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Gravitational wave searches to date have largely focused on non-precessing systems. Including
precession effects greatly increases the number of templates to be searched over. This leads to a
corresponding increase in the computational cost and can increase the false alarm rate of a realistic
search. On the other hand, there might be astrophysical systems that are entirely missed by non-
precessing searches. In this paper we consider the problem of constructing a template bank using
stochastic methods for neutron star - black hole binaries allowing for precession, but with the
restrictions that the total angular momentum of the binary is pointing towards the detector and
that the neutron star spin is negligible relative to that of the black hole. We quantify the number
of templates required for the search, and we explicitly construct the template bank. We show that
despite the large number of templates, stochastic methods can be adapted to solve the problem. We
quantify the parameter space region over which the non-precessing search might miss signals.

I. INTRODUCTION

Binary systems consisting of neutron stars and black
holes are key targets for the present generation of gravi-
tational wave detectors such as Advanced LIGO [1] and
Advanced Virgo [2]. The LIGO detectors have to date
observed two such events with high significance, labeled
GW150914 [3] and GW151226 [4] and a third LVT151012
with lower significance [5]. All three of these are binary
black hole coalescence events. The searches for these
events a priori cover a wide range of masses and spins
magnitudes, but use only waveforms for which the spins
of the individual compact objects are assumed to be com-
pletely aligned or completely anti-aligned with the orbital
angular momentum [6]. Misalignments between the spin
and orbital angular momentum generally causes preces-
sion of the orbital plane and additional modulations of
the gravitational waveforms [7]. While follow-up stud-
ies for accurate parameter estimation do include preces-
sion [8], including these waveforms directly in the initial
search pipelines is challenging; the dimensionality of the
parameter space to be searched is increased, implying
a significant increase in the total number of templates.
This is challenging not only for computational reasons,
but also because a larger number of independent tem-
plates leads to a larger probability for false alarms. Nev-
ertheless, if a significant number of NSBH systems in
our universe display precessional modulations that can-
not be accurately recovered by spin-aligned templates,
the search pipeline could potentially detect more events
if precession effects were to be included [9].

For searches based on matched filtering with mod-
eled waveforms, the traditional method of constructing
a template bank was to use the parameter space met-
ric [10, 11] for determining the spacing between adjacent
templates. This method has been successfully used to

search for non- spinning systems [12] and has also been
applied to aligned- spin systems [13, 14]. For precessing
waveforms however, the parameter space metric is not
yet sufficiently well understood for it to be directly used
to place templates. The main issue is that to place a
lattice of templates, one needs a coordinate system on
the parameter space where the metric is explicitly flat.
It is not clear whether such a coordinate system exists
(even in any approximate sense) for the space of pre-
cessing waveforms. In situations where such geometric
template placement methods are not available, stochas-
tic methods are commonly employed [15, 16]. This also
includes the most recent searches over the first Advanced
LIGO observing run [5, 6].

The basic idea of stochastic methods is to place tem-
plates at random points in the parameter space and to
remove templates which happen to lie very close to other
templates. These stochastic methods are generally ap-
plicable but they are typically less efficient than the ge-
ometric methods, i.e. they require more templates than
a geometric bank to achieve the same coverage over the
same parameter space (however, stochastic methods be-
come more efficient in higher dimensions and can be com-
petitive with geometric methods [17]). Moreover, the
stochastic template placement procedure can be compu-
tationally demanding for large parameter spaces, which
is in fact the case for precessing waveforms.

In this paper we shall meet this computational chal-
lenge and show how stochastic methods can be applied
to cover the space of precessing waveforms. The main
computational problem we face is that for every proposed
template, one typically compares it with all previously
accepted templates to decide whether or not it should be
accepted. We shall see that with an appropriate choice
of coordinates, it is possible to break up the parameter
space into smaller regions, and treat each region indepen-
dently. This paper presents the largest template bank
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constructed thus far with stochastic methods for binary
coalescence searches.

Specifically, we shall focus on neutron-star – black-hole
(NSBH) systems, but we expect that our method would
apply to other source systems as well. We shall consider
NSBH binaries with a black hole of mass M1 and a neu-
tron star mass of M2 such that 2M� < M1 < 16M�,
and 1M� < M2 < 3M�. Since neutron star spins are
expected to be small we shall ignore them, but the black
hole spin will be allowed to take any magnitude which
is meaningful in the Kerr metric and any direction [18].
We shall use the frequency domain waveform model pre-
sented in [19]. This waveform model does not, so far, con-
tain the merger and ringdown portions. For the parame-
ter space above, and for the expected sensitive frequency
range of the Advanced LIGO and Virgo detectors, the in-
spiral portion of the waveform will have the largest con-
tribution to the signal-to-noise ratio. Thus, the merger
and ringdown phases will not be important for our pur-
poses. However, the methods used in our study should be
useful also for higher mass systems where merger effects
are more important.

The most effectual implementation of a stochastic
NSBH template bank constructed to date [20] required
approximately 1.6 million, assuming the detector to be
in the “early Advanced LIGO” configuration [21]. This
construction used a new detection statistic based on max-
imizing the signal-to-noise ratio (SNR) over sky-positions
and required a minimal match criteria of 90% when com-
paring each proposed template with previously accepted
ones, as opposed to the more conventional 97%. Using
the conventional 97% value would lead to a much larger
number of templates. Moreover, as the detector improves
its low frequency sensitivity over the next few years, the
number of templates increases further. The method used
in this paper could be used to deal with both of the above
issues. We shall use the conventional 97% minimal match
value and, for simplicity, we use the conventional SNR
rather than the detection statistic introduced in [20], but
we expect that our method can be adapted to that de-
tection statistic as well.

The plan for the rest of the paper is as follows. Sec.
II briefly sets up notation and the parameters describing
a precessing binary system and the gravitational wave-
form, and outlines the stochastic template placement al-
gorithm. Sec. III describes the stochastic template bank.
Sec. IV compares this precessing template bank with the
aligned spin bank and studies how well it recovers in-
jected signals.

II. BACKGROUND

A. Precessing binaries

Consider an NSBH system consisting of a black hole
with mass M1, spin S, and a neutron star of mass M2 and
zero spin. Let N̂(θ, φ) be the unit vector along the line-

of-sight from the detector to the binary system, and let L
be the orbital angular momentum of the binary. Define
the dimensionless spin of the black hole as χ = |S|/M2

1 .
The component of S along L will be determined by the
quantity κ = Ŝ · L̂, and the component of S orthogonal
to L is

S⊥ = S− (S · L̂)L̂ . (1)

It can be shown that the direction of the total angular
momentum J = L + S is approximately conserved [7],

and that L̂ and Ŝ precess around J. The magnitude of L
decreases steadily because of the emission of gravitational
radiation but the magnitude of S remains constant as
does the angle between L and S. The opening angle β
of the precession cone is given by

cosβ = Ĵ · L̂ . (2)

As the magnitude of L decreases, β should increase in or-
der to maintain the direction of J and the angle between
L and S [7]. However, the precession time-scale is smaller
than the radiation reaction time scale (which determines
the rate at which L decreases). It can be shown [22] that
for the advanced LIGO and Virgo detectors, to a rea-
sonable approximation, L and S precess steadily around
J with a constant opening angle β . The rare case of
transitional precession occurs when J ∼ 0 at some point
during the evolution of the binary system. Finally, α0

is an azimuthal angle that expresses the orientation of L̂
relative to Ĵ in the inertial detector frame and we shall
define the angle θJ as cos θJ = Ĵ · N̂.

For a plane gravitational wave traveling in a direction
ẑ, and a frame (x̂, ŷ) in the plane orthogonal to ẑ, we
define the tensors

e+ab = x̂ax̂b − ŷaŷb , e×ab = x̂aŷb + ŷax̂b . (3)

The gravitational wave can be written as a sum of two
transverse polarizations

hab(t) = h+(t)e+ab + h×(t)e×ab . (4)

It is always possible to find a frame (x̂, ŷ) such that

h+(t) = A+(t) cos 2Φ(t) , h×(t) = A×(t) sin 2Φ(t) ,
(5)

where A+,× are slowly varying amplitudes and Φ(t) is a
rapidly varying phase. For the case of a binary system,
the wave-frame (x̂, ŷ) is tied to the direction of the orbital

angular momentum, and x̂ is taken to be ±N̂ × L̂. The
direction of x in the detector frame defines a polarization
angle ψ and, following [7], we choose the convention:

ψ(t) = tan−1

(
L̂(t) · ẑ− (L̂(t) · N̂)(ẑ · N̂)

N̂ · (L̂(t)× ẑ)

)
. (6)

Note that because of precession, the direction of L
changes in time and thus ψ also changes with time. With
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these conventions, the expressions for h+,× are:

h+(t) = −2πM

rD

[
1 + (L̂(t) · N̂)2

]
cos 2Φ(t) , (7)

h×(t) = −2πM

rD

[
−2 L̂(t) · N̂

]
sin 2Φ(t) , (8)

where D is the distance to the binary system, r is the
binary orbital diameter and M = M1 + M2 is the total
mass. Throughout the paper we shall also use the chirp
mass,

MC = η
3
5M , (9)

and the following quantities related to the mass ratio of
the components,

ν =
M1

M
η =

M1M2

M2
q =

M1

M2
. (10)

It is also convenient to express the black hole spin via
the dimensionless vector χ := S/M2

1 and decompose it

into components parallel and perpendicular to L̂, χ‖ and
χ⊥ respectively. The total dimensionless spin magnitude

is thus χ =

√
(χ‖)

2
+ (χ⊥)

2
.

The detector response functions to these polarizations
are denoted by F+(N, ψ) and F×(N, ψ). If the signal is
parallel to one of these configurations, it is said to be
linearly polarized. In contrast, a signal that can be de-
composed into an equal linear combination of these two
principal directions is circularly polarized. In general,
the signal seen by the detector h(t) will be a linear com-
bination of the two polarizations:

h(t) = h+(t)F+(N̂, ψ(t)) + h×(t)F×(N̂, ψ(t))

= A(t) cos[2Φ(t) + ϕ(t)] , (11)

where

A(t) =
2πM

rD

([
1 + (L̂(t) · N̂)2

]2
F+(θ, φ, ψ(t))

+4 [L̂(t) · N̂]2F×(θ, φ, ψ(t))
)1/2

, (12)

and

ϕ(t) = tan−1

(
2 (L̂(t) · N̂) F×(θ, φ, ψ(t))

[1 + (L̂(t) · N̂)]2 F+(θ, φ, ψ(t))

)
. (13)

In summary gravitational wave signals from an NSBH
precessing binary system can be expressed in terms of the
following parameters: the component masses (M1,M2),
the black hole spin vector S, the overall constant am-
plitude A, the polar angles of total angular momentum
vector (θJ , ψJ), the location of the source (θ, φ), the time
of arrival of the signal t0 and the initial phase φ0. For
the purposes of this paper we have chosen to focus on
“face on” systems, i.e. we assume that J is either aligned
or anti-aligned with N so that θJ = 0◦ or 180◦. For such
cases, ψJ will disappear from the waveform expression.

These systems will be, on the average, more luminous
than edge-on systems and thus more likely to be detected
[9].

For our purposes, the post-Newtonian (PN) formal-
ism provides a reasonable approximation to the observed
gravitational waveform. There are a variety of PN ap-
proximants available which differ in how one deals with
the energy, flux and balance equations (see e.g. [23] for a
recent review). Our goal in this paper is not to study the
differences between various approximants, but is rather
to understand how precession affects the size of the tem-
plate bank. For this purpose, most approximants should
give similar results and our main consideration is com-
putational efficiency. For this purpose, since most of our
computations are in the frequency domain, it turns out
to be very useful to work directly with the Fourier trans-
form of h(t). We shall use the frequency domain model
introduced in [19]. An implementation of this waveform
model is publicly available in [24], where it is called the
“SpinTaylorF2” model.

B. Matched Filtering

Matched filtering is a methodology used to determine
if data from a gravitational wave detector x(t), contains
some signal of known form, h(t), or only Gaussian noise
n(t). Thus, in the absence of a signal,

x(t) = n(t) , (14)

and in the presence of a signal

x(t) = h(t) + n(t) . (15)

If the noise is stationary, we can characterize it by the
single-sided power-spectral-density (PSD) Sn(f) accord-
ing to

〈ñ?(f)ñ(f ′)〉 =
1

2
Sn(f)δ(f − f ′) . (16)

Here the brackets 〈·〉 denote an average over many real-
izations of the noise, and ñ(f) denotes the Fourier trans-
form of n(t).

The PSD is used to define the inner product between
two time-series x(t) and y(t):

(x|y) := 4Re

ˆ ∞
0

x̃?(f)ỹ(f)

Sn(f)
df . (17)

This inner product is used to define the norm of a time
series x(t) and a normalized time series x̂ in the usual
way:

||x|| := (x|x)1/2 , x̂ = x/||x|| . (18)

The likelihood function Λ can be shown to be [25, 26]

log Λ = (x|h)− 1

2
(h|h) . (19)
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The idealized procedure to search for a signal with un-
known parameters is to compute log Λ for all points (suit-
ably discretized) in a given parameter space and to find
the point where log Λ is maximum. The likelihood can
be analytically maximized for certain parameters (such
as the initial phase φ0 and an overall constant amplitude)
or by a Fast-Fourier transform (such as the time of arrival
t0) (see e.g. [27]), while other parameters (the so-called
intrinsic parameters) must be explicitly maximized over.
These intrinsic parameters we denote as λi. (We shall
consider only binary systems with circular orbits and we
shall also not consider any parameters associated with
the internal structure of the neutron star.)

A template bank is a collection of waveforms {hI} la-
beled by the index I. Given a template bank, we would
like to know how effective it is in recovering a given signal
h. This is quantified in terms of a number, namely the
fitting-factor (FF) defined as,

FF (h, {hI}) = max
I
µ(h, hI) , (20)

where

µ(h, hI) = max
t0,φ0

(ĥ|ĥI(t0, φ0)) (21)

is the match between h and hI . µ(h, hI) represents the
fraction of the optimal SNR of signal h captured by the
template hI . The fitting factor depends on a particular
template bank and a particular target waveform h. Since
we will compute this for a fixed template bank, we usually
drop its dependence on {hI} and write FF (h).

The loss in SNR can be quantified by the match be-
tween a signal and the nearest template and can be
formulated geometrically [10, 28]. The match between
nearby points in parameter space can be approximated
as

µ(ĥ(λ), ĥ(λ+ dλ)) = 1− gijdλidλj + . . . (22)

with the metric

gij = −1

2

∂2µ
(
ĥ(λ), ĥ(λ′)

)
∂λ′i∂λ

′
j

∣∣∣∣∣∣
λ′=λ

. (23)

This metric1 is useful in quantifying the density of tem-
plates. The higher the metric determinant, the higher
the required template density for a fixed given allowed
SNR loss (which corresponds to a given minimal match).

For aligned waveforms, there is an analytic expression
for the metric [13, 14]. However for the NSBH precessing
parameter space, we do not have an analytic way to calcu-
late this metric [29]. We can approximate the precessing

1 For Gaussian stationary noise, one can show that the metric gij

is equivalent to constructing the scalar product 1
2

(
∂ĥ
∂λi

∣∣∣ ∂ĥ
∂λj

)
and projecting out the parameters t0 and φ0.

metric by calculating the numerical derivative for small
perturbations in the waveform parameters (δλ→ 0). The
numeric metric is useful because it provides an indepen-
dent validation of the stochastic bank. For validation, we
can qualitatively compare the distribution of the deter-
minant of the metric, and the distribution of templates
in the stochastic bank. As we shall see later, the den-
sity of templates placed in the face-on bank will corre-
late with the regions of the NSBH parameter space where
the invariant volume element, i.e. the square root of the
determinant of gij is high.

C. Stochastic Placement

The points in our stochastic template bank are pop-
ulated using the following steps. The starting point for
these could be either an empty template bank or an ex-
isting “seed” template bank [15, 16]:

1. Propose a physically viable point in parameter
space p following some probability distribution (we
call this distribution the proposal distribution). If
we are starting with an empty bank, then the first
proposed point will always be accepted.

2. Calculate the match of the waveform at p with all
the waveforms previously accepted into the bank.

3. Append the candidate to the bank if all the matches
are below some threshold, known as the minimal
match. We shall take the minimal match to be
97%.

4. Repeat the previous steps until a convergence con-
dition is achieved. We shall take the convergence
criteria to be: continue the process until, in the
previous 1000 trials, only 30 or fewer points have
been accepted.

The resulting template bank will, of course, depend
on the proposal distribution that we start with. If we
had sufficiently reliable astrophysical information on spin
orientation, mass distributions etc., we could tailor the
template bank appropriately. In the absence of any such
prior information, we need to apply some other criteria
for the proposal distribution. A well motivated choice is
to choose the distribution according to the value of the
determinant of the metric gij (this is the choice made
in e.g. [17]); indeed a geometric placement algorithm
would satisfy this condition. However, this is not the
only possibility and we shall discuss our choice below.

D. Proposal Distribution

We shall start with the assumption that the binary sys-
tem is face-on, i.e. J is pointing either directly towards or
directly away from the detector and we shall fix the sky-
location to be directly overhead the detector. With these
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assumptions, we are left with a five dimensional problem:
the two masses M1 and M2, and the three components
of the black hole spin S.

Even with these assumptions, the full problem is a sig-
nificant computational challenge. An important issue is
that the stochastic placement algorithm is not easy to
parallelize. Imagine trying to divide the full parameter
space into smaller sub-regions and applying the proce-
dure outlined above to each of these sub-regions. Note
that in the second step of the procedure outlined in the
previous section, we need to check the match of a new
waveform with all of the previously accepted waveforms
in the template bank. Thus, in principle, each sub-region
needs to be aware of the points that have been accepted
in the other sub-regions. Dealing with each sub-region
independently could lead to a significant over-coverage,
i.e. accepting many more points than necessary.

If we could find sub-regions which are uncorrelated
from each other (by a suitable choice of coordinates) and
if the sub-regions were sufficiently large, then the paral-
lelization would be close to optimal. While we do not
have the optimal coordinates for this purpose, it turns
out that the so-called chirp times (τ0, τ3) [30, 31] are a
good approximation:

τ0 =MC
−5/3 (24)

τ3 =MC
−2/3(ν(1− ν))−3/5(4π − βC) (25)

where

βC =
1

12
(38ν2 + 75ν)χ‖ . (26)

The chirp-time was first introduced in [32] as the time
taken for the GW signal to reach coalescence starting
from some initial frequency. Chirp times are also the co-
ordinates typically used in geometric methods for tem-
pate placement [12] and is also the coordinate where
the parameter space metric for binary inspiral systems
is most easily understood (see e.g. [33]).

We wish to cover the (τ0, τ3) space uniformly. In par-
ticular, while constructing the template bank for a partic-
ular rectangular region, we would like to ensure that we
generate templates only for that rectangular region. If we
were to pick values of M1,M2,S directly, this would not
be guaranteed. We therefore follow the following steps:

1. Generate values of τ0 and τ3 randomly within the
rectangular region under consideration following a
uniform distribution.

2. The value of τ0 determines the chirp massMC , but
τ3 depends on both ν and χ‖. Our strategy is to
then pick a value of q which, along with the chosen
value of τ3 determines χ‖. The value of ν is chosen
randomly assuming that M1 and M2 are uniformly
distributed in their allowed ranges. In practice, we
draw random values of M1 and M2 from uniform
distributions, which determines ν. Given q and τ3,
we solve Eq. (25) for χ‖.

3. To fix the component of S perpendicular to L̂, we
note that the total spin magnitude χ is bounded
below by χ‖. We pick a value of χ⊥, such that ||χ||
is uniformly distributed between χ‖ and 1.

4. Finally, we choose α0 uniformly between 0 and 2π.

This procedure ensures that the proposal distribu-
tion covers all possible precessing binary configurations.
Lower values of τ3 get mapped to the more aligned sys-
tems, i.e. larger values of χ‖, while lower values of τ0 are
mapped to systems with higher total mass, M . While the
resulting distribution of points in the physical parameters
(M1,M2, χ

‖, χ⊥, α0) will not be completely physical, our
final results are not very sensitive to this choice of distri-
bution.

III. THE PRECESSING FACE-ON TEMPLATE
BANK [FOB]

The total range of chirp times corresponding to our
parameter space is broken up into 938 smaller “chirp
time boxes”. A stochastic template bank is constructed
for each box independently and the 938 template banks
are then concatenated. Parallelizing the stochastic
placement is computationally advantageous, because the
stochastic placement algorithm’s efficiency scales with
the square of the number of templates placed [13, 14].
By splitting up these regions, we limit the number of
comparisons needed for each stochastic template bank
candidate to decide whether it should be accepted or not.
However, speeding up the algorithm comes at the cost of
over-coverage between neighboring boxes which we shall
discuss towards the end of this section.

The parameter space metric discussed earlier also plays
a role in reducing the computational cost, and in partic-
ular we use the metric for the space of aligned-spin wave-
forms [14]. The goal is to minimize the number of times
that we need to calculate the match. For a proposed pa-
rameter space point, we consider only those waveforms
which have a match of better than 70% with the pro-
posed waveform as computed by the aligned spin metric.
The full match is computed only for the waveforms in
the template bank which cross this threshold. The 70%
threshold was found by trial and error and is low enough
that we do not miss any templates close to the proposed
waveform. Fig. 1 shows the convergence of the match for
three particular boxes in (τ0, τ3) space.

Before presenting the result of the above procedure
and discussing some properties of the precessing face on
template bank (FOB), we briefly describe an aligned-spin
bank (ASB) which we shall use as a reference for com-
parison. Such bank covers the same space of masses and
aligned spin components, but ignores precession. It is
constructed via stochastic placement using nonprecess-
ing, inspiral-only post-Newtonian templates (namely the
“TaylorF2” model in LALSimulation [24]) and contains
130, 646 templates. The template density is shown in
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FIG. 1. Convergence curves of three different boxes used to
construct the FOB.
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FIG. 2. The aligned spin bank (ASB) in chirp time coor-
dinates. The color bar density scale is the same as in Fig-
ure 3 for ease of comparison. Each hexbin has dimensions
{∆τ0 = 0.014,∆τ3 = 1.0}.

Figure 2 in chirp time coordinates (τ0, τ3) and in such
coordinates it is approximately constant. The ability of
a similar bank at detecting aligned-spin and precessing
NSBH systems has been characterized in previous studies
[9, 31]. In contrast, the template bank for precessing face-
on systems is shown in Figure 3. It contains 6, 908, 681
templates – a dramatic increase compared to the ASB.
The densest parts are in the high mass ratio, and highly
anti-aligned spin (κ < −0.5) region of the bank. More
than half of the total number of templates are placed in
this region. Figure 4 shows the distribution of the mass
ratio in the FOB and ASB, thereby demonstrating that
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FIG. 3. The FOB in chirp time coordinates. Each hexbin has
dimensions {∆τ0 = 0.014,∆τ3 = 1.0}.
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the vast majority of points in the FOB consist of asym-
metric systems (with mass-ratio q > 4) in contrast to the
ASB which is dominated by more symmetric systems.

Figures 6, 7 and 8 display the precessing template bank
in different slices of the parameter space. Figure 6 shows
the template bank density in the (q, χ‖) plane. Figure 7
shows the distribution of templates in the (χ⊥, χ‖) plane.
Finally Figure 8 gives the template bank distribution in
the (q, β ) plane. In Figure 7, we note that, higher tem-
plate densities occur in the higher values of spin-orbit
misalignment, which in-turn indicates higher precession.

As a result of breaking up the parameter space into
independent boxes, it is to be expected that the algo-
rithm will place more templates than necessary at the
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FIG. 5. The FOB in solar mass (M1,M2) coordinates. As
before, the color bar is scaled with respect to the density of
templates per bin {∆M1 = 0.28,∆M2 = 0.02} .

borders between adjacent boxes. This creates so-called
“gridlines” in the bank which are clearly visible in Fig-
ure 3. These are an artifact of splitting up the parame-
ter space into independent regions. It results in having a
larger number of templates than necessary. However, we
shall see that this is not a large effect for the chirp time
boxes that we have chosen.

The gridlines were most pronounced at the edges of
the boxes along the vertical direction, which implies that
there is a degeneracy along the τ3 direction. The gridlines
along the τ0 direction are much less pronounced. This is
not surprising since τ0 is determined entirely by the chirp
massMC , and it is well known thatMC is the parameter
best determined from the inspiral phase [34].

This suggests also that it should be possible to replace
τ3 by a better coordinate leading to fewer correlations.
Regardless, we shall now quantify the correlations be-
tween adjacent boxes in the τ3 direction. Also, in order
to optimize the size of the chirp time boxes, it was cru-
cial to estimate how far these gridlines overlapped into
adjacent boxes. To study this issue, we looked at two
adjacent boxes in τ3. By taking points in the lower box
and calculating the overlap with every point in the above
box, we determined the extent of the overcoverage. Fig. 9
displays the templates in adjacent boxes which have an
overlap greater than 95% with templates in the adjacent
box. The extent of these templates extends to about 25%
of the box in the τ3 direction. However, the number of
such templates is only about 7% of the total number of
templates in the upper box, and 1% for the lower box.

To conclude this section, we validate the distribu-
tions obtained above by a numerical calculation of the
Fisher matrix. If one were able to carry out a geometric
template placement procedure, the density of templates
would be proportional to the invariant volume element,
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FIG. 6. The FOB in (q, χ‖) coordinates. As before, the color
bar is scaled with respect to the density of templates per
hexbin {∆q = 0.3,∆χ‖ = 0.04} .

FIG. 7. The spin distribution of the FOB. The y-axis is the
component of spin parallel to the orbital angular momentum
L and the x-axis is the component of the spin perpendicular to
L. Each hexbin has dimensions {∆χ‖ = 0.04,∆χ⊥ = 0.02}.
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FIG. 8. The β and mass ratio, q, distribution of the FOB.
Each hexbin has dimensions {∆q = 0.3,∆β = 4◦}.

i.e. to the square root of the determinant of gij . The
same is generally true for probabilistic methods of tem-
plate placement. We compute gij and its determinant
directly by numerically computing the overlap between
the derivatives of neighboring waveforms and compare
this with the actual distribution of templates obtained in
the template bank. Figure 10 shows the contour plot of
log
√
|g| for the {15M�, 1.4M�} case. Also shown are the

points in the template bank whose masses are within 1%
of these mass values demonstrating qualitative agreement
between the two entirely different calculations. Similar
results are obtained for other values of the masses and
other slices of the parameter space. This agreement be-
tween the two independent calculations provides a sanity
check and indicates that the great increase in the number
of templates is a real feature of the space of precessing
waveforms. Using a different detection statistic as in [20]
helps ameliorate the problem somewhat, but does not
eliminate it.

IV. EFFECTUALNESS OF THE TEMPLATE
BANK

In this section we estimate the effectualness of the FOB
for different populations of NSBH systems and compare
it with the ASB. When calculating matches, all simula-
tions use a lower frequency cutoff of 30 Hz and an upper
cutoff of 4400/(M1 + M2) Hz, which is the frequency
corresponding to the innermost stable circular orbit of a
Schwarzschild black hole with mass equal to M1 +M2.

First, we want to consider the waveforms which were
used to construct the FOB, namely the SpinTaylorF2
waveforms and we want to compare the ASB with the
FOB for precessing waveforms. In order for a bank to re-
cover signals effectively, it must be able to recover NSBH
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FIG. 9. Plot of the templates in the box (τ0, τ3) = (0.14 −
0.15, 40−44) that had an overlap greater than 95% with tem-
plates placed in the box, (τ0, τ3) = (0.14− 0.15, 36− 40).

FIG. 10. Comparison of the stochastic bank and the metric
approximant χ distributions for fixed masses {15M�, 1.4M�}.
The color map represents log

√
|g| and the scattered points

denote the templates in the stochastic bank with masses
within 1% of {15M�, 1.4M�}. Each hexbin has dimensions

{∆χ‖ = 0.04,∆χ⊥ = 0.02}.



9

systems over a range of mass and spin values and orienta-
tions of Ĵ. We consider two cases: i) by constraining the
injections to be face-on NSBH systems, we look at how
well the FOB and ASB could recover SpinTaylorF2 in-
jections from the same proposal distribution used to con-
struct the FOB, and ii) for arbitrary orientations of the
total angular momentum (i.e. 0◦ < θJ < 180◦). In both
cases, we considered injections over the same {M1,M2}
parameter space as before, i.e. 2M� < M1 < 16M� and
1M� < M2 < 3M�. Figs. 11 and 12 show the recov-
ered fitting factors for the ASB and FOB banks for these
two cases. Figure 11 shows the case when the injections
are face-on. This is what the FOB was built for and in-
deed, the plot shows that the FOB greatly outperforms
the ASB. The fitting factors are worse than 97% for no
more than 1% of the injections. Figure 12 shows the cor-
responding result when the injections are not constrained
to be face-on. The recovered matches are reduced, but
the FOB still outperforms the ASB over the full mass
range.

To further investigate the differences between the FOB
and ASB template banks, we now calculate the difference
between the fitting factor obtained for the FOB and the
ASB (we compute FFFOB −FFASB) and plot the result
over different slices of the parameter space. These plots
break up the relative performance of the two banks over
different portions of the parameter space. Figs. 13 and
14 plot the difference in the fitting factors over (τ0, τ3)
space. Figs. 15 and 16 show the difference in the fitting
factor in q, χ‖ coordinates for face-on and arbitrary in-
jections respectively. Here, in Figure 15, as expected,
we see that the FOB always performs better. Further,
in the regions where the metric has highest density (see.
Figure 6), the FOB shows the most improvement. Fi-
nally, in what is possibly more illuminating, Figure 17
shows the fitting factors for the FOB in the space of θJ
and the precession cone opening angle β . We quote the
value of β at a reference frequency of 100 Hz. While in
principle β evolves in time and thus has a frequency de-
pendence, it was shown in [22] that it is roughly constant
over the inspiral regime for the frequency range of inter-
est for ground based detectors. Figure 17 shows a clear
correlation between the spin orientation and the opening
angle. To a good approximation, the figure shows a circle
in the θJ , β plane i.e. cone around the β = 90◦ direction.
This relation was found analyticaly in [22] and we refer
the reader to this paper for further discussion.

To quantify the improvement that a precessing face-on
bank would bring to a CBC search, we calculated the rel-
ative improvement in detection volume [31] of the FOB
and ASB banks. In the absence of any prior astrophysi-
cal likelihood distribution of NSBH systems, the detector
volume, V, is proportional to the sum of the cube of the
product of the optimal SNR of the injections, ρi, with the
fitting factor, mi, obtained from attempting to recover a
set of injected NSBH signals into the bank,

V ∝
∑
i

(miρi)
3 . (27)
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FIG. 11. Cumulative histogram showing the recovered fit-
ting factor of the face-on-precessing and aligned spin template
banks for face-on SpinTaylorF2 injections.
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FIG. 12. Cumulative histogram showing the recovered fit-
ting factor of the face-on-precessing and aligned spin tem-
plate banks for SpinTaylorF2 injections with the component
masses distributed uniformly within their respective ranges,

spins distributed uniformly in κ, and Ĵ distributed uniformly
over the sphere.

By taking the ratio of the detection volumes of the FOB
and ASB, VFOB vs VASB , we get a measure of the relative
improvement the FOB could bring to the search. Results
are shown in Table I.
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FIG. 13. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
{τ0, τ3} parameter space for face-on SpinTaylorF2 injections.

V. CONCLUSIONS

In this paper we have presented a template bank for
gravitational wave searches for precessing NSBH sys-
tems. The template bank assumes that the total an-
gular momentum vector is pointing directly towards or
away from the detectors. It covers the mass ranges
2M� < M1 < 16M�, 1M� < M2 < 3M� and the black
hole spin vector can have arbitrary orientation. The tem-
plate bank ends up having 6, 908, 681 templates assuming
the early Advanced LIGO noise curve. We have shown
that the sensitive volume for systems with large spin mis-
alignments (i.e. large precession cone angles) for this
template bank is roughy twice as large as for the aligned
spin bank (see third row of Table I).

We use the frequency domain, inspiral-only, SpinTay-
lorF2 waveform for our study. The aligned spin template
bank over the same mass range has only 130, 646 tem-
plates and this great increase in the number of templates
is validated by an independent numerical evaluation of
the determinant of the parameter space metric. Despite
this large increase in the number of templates, we show
that stochastic methods can still be implemented. It re-
quires us to break up the parameter space into smaller,
approximately independent regions and we found that
the chirp times provide a suitable coordinate choice with
which to do this. The template bank could be pruned
by removing templates near the boundaries of the chirp
time boxes but this would only reduce the number of
templates by about 5-10%. Using a different detection
statistic as in [20] should further help in decreasing the
number of templates somewhat, but it is still an open is-
sue whether the 97% minimal match condition should be
kept as gravitational wave detectors improve their low
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FIG. 14. A plot of the difference in the recovered fitting fac-
tor between the precessing and aligned template banks over
the {τ0, τ3} parameter space for SpinTaylorF2 injections that

are distributed uniformly in chirp time, {τ0, τ3}, with Ĵ dis-
tributed uniformly over the sphere.
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FIG. 15. A plot of the difference in the recovered fitting factor
between the precessing and aligned template banks over the
{q, χ‖} parameter space for face-on SpinTaylorF2 injections.

frequency sensitivity. In either case, working in chirp
time coordinates should allow us to deal with the com-
putational problem.

A large fraction of the templates of our bank are in the
anti-aligned part of parameter space (with κ < −0.5). If
one believes that such systems are disfavored astrophysi-
cally, it is straightforward to construct a precessing tem-
plate bank for restricted values of κ. Depending on how
restricted we would like the black hole spin orientation
to be, this might provide a useful compromise between
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TABLE I. Table of the improvement in the relative detection volumes calculated from each injection set. The values in the
third row represent injections with the component masses distributed uniformly within their respective ranges, spins distributed

uniformly in κ, and Ĵ distributed uniformly over the sphere. Results are grouped into three different regions {All ,HP ,Highβ }.
All is the entire NSBH parameter space spanned by the injection set. Highβ is defined as the region of parameter space that
contains recovered injections with β ∈ {60◦, 120◦}. HP is the “High Precession” region of parameter space examined by [9]
that contains recovered injections with ||χ|| > 0.7 and 45◦ < θJ < 135◦.

Injected Waveform θJ Mass Range M�
VAll
FOB

VAll
ASB

− 1
VHP
FOB

VHP
ASB

− 1
VHighβ
FOB

VHighβ
ASB

− 1

SpinTaylorF2 0◦ {2− 16, 1− 3} 3.26% 3.41% 14.2%

SpinTaylorF2 0◦ {15, 1.4} 6.42% 4.66% 23.9%

SpinTaylorF2 0− 180◦ {2− 16, 1− 3} 23.7% 9.88% 134%

SpinTaylorF2 0− 180◦ {15, 1.4} 11.3% 3.22% 14.4%
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FIG. 16. A plot of the difference in the recovered fitting fac-
tor between the precessing and aligned template banks over
the {q, χ‖} parameter space for SpinTaylorF2 injections that

are distributed uniformly in chirp time, {τ0, τ3}, with Ĵ dis-
tributed uniformly over the sphere.

computational cost and astrophysical priors. It would
also be desirable to be able to apply traditional geomet-
ric methods and to place a lattice of templates, but this
requires us to find suitable coordinates for the space of
precessing signals.
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