of a black hole as a collection
of resonances. Deforming the CDL instanton of [55] to
a constrained CDL instanton solution, allowed us to re-
strict the path integral over all histories of a transition
amplitude between supersymmtric flat vacua to histo-
ries were only the time between the nucleation points
was integrated over. The spectral representation of this
amplitude possesses a pole indicative of dS resonances
for D=2,4. In fact as the pole comes from the linear t0
growth of the action contribution of the bulk volume of
the causal patch, it is likely that the pole will occur in
dSD. The deformation of the original CDL instanton re-
spects an O(D−2) subgroup of the instanton’s O(D−1)
symmetry as the volume determinate factorizes into a t0
dependent piece and the transverse SD−2; therefore bar-
ring technical issues the same analysis can be carried out
in D dimensions such as D = 10, 11D.

None of this should be taken to mean that ordinary
scattering amplitudes for finite numbers of particles con-
tain dS [128]. The |In〉 and |Out〉 states we are dis-
cussing are open (k=-1) FRW cosmologies which con-
tain an infinite number of particles. The particles are
uniformly distributed on hyperbolic surfaces and in par-
ticular there exists an infinite number of particles on Σ
of Fig. 3 (Left). This suggests that states of this type
form a super-selection sector in which the dS resonances
are found. Since these states contain an infinite num-
ber particles but their entropy must not exceed the fi-
nite dS entropy of the causal patch, they must be in-
finitely fine tuned. Such states would be the bulk states
of FRW/CFT [34, 55, 56, 62] or similar string theory
construction that possesses dS as an intermediate con-
figuration. One should also point out that the super-
selection sector of states of this type may not be contin-
uously connected as in standard S-matrix amplitudes. If
an “off shell” history in the transition amplitude is not in
the super-selection sector proposed here it is very likely
that it will cause a crunch as opposed to a dS [129–131]
or some other unknown configuration that is not a small
perturbation of the semi-classical spacetime. In the anal-
ysis we have employed here, we have assumed we had
restricted to states that do not crunch. The infinitely
fine-tuned nature of these states suggests there is a large
but finite number of them, essentially the exponential of

the dS entropy, ∼ e10120

. Choosing In and Out states
that do not crunch is just one more criterion for select-
ing appropriate states that lead to a dS as opposed to
another spacetime and more analysis is needed on this
point.

It has been asked how recent work on complexity and
relations between geometry and entanglement apply in a

cosmological setting. In 2 + 1 D the action calculation
when continued to AdS is similar to wick rotated calcula-
tions relating complexity to action in the AdS BTZ black
hole [124, 127], see Fig. 8. In the continuation V replaces
the Wheeler DeWitt patch of [124, 127]. In both cases
the action grows linearly with time t0, which in the dS
case leads to the resonant pole found, in the AdS ver-
sion it represents the linear growth in complexity. It is
possible that in cosmology the exponential expansion of
space may also represent a growth in complexity. This is
analogous to the growth of complexity being related to
the lengthening of non-transversable wormhole throats in
the AdS BTZ setting. Further study in this direction is
demanded.
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Appendix A: Junction Conditions and the
constrained Geometry

In this appendix we will construct the constrained
CDL instanton geometry. For a given value of η0 the
constrained CDL can be view as a “off shell” path of the
path integral (7). The constrained CDL in the limit of
going “on shell” (η0 → 0) becomes the CDL instanton
with a zero tension domain wall; “off shell” the domain
walls are null, see Fig. 4. With the gauge choice that the
separated bubbles are centered on the de Sitter coordi-
nate ψ = 0 with the future bubble nucleation at η0 and
the past bubble ending at the time reversed −η0.

To do this within the context of GR we will employ the
Barrabés-Israel null Junction conditions [70][132]. The
de Sitter metric in conformal coordinates is

ds2
dS =

3

Λ cos2 η

{
− dη2 + dψ2 + sin2 ψ dΩ2

2

}
. (A1)

Where Λ is the Cosmological Constant related to lds by

ldS =
√

3
Λ . The coordinates −π2 ≤ η ≤

π
2 and 0 ≤ ψ ≤ π

along with the sphere’s coordinates cover the entire de
Sitter spacetime.
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An open Hyperbolic FRW universe with Λ = 0 “hat”
with no matter, has the metric

ds2
FRW-Milne = −dτ2 + τ2

(
dχ2 + sinh2 χdΩ2

2

)
, (A2)

with 0 ≤ τ <∞ and 0 ≤ χ <∞.
This spacetime is also known as the Milne universe

[102]. It is just the interior of the forward light cone
of the origin in Minkowski space, as can be see via the
coordinate change t = τ coshχ, r = τ sinhχ resulting in

ds2 = −dt2 + dr2 + r2 dΩ2
2 (A3)

with r ≤ t. For later convenience we will perform the

change of variables r =
√

3
Λ

sinψ
cos [ψ+η0] , which results in

the S2 of both hat and the de Sitter spacetimes having
the same radial coordinate,

ds2
hat = −dt2 +

3 cos2 η0

Λ cos4 [ψ + η0]
dψ2 +

3 sin2 ψ

Λ cos4 [ψ + η0]
dΩ2

2 .

We will employ this form of the metric while stitch-
ing to de Sitter. In these coordinates there isn’t a co-
ordinate singularity along the stitching surface t = r =√

3
Λ

sinψ
cos2 (ψ+η0) which in (A2) is the line coordinate sin-

gularity τ = 0.
For a nice review on how to use the junction conditions

to stitch together space time on null surfaces the reader
is encouraged to look at [70, 133]. The future FRW hat,
which we refer to as Region I , to keep in line with nota-
tion of [56][134], will be connected to the dS on the null
line, t − r = 0 in the hat, and 0 = −ψ + η − η0 in the
dS. This will be referred to as the Future Null Boundary
(F.B.), see Fig. 4.

Following the junction conditions [70], we will decom-
pose the metric into

gµν = −η̃(nµNν + nνNµ) + eAµ e
B
ν σAB

= −η̃(nµNν + nνNµ) + eaµe
b
νhab (A4)

with the null normal (surface gradient) nµ = α−1∂µΦ and
null auxiliary vector Nµ. η̃−1 is NOT the coordinate η
but a real constant. In order to form a complete basis
for the metric we must also enforce the condition that
n · N = η̃−1 across the boundary as well as n · eA = 0
and N ·eA = 0 on the boundary. Φ[x] is a scalar function
of the coordinates and Φ[xµ] = 0 defines the null surface
that we are joining the metrics along. The projection of
the auxiliary vector to the surface Na = Nµe

µ
a must be

continuous across the boundary. Enforcing n · N = η̃−1

across the boundary determines α [135]. nµ = α−1∂µΦ
with α = −1 in Region III (dS region) results in α =

−
√

3
Λ

1
cos η0

in Region I and Region II. For the F.B., we

have Φ+ = t −
√

3
Λ

sinψ
cos2 [ψ+η0] in the “hat” coordinates

and Φ+ = −ψ+ (η− η0) in the dS coordinates. The null
auxiliary vector is defined by Nµnµ = η̃−1 = −1.

Region I: (A5)

nµ∂µ = −
√

Λ

3
cos η0

(
∂t −

√
Λ

3

cos2 [ψ + η0]

cos η0
∂ψ

)

nµdx
µ = −

√
Λ

3
cos η0

(
− dt−

√
Λ

3

cos2 [ψ + η0]

cos η0

)

Nµ∂µ = −
√

3

Λ

1

cos η0

(
1

2
∂τ +

1

2

√
Λ

3

cos2[ψ + η0]

cosη0
∂ψ

)

Nµdx
µ = −

√
3

Λ

1

cos η0

(
1

2
dt+

1

2

√
3

Λ

cos η0

cos2 [ψ + η0]

)

F.B. of Region III: (A6)

nµ∂µ =
Λ

3
cos2 [ψ + η0]∂η +

Λ

3
cos2 [ψ + η0]∂ψ

nµdx
µ = −dη + dψ

Nµ∂µ =
1

2
∂η −

1

2
∂ψ

Nµdx
µ =

−3 dη

2Λ cos2 [ψ + η0]
+

−3 dψ

2Λ cos2 [ψ + η0]
.

We will employ ξa = (ψ, θ, φ) as the intrinsic coordinates
on the null surface and express nµ in the basis of null
generators [70] nµ = laeµa as follows

F.B. la =

(
Λ

3
cos2 [ψ + η0], 0, 0

)
, (A7)

with eµ = ∂xµ

∂ξa and xµ being the coordinates of the space-

time regions on either side of the boundary.
This choice of la allows us to define hab∗ which satisfies

the following relation with the surface’s degenerate three
metric [70], hab,

hac∗ hbc = δab + η̃laNµe
µ
b . (A8)

resulting in the degenerate three metric hab and hab∗
being of the block diagonal form

hab =

[
0 0
0 σAB

]
hab∗ =

[
0 0
0 σAB

]
(A9)

with σAB , A,B = (θ, φ) being the metric of S2 with

radius r =
√

3
Λ

sinψ
cos2 (ψ+η0)

ds2 = σABdθ
AdθB =

3 sin2 ψ

Λ cos4 (ψ + η0)
dΩ2

2 . (A10)

Yielding hab = eAa e
B
b σAB , hab∗ = eaAe

b
Bσ

AB [136].
Similarly the past hat will be stitched onto the surface

Φ− = t+r = 0 in the hat coordinates Φ− = ψ+(η+η0) =
0 in the dS coordinates [137]. For completeness we will
give the nµ, Nµ, and la for the past hat.
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P.B. of Region III: (A11)

nµ∂µ =
Λ

3
cos2 [ψ + η0]∂η −

Λ

3
cos2 [ψ + η0]∂ψ

nµdx
µ = −dη − dψ

Nµ∂µ =
1

2
∂η +

1

2
∂ψ

Nµdx
µ =

−3 dη

2Λ cos2 [ψ + η0]
+

3 dψ

2Λ cos2 [ψ + η0]

Region II:

nµ∂µ = −
√

Λ

3
cos η0

(
− ∂t +

√
Λ

3

cos2 [ψ + η0]

cos η0
∂ψ

)

nµdx
µ = −

√
Λ

3
cos η0

(
dt+

√
Λ

3

cos2 [ψ + η0]

cos η0

)

Nµ∂µ =

√
3

Λ

1

cos η0

(
1

2
∂τ +

1

2

√
Λ

3

cos2[ψ + η0]

cosη0
∂ψ

)

Nµdx
µ = −

√
3

Λ

1

cos η0

(
1

2
dt− 1

2

√
3

Λ

cos η0

cos2 [ψ + η0]

)
.

P.B. la =
(
− Λ

3
cos2 [ψ + η0], 0, 0

)
. (A12)

Since these are null shells, the junction conditions
require us to compute the discontinuity in the Trans-
verse Extrinsic Curvature Kab = −Nµeνb∇νeµa = Kba
to determine the stress-tensor required to support this
geometry[138]. Defining the symbol γab = Kab|+−Kab|−,
to be the difference of Kab on both sides of the stitch-
ing surface evaluated at the surface, in their respective
coordinate charts. We can define the surface stress-
tensor Sab, which has the following relation on null shells
[70, 139],

−16πSab =
(
gac∗ l

bld + gbd∗ l
alc

− gab∗ lcld − gcd∗ lalb
)
γcd. (A13)

Employing (A5-A13) we have

Sab = − 1

8π

(
sinψ

cos η0 cos (ψ + η0)

)
lalb. (A14)

The full stress tensor is Tµν = αeµae
ν
bS

abδ(Φ) in each
region, which has different representations in each region
dependent on the coordinates employed there. We will
state the stress tensor here in all regions for clarity.

Region I

Tµν∂µ ⊗ ∂ν =
1

8π

(√
Λ

3

sinψ

cos[ψ + η0]
∂τ ⊗ ∂τ +

Λ cos [ψ + η0] sinψ

3 cos η0

(
∂τ ⊗ ∂ψ + ∂ψ ⊗ ∂τ

)

+

(
Λ

3

)3/2
cos3 [ψ + η0] sinψ

cos3 η0
∂ψ ⊗ ∂ψ

)
δ

[
τ −

√
3

Λ

sinψ

cos [ψ + η0]

]
(A15)

Region III

Tµν∂µ ⊗ ∂ν =
1

8π

(
Λ

3

)2
cos3[ψ + η0] sinψ

cos η0

(
∂η ⊗ ∂η + ∂η ⊗ ∂ψ + ∂ψ ⊗ ∂η + ∂ψ ⊗ ∂ψ

)

× δ(η − η0 − ψ) +
1

8π

(
Λ

3

)2
cos3[ψ + η0] sinψ

cos η0

(
∂η ⊗ ∂η

− ∂η ⊗ ∂ψ − ∂ψ ⊗ ∂η + ∂ψ ⊗ ∂ψ
)
δ[η + η0 + ψ]− Λ

8π
gµνdS∂µ ⊗ ∂ν (A16)

Region II

Tµν∂µ ⊗ ∂ν =
1

8π

(√
Λ

3

sinψ

cos[ψ + η0]
∂τ ⊗ ∂τ −

Λ cos [ψ + η0] sinψ

3 cos η0

(
∂τ ⊗ ∂ψ + ∂ψ ⊗ ∂τ

)

+

(
Λ

3

)3/2
cos3 [ψ + η0] sinψ

cos3 η0
∂ψ ⊗ ∂ψ

)
δ

[
τ +

√
3

Λ

sinψ

cos [ψ + η0]

]
(A17)

.
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As was argued in the main text, while the stress ten-
sor in this coordinate representation does depend on the
time η0, the boost invariance of the geometry implies that
the action contribution from the stress tensor should not
depend on the time η0.

We can now define the “off-shell” Coleman-De Luccia
geometry as

gµν = g(Region I)
µ,ν Θ[Φ+] + g(Region III)

µ,ν Θ[−Φ+]Θ[Φ−]

+ g(Region II)
µ,ν Θ[−Φ−]. (A18)

Here gµν is expressed as a distribution employing Θ[x]
which is the Heaviside Theta function with Θ[x] = 1 for
x > 0,Θ[x] = 0 for x < 0 and Θ[0] = 1/2. (A18) along
with the stress-tensor (A15),(A16),(A17) represents the
spacetime.

Appendix B: Justification For the Integration
Region

In this section, we will argue that in the approxima-
tions we have made the integration region used is the only
one necessary to calculate the action of the causal patch.

To begin assume that we have a global coordinate chart
for the entire constrained CDL spacetime. Such a chart
exists because the stitched spacetime foliated by S2s is
topologically simple. One can construct such a chart
system by using skew-Gaussian coordinates attached to
geodesics that reach into all three regions and are maxi-
mally smooth [70]. The metric for this entire space time
can then be written as a Dirac distribution treating the
domain walls as thin shells

gαβ = g
(1)
αβ Θ[Φ1]+g

(2)
αβ Θ[−Φ1]Θ[Φ2]+g

(3)
αβ Θ[−Φ2]. (B1)

Here Θ[x] is the Heaviside theta function with Θ[x] = 1
for x > 0,Θ[x] = 0 for x < 0 and Θ[0] = 1/2. The
superscripts 1, 2, 3 refer to the Future Hat, de Sitter, and
Past Hat regions respectfully[140] and Φ1(2) are the scalar
equations which vanish on the domain walls of the future
and past hat regions respectfully. They are the analog
of Φ+ = η − (ψ + η0) and Φ− = η + (ψ + η0) that were
employed in the main text.

Following the formulation of the junction conditions
in [70] we can construct the distributions for Christoffel
symbols

2Γσαβ = ∂αgβσ + ∂βgσα − ∂σgαβ

=
(
∂αg

(1)
βσ + ∂βg

(1)
σα − ∂σg

(1)
αβ

)
Θ[Φ1] +

(
∂αg

(2)
βσ + ∂βg

(2)
σα − ∂σg

(2)
αβ

)
Θ[−Φ1]Θ[Φ2]

+
(
∂αg

(3)
βσ + ∂βg

(3)
σα − ∂σg

(3)
αβ

)
Θ[−Φ2] + g

(1)
αβ∂αΘ[Φ1] + g

(1)
αβ∂αΘ[Φ1]

− g(1)
αβ∂αΘ[Φ1] + g

(2)
αβ∂α

(
Θ[−Φ1]Θ[Φ2]

)
+ g

(2)
αβ∂α

(
Θ[−Φ1]Θ[Φ2]

)
− g(2)

αβ∂α
(
Θ[−Φ1]Θ[Φ2]

)
+ g

(2)
αβ∂αΘ[−Φ2] + g

(2)
αβ∂αΘ[−Φ2]− g(3)

αβ∂αΘ[−Φ2]

= 2Γ
(1)
σαβΘ[Φ1] + 2Γ

(2)
σαβΘ[−Φ1]Θ[Φ2] + 2Γ

(3)
σαβΘ[−Φ2]

+ g
(1)
βσ δ[Φ1]∂αΦ1 − g(2)

βσ δ[−Φ1]Θ[Φ2]∂αΦ1 + g
(2)
βσΘ[−Φ1]δ[Φ2]∂αΦ2 − g(3)

βσΘ[−Φ2]∂αΦ2

+ g(1)
σαδ[Φ1]∂βΦ1 − g(2)

σαδ[−Φ1]Θ[Φ2]∂βΦ1 + g(2)
σαΘ[−Φ1]δ[Φ2]∂βΦ2 − g(3)

σαΘ[−Φ2]∂βΦ2

+ g
(1)
αβ δ[Φ1]∂σΦ1 − g(2)

αβ δ[−Φ1]Θ[Φ2]∂σΦ1 + g
(2)
αβΘ[−Φ1]δ[Φ2]∂σΦ2 − g(3)

αβΘ[−Φ2]∂σΦ2.

(B2)

Due to the time ordering Θ[Φ2] = 1 when Φ1 =
0, (the past hat boundary is in the past of the fu-

ture hat boundary), terms of the form g
(1)
βσ δ[Φ1]∂αΦ1 −

g
(2)
βσ δ[−Φ1]Θ[Φ2]∂αΦ1 = δ[Φ1]∂αΦ1

(
g

(1)
βσ − g

(2)
βσ

)
. This

allows us to rewrite (B2) as

2Γσαβ

= 2Γ
(1)
σαβΘ[Φ1] + 2Γ

(2)
σαβΘ[−Φ1]Θ[Φ2] + 2Γ

(3)
σαβΘ[−Φ2]

+ δ[Φ1]∂αΦ1

(
g

(1)
βσ − g

(2)
βσ

)
+ δ[Φ2]∂αΦ2

(
g

(2)
βσ − g

(3)
βσ

)
+ δ[Φ1]∂βΦ1

(
g(1)
σα − g(2)

σα

)
+ δ[Φ2]∂βΦ2

(
g(2)
σα − g(3)

σα

)
− δ[Φ1]∂σΦ1

(
g

(1)
αβ − g

(2)
αβ

)
− δ[Φ2]∂σΦ2

(
g

(2)
αβ − g

(3)
αβ

)
.

(B3)

In this coordinate system terms of the form
(
g

(1)
αβ −

g
(2)
αβ

)
|Φ1 = 0, since we have made a global coordinate
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chart that covers the entire spacetime [141]. (B3) is then
reduced to

Γσαβ = Γ
(1)
σαβΘ[Φ1] + Γ

(2)
σαβΘ[−Φ1]Θ[Φ2] + Γ

(3)
σαβΘ[−Φ2]

Γραβ = gρσΓσαβ

= Γ
(1)ρ
αβ Θ[Φ1] + Γ

(2)ρ
αβ Θ[−Φ1]Θ[Φ2] + Γ

(3)ρ
αβ Θ[−Φ2].

(B4)

Where in the second line we have used the identities
(Θ[x])2 = Θ[x] for x 6= 0 and Θ[x]Θ[−x] = 0 for x 6= 0.

The Ricci Tensor is defined as

Rµν = Rρµρν = ∂ρΓ
ρ
νµ−∂νΓρρµ+ΓρρλΓλνµ−ΓρνλΓλρµ, (B5)

which with (B4) yields the following Dirac distribution,

Rµν =
(
∂ρΓ

(1)ρ
νµ − ∂νΓ(1)ρ

ρµ

)
Θ[Φ1] +

(
∂ρΓ

(2)ρ
νµ − ∂νΓ(2)ρ

ρµ

)
Θ[−Φ1]Θ[Φ2]

+
(
∂ρΓ

(3)ρ
νµ − ∂νΓ(3)ρ

ρµ

)
Θ[−Φ2] +

(
Γ

(1)ρ
ρλ Γ(1)λ

νµ − Γ
(1)ρ
νλ Γ(1)λ

ρµ

)
Θ[Φ1]

+
(

Γ
(2)ρ
ρλ Γ(2)λ

νµ − Γ
(2)ρ
νλ Γ(2)λ

ρµ

)
Θ[−Φ1]Θ[Φ2] +

(
Γ

(3)ρ
ρλ Γ(3)λ

νµ − Γ
(3)ρ
νλ Γ(3)λ

ρµ

)
Θ[−Φ2]

+
(

Γ(1)ρ
νµ δ[Φ1]∂ρΦ1 − Γ(1)ρ

ρµ δ[Φ1]∂νΦ1

)
−
(

Γ(2)ρ
νµ δ[−Φ1]Θ[Φ2]∂ρΦ1

− Γ(2)ρ
ρµ δ[−Φ1]Θ[Φ2]∂νΦ1

)
+
(

Γ(2)ρ
νµ δ[Φ2]Θ[−Φ1]∂ρΦ2 − Γ(2)ρ

ρµ δ[Φ2]Θ[−Φ1]∂νΦ2

)
−
(

Γ(3)ρ
νµ δ[−Φ2]∂ρΦ2 − Γ(3)ρ

ρµ δ[−Φ2]∂νΦ2

)
. (B6)

Using the definition (B5) we can combine the terms in (B6) to yield

Rµν = R(1)
µνΘ[Φ1] +R(2)

µνΘ[−Φ1]Θ[Φ2] +R(3)
µνΘ[−Φ2] +

{(
Γ(1)ρ
νµ − Γ(2)ρ

νµ

)
∂ρΦ1 −

(
Γ(1)ρ
ρµ − Γ(2)ρ

ρµ

)
∂νΦ1

}
δ[Φ1]

+
{(

Γ(2)ρ
νµ − Γ(3)ρ

νµ

)
∂ρΦ2 −

(
Γ(2)ρ
ρµ − Γ(3)ρ

ρµ

)
∂νΦ2

}
δ[Φ2], (B7)

R = gµνRµν = R(1)Θ[Φ1] +R(2)Θ[−Φ1]Θ[Φ2] +R(3)Θ[−Φ2]

+
{
g(1)µνΘ[Φ1] + g(2)µνΘ[−Φ1]Θ[Φ2]

}{(
Γ(1)ρ
νµ − Γ(2)ρ

νµ

)
∂ρΦ1 −

(
Γ(1)ρ
ρµ − Γ(2)ρ

ρµ

)
∂νΦ1

}
δ[Φ1]

+
{
g(2)µνΘ[−Φ1]Θ[Φ2] + g(3)µνΘ[−Φ2]

}{(
Γ(2)ρ
νµ − Γ(3)ρ

νµ

)
∂ρΦ2 −

(
Γ(2)ρ
ρµ − Γ(3)ρ

ρµ

)
∂νΦ2

}
δ[Φ2]. (B8)

We see that the Ricci tensor and Ricci scalar sep-
arate into the Ricci tensor and scalar associated with
the three regions as well as terms containing delta func-
tion singularities occurring at the stitching surfaces [142].

One thing to note is that care should be taken with two
boundary terms. For simplicity we will relabel the sur-
face terms

∆(1)
µν δ[Φ1] =

{(
Γ(1)ρ
νµ − Γ(2)ρ

νµ

)
∂ρΦ1 −

(
Γ(1)ρ
ρµ − Γ(2)ρ

ρµ

)
∂νΦ1

}
δ[Φ1]
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∆(2)
µν δ[Φ2] =

{(
Γ(2)ρ
νµ − Γ(3)ρ

νµ

)
∂ρΦ2 −

(
Γ(2)ρ
ρµ − Γ(3)ρ

ρµ

)
∂νΦ2

}
δ[Φ2]

∆(1)δ[Φ1] =
{
g(1)µνΘ[Φ1] + g(2)µνΘ[−Φ1]Θ[Φ2]

}{(
Γ(1)ρ
νµ − Γ(2)ρ

νµ

)
∂ρΦ1 −

(
Γ(1)ρ
ρµ − Γ(2)ρ

ρµ

)
∂νΦ1

}
δ[Φ1]

∆(2)δ[Φ2] =
{
g(2)µνΘ[−Φ1]Θ[Φ2] + g(3)µνΘ[−Φ2]

}{(
Γ(2)ρ
νµ − Γ(3)ρ

νµ

)
∂ρΦ2 −

(
Γ(2)ρ
ρµ − Γ(3)ρ

ρµ

)
∂νΦ2

}
δ[Φ2]. (B9)

The Einstein tensor Gµν = Rµν − 1
2Rgµν can be written as

Gµν = R(1)
µνΘ[Φ1] +R(2)

µνΘ[−Φ1]Θ[Φ2] +R(3)
µνΘ[−Φ2] + ∆(1)

µν δ[Φ1] + ∆(2)
µν δ[Φ2]− 1

2

{
R(1)Θ[Φ1] +R(2)Θ[−Φ1]Θ[Φ2]

+R(3)Θ[−Φ2] + ∆(1)δ[Φ1] + ∆(2)δ[Φ2]
}(
g(1)
µν Θ[Φ1] + g2)

µνΘ[−Φ1]Θ[Φ2] + g(3)
µν Θ[−Φ2]

)
= G(1)

µνΘ[Φ1] +G(2)
µνΘ[−Φ1]Θ[Φ2] +G(3)

µνΘ[−Φ2] + ∆(1)
µν δ[Φ1] + ∆(2)

µν δ[Φ2] +
{
g(1)
µν Θ[Φ1] + g(2)

µν Θ[−Φ1]
}

∆(1)δ[Φ1]

+
{
g(2)
µν Θ[Φ2] + g(3)

µν Θ[−Φ2]
}

∆(2)δ[Φ2]. (B10)

We see that because of this the Einstein tensor and
Ricci scalar breakup into their respective values for their

regions of space time. i.e. G
(1)
µν = G

(3)
µν = 0, and G

(2)
µν =

Λg
(2)
µν , similarly R(1) = R(3) = 0 and R(2) = 4Λ.

This yields the field equations

Gµν = G(2)
µνΘ[−Φ1]Θ[Φ2] +

1

2
Λg(2)

µν Θ[−Φ1]Θ[Φ2] + {∆(1)
µν + ∆(1)

(
g(1)
µν Θ[Φ1] + g(2)

µν Θ[−Φ1]
)
}δ[Φ1]

+ {∆(1)
µν + ∆(1)

(
g(1)
µν Θ[Φ2] + g(2)

µν Θ[−Φ2]
)
}δ[Φ2]. (B11)

The Einstein Hilbert action that produces this E.O.M. is

S =
1

2κ

∫
d4x
√
g(2)

(
R(2) − 2Λ

)
Θ[−Φ1]Θ[Φ2] + S∆ + Sboundary, (B12)

as was argued in the main text. Here, the stress tensor
contributions of the domain wall (the second and third
lines of (B11)) come from the the S∆ which we argued
is independent of η0 even though the expression of Tµν
might have η0 dependence depending on the coordinate
system.

Appendix C: geodesics and Christoffells

For reference the geodesic equations of dS in
conformal coordinates are

∂2η

∂σ2
+ tan η

(
∂η

∂σ

)2

+ tan η

{(
∂ψ

∂σ

)2

+ sin2 ψ

[(
∂θ

∂σ

)2

+ sin2 θ

(
∂φ

∂σ

)2]}
= 0 (C1)

∂2ψ

∂σ2
+ 2 tan η

∂η

∂σ

∂ψ

∂σ
− sinψ cosψ

[(
∂θ

∂σ

)2

+ sin2 θ

(
∂φ

∂σ

)2]
= 0 (C2)

∂2θ

∂σ2
+ 2 tan η

∂η

∂σ

∂θ

∂σ
+ 2 cotψ

∂ψ

∂σ

∂θ

∂σ

− sin θ cos θ

(
∂φ

∂σ

)2

= 0 (C3)

∂2φ

∂σ2
+ 2 tan η

∂η

∂σ

∂φ

∂σ
+ 2 cotψ

∂ψ

∂σ

∂φ

∂σ
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+ 2 cot θ
∂θ

∂σ

∂φ

∂σ
= 0. (C4)

The geodesic equations for the hats (Milne universe)
in the coordinates used in (A4) are

∂2τ

∂σ2
= 0 (C5)

∂2ψ

∂σ2
+ 2 tan [ψ + η0]

(
∂ψ

∂σ

)2

− cos [ψ + η0] sinψ

cos η0

×

[(
∂θ

∂σ

)2

+ sin2 θ

(
∂φ

∂σ

)2]
= 0 (C6)

∂2θ

∂σ2
+

2 cos η0

sinψ cos [ψ + η0]

∂ψ

∂σ

∂θ

∂σ
− sin θ cos θ

(
∂φ

∂σ

)2

= 0

(C7)

∂2φ

∂σ2
+

2 cos η0

sinψ cos [ψ + η0]

∂ψ

∂σ

∂φ

∂σ
+ 2 cot θ

∂θ

∂σ

∂φ

∂σ
= 0.

(C8)
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