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Abstract

We consider Deep Inelastic Scattering (DIS) thought experiments in unitary Con-

formal Field Theories (CFTs). We explore the implications of the standard dispersion

relations for the OPE data. We derive positivity constraints on the OPE coefficients of

minimal-twist operators of even spin s ≥ 2. In the case of s = 2, when the leading-twist

operator is the stress tensor, we reproduce the Hofman-Maldacena bounds. For s > 2 the

bounds are new.

1. Introduction and Summary

Conformal field theories (CFTs) in d spacetime dimensions are described first and

foremost by correlation functions of local operators. The Operator Product Expansion



(OPE) fixes these in terms of the spectrum of local operators and their three-point func-

tions. Conformal symmetry determines the three-point functions up to a set of numbers.

The spectrum of unitary CFTs is constrained by unitarity bounds, which follow from the

operator-state correspondence and the requirement that states have positive norm [1-3].

There are, however, less obvious bounds coming from, for example, positivity of energy

correlators [4], deep inelastic scattering sum rules [5,6], and causality [7].

In the case of energy correlators [4], one demands positivity of the energy flux at

infinity integrated over all times. In the simplest case of a state created by a local operator

with a given momentum this leads to new constraints on the three-point functions of

operators with spin and the stress-energy tensor of the type 〈O†
µ1...µs

TµνOν1...νs
〉. The

positivity of the integrated energy flux is a plausible assumption, but one may wonder

whether there is an independent argument for it. There have been a couple of proposals in

the literature: in [8] the energy flux positivity has been derived from nontrivial assumptions

about the OPE and the spectrum of non-local operators. Understanding the properties of

these non-local operators and their OPE in unitary CFTs is an open problem. Another

proposal has been put forward in [9], where the OPE of two stress-energy tensors has been

extrapolated beyond the region of its validity to argue the energy flux positivity.

In [5,6] it was shown that by considering a setup where a particle with spin is scattered

off a massive state, one can relate (using the optical theorem) the positivity of the inclusive

cross section (unitarity requires the cross section to be positive) with the OPE data, thereby

placing constraints on the latter1. This leads to the convexity property of the minimal

twist operators which appear in the OPE of two Hermitian-conjugate operators. In this

paper we use a similar deep inelastic scattering (DIS) setup to derive the positivity of the

energy flux and related constraints on the OPE data for operators with spin. The idea of

using DIS together with scale invariance is not new - for an example, see [10]. We also

discuss how to formulate the DIS experiment purely in a CFT without considering a flow

to a gapped phase.

1 The assumption in [6] involves the existence of a relevant operator which induces an RG flow

terminating in a gapped phase; the scattering experiment involves the lightest particle in that

gapped theory. Here we will argue that this additional structure is not necessary.



The results of our paper can be summarized as positivity constraints on the coefficients

of the operator product expansion2

O†
jOj ∼

∑

m

a∗s,mOτ∗,s + . . . , (1.1)

where Oτ∗,s is the minimal twist operator of even spin s (the twist is defined as τ = ∆− s

where ∆ is the conformal dimension and s is the spin), the index m refers to the different

tensor structures which appear in the DIS sum rules, and the dots stand for the contribution

of higher twist operators. Then the coefficients a∗s,m satisfy the following conditions:

a∗2,m ≥ 0, m = 0, ..., j ,

a∗s,m1
a∗s,m2

≥ 0 , m1, m2 = 0, ..., j .
(1.2)

In the case of s = 2 the bounds above (1.2) are the familiar Hofman-Maldacena bounds

[4,12] because the minimal twist spin two operator is always a stress tensor.

In fact, we can obtain more general bounds by considering a four-point function of

the type

〈O†
jOjÕ†

j̃
Õj̃〉 . (1.3)

As before, we denote the minimal-twist operators which appear in the expansion of the

correlator (1.3) in the s-channel by Oτ∗,s and the corresponding OPE coefficients by a∗s,m

and ã∗s,m. Then a more general set of constraints derived from DIS can be formulated as

a∗s,m1
ã∗s,m2

≥ 0 , m1 = 0, ..., j, m2 = 0, ..., j̃ . (1.4)

In the course of deriving the DIS sum rules, we assumed a certain behavior for the

scattering amplitudes in the Regge limit. This translates into the lowest spin sc for which

we can trust the sum rules. Thus, strictly speaking, our argument implies (1.4) only for

s ≥ sc, where sc is some unknown number which depends both on the theory and the

external operators. However, when the external operators are energy momentum tensors,

then there is evidence that sc = 2. We will discuss this point in detail below.

The ideas explained here have various applications for holographic theories, but we

will pursue them elsewhere [13]. One simple example that makes contact with [7],[14] is

2 Three-point functions of operators with spin were analyzed in [11]. a∗
s,m are certain linear

combinations of the structures from that paper as explained in detail in the main body of the

present note.



to consider a quartic scalar coupling in the bulk ∼ λ(∂ϕ)4. Denote the operator dual to

ϕ by O. The interaction ∼ λ(∂ϕ)4 shifts the dimension of the spin-two operator O∂µ∂νO
to 2+2∆O − λ. Therefore, convexity is obeyed only if λ > 0, as demanded by causality in

the bulk [15].

The rest of the paper is organized as follows. In section 2 we consider the DIS exper-

iment with gravitons and derive constraints on the OPE coefficients of two stress tensors

in a unitary CFT. In section 3 we generalize these considerations to the case of generic op-

erators. In section 4 we derive a relation between the bounds obtained from the positivity

of the energy flux and the DIS experiment. In section 5 we comment on how one can set

up the DIS experiment without flowing to the gapped phase. Many technical details are

collected in appendices.

2. Deep Inelastic Scatering

Deep Inelastic Scattering probes the internal structure of matter. The scattering

process consists of bombarding a target with a highly energetic quantum and examining

the final state. DIS was first used to probe the structure of hadronic particles. The setup

is depicted in Fig.1. A lepton emits a virtual photon which strikes a hadron. In principle,

to investigate the structure of the target |P 〉 one may shoot different particles at it. A

natural choice are particles which couple to conserved currents. The options depend on the

theory and the symmetries it preserves. A universal choice to consider is the graviton. We

can couple the stress-energy tensor of the theory to the background graviton and perform

the DIS experiment. More generally, we can couple a source to any operator of the theory.

We also have to specify the state |P 〉. For that we imagine that our theory is gapped

and we denote with |P 〉 the lightest, massive, one-particle state in the system which we

assume to be a scalar.

In the standard treatment of DIS one can relate the deep Euclidean (i.e. ultravio-

let) data to the positive-definite total cross section using dispersion relations. While our

presentation is aimed to be self-contained, one can consult, for instance, the reviews [16,17].

It was already demonstrated in [5,6] that the ideas of DIS can lead to nontrivial

consequences for unitary CFTs. There it was argued that the minimal twist of operators

which appear in the OPE of Hermitian conjugate operators is a monotonic, non-concave

function of spin starting from some s ≥ sc.



Fig 1. A lepton emits a virtual photon which strikes a hadron. The hadron breaks

up into a complicated final state.

In what follows we will discuss the DIS experiment with gravitons and restrict to the

case of a scalar target |P 〉. Later we will argue that it is not necessary to make this series

of assumptions. In the meanwhile, we make these assumptions in order to simplify the

presentation.

2.1. A DIS Experiment with Gravitons

Let us consider the DIS experiment for the case of the stress-energy tensor operator

Tµν(x). A background graviton δgµν(x) couples to the theory via ∼
∫
ddx Tµν(x)δgµν(x).

We imagine that some physical particle emits an off-shell graviton which strikes a state of

the theory. So we have in mind the setup of Fig.1, only with the photon replaced by the

graviton.

A useful intermediate object to consider is the “DIS amplitude.” For that we imagine

an exclusive process, where the graviton strikes the state |P 〉 and the out states are again

a graviton (with the same polarization and momentum) and the same initial state, 〈P |.
This is depicted in Fig.2.

The amplitude for the “graviton-DIS” process depicted in Fig.2 is given by

A(qµ, Pν) =

∫
d4ye−iqy 〈P |T (T (ǫ⋆, y)T (ǫ, 0)) |P 〉 , (2.1)

where the momentum of the target |P 〉 is denoted by Pµ; T (ǫ, y) ≡ Tµν(y)ǫ
µν and ǫµν

is a polarization tensor (ǫ⋆ is the conjugate polarization tensor). We can shift ǫµν →
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Fig 2. The Deep Inelastic Scattering Amplitude. δg∗ stands for a virtual graviton

with momentum qµ.

ǫµν + qν lµ + qµlν with arbitrary lν . This would not affect the two-point function in the

vacuum because of energy-momentum conservation. But here we are dealing with a two-

point function in a nontrivial state so contact terms may contribute. We therefore do

not impose ǫ.q = 0. However, note that if we were to take ǫµν ∼ ηµν then we would

be studying the scattering of the conformal mode of the metric, i.e. the dilaton. These

scattering amplitudes are suppressed at large q because the trace of the energy momentum

tensor vanishes in a conformal field theory. We therefore take the tensor ǫµν to be traceless.

We imagine a general massive (non-conformal, gapped) theory, in which the lightest

state is |P 〉. The above amplitude depends on the mass scales of the theory, on the

polarisation ǫµν , and on two kinematical invariants, i.e., q2 and x = q2

2q.P . We promote x

to a complex variable and study the amplitude for fixed spacelike momentum q2 > 0. Since

|P 〉 is the lightest particle of the theory (which we assume to be a scalar for simplicity),

the above amplitude will have a branch cut discontinuity for −1 ≤ x ≤ 1, as depicted in

Fig.3. The optical theorem relates the discontinuity across the cut in the x-plane to the

square of the forward amplitude, which is positive-definite.

For large (compared to the mass scale) and space-like q2 > 0 we can compute the DIS

amplitude (2.1) with the help of the OPE, which is determined in the ultraviolet Conformal

Field Theory. The resulting expression is a series expansion around x → ∞, valid for fixed

and large q2 > 0. To isolate the coefficient of the s-th power of x in the expansion, one

computes the “s-moment” defined as µs(q
2) =

∮
dxxs−1A(x, q2). As long as the amplitude

vanishes sufficiently fast for small x, we can pull the contour from infinity to the branch

cut and write ∮
dx xs−1A(x, q2) = 2

∫ 1

0

dx xs−1Im[A(x, q2)] , (2.2)



Fig. 3. The analytic structure in the x-plane.

where we assumed that s is even. For odd s the contribution from the left and the right

cut cancel each other.

For (2.2) to be valid for all s ≥ 2 we need to assume that

lim
x→0

A(q2, x) < x−2 . (2.3)

In general we only know that A is bounded by some x−N in this limit. (This is discussed

in [18]; for a recent discussion and references see also [19].) However, there are some pieces

of evidence that (2.3) indeed holds for graviton deep inelastic scattering. One is that the

convexity theorems derived from it in [6] hold in all known examples. The other piece of

evidence is that, as we will show below, by assuming (2.3) we get precisely the bounds

of [4] if we focus on s = 2. We will therefore take (2.3) as an assumption in this section and

revisit it in the next section when we discuss more general DIS gedanken experiments.3

Unitarity implies

Im[A(x, q2)] ≥ 0 , (2.4)

which leads, via (2.2), to ∮
dxxs−1A(x, q2) ≥ 0 , (2.5)

imposing positivity relations on the coefficients of the OPE. These constraints are in ad-

dition to the non-concavity of the minimal twist function.

3 As mentioned in the introduction, the bounds following from s = 2 constrain the allowed

effective theories in AdS. For example, the bound on the sign of λ in the λ(∂φ)4 theory in AdS

recently discussed in [7,14] immediately follows from the convexity of anomalous dimensions,

assuming the s = 2 sum rule converges.



2.2. OPE in DIS Kinematics

Our objective is to evaluate (2.1) with the help of the OPE and investigate the pos-

itivity constraints one obtains from (2.5). We start with the operator product expansion

for two energy-momentum tensors

T (ǫ⋆, y)T (ǫ, 0) =
∑

s=0,2,4···

∑

α

f̂ (α),µ1···µs
s (y, ǫ, ǫ⋆)O(α)

µ1···µs
(0) (2.6)

where s denotes the spin of the operator and α labels operators of the same spin. Actually

there could be operators in other representations in (2.6), for example, operators in mixed

symmetric-antisymmetric representations (see e.g. [20]). Since we are ultimately interested

in using the OPE to evaluate (2.1), we can ignore the representations which have some of

their indices anti-symmetrized because the corresponding expectation values in the (scalar)

state |P 〉 vanish. For a similar reason, we do not include descendants in (2.6); they give a

vanishing contribution because ∂µ〈P |O(x)|P 〉 = 0.

For the operators O(α)
µ1µ2···µs

in the even s symmetric traceless representation which ap-

pear in the OPE (2.6), the expectation values ofO(α)
µ1µ2···µs

in the state |P 〉 are parametrized

as

〈P |O(α)
µ1µ2···µs

(0)|P 〉 = B(α)
s Pµ1

Pµ2
· · ·Pµs

− · · · , (2.7)

where the B
(α)
s are some dimensionful coefficients and the dots stand for trace terms (terms

involving the metric tensor), which we will not need to specify. For example, in the case

of the stress tensor expectation value in a one-particle state, we famously have [21]4

〈P |Tµ1µ2
(0)|P 〉 = Pµ1

Pµ2
. (2.8)

Therefore, the corresponding coefficient BT is determined to be 1.

Conformal symmetry fixes the form of the leading OPE coefficients for small enough

y to be5

f̂
(α)
µ1···µs

(ǫ∗, ǫ, y) = y(τ
(α)
s −2d)

[
â
(α)
s,0 (ǫ⋆.ǫ)yµ1

· · · yµs
+ â

(α)
s,1 (ǫ⋆.ǫ)λκyλyκyµ1

· · ·yµs
(y2)−1+

+ â
(α)
s,2 ((ǫ⋆)κ1κ2yκ1

yκ2
)(ǫλ1λ2yλ1

yλ2
)yµ1

· · · yµs
(y2)−2 + ...

]
,

(2.9)

4 We normalize the one-particle states as follows 〈P ′|P 〉 = (2π)d−1E~P δ
(d−1)( ~P ′ − ~P ).

5 Here ǫ⋆.ǫ = ǫ⋆αβǫ
αβ and (ǫ⋆.ǫ)λκ = ǫ⋆λαǫ

κα.



where the dots denote terms which contain polarization tensors with non-contracted indices

as well as terms subleading in powers of y. Both of these will turn out to be sub-leading

in the kinematics we are considering.

We now substitute (2.9) in (2.1) and take the Fourier transform, leading to

A(qµ, Pµ) =
∑

s=0,2,4,···

∑

α

(ǫ⋆.ǫ)

(
â
(α)
s,0B

(α)
s

(
i
∂

∂q
. P

)s

− traces

)
f
(α)
s,0 (q)+

+ (ǫ⋆.ǫ)λκ
(
i
∂

∂qλ

)(
i
∂

∂qκ

)(
â
(α)
s,1B

(α)
s

(
i
∂

∂q
. P

)s

− traces

)
f
(α)
s,1 (q)+

+

(
∂

∂qλ1

∂

∂qλ2
(ǫ⋆)λ1λ2

)(
∂

∂qκ1

∂

∂qκ2
ǫκ1κ2

)(
â
(α)
s,2B

(α)
s

(
i
∂

∂q
. P

)s

− traces

)
f
(α)
s,2 (q) + · · ·

,

(2.10)

Here the functions f
(α)
s,m(q) are Fourier transfomations of the “Feynman” propagators, de-

fined as follows

f (α)
s,m(q) =

∫
ddy e−iqy (y2 + iε)

1
2 τ

(α)
s −d−m , (2.11)

and “traces” stands for terms of the form P 2n
(
P. ∂

∂q

)s−2n (
∂
∂q .

∂
∂q

)n
and 2 ≤ 2n ≤ s. We

will soon see that these terms are negligible in the limit we consider.

At this point it is convenient to express the amplitude in terms of the kinematical

invariants, q2, x ≡ q2

2P.q
. We are interested in the regime of large spacelike q2 > 0 but we

work to all orders in x. Therefore, for a given power of x we keep only the leading terms

in the limit q2 → ∞. We obtain:

A(q2, x) =
∑

s

(q2)−τ∗

s,0/2+d/2C∗
s,0x

−s (ǫ⋆.ǫ)
2

+
∑

s

(q2)−τ∗

s,1/2+d/2C∗
s,1x

−s (ǫ
⋆.ǫ)λκqλqκ

q2

+
∑

s

(q2)−τ∗

s,2/2+d/2C∗
s,2x

−s (ǫ
⋆)λ1λ2qλ1

qλ2
ǫκ1κ2qκ1

qκ2

(q2)2
,

(2.12)

where τ∗s,i denotes the twist of the minimal twist operator which contributes to the corre-

sponding polarization tensor structure. A priori we do not have to impose τ∗s,i = τ∗s , but

generically we do expect this to be the case since there is no symmetry principle that sets

some of the tensor structures to zero. Below we assume that

τ∗s,m = τ∗s , (2.13)



unless stated otherwise6.

The “trace” terms have been consistently neglected by invoking the monotonicity of

the twists [6]. Similarly, one can verify that terms containing ǫ.P are irrelevant for our

consideration7. Among the set of operators of a given spin s, only the one with the smallest

twist, τ∗s , has been retained in (2.12). The corresponding coefficients, C∗
s,m, are given by

C∗
s,m = 2τ

∗

s −d−2mπ
d
2
Γ(

τ∗

s −d
2 +m+ s)

Γ(m+
2d−τ∗

s

2 )
B∗

sa
∗
s,m, (2.14)

which can be derived using the Fourier transform (2.11). Explicit expressions for the

a∗s,m in terms of the â∗s,m which appear in (2.10) are given in Appendix A.

As long as we can deform the contour in the complex plane as explained above (2.2),

we can substitute (2.12) into (2.5) to obtain various positivity relations as required by

unitarity, i.e.

C∗
s,m ≥ 0, m = 0, 1, 2 . (2.15)

These three inequalities for each spin are achieved by judicious choices of the polarization

tensor. First, we choose a convenient reference frame for the space-like momentum qµ =

(0, 0, · · · , 0, k). We then organize the polarization tensor ǫµν according to its properties

under the subgroup of rotations which leave qµ invariant. There are three possibilities and

each produces a single constraint

• We can take ǫ01 = ǫ10 = 1 and let all the other components vanish. Then only the

first line in (2.12) remains.

• We take ǫ01 = ǫ10 = ǫ1(d−1) = ǫ(d−1)1 = 1 and all the other components vanish. Only

the second line in (2.12) remains non-zero.

6 One may worry that the large momentum limit of the DIS amplitude is not correctly captured

by the Fourier transform of the OPE [22,23]. We expect this issue not to be relevant here, because

the terms which dominate over the Fourier transform of the OPE in the large momentum limit

come from “semi-local terms” [23] in position space. It would be interesting to show that this is

indeed the case.
7 Both ǫ.P and “trace” terms behave like xm−s with m > 0 for small x. As a result they only

contribute to (2.5) for spins s′ < s. Their contribution behaves like q−2τ∗
s (or higher power) in

the large q2 limit. However, the fact that the twist is a monotonically increasing function of the

spin [6], namely that τs > τs′ , implies that it is subleading compared to the contribution q
−2τ∗

s′

coming from the leading twist operator in the s′ sector.



• We take ǫ00 = ǫ(d−1)(d−1) = ǫ0(d−1) = ǫ(d−1)0 = 1 with the rest of the components set

to zero. In this case, only the last line in (2.12) is non-vanishing.

It is instructive to consider in detail the case s = 2. In this case, the operator of the

smallest twist is none other but the stress energy tensor. Unitarity sets a lower bound

on the twist of all spin s operators τs ≥ d − 2 (and when the inequality is saturated we

get a conserved current)[1,3]. Hence, the energy-momentum tensor is the minimal twist

operator with s = 2 unless the theory has more than one conserved spin 2 current. For the

energy-momentum tensor, we know from (2.8) that BT = 1. It follows that (2.15) directly

imposes bounds on the OPE coefficients of the CFT.

Remarkably, these bounds coincide with the energy flux constraints obtained in [4].

To make this explicit, we should relate the aT,m to the independent OPE coefficients of

TT ∼ T using the formalism of [11,24]. A similar computation in d = 4 was done in [9].

For generic d we get8

aT,0 = − d(2b− c) + a(d2 + 4d− 4)

4(−2b− c(1 + d) + a(−6 + d+ d2))
∼ nv ≥ 0 ,

aT,1 =
1

8

a(d2 + 6d− 8)− b(2− 3d)− 2dc

(−2b− c(1 + d) + a(d2 + d− 6))
∼ nf ≥ 0 ,

aT,2 = − 1

32

d(d− 2)(4a+ 2b− c)

(a(d2 + d− 6)− 2b− c(1 + d))
∼ ns ≥ 0,

(2.16)

where (a, b, c) denote the parameters which determine the three-point function of the stress-

energy tensor in the notations of [24], and (ns, nf , nv) in the basis of structures generated

by free field theories [12]. (2.16) holds in any d ≥ 4. In d = 4, it yields the familiar

expressions in four dimensions [4].

In d = 3 dimensions, there are only two independent conformal free theories (those

of free scalars and of free fermions) and the number of independent parameters in the

three-point function of the stress energy tensor is accordingly reduced to two. In this case,

explicit computation leads to two constraints ns ≥ 0, nf ≥ 0.9

8 See appendix B for details on the derivation of these constraints.
9 Two out of the three structures in (2.12) yield ns ≥ 0 and the other one, nf ≥ 0. In three

dimensions, an additional parity odd structure in the three-point function of the stress energy

tensor is allowed [25,26]. Here and in the rest of this paper, we restricted the discussion to parity

even structures.



Deep Inelastic Scattering allows for a clean separation between infrared physics and

ultraviolet physics. This is a key ingredient in our arguments. In [9] an attempt to use

the OPE beyond its regime of validity has been discussed. We are circumventing this

conceptual difficulty by the DIS analysis, which relates ultraviolet and infrared data by a

contour argument.

Let us now discuss the case of higher spins, s > 2. As explained in [6,27,28] in this

case d− 2 ≤ τ∗s < 2(d− 2) and because of this, the ratio of gamma functions that appears

in C∗
s,m is positive-definite. For spins s > 2 we do not know the sign of B∗

s but we can still

get some mileage out the constraints above since B∗
s does not depend on m. Assuming that

for the minimal twist operator B∗
s 6= 0, we get an infinite set of new bounds for unitary

CFTs

a∗s,m1
a∗s,m2

≥ 0. (2.17)

This product appears naturally in the OPE of the four-point function of stress energy

tensors. For this reason it seems reasonable to hope that the prediction (2.17) can be

tested in future studies of the conformal bootstrap for operators with spin.

3. Deep Inelastic Scattering for Generic Operators

In the previous section we considered the DIS of gravitons which couple to the stress

tensor Tµν . One can naturally generalize this to any source that couples to some operator

Oj(ǫ, x),
10 which is a symmetric, traceless CFT operator of spin j and conformal dimension

∆O that satisfies the unitarity bound ∆O − j ≥ d− 2.

For a generic external operator Oj(ǫ, x) we do not commit on the rate of the decay

of the amplitude for small x (except that it is bounded by some power). We will be more

precise about this issue below.

The DIS amplitude of interest is

A(q, P ) =

∫
ddye−iqy

〈
P |T

(
O†

j (ǫ
⋆, y)Oj(ǫ, 0)

)
|P
〉

. (3.1)

It is convenient to choose the polarization tensor as follows [11]

ǫa1...aj = ǫa1 · · · ǫaj , (3.2)

10 Here Oj(ǫ, x) = Oµ1...µj (x)ǫ
µ1...µj .



where ǫ2 = 0. So we consider

Oj(ǫ, y) ≡ Oa1···aj
(y)ǫa1 · · · ǫaj . (3.3)

By a straightforward generalization of the previous analysis, we obtain an expression for

the DIS amplitude (3.1) in the limit of large q2,

A(q2, x) =
∑

s

(q2)−τ∗/2+∆O−d/2x−s

j∑

m=0

C∗
s,m (ǫ∗.ǫ)j−m (ǫ∗.q)m(ǫ.q)m

(q2)m
, (3.4)

where the constants are defined as C∗
s,m ∝ a∗s,mB∗

s with a proportionality coefficient de-

rived from the Fourier transform (we will give explicit expressions soon) and the asterisk

represents the lowest twist for each spin-s operator in the OPE. Substituting (3.4) into

(2.5) leads (after appropriate choices of the polarisation tensor) to positivity constraints

on the coefficients of the expansion

C∗
s,m ≥ 0, m = 0, 1, · · · , j . (3.5)

Focusing upon the stress energy operator (s = 2) on the right hand side of (3.4), we

find positivity requirements for the OPE coefficients in unitary CFTs. There are in total

(j + 1)-positivity conditions.

It is time to discuss to what extent we can trust (3.5) for all s ≥ 2. The validity of

(2.5) is dependent upon the behaviour of the DIS amplitude for fixed q2 and small x, or

equivalently, large ν = 2P.q. If we assume

lim
x→0

A(q2, x) ≤ x−N (3.6)

for some integer N , the DIS sum rules and the bounds (3.5) would be justified for s ≥ N .

We can try to obtain some information about N indirectly as follows. As previously

mentioned, C∗
s,m is proportional to the OPE coefficient times the expectation value B∗

s up

to an overall number derived from a Fourier transform, as in (2.11). For the case at hand,

of generic external operators of spin-j and conformal dimension ∆O, the relevant Fourier

transform is

∫
ddy eiqy(y2+iε)

1
2 τ

∗

s −∆O−m =
π

d
2 Γ[d/2 + τ∗/2−∆O −m]

Γ[−τ∗/2 +∆O +m]

(
q2/4− iǫ

)−τ∗/2+∆O+m−d/2
.

(3.7)



The precise expression for Cs,m in terms of B∗
s and the OPE coefficients a∗s,m is

Cs,m = 4−β π
d
2Γ[s+m+ τ∗

2
+ d

2
−∆O]

Γ[∆O +m− τ∗

2 ]
a∗s,mB∗

s ,

β = −τ∗

2
+∆O +m− d/2

(3.8)

and is obtained by differentiating (3.7) (s + 2m)–times with respect to qµ. The a∗s,m are

specific linear combinations of the position space â∗s,m, similarly to what happens in the

graviton DIS.

Let us consider now the case of the stress tensor exchange, i.e., τ∗T = d − 2, s = 2.

In this case BT = 1 which leads to aT,m ≥ 0 as long as the numerical factor in (3.8) is

positive definite. For τ∗T = d − 2 and s = 2 the arguments of the gamma functions in

the numerator/denominator of (3.8) are equal to d+m+ 1−∆O and ∆O +m+ 1− d/2

respectively. The latter is positive definite by unitarity but the former is not necessarily

positive. We get that it is positive-definite only for11

∆O ≤ d+ 1. (3.9)

Equivalently, for ∆O > d+ 1 the Fourier-transform above is divergent and we define

it by an analytic continuation. Assuming that the energy flux bounds still hold, we would

get an apparent contradiction for the ∆O for which the ratio of the Γ-functions changes

sign (see appendix C for an explicit computation in the case of scalar, external operators).

We think that this signals the need of subtraction in the sum rule.12 We consider the

example of a free scalar field in appendix D, where the scenario just described is explicitly

realized. Summarizing, for generic operators of conformal dimension ∆O and spin-j, we

expect to trust the x-sum rule and the derived constraints (3.5), in the spin-s sector with

s ≥ sc ≥ ∆O − τ∗

sc

2 − d
2 , where sc is the first spin for which it holds that s ≥ ∆O − τ∗

s

2 − d
2 .

11 When (d − ∆O + 1) is a negative integer the Fourier transform of the integral should be

regulated by adding a local term to cancel the Γ-function pole. The result for the overal coefficient

is still a number of alternating sign.
12 It can be easily seen that doing subtractions in the x sum rule used in the previous section,

automatically projects out all low spin operators from the OPE.



4. DIS vs Energy Correlator: Are The Constraints Always Equivalent?

In this section we show that the constraints one gets from the positivity of the energy

flux in a state produced by a given local operator Oj of spin j imply the constraints

obtained from the DIS s = 2 sum rule. More precisely, for the case of external operators

which are conserved currents, we show that the constraints derived from the DIS sum rule

and those obtained from the positivity of the energy correlators, are equivalent. On the

other hand, for generic operators, the energy correlators constraints are stronger than the

ones which follow from the DIS s = 2 sum rule. The bounds that are associated to s > 2

in DIS do not follow in any simple way from the positivity of the energy flux.

Consider now the energy flux operator, defined as in [4],

E(n) = lim
r→∞

rd−2

∫ ∞

−∞

dt T0in
i(t, rni) , (4.1)

and n = (1, ~n) or equivalently one can define the calorimeter operator in a manifestly

covariant way [29]. The expectation value of the energy flux on the state

|Oj(ǫ, k)〉 =
∫

ddy eikxOj(ǫ, x) |0〉 , (4.2)

obtained by acting with the operator Oj carrying momentum k on the vacuum, is fixed by

rotational invariance up to a few parameters;

〈E(n)〉O.ǫ(k) ∼ 〈Oj(ǫ, k)|E(n)|Oj(ǫ, k)〉 =
(k2)∆

(k.n)d−1

j∑

ℓ=0

Dℓ(ǫ
∗.ǫ)j−ℓ (ǫ

∗.k)ℓ(ǫ.k)ℓ

(k2)
ℓ

. (4.3)

Here we imposed the transversality condition ǫ.n = 0. Notice that usually the polariza-

tion tensor is chosen such that ǫ.k = 0 (see for example, [4]), however for the purpose

of comparison with DIS, the choice above is more convenient. Conformal invariance de-

termines the three-point correlation functions up to a few numbers and thus, the Dℓ can

be expressed as linear combinations of those numbers. Requiring positivity of the energy,

〈E(n)〉 ≥ 0, leads to (j + 1) linear constraints on the parameters Dℓ ≥ 0 or, equivalently,

on the constants which determine the three-point functions 〈OTO〉.
Below we show that the constraints obtained from the computation above in the

ǫ.n = 0 “gauge” are identical to the ones derived from DIS, assuming that we can trust

the s = 2 dispersion relation integral.



4.1. Computing the Energy Correlator

Consider the three-point function 〈O†(x1, ǫ
∗)Tµν(x2)O(x3, ǫ)〉. Together with the two-

point function 〈O†(x, ǫ∗)O(x, ǫ)〉, it can be used to compute two objects: the one-point

energy correlator and the OPE coefficient in O†(x, ǫ∗)O(0, ǫ) ∼ Cµν(x, ǫ)Tµν(0). The letter

is useful to obtain the DIS constraints as discussed in the previous sections. It was observed

in section 2 that in some cases the constraints obtained via the two methods coincide.

In this section we show that the two always produce the same constraints provided

that ǫ.n = 0. First, we consider the energy correlator as defined in [29]. We will use

the formalism of [11] and restrict our discussion on operators which are symmetric and

traceless tensors. The three point function we are interested in is

〈O†
j(x1, ǫ

∗)T (x2, n̄)Oj(x3, ǫ)〉 =
∑

αiV
v1
1 V v2

2 V v3
3 Hh12

12 Hh13
13 Hh23

23

xd+2
12 x

2τ̄−(d+2)
13 xd+2

23

, (4.4)

where τ̄ = ∆+ j and n̄ = (1,−~n) and the exponents vi, hij obey the following constraints

v1 + h12 + h13 = j,

v2 + h12 + h23 = 2,

v3 + h13 + h23 = j.

(4.5)

So different structures are labelled by the {h12, h23, h13}. Of course, on top of these

constraints one should impose the conservation condition or - possibly - permutation sym-

metry. For our argument imposing those is not necessary.

The method we are using is the one of [30]. The relevant notation is introduced in

appendix E. We start by expressing the energy correlator one point function using (4.1)

and (4.4). We then take the limit for the stress tensor approaching null infinity with the

help of appendix F. The result can be expressed as follows

∑
α{h12,h13,h23}V̂

v1
1 V̂ v2

2 V̂ v3
3 Ĥh12

12 Ĥh13
13 Ĥh23

23

(x21.n)
d+2
2 (x2

13)
τ̄−

(d+2)
2 (x23.n)

d+2
2

(4.6)

where we introduced

V̂1 = −x13.ǫ
∗x12.n− ǫ∗.n

x2
13

2

x23.n
, V̂2 =

x13.n

x2
13

, V̂3 = −x13.ǫ x23.n− ǫ.n
x2
13

2

x12.n
,

Ĥ12 = −ǫ∗.n, Ĥ13 = ǫ∗.ǫ x2
13 − 2 x13.ǫ

∗x13.ǫ, Ĥ23 = −ǫ.n.

(4.7)



Setting ǫ.n = 0 leads to further simplifications. The three-point function then reduces to

j∑

h13=0

α{0,h13,0}
(ǫ∗.x13ǫ.x13)

j−h13

x12.n
d+2
2 x23.n

d+2
2

Ĥh13
13 (x13.n)

2

x
2τ̄−(d−2)
13

. (4.8)

Next, we integrate over the position of the detector
∫∞

−∞
d(x2.n). This boils down

to the replacement (x12.n)
−d+2

2 (x23.n)
− d+2

2 → (x13.n)
−(d+1) in the formula above (see

appendix F for the precise formula). Notice that after this replacement the dimensionality

of the object (4.8) is (1 + 2∆) as it should be for a correlator which measures energy.13

The final step in the computation of the energy correlator is the Fourier transform,

which implements the insertion of an operator with a given momentum. This leads to the

following expression for the energy flux one-point function

〈E(n)〉O.ǫ(k) ∼
∫ ∞

0

ds sd
∫

ddx13e
−i(k−sn).x13

∑j
h13=0 α{0,h13,0}(ǫ

∗.x13ǫ.x13)
j−h13(x13.n)

2Ĥh13
13

(x2
13)

τ̄− d−2
2

≥ 0,

(4.9)

where we ignored an overall positive constant. Recall that in the formula above the propa-

gator is the Wightman one and the integral has non-zero support only for (k−sn) time-like

and having positive energy. We will not need to compute this integral explicitly.

4.2. A Computation on the DIS Side

Let us repeat the computation on the DIS side. We start with the analysis of the

OPE. The relevant formula is the following [11]

O(ǫ∗, x13)O(ǫ, 0) ∼ O(0, ∂z)t(x13, ǫ
∗, z, ǫ)x

−(∆1+∆3−∆2+s1+s2+s3)
13 (4.10)

The polynomial t(x13, ǫ
∗, z, ǫ) is fixed by the three point function to be

t(x13, ǫ
∗, z, ǫ) =

∑
α{h12,h13,h23}(x

2
13)

v2+h12+h23(−1)v1+v3 ×

× (ǫ∗.x13)
v1(

x13.z

x2
13

)v2(ǫ.x13)
v3(ǫ∗.z)h12Ĥh13

13 (z.ǫ)h23 .
(4.11)

This leading contribution to the sum rules come from the term h12 = h23 = 0 as explained

before.14 Moreover, we are interested in the case O(0, ∂z) → Tµν . For this case we get

〈P |O(ǫ∗, x13)O(ǫ, 0)|P 〉 ∼ 〈P |T (0, ∂z)|P 〉
(x2

13)
τ̄− d−2

2

j∑

h13=0

α{0,h13,0}(ǫ
∗.x13ǫ.x13)

j−h13(x13.z)
2Ĥh13

13 .

(4.12)

13 The 2∆ piece cancels when we divide by the two-point function, which is given by
H

j
13

(x2
13

)τ̄
.

14 Effectively, this is equivalent to setting ǫ∗.P = ǫ.P = 0.



where “∼” denotes that we neglected the contribution of all the other operators present

in the OPE. Now it is trivial to act with ∂z which boils down to z → p,

〈P |O(ǫ∗, x13)O(ǫ, 0)|P 〉 ∼ 2

∑j
h13=0 α{0,h13,0}(ǫ

∗.x13ǫ.x13)
j−h13(x13.P )2Ĥh13

13

(x2
13)

τ̄− d−2
2

. (4.13)

Finally, we must take the Fourier transform with respect to x13 which, assuming we

can trust the dispersion integral, leads to the following constraint

∫
d4xe−iqx

∑j
h13=0 α{0,h13,0}(ǫ

∗.x13ǫ.x13)
s3−h13(x13.P )2Ĥh13

13

(x2
13)

τ̄− d−2
2

≥ 0, (4.14)

where q is space-like and x2
13 is the usual time-ordered propagator.

4.3. Relation between Energy Correlators and DIS

We will now use the results of subsections 4.1 and 4.2 to find a precise relation between

the energy correlator and the DIS amplitude. Combining equations (4.9) and (4.14) we

can express the energy correlator one-point function as follows

〈E(n)〉O.ǫ(q) ∼
∫ ∞

0

dssdImq2[A2(q
2, ǫ.q, p.q)]q→q−P ;P→sn (4.15)

where A2(q
2, ǫ.q, P.q) is defined as the term in the full DIS amplitude A(q2, ǫ.q, p.q),

A(q2, ǫ.q, P.q) =

∫
ddye−iqy 〈P |T (Oj(ǫ

∗, y)Oj(ǫ, 0)) |P 〉 (4.16)

derived from the OPE coefficient of the stress energy tensor operator. Recall that we

consider polarization tensors satisfying ǫ.n = 0.

Eq. (3.4) allows us to write A2(q
2, ǫ.q, P.q) in the following form

A2(q
2, ǫ.q, p.q) = (2P.q)2

j∑

m=0

(q2− iε)−d−1+∆j−m CT,m (2ǫ.q)m(2ǫ∗.q)m(ǫ∗.ǫ)j−m . (4.17)

where the Fourier transform has been obtained following the Feynmann -iε prescription.

The coefficients CT,m are defined as

CT,m = 4−β π
d
2 Γ[−∆O +m+ d+ 1]

Γ[∆O +m+ 1− d/2]
aT,m

β = ∆O +m+ 1− d ,

(4.18)



where aT,m denote the constant OPE coefficients of the energy momentum tensor. Observe

that the Γ-function in the denominator of (4.18) is positive definite by unitarity but the

one in the numerator is not necessarily positive definite, as discussed in detail in section 3.

The energy flux expectation value in (4.15) depends on Imq2A2(q
2, ǫ.q, P.q) which is

equal to

Imq2A2(q
2, ǫ.q, p.q) = (2P.q)2θ(q0)θ(−q2)×

×
j∑

m=0

C̃T,m (2ǫ.q)m(2ǫ∗.q)m(ǫ∗.ǫ)j−m(−q2)−d−1+∆j−m ,
(4.19)

where C̃m are equal to

C̃T,m =
4−βπ

d
2+1

Γ[∆O +m+ 1− d/2]Γ[∆O −m− d]
aT,m . (4.20)

Note that the product of Γ-functions appearing in C̃T,m is not positive definite either. For

operators of spin-j unitarity implies that ∆O −m − d ≥ (j −m) − 2 whereas for scalars,

i.e., j = m = 0, unitarity leads to ∆O − d ≥ −d
2 − 1. Substituting (4.19) into (4.15) yields

〈E(n)〉 ∼
j∑

m=0

C̃m(2ǫ.q)m(2ǫ∗.q)m(ǫ∗.ǫ)j−m(2n.q)2

×
∫ ∞

0

ds sd+2θ(q0 − s)θ(−(q2 − 2sq.n))
(
−(q2 − 2sq.n)

)∆O−d−m−1

=

j∑

m=0

am(2ǫ.q)m(2ǫ∗.q)m(ǫ∗.ǫ)j−m(2n.q)2θ(q0)θ(−q2)(−q2)∆O−d−m−1

(
q2

2q.n

)d+3

×

× Γ(d+ 3)

Γ(∆O −m+ 3)Γ[∆O +m+ 1− d/2]
(4.21)

Positivity of (4.21) is equivalent to (j + 1) positivity relations, one for each value of m,

obtained by appropriately choosing the polarization tensors (ǫ∗, ǫ). In other words,

〈E(n)〉 ≥ 0 ⇔ am
Γ(d+ 3)

Γ(∆O −m+ 3)Γ[∆O +m+ 1− d/2]
≥ 0 . (4.22)

Notice, that the Γ-functions in (4.22) are now positive definite by unitarity, i.e.,

∆O ≥ d− 2 + j ≥ d− 2 +m ≥ m− 3, ∆O ≥ d− 2 + j ≥ d/2−m− 1 (4.23)



allowing us to write

〈E(n)〉 ≥ 0 ⇔ am ≥ 0, m = 0, 1, · · · , j . (4.24)

Eq. (4.24) establishes the equivalence between the constraints obtained from DIS and

those derived from the positivity of the energy correlators for a certain class of transverse

polarizations. This class of polarizations, exhausts all possible choices for conserved cur-

rents. A generic operator, however, may also have longitudinal polarizations. To examine

in detail what happens for generic operators, we consider below the case of a non-conserved

spin one current.

4.4. Non-Conserved Spin One Current

Let us consider the three-point function which involves two operators of spin one, with

a generic twist. Its general form is [31]

〈O(x1, z1)T (x2, z2)O(x3, z3)〉 =
1

xd+2
12 x

2τ̄−(d+2)
13 xd+2

23

{
a1V

2
2 H13

+
(d− 2)2a2

2

(
V 2
2 V1V3 − V2

2V1H23 + 2V3H12 + V2H13

d− 2
+

2H12H23

(d− 2)2

)

−2(d− 1)a3

(
V 2
2 V1V3 +

V2

2
[V2H13 + V1H23 + V3H12]

)}
.

(4.25)

Here (z1, z2, z3) denote the correponding polarization tensors. The coefficients a2 and

a3 are proportional to the structures 〈JTJ〉 generated in the theory of a free boson and

free fermion respectively for conserved spin one current J . We can compute the energy

correlator as explained above. Stress tensor Ward identities relate this three-point function

to the two-point function 〈O(z1, x1)O(z3, x3)〉 [24]. This can be translated into a relation

between the parameters (a1, a2, a3) appearing in (4.25). To find this relation, we require

instead that the two-point function is correctly reproduced after integrating the energy

flux correlator over the position of the detector. This leads to the following constraint

a1 = −(∆− d+ 1) (a2 + a3) . (4.26)

Notice that for ∆ = d− 1, which corresponds to the case of a conserved current, a1 = 0 as

it should (in this case only two independent structures are expected to appear). Reflection

positivity of the two-point function then yields

〈OO〉 ∼ a2 + a3 > 0 . (4.27)



Computing the energy flux correlator after imposing (4.26), and requiring it to be

positive-definite, results in the following two conditions

a2 < 0, a3 ≥ − a2
(∆− d+ 1)

(∆ + 1)(2∆+ (d− 2)(d− 1))

2∆ + d− 2
,

a2 ≥ 0, a3 > − 2(∆− d+ 1)(∆− 1)

2(∆− d+ 1)(∆− 1) + d∆
a2 .

(4.28)

We should stress here, that in deriving (4.28) we did not require ǫ.n = 0. Notice that when

∆ → d − 1 the solution which corresponds to the first line of (4.28) disappears, whereas

the second line approaches the bounds of conserved currents [4]. Indeed, for ∆ = d− 1 we

recover the usual a2 ≥ 0 and a3 ≥ 0 conditions.

On the other hand, we can compute the DIS bound or, equivalently, restrict our

consideration to ǫ.n = 0 in the energy correlator computation. The result is the same for

a2 ≥ 0 but for the other case we get

a2 < 0, a3 > − a2
(∆− d+ 1)

4(∆− 1) + (d− 4)(d− 2)

4
. (4.29)

It is easy to see that the bounds derived from the positivity of the energy correlator are

stronger than those obtained from DIS, for any ∆ > d− 1.

4.5. Non-Conserved Spin Two Current

Similarly, we computed the energy correlator for a generic non-conserved spin two

current. There are six different structures that appear in the three-point function. Match-

ing to the two-point function after integrating over the position of the detector fixes one of

the constants in terms of the others. We again find that the constraints from the energy

correlator are stronger than the ones from DIS for non-conserved spin-two operator. In

the limit ∆ → d the constraints derived from DIS become equivalent to those required by

the positivity of the energy correlator, as predicted by the general argument above.

5. DIS in a CFT

A consistent unitary CFT should produce correlation functions that are reflection

positive. As is often the case, it is easier to analyze the constraints following from reflection

positivity in Lorentzian signature. Obviously, these constraints should hold independently

of whether or not the CFT admits an RG flow to a gapped phase. In this section we



reformulate the sum rules studied in the previous sections purely in the CFT language.

Instead of a proton we consider the state |P 〉 defined as follows

|P 〉 ≡
∫

ddyeiPyO(y) |0〉 (5.1)

where O(x) is an arbitrary, scalar operator.

The expectation value of the stress energy tensor on the state |P 〉 is determined by

Lorentz invariance up to two numbers,

〈P |Tµν |P 〉 = c1PµPν + c2ηµνP
2 (5.2)

where c1, c2 are some dimensionful coefficients. Conformal invariance allows us to further

express c2 in terms of c1. We will not consider the second term on the right hand side

of (5.2) since it belongs to the so called “trace” terms, whose contribution to the OPE is

negligible for large, spacelike momentum. Instead we show in appendix G that c1, up to

an overall divergent term, is positive-definite. The divergence can be easily regularized;

for example, we can imagine making the norm finite by considering e−
y2
0
+~y2

σ2 for the wave

function.

We next consider the DIS amplitude defined as follows

A(q2, ǫ.q, P.q) =

∫
ddye−iqy 〈P |T (Oj(ǫ

∗, y)Oj(ǫ, 0)) |P 〉conn

=

∫
ddye−iqy

(
〈P |T (Oj(ǫ

∗, y)Oj(ǫ, 0)) |P 〉 − 〈P |P 〉 〈0|T (Oj(ǫ
∗, y)Oj(ǫ, 0)) |0〉

)
,

(5.3)

where operators are ordered as written and T (...) stands for time ordering.

The imaginary part of (5.3) is positive definite. To see this, recall that the imaginary

part of the full correlator is given by the positive-definite Wightman function, and that

the imaginary part of the disconnected piece is independent of x = q2

2P.q
and vanishes for

space-like q2.

Let us recall the analytic structure of A(q2, ǫ.q, P.q). It has discontinuities for (P +

q)2 < 0 and (P − q)2 < 0. These can be rewritten as

− 1

1 + P 2

q2

≤ x ≤ 1

1 + P 2

q2

, (5.4)

where x ≡ q2

2P.q . We can then proceed as before. We have to assume a certain behavior at

infinity to use the dispersion relations but otherwise all the formulae are identical to the

ones in the previous sections. Formulated in this language, B∗
s from sections 2 and 3 are

simply proportional to the corresponding three-point couplings. This is why (1.4) follows.



6. Conclusions

In this paper we considered the DIS experiment in a unitary CFT. The basic object

under consideration is the scattering amplitude (3.1). Using it one can write the standard

sum rules (2.2) which relate the OPE data to the integrated positive-definite cross section.

An interesting case to consider is the graviton DIS in a CFT which flows to a gapped

phase. In this case the structure of the amplitude is given by (2.12) and the positivity of the

cross section leads to the constraints (2.16) which are the well-known Hofman-Maldacena

constraints. More general constraints exist in each even spin sector (2.17). These can be

therefore viewed as generalized Hofman-Maldacena constraints.

We studied the general DIS experiment with some spinning external operators and

elucidated the relation between the bounds produced by DIS and energy correlator con-

siderations. Our first conclusion is that the s = 2 DIS bounds are equivalent to the energy

flux constraints computed for a subclass of polarization tensors. This follows from the

relation (4.15) which is the result of an explicit computation.

Considering the DIS experiment which involves non-conserved spin-one and spin-two

currents, we found that, generically, the constraints obtained from the energy flux positivity

are stronger than those coming from the DIS s = 2 sum rule, as explained in subsection

3.4. The difference between the two methods disappears in the limit when the operators

become conserved. Understanding better the origin of this difference is an important open

problem.

Finally, we reformulated the DIS experiment purely in CFT terms. The role of the

DIS amplitude is played by the four-point correlation function (5.3), with the particular

ordering of operators and a special choice of external wave functions. Positivity of the cross

section translates to positivity of the norm and the usual problem with the dominance of

the unit operator does not appear because of the choice of ordering and kinematics.

In writing the sum rules we assumed a certain behavior of the amplitude in the Regge

limit. We expect that this behavior depends both on the details of the theory and on the

properties of the operators involved. This can be easily seen to be the case for the free

scalar theory (see appendix D). In the bulk of the paper we simply assumed that we can

write the sum rules and derived the consequences. However, for the graviton DIS, it is

legitimate to assume that all the sum rules for s ≥ 2 converge. This produces various

results that are satisfied in all the examples known to us.

Our analysis indicates that there are infinitely more constraints on the three-point

function of spinning operators than have been known before. It would be very interesting



to see what can be learned about them using other methods. These include integrability

[32]; numerical [33] and analytic bootstrap [28]; and casuality [7].

There are several directions in which our analysis can be generalized. One direction

involves considering operators in generic representations of the Lorentz group both for the

probe operator and for the target, including the parity odd structures in d = 3. One may

also consider the odd spin sum rules. In this case the OPE data for the minimal twist odd

spin operators is related to the difference of cross sections of the type σpn − σpn̄ where n̄

refers to an anti-particle. This difference is not known to be positive-definite. The recent

conjecture for bounds on the 〈JJJ〉 three-point coupling put forward in [28], together

with the convergence of the s = 1 sum rule would imply the sign-definiteness of (roughly)
∫∞

0
dx (σpn − σpn̄) ≥ 0. It would be interesting to investigate this further.

Another interesting open avenue is bounding the non-integrated expectation value of

the stress tensor in a given state and deriving the consequences for the OPE. In a classical

theory the expectation value of the stress energy tensor is non-negative. In a quantum

theory however the expectation value can be locally negative but as reviewed in this paper,

the integrated over time expectation value is expected to be non-negative. A more refined

version of this statement is that there are bounds on how negative the local expectation

value of the stress tensor in a given state could be [34,35] . This was recently discussed

in [36,37] and in [38] where bounds on the three-point function of the stress tensor in a

unitary 4d CFT were obtained. It would be interesting to understand if these bounds could

be strengthened and what constraints on the spectrum and the three-point functions of

the CFT they imply.

One of the puzzling features of AdS/CFT is the emergence of locality on the sub-AdS

scale. It is believed [39] that CFTs with large central charge N and large gap in the

spectrum of higher spin currents ∆gap ≫ 1, are described at low energies by Einstein’s

theory in AdSd+1 with all higher-derivative corrections suppressed by the gap ∆−1
gap. Prov-

ing this using purely CFT methods seems to be a necessary and important step in our

understanding of the AdS/CFT correspondence and more generally quantum gravity. An

even more ambitious goal is to show that every theory with such properties is a string

theory. We hope that methods developed in this paper could be useful to make progress

in this direction.

In [40] it was shown, using bulk arguments, that the picture described above follows

from causality in the case of the simplest possible observable, namely the graviton self-

coupling. Showing this for all correlation functions and using purely CFT methods is still

an open problem.
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Appendix A. The relation between a∗s,m and â∗s,m in the TT ∼ T OPE.

In this appendix we present the relation between the Fourier transformed OPE coeffi-

cients â∗s,i and the coefficients a∗s,i which characterize the OPE in position space, as defined

in (2.9).

a∗s,0 = is
(
â∗s,0 +

â∗s,1
2d− τ∗s

+
2â∗s,2

(2d− τ∗s )(2d− τ∗s + 2)

)
,

a∗s,1 = −is4

(
â∗s,1 +

4â∗s,2
2d− τ∗s + 2

)
,

a∗s,2 = isâ∗s,2 .

(A.1)

Appendix B. DIS for the stress-energy tensor operator

Here we explicitly evaluate the aT,m and derive (2.16). Our starting point is eq.(6.38) of

[24]. Requiring that ǫ2 = (ǫ∗)2 = ǫ.P = ǫ∗.P = 0 and neglecting “trace” terms, leads us

to consider only the following terms from eq.(6.38) of [24]:

Â1
µνσραβ(y)CT −→d− 2

d+ 2
(4a+ 2b− c)H1

αβµνσρ(y) +
da+ b− c

d
H2

αβµνρσ(y)+

+
2da+ 2b− c

d(d− 2)
H3

αβµνσρ(y)
(B.1)



Evaluating the Fourier transform together with the appropriate contractions yields:

∫
ddye−iqyǫ∗,µǫ∗,νH1

αβµνσρǫ
σǫρPαP β =

− 1

8

πd/2

Γ(d/2 + 1)

(2ǫ∗.q)2(2ǫ.q)2

(q2)2
(2P.q)2q−2+

+
1

2

πd/2

Γ(d/2 + 1)

(ǫ∗.ǫ)(2ǫ∗.q)(2ǫ.q)

q2
(2P.q)2q−2−

− 1

2

πd/2

Γ(d/2 + 1)
(ǫ∗.ǫ)2(2P.q)2q−2

(B.2)

∫
ddye−iqyǫ∗,µǫ∗,νH2

αβµνσρǫ
σǫρPαP β =

πd/2

Γ(d/2)

(ǫ∗.ǫ)(2ǫ∗.q)(2ǫ.q)

q2
(2P.q)2q−2

∫
ddye−iqyǫ∗,µǫ∗,νH3

αβµνσρǫ
σǫρPαP β = −2

πd/2

Γ(d/2− 1)
(ǫ∗.ǫ)2(2P.q)2q−2

(B.3)

Collecting the appropriate factors from (B.2)-(B.3) leads to (2.16).

Appendix C. Scalar DIS

Here we consider the simplest example of a DIS experiment, where the external oper-

ator is a scalar. Following [24] we consider

〈Tµν(x1)O(x2)O(x3)〉 =
1

xd
12x

2∆−d
23 xd

31

Iµν,σρ(x13)tσρ(X12) (C.1)

where

〈O(x)O(0)〉 = N

x2∆

〈Tµν(x)Tρσ(0)〉 = CT
Iµν,ρσ(x)

x2d

Iµν,ρσ =
1

2
(Iµσ(x)Iνρ(x) + Iµρ(x)Iνσ(x))−

ηµνηρσ
d

Iµν = ηµν − 2
xµxν

x2

(C.2)

and

tµν = a

(
X̂µX̂ν − 1

d
ηµν

)
X̂µ =

Xµ√
X2

(C.3)

and Xij is defined as

Xij = −Xji =
xik

x2
ik

− xjk

x2
jk

, X2
ij =

x2
ij

x2
ikx

2
jk

i = 1, 2, 3, i 6= j, j 6= k, i 6= k . (C.4)



The three point function (C.1) in the limit yµ ≡ (x2 − x3)
µ → 0 yields

〈Tµν(x1)O(x2)O(x3)〉 ≃y∼0
Iµν,ρσ(x13)

x2d
13

(−)d
tρσ(y)

y2∆−d
≃

≃ Cρσ(y)CT
Iµν,ρσ(x13)

x2d
13

⇒ Cρσ(y)CT = (−)d
tρσ(y)

s2∆−d
,

(C.5)

leading to

O(y)O(0) ∼ · · ·+ Cµν(y)T
µν(0) + · · · , (C.6)

where the dots respresent the contributions of other operators in the OPE. We therefore

express Cµν(y) as follows

Cµν(y) =
a

CT

[
1

4(∆− d
2
− 1)(∆− d

2
)
∂µ∂ν

1

y∆− d
2−1

− ηµν
∆− d

d(∆− d
2
)

1

y∆− d
2

]
(C.7)

Cµν does not contribute to conformal Ward Identities as can be immediately seen from

eqs (13.a) and (13.b) of [24]. This is to be contrasted with the ope coefficient Ĉµν in the

ope O(s)Tµν(0) ∼ Ĉµν(s)O(0). In the latter case, the conformal Ward Identities relate

the three point function coefficient a with the coefficient N of the two point function

〈O(x)O(0)〉 in (C.2) as follows (see eq. (6.20) of [24]) :

a = − dN∆

(d− 1)Sd
(C.8)

For a unitary CFT, (C.8) implies that a ≤ 0.

To obtain the contribution of the stress energy tensor in the scalar DIS amplitude

A(x, q2) =
∫
ddye−iqy〈P |O(y)O(0)|P 〉, we simply need to take the Fourier transform of

the ope coefficient (C.7), taking into acount the expectation value of the stress energy

tensor and disregarding the “trace” terms. Explicitly we have that

A(x, q2) = · · · −BT
a

CT

1

4(∆− d
2 − 1)(∆− d

2 )
(P.q)2

∫
ddye−iqyy−∆+d/2+1 + · · ·

= · · · −BT
a

CT
(2q.P )2

1

16

πd/2+1Γ(d−∆+ 1)

πΓ(∆− d/2 + 1)
(q2/4− iε)∆−d−1 + · · ·

= · · · −BT
a

CT

πd/2+1Γ(d−∆+ 1)

πΓ(∆− d/2 + 1)
(q2/4− iε)∆−d+1x−2 + · · ·

(C.9)

Notice that the sign of the term in (C.9) is equal to the sign of the Γ–function in the

numerator. This is because, a < 0 from the Ward Identities and eq.(C.8), BT = 1, and

unitarity requires that CT > 0 and ∆ − d/2 + 1 > 0. As long as ∆ < d + 1, the Γ-

function is positive definite and the positivity constraints from DIS trivially satisfied. On

the other hand, when ∆ > d + 1 the Fourier integral is divergent and the moments not

well-defined. Naively applying the DIS positivity relations (2.5) for this case, would lead

to inconsistencies due to the periodically alternating sign of the Γ-function.



Appendix D. DIS in the free field theory

Let us consider a free massless scalar φ(x) and the DIS amplitude for φn+1(x),

A(P, q) =

∫
ddxe−iqx〈P |φn+1(x)φn+1(0)|P 〉 =

∫
ddx

e−i(q−P )x + e−i(q+P )x

(x2 + iε)n
d−2
2

∼
[(
(q − P )2 − iε

)n d−2
2 − d

2 +
(
(q + P )2 − iε

)n d−2
2 − d

2

]
Γ(d

2
− nd−2

2
)

Γ(nd−2
2

)

=
(
q2
)n d−2

2 − d
2

[(
1− 1

x
− M2

q2
− iε

)n d−2
2 − d

2

+

(
1 +

1

x
− M2

q2
− iε

)n d−2
2 − d

2

]
×

× Γ(d2 − nd−2
2 )

Γ(nd−2
2 )

.

(D.1)

We see explicitly what is happening in this example. The amplitude has an imaginary part

exactly where expected; for −(1 − M2

q2 )−1 ≤ x ≤ (1 − M2

q2 )−1. Moreover, the imaginary

part is positive-definite.

To write the dispersion relations we have to explore the behavior at x → 0. The

amplitude behaves as

A(P, q) ∼ x−(n d−2
2 − d

2 ), (D.2)

for the sum rule to converge we thus get

s0 > n
d− 2

2
− d

2
= ∆− d+ 1. (D.3)

The Γ function which appears in the Fourier transform of the OPE that becomes

negative has the argument

Γ

(
s0 −

(
∆− d+ 1− τ∗ − (d− 2)

2

))
. (D.4)

For the case at hand τ∗ = d− 2 and we see that the convergence of the sum rule goes in

parallel with the positivity of the Γ-function .

Appendix E. Kinematics of the three-point functions

Here we collect some of the notation that we used in the bulk of the paper.

n = (1, ~n), n̄ = (−1, ~n), x.n = −t+ ~x.~n,

x2
ij = −(ti − tj)

2 + (~xi − ~xj)
2, x2

±;ij = −(ti − tj ± iǫ)2 + (~xi − ~xj)
2,

−2Pi.Pj = x2
ij , Zi.Zj = zi.zj , Pi.Zj = xij .zj .

(E.1)



The conformal covariants, as defined in [11], are given by

V1 = V1,23 =
Z1.P2P1.P3 − Z1.P3P1.P2

P2.P3
= −x12.z1x

2
13 − x13.z1x

2
12

x2
23

,

V2 = V2,31 =
Z2.P3P2.P1 − Z2.P1P2.P3

P1.P3
= −x23.z2x

2
12 + x12.z2x

2
23

x2
13

,

V3 = V3,12 =
Z3.P1P3.P2 − Z3.P2P3.P1

P1.P2
= −x23.z3x

2
13 − x13.z3x

2
23

x2
12

,

H12 = −2 (Z1.Z2P1.P2 − Z1.P2Z2.P1) = z1.z2x
2
12 − 2x12.z1x12.z2,

H13 = −2 (Z1.Z3P1.P3 − Z1.P3Z3.P1) = z1.z3x
2
13 − 2x13.z1x13.z3,

H23 = −2 (Z2.Z3P2.P3 − Z2.P3Z3.P2) = z2.z3x
2
23 − 2x23.z2x23.z3.

(E.2)

Appendix F. Computing the energy correlator

To compute the energy correlator we have to first take the limit limx2.n̄→∞(x2.n̄)
d−2

of (4.4). Here we write down some useful formulae which allow us to analyze the limit

easily15

lim
x2.n̄→∞

x2
12 = −x2.n̄ x12.n, lim

x2.n̄→∞
x2
23 = x2.n̄ x23.n,

lim
x2.n̄→∞

x12.z1 = −1

2
x2.n̄ z1.n, lim

x2.n̄→∞
x23.z3 =

1

2
x2.n̄z3.n,

lim
x2.n̄→∞

x13.z1 = x13.z1, lim
x2.n̄→∞

x13.z3 = x13.z3,

lim
x2.n̄→∞

x23.z2 = x2.n̄, lim
x2.n̄→∞

x12.z2 = −x2.n̄,

(F.1)

Using (F.1), we find that the covariant structures of (E.2) can be expressed in this limit

as follows

V1 → −x13.z1x12.n− z1.n
x2
13

2

x23.n
, V2 → (x2.n̄)

2x13.n

x2
13

, V3 → −x13.z3x23.n− z3.n
x2
13

2

x12.n
,

H12 → −(x2.n̄)
2z1.n, H13 → z1.z3x

2
13 − 2x13.z1x13.z3, H23 → −(x2.n̄)

2z3.n.

(F.2)

Thus, in the limit we get

1

(x2
12)

d+2
2 (x2

13)
τ̄−

(d+2)
2 (x2

23)
d+2
2

→ 1

(x2.n̄)d+2

1

(x21.n)
d+2
2 (x2

13)
τ̄−

(d+2)
2 (x23.n)

d+2
2

∑
αiV

v1
1 V v2

2 V v3
3 Hh12

12 Hh13
13 Hh23

23 → (−(x2.n̄)
2)v2+h12+h23

∑
αiV̂

v1
1 V̂ v2

2 V̂ v3
3 Ĥh12

12 Ĥh13
13 Ĥh23

23

(F.3)

15 x2 = x2.n

2
n̄+ x2.n̄

2
n.



Notice that due to (E.2), v2 + h12 + h23 = s2 = 2, and the correlator has the expected

asymptotic behavior 1
(x2.n̄)d−2 .

Gathering the results above, we conclude that after taking the limit, the correlator

reduces to ∑
α{h12,h13,h23}V̂

v1
1 V̂ v2

2 V̂ v3
3 Ĥh12

12 Ĥh13
13 Ĥh23

23

(x21.n)
d+2
2 (x2

13)
τ̄−

(d+2)
2 (x23.n)

d+2
2

(F.4)

where we introduced

V̂1 = −x13.z1x12.n− z1.n
x2
13

2

x23.n
, V̂2 =

x13.n

x2
13

, V̂3 = −x13.z3x23.n− z3.n
x2
13

2

x12.n
,

Ĥ12 = −z1.n, Ĥ13 = z1.z3x
2
13 − 2x13.z1x13.z3, Ĥ23 = −z3.n.

(F.5)

For the integration over the position of the detector recall the following formula

∫ ∞

−∞

d(x2.n)
1

(x12.n)a(x23.n)b
=

2πi

(x13.n)a+b−1

Γ(a+ b− 1)

Γ(a)Γ(b)
. (F.6)

Appendix G. Positivity of the expectation value of the stress-energy tensor in

a CFT

Let us define a state |P 〉 as follows:

|P 〉 ≡
∫

ddxeiPxO(x) |0〉 (G.1)

where O(x) is an arbitrary, scalar operator. The expectation value of the stress energy

tensor on the state |P 〉 is determined by Lorentz invariance up to two numbers,

〈P |Tµν |P 〉 = c1PµPν + c2ηµνP
2 (G.2)

where c1, c2 are some dimensionful coefficients. Conformal invariance allows us to further

express c2 in terms of c1. Here we will not consider the second term on the right hand

side of (G.2) since it belongs to the so called “trace” terms, whose contribution in the ope

is negligible for large, spacelike momentum. We would like instead to determine explicitly

c1 and show that, up to an overall divergent term which can be easily regularized, it is

positive definite.

To this end, we consider the following three point function in the CFT

∫
ddxddyeiPxe−iPy 〈O(y)Tµνn

µnνO(x)〉 (G.3)



with nµ some null vector and O(x) the scalar operator of conformal dimension ∆ associated

to the state |P 〉. For convenience, will work in light-cone coordinates with

ds2 = −dx+dx− + δijdx
idxj (G.4)

and choose nµ = (0, 1, 0, · · · , 0) so that we only need to compute 〈P |T−−|P 〉. With this

choice we expect that 〈P |Tµν |P 〉 = c1(P.n)
2 = c1

4
(P+)2, disregarding for the moment

possible divergences.

We start from the general form of the three point function of two scalar operators and

the stress energy tensor, as given in (3.1) of [24]

〈O(y)Tµν(0)O(x)〉 = 1

ydxd(y − x)2∆−d
tµν(X23) (G.5)

where

tµν(X) = a(X̂µX̂ν − 1

d
ηµν), X̂µ =

Xµ√
X2

. (G.6)

Xij is defined as follows

Xij = −Xji =
xik

x2
ik

− xjk

x2
jk

, X2
ij =

x2
ij

x2
ikx

2
jk

i 6= j, j 6= k, k 6= i . (G.7)

Note that the overal coefficient a is completely determined by Ward Identities (see eq.

(6.20) of [24]),

a = − dN∆

(d− 1)Sd
< 0 (G.8)

with N the normalization constant of the two-point function of O(x) and Sd the volume

of the d-dimensional sphere. Using (G.5)-(G.7) leads to

〈P |T−−|P 〉 = a

4

∫
ddxddy

(y+x2 − x+y2)2eiP (x−y)

(y2 + iǫy0)
d
2+1(x2 − iǫx0)d/2+1 [(y − x)2 + iǫ(y0 − x0)]

∆−d/2+1

(G.9)

where the −iǫ presiption is the appropriate one for the Wightman correlator. We split the

integral in (G.9) into three separate integrals by expanding the square in the numerator.

Each integral is of the form

Im,ℓ(P ) =

∫
ddxddy

(y+x2)m(x+y2)ℓeiP (x−y)

(y2 + iǫy0)
d
2+1(x2 − iǫx0)d/2+1 [(y − x)2 + iǫ(y0 − x0)]

∆−d/2+1

(G.10)

where m, ℓ = 0, 1, 2 and m+ ℓ = 2.



First, we express each factor in the denominator as follows

x2 − iǫ = (x+ + iǫ)

(
−x− +

∑

i

(xi)2

x+
− iǫ

)

y2 + iǫ = (y+ − iǫ)

(
−y− +

∑

i

(yi)2

y+
+ iǫ

)

(y − x)2 + iǫ = (y+ − x+ − iǫ)

(
−y− + x− +

∑

i

(yi − xi)2

y+ − x+
+ iǫ

)
.

(G.11)

Then, we introduce Schwinger parameters

(
−x− +

∑

i

(xi)2

x+
− iǫ

)d/2+1−m

=
id/2+1−m

Γ(d/2 + 1−m)

∫ ∞

0

ds1s
d/2−m
1 e

−is1

(
−x−+

∑
i

(xi)2

x+ −iǫ

)

(
−y− +

∑

i

(yi)2

y+
+ iǫ

)d/2+1−ℓ

=
(−i)d/2+1−ℓ

Γ(d/2 + 1− ℓ)

∫ ∞

0

ds2s
d/2−ℓ
2 e

is2

(
−y−+

∑
i

(yi)2

y+ +iǫ

)

(
−y− + x− +

∑

i

(yi − xi)2

y+ − x+
+ iǫ

)∆−d/2+1

=
(−i)∆−d/2+1

Γ(∆− d/2 + 1)
×

×
∫ ∞

0

ds3s
∆−d/2
3 e

is3

(
−y−+x−+

∑
i

(yi
−xi)2

y+−x+

)

,

(G.12)

and over (x−, y−) to obtain (2π)2δ(s1 + s3 − p+/2)δ(−s2 − s3 + p+/2)θ(P
+

2 − s3). The

integration over (s1, s2) then becomes trivial; amounts to setting s1 = s2 = P+

2
− s3 and

multiplying with an overall factor of (1/2)2 – note that the integrations of the δ-fucntions

are from zero to infinity.

In what follows, we find it convenient to keep the variables s1, s2 and perform the

relevant substitution later. The next step is to perform the integration over the (xi), and

then over the (yi). The former reads

∫ (d−2∏

i=1

dxi

)
exp

(
iP ixi − is1

(xi)2

x+
+ is3

(xi)2

y+ − x+
− 2is3

yixi

y+ − x+

)
=

=
π

d−2
2

(−iA)
d−2
2

exp




−i

∑
i

(
P i − 2s3

yi

y+−x+

)2

4A





(G.13)



and the latter
∫ (d−2∏

i

dyi

)
exp

(
−iP iyi + is2

(yi)2

y+
+ is3

(yi)2

y+ − x+
− i

s23
A

(yi)2

(y+ − x+)2
+ i

s3
A
P i yi

y+ − x+

)
=

=
π

d−2
2

(−iB)
d−2
2

exp





−i

∑
i(P

i)2
(
−1 + s3

A(y+−x+)

)2

4B





(G.14)

where

A ≡ − s1
x+

+
s3

y+ − x+
, B ≡ s2

y+
+

s3
y+ − x+

− s23
A(y+ − x+)2

. (G.15)

Next follows the integration over the variables x+, y+, i.e.,

∫
dx+ dy+

(−AB)
2−d
2 exp

{
−i

−→
P

2

4

((
−1+

s3
A(y+−x+)

)2
B + 1

A

)
− iP

−

2 x+ + iP
−

2 y+

}

(x+ + iǫ)d/2+1−ℓ−m(y+ − iǫ)d/2+1−m−ℓ(y+ − x+ − iǫ)∆−d/2+1
.

(G.16)

A little bit of algebra combined with the substitution s1 = s2 = P+

2 − s3 yields

−AB =
P+

2

(P
+

2 − s3)

x+y+
(
−1 + s3

A(y+−x+)

)2

B
+

1

A
=

2(y+ − x+)

P+

(G.17)

which allows us to express (G.10) as follows

Im,ℓ(P ) = C θ

(
P+

2

)∫ P+/2

0

dss∆−d/2

(
P+

2
− s

)d/2−m−ℓ+1

×

×
∫

dx+dy+
e−i P2

2P+ (y+−x+)

(x+ + iǫ)2−ℓ−m(y+ − iǫ)2−ℓ−m(y+ − x+ − iǫ)∆−d/2+1

(G.18)

where

C ≡
(
P+

2

)1−d/2
π2i−m(−i)−ℓ+∆−d/2+1πd−2

Γ(d/2 + 1−m)Γ(d/2 + 1− ℓ)Γ(∆− d/2 + 1)
. (G.19)

The integral over s is equal to

∫ P+/2

0

dss∆−d/2

(
P+

2
− s

)d/2−m−ℓ+1

=

(
P+

2

)∆+2−m−ℓ∫ 1

0

duu∆−d/2(1− u)d/2−m−ℓ+1 =

=

(
P+

2

)∆+2−m−ℓ
Γ(∆− d/2 + 1)Γ(d/2−m− ℓ+ 2)

Γ(∆−m− ℓ+ 3)
(G.20)



The integral over x+, y+ yields

∫
dx+dy+

e−i P2

2P+ (y+−x+)

(x+ + iǫ)2−ℓ−m(y+ − iǫ)2−ℓ−m(y+ − x+ − iǫ)∆−d/2+1
−→ℓ+m=2

=
(2π)2i∆−d/2+1

Γ(∆− d/2 + 1)
θ

(
P+

2

)
θ

(
− P 2

2P+

)(
− P 2

2P+

)∆−d/2−1 ∫ ∞

0

duu∆−d/2δ2(1− u)

(G.21)

where we have isolated the divergent term in the dimensionless integral over u.

Gathering all the results, bearing in mind that Eq. (G.9) can be written as

〈P |T−−|P 〉 = a

4
(I2,0 − 2I1,1 + 2I0,2) (G.22)

leads to

〈P |T−−|P 〉 = ã θ

(
P+

2

)
θ
(
−P 2

) (
−P 2

4

)∆−d/2−1 (
P+

2

)2

(G.23)

where

ã = −a

4
(2πd+2)2

d− 1

Γ(d/2 + 1)Γ(d/2)

1

Γ(∆ + 1)Γ(∆− d/2 + 1)
lim
ǫ→0

δ(ǫ) (G.24)

Given that a < 0, for any unitary theory where ∆− d/2 + 1 ≥ 0, ã is positive definite.
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