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Black holes offer an exciting area to explore the nature of quantum gravity. The classic work
on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas
about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-
Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum
mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the
existence of a “firewall” inside the black hole horizon which prevents objects from falling smoothly
toward the singularity. A fundamental limitation on the behavior of quantum entanglement known
as “monogamy” plays a key role in the AMPS argument. Our goal is to study and apply many-body
entanglement theory to consider the entanglement among different parts of Hawking radiation and
black holes. Using the multipartite entanglement measure called negativity, we identify an example
which could change the AMPS accounting of quantum entanglement and perhaps eliminate the
need for a firewall. Specifically, we constructed a toy model for black hole decay which has different
entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be
needed to bring lessons from our toy model to our understanding of realistic black holes.

I. INTRODUCTION AND BACKGROUND

Treating black holes as quantum systems have posed
interesting questions about what the fundamental prop-
erties of quantum mechanics should be in the context
of gravity. The so-called black hole information para-
dox is the apparent contradiction during the evaporation
of black holes through emission of Hawking radiation be-
tween the causal structure inherent to black holes and the
overall unitarity of quantum mechanics[1]. As an illus-
tration, consider a black hole that begun as an initially
pure state1. Unitary quantum evolution requires that
the evolving state should remain pure at later times as-
suming no interactions with external systems are present.
Inspired by the ideas of Bekenstein and Hawking, black
holes can be thought of as thermodynamic systems with
a temperature and entropy[2, 3]. They will radiate like a
black body and can decrease in size and mass and pos-
sibly eventually evaporate away completely. If we con-
sider an initially pure black hole evolving completely into
Hawking radiation, then the unitarity of quantum me-
chanics would seem to imply that the final Hawking ra-
diation state should be pure. However, the process of cre-
ating Hawking radiation should be analogous to pair pro-
duction due to quantum fluctuations. This would seem to
suggest the radiation produced should be mixed and due
to the casual structure of the black hole, there wouldn’t
be interactions between radiation emitted early and very
late in the black hole’s history capable of undoing the
mixed property.

Black hole complementarity proposes a resolution of
the black hole information paradox which allows a pure

1 This is a common assumption when stating the problem but is
done for simplicity. Relaxing this assumption does not resolve
the information problem

final state. The idea is that different causally discon-
nected observers view different yet complementary pic-
tures which disagree on the location of the information
encoded in the matter that created the black hole [4].
Since the observers could not communicate, a contradic-
tion would not be seen by any one observer. In recent
years, the debate has shifted; Almheriri, Marolf, Polchin-
ski and Sully (AMPS) presented a simple argument that
revealed2 approaches such as complementarity do not
seem to be enough and that a contradiction between
the two complementary pictures could be observed [6].
They suggested that the most modest resolution would
be preventing information from entering the interior of
the black hole during late times by introducing a high
energy barrier called a firewall.

The quantum information present in a black hole and
its decay products can be explored by studying their en-
tanglement. As demonstrated by Page [7], to achieve a
final pure state of Hawking radiation requires entangle-
ment between early and late radiation in this final state.
This late time entanglement constrains the type and level
of entanglement present throughout the evaporation pro-
cess. In particular, AMPS argues that entanglement for
late radiation with Hawking modes behind the horizon
seems to be forbidden which would result in a breakdown
of the field theory vacuum [6]. This argument evokes a
well known basic property of quantum mechanics called
quantum monogamy which constrains how entanglement
can be shared.

Our paper focuses on the role quantum monogamy
plays in this problem. In the case of maximal bipar-
tite type entanglement (such as the entanglement present
in a Bell pair), quantum monogamy gives a simple con-

2 Prior to this, Braunstein et al. came to similar conclusions and
described the deviation from vacuum near the horizon as an “en-
ergetic curtain” [5].
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clusion. If system A is maximally entangled with sys-
tem B then no entanglement can exist between system
A and any third system. When deviating from maximal
bipartite entanglement, monogamy inequalities limit en-
tanglement with a third system. We use a toy model
which deviates from maximal bipartite entanglement for
an evaporating black hole to illustrate that we can im-
pose an entanglement structure for early and late times
and show entanglement across the horizon is not strictly
forbidden. Since any realistic physical system will not ab-
solutely saturate maximal entanglement, our exploration
is motivated by the possibility that even extremely small
deviations from maximal entanglement for realistic black
holes could lead to conclusions very different from those
of AMPS.

In this paper we consider the information that origi-
nated in the initial state of the black hole becoming en-
coded in multipartite entanglement. Other authors [8, 9]
have stated that tripartite type entanglement naturally
arises from black hole evaporation. There are important
differences between our work and theirs. The conclusions
in [8, 9] are a consequence of how their Hilbert Spaces
are constructed and partitioned which differs from what
we do in this paper. In particular the difference is due to
the nature of their external neighborhood with which the
black hole interior remains entangled. Their construc-
tion presents a resolution to the information paradox but
leads to a firewall-like conclusion. Our different division
of Hilbert spaces and construction of black hole and radi-
ation states allow us to make different assumptions about
the quantum mechanics of black holes and leads to dif-
ferent conclusions about the nature of the near horizon
region. Our work also differs from [10, 11] which involve
a separate third system to entangle with while we con-
sider entanglements between radiation subsystems and
the black hole without the need of an external system.
We argue that our approach suggests a way to avoid fire-
walls.

Our paper is organized as follows: Section II presents
our list of beliefs that we assume to be true of the na-
ture of an evaporating black hole. Section III introduces
some basic facts about multipartite entanglement, and
contrasts multipartite vs. bipartite entanglement. Sec-
tion IV sets up our toy model, referencing a toy model
from earlier work [10] 3 designed to illustrate the AMPS
argument. Section V gives the results of calculating
both bipartite and multipartite entanglement measures
for the toy model and mentions challenges with inter-
preting these numbers. Section VI discusses the inter-
pretation of our toy model in the context of the firewall
problem. Section VII examines how our results fit into
current understanding of the field theory vacuum. We

3 A different approach to a qubit toy model can be found in [12].
Their work avoids the firewall argument with different assump-
tions of the form of black hole states and the division of Hilbert
spaces.

present conclusions in section VIII, and various technical
results in the appendices.

II. PRINCIPLES OF BLACK HOLE
EVOLUTION

How the black hole information problem is resolved
or remains a problem boils down to what you assume
is true of black hole evolution. In this section, we de-
scribe what we assume for evaporating black holes and
how these beliefs are realized in our toy model. Our as-
sumptions of what black hole evolution looks like far from
the horizon mirrors postulates of black hole complemen-
tarity presented in [4].

Postulate 1: The process of formation and evapora-
tion of a black hole, as viewed by a distant observer, can
be described entirely within the context of a standard
quantum theory. In particular, there exists a unitary S-
matrix which describes evolution from in-falling matter
to outgoing Hawking-like radiation.

Evolution in our model is explicitly unitary which is
achieved by preserving the purity of the initial state of
the entire system as the black hole evaporates.

Postulate 2: Outside the stretched horizon of a massive
black hole, physics can be described to good approxima-
tion by a set of semi-classical field equations.

Our toy-model constructed out of qubits is too simple
to check if it is consistent with this assumption. There
does not seem to be anything that directly conflicts with
it though, so we assume that our model does not present
any contradictions here.

Postulate 3: To a distant observer, a black hole ap-
pears to be a quantum system with discrete energy lev-
els. The dimension of the subspace of states describing a
black hole of mass M is the exponential of the Bekenstein
entropy S(M).

We model this with finite Hilbert spaces to describe
our evolving black hole system. As it evaporates, the
dimension of the subspace of states decreases to coincide
with decreasing mass.

Unlike the exterior, The nature of a black hole’s inte-
rior has not yet been observed. We expect and require
the nature of the black hole’s interior to be consistent
with the assumptions of the exterior that we have listed
above. For our approach, we suggest some very non-local
behavior occurring in the interior. We expect the stan-
dard effective field theory description of pair production
near the horizon to fail somewhere (but not necessarily in
a way that creates a firewall). We require the horizon to
retain some memory of the black hole’s history. In order
to enforce the proper type of late time entanglement, we
wish to transfer the entanglement from the infalling part-
ners to entanglement with the horizon. In our toy model,
our black hole interior states do not have a description
with any causal or spatial structure. We expect that an
extension of our ideas to a more realistic theory with a
spatial interpretation of the interior would include very
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non-local behavior in the interior.

III. MULTIPARTITE ENTANGLEMENT

In this section we present a general discussion of multi-
partite entanglement. We will use the concepts presented
here to motivate and analyze the toy model presented in
Section IV.

A common notion of entanglement is defined by insep-
arability of states. First consider separability for pure
states. A pure state living in a product space with a bi-
partition, A⊗B can always be written using the Schmidt
decomposition as:

|ΨA⊗B〉 =
∑
i

ci |iA〉 ⊗ |iB〉 (1)

with bases |iA〉 and |iB〉 for Hilbert spaces A and B re-
spectively and coefficients ci. A state is separable only if
the state can be written as a single term in this sum:

|ΨA⊗B〉 = |ψA〉 ⊗ |φB〉 (2)

for some ψA and φB living in Hilbert spaces A and B
respectively. The state, |ΨA⊗B〉 being separable is com-
pletely equivalent to the Von Neumann entropy after
tracing out system A or B being zero. Otherwise it is
inseparable or in other words entangled. For this reason
Von Neumann entropy serves as measure of entanglement
in pure states with bipartitions.

More generally, a state described by a density matrix,
ρA⊗B which describes either a mixed or pure state is
separable only if it can be written as:

ρA⊗B =
∑
i

piρA,i ⊗ ρB,i (3)

for some collection of density matrices, ρA,i for subsys-
tem A and ρB,i for B and coefficients pi with

∑
i pi = 1.4

If there exists no decomposition of this form for a state
then that state is inseparable and is therefore entangled.
Since there does not exist a sufficiently analogous de-
composition to Schmidt decomposition for mixed states,
separability can be much harder to check. Also, Von
Neumann entropy is known not to be a useful indicator
of entanglement between two systems which together are
in a mixed state.

To understand the entanglement between systems that
are parts of an overall mixed state, negativity [13], en-
tanglement of formation[14], distillable entanglement[15,
16], and concurrence[14] are useful quantities to be con-
sidered. Among all these entanglement measures, nega-
tivity has the benefit of being generally calculable. In this
paper we will focus on calculating negativities in our toy

4 Note that the definition of separability for pure states is consis-
tent with the more general definition of separability.

models. The technical definition and properties of nega-
tivity can be found in Appendix B. The main property
of negativity we are interested in is that if the negativity
between two subsystems is non-zero then the subsystems
are inseparable5 i.e. entangled.

To illustrate some interesting multipartite entangle-
ment properties states can have, consider the W [17, 18]
and GHZ[17, 19] states. The W state, when made up of
three qubits has the form:

W =
1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉). (4)

For this state, tracing out any system leaves a mixed
state. The nonzero Von Neumann entropy for any single
qubit directly implies entanglement between any qubit
and the remaining two quits but fails to reveal en-
tanglement between any two qubits (because any two
qubits together are always in mixed state). The inter-
esting property of this state is its maximal entanglement
“robustness”[20] meaning it retains the most entangle-
ment after “disposal” (tracing out) of one qubit for three
qubits systems. After tracing out one of the qubits, the
negativity[13] between the remaining two qubits is non-
zero. This means one qubit in the W state concurrently
shares entanglement with each other qubit individually.

Compare this to the GHZ state:

GHZ =
1√
2

(|↑↑↑〉+ |↓↓↓〉). (5)

Like the W state, for the GHZ state each qubit exists
in a mixed state. However unlike the W state, after
tracing out any one qubit, the negativity of the remain-
ing two qubits is zero. Furthermore, after tracing out a
qubit, you are left with a density matrix in the form of
Eqn. 3 meaning the remaining two qubits are also com-
pletely separable. In other words, when any one qubit is
traced out, no entanglement remains between the other
two qubits; In the GHZ state, entanglement exists be-
tween each single qubit and the remaining pair of qubits
but no entanglement exists between any pair of qubits.

States like these motivated us to study shared entan-
glement structures in the context of the black hole infor-
mation problem. We use negativity to reveal the exis-
tence of entanglement between particular subsystems for
a toy model of an evaporating black hole and its radia-
tion.

IV. TOY MODEL SETUP

We will use a simple toy model similar to the ones
used in [10]. In this section we will first describe how

5 The converse of this statement is not true. Entangled subsystems
can have zero negativity.
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FIG. 1. For each time step we illustrate the allocation of our
six qbits (labeled A-F) among the three physical roles: i) Part
of the Black Hole, ii) Just radiated Hawking radiation, and
iii) Other Hawking radiation. As time goes on the allocation
shifts, corresponding to the decay process of the black hole.

the Hilbert spaces are divided and quantum states are
described, then we will describe the time evolution and
follow up with specific information about the models.
The first toy model in [10] illustrates the black hole in-
formation problem and firewall argument by describing
the entanglement with collections of Bell pairs of qubits.
Here we will refer to that toy model as the Firewall toy
model. We compare this to an analogous toy model cre-
ated for this paper with a different entanglement struc-
ture which we will refer to as the Multipartite toy model.
For both models, the black hole and all the radiation
are represented by six qubits. We keep the size of the
entire Hilbert space constant, always dimension 26. At
each time step we reassign the degrees of freedom of the
Hilbert space to either black hole degrees of freedom or
Hawking radiation degrees of freedom. We begin the
black hole in a pure state and describe the evaporation
by giving the toy model state at seven specific points in
time.6 Each time step describes one Hawking qubit be-
ing emitted from the black hole. For our analysis at each
time step we will partition the system into 3 parts: black
hole (BH), just emitted particle (JR) and other radiation
(OR) and examine the entanglement between them. An
illustration of the assigning of qubits to either describe
the black hole or the decay products at each time step is
shown in Fig. IV.

The Firewall toy model explicitly demonstrates the
conflict of trying to simultaneously enforce overall uni-
tary time evolution (which results in entanglement be-
tween early and late radiation) and trying to enforce “no
drama” at the horizon (which would require entangle-
ment across the horizon region as seen by an infalling
observer). These two properties seem to be in conflict
because of quantum monogamy and no cloning theorems
which are key properties of quantum mechanics. If a
qubit is maximally entangled with another qubit (thus

6 We imagine our system is undergoing some continuous evolution
but we are examining the system only at 7 discrete (not evenly
spaced) time steps.

forming a Bell pair), then neither qubit can share any
entanglement with another system. In the Firewall toy
model examining the bipartite entanglement suffices to
demonstrate the conflict.

In the Multipartite toy model, we do not force the
qubits to appear in parts of Bell pairs. We allow the
newly emitted Hawking qubit to share multipartite en-
tanglement with the black hole system and radiation sys-
tem. Multipartite entanglement offers a richer structure
of entanglement sharing and we will see the conclusions of
forbidden entanglement across the horizon for late times
no longer holds.

The full 26 dimensional Hilbert space, U is described
by six qubits (labeled A through F ) as:

U = A⊗B ⊗ C ⊗D ⊗ E ⊗ F. (6)

As the black hole evaporates, qubits are reassigned from
describing black hole degrees of freedom to radiation de-
grees of freedom (they are emitted in reverse alphabetical
order). At each time step, our tripartition looks like:

U = HBH ⊗HJR ⊗HOR (7)

using our subdivision into Black Hole (BH), Just Ra-
diated (JR) and Other Radiation (OR). The specific
qubits that describe each subsystem changes with each
time step (as shown in Fig. IV).

To get an idea of what the states look like, consider an
example state in the Firewall toy model at time 3 (two
particles have radiated away)7. The state of the system
at this time contains Bell pair-like bipartite entanglement
between the JR particle and BH:

1

2
[

(
|0JR0BH〉

+ |1JR1BH〉

)
|0OR〉+ (8)(

|0JR2BH〉
+ |1JR3BH〉

)
|1OR〉] (9)

In these states, the numbers in the kets enumerate the
basis vectors of the subsystem. Here we can explicitly see
entanglement between the JR and BH subsystems. En-
tanglement between the OR and JR⊗BH is also present
but due to the symmetry in the JR elements, no entan-
glement between JR and OR exists (they are completely
separable).

In the Multipartite toy model, we impose a more com-
plicated entanglement structure at time 3:

a(|0OR1JR〉+ |1OR0JR〉)(|0BH〉+ |1BH〉) (10)

+ b(|0JR1BH〉+ |1JR0BH〉)(|0OR〉+ |1OR〉)

Here we write the state as a linear combination of states
where the JR system is maximally entangled with the

7 The time steps and labels used in this paper differ than those
used in [10]. In this paper we have chosen the Firewall and
Multipartite models to have consistent labels with each other.
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OR system and a state where the JR system maximally
entangled with the BH system. The combination comes
with arbitrary (up to normalization) coefficients a and b.
Here as long as neither coefficient is 0, there exists some
level of shared entanglement between the three systems
(under certain measures). In this case there does not
exist maximal bipartite type entanglement between any
two of these three subsystems.

In both toy models, the JR qubit comes out maximally
mixed (with Von Neumann entropy 1). In the firewall toy
model, a JR qubit comes out completely entangled with
the BH for early times and for late times switches to
coming out completely entangled with OR. In the mul-
tipartite toy model, at every time after time step 3, the
emitted JR qubits come out with shared entanglement
between OR and BH.

At the core of the black hole information problem, is
difficulty trying to enforce overall unitary evolution for
black hole evaporation. Fundamentally, unitary evolu-
tion is just an inner product preserving and onto map-
ping of states. Within each toy model, we only examine
one example evolution for some chosen initial state. Our
overall evolution looks something like:

U(t) : Ψt1 → Ψt2 → Ψt3 → ... (11)

In principle, we could have created a Hamiltonian to
generate such time evolution. In this work, we are not
interested in the form of the Hamiltonian but instead
the entanglement properties of the states as the system
evolves. Violating unitary evolution would involve evolv-
ing an overall pure state into a mixed state. We enforce
unitarity by writing a list of states that remain pure for
the entire history of our system.

From the perspective of a stationary observer outside
the horizon, we require the evaporation process to only
involve local unitary interactions. We will take that to
mean that quantum entanglement can only change when
a Hawking quantum is just leaving the horizon due to
interactions that occur there. This means that new en-
tanglement can be generated between BH and JR as a
new Hawking quantum is created. Also, the entangle-
ment between the BH and JR systems can transfer to
entanglement between BH and OR and entanglement
between OR and BH can transfer to entanglement be-
tween OR and JR due to the shifting of quanta from one
category to another (specifically, quanta used to describe
BH becoming JR quanta and JR quanta becoming OR
quanta). In our toy model, the density matrices of every
combination of previously emitted radiation (i.e. all ra-
diation other than the just emitted particle) are forced
to remain unchanged for all subsequent time steps. This
restriction is somewhat stronger than is absolutely nec-
essary since the only important constraint is that the
eigenvalues of these density matrices do not change. We
treat the black hole in this toy model as a “black box”.
As the system evolves, we do not explicitly know what
the quantum nature of the black hole truly is other than
some very coarse grained properties such as the Hilbert

space dimension it lives in and its Von Neumann entropy.
There in principle could be some very non-local behavior
in the interior.

To see how this works explicitly, we will first illustrate
an example of going from time step 3 to time step 4 in
the Firewall toy model (which is easier to eyeball than
the Multipartite toy model). Starting with our system
at time 3, in the state described by Eqn. 8, we evolve
to time state 4, by shifting the qubits used to describe
each system. Going from time 3 to time 4, the size of
the black hole has decreased and the number of radiated
particles has increased. We model that by having the
states that described the black hole (BH, 3) at time step
3 become states that describe the black hole (BH, 4) and
the newly emitted particle (JR, 4) at time step 4. This is
done by writing the basis for (BH, 3) in terms of (BH, 4)
and (JR, 4):

|0BH,3〉 =
1√
2

(|0JR,40BH,4〉+ |1JR,41BH,4〉)

|1BH,3〉 =
1√
2

(|0JR,42BH,4〉+ |1JR,43BH,4〉) (12)

|2BH,3〉 =
1√
2

(|0JR,44BH,4〉+ |1JR,45BH,4〉)

|3BH,3〉 =
1√
2

(|0JR,46BH,4〉+ |1JR,47BH,4〉)

Here we include an additional subscript label, which enu-
merates the time step (in this case for time 3 and time
4). The change of basis written above prescribes what
the next time state will be, based on the previous time
state. The choice of basis change we have made is written
in a convenient basis and results in a particular entan-
glement structure. Making different choices of this basis
reassignment is effectively implementing different types
of interactions at the horizon and results in differing re-
sulting entanglements.

The remaining parts of the system at time 3, (JR, 3)
and (OR, 3) will also need to have a qubit reassigned to
(OR, 4) at time 4 as Eqn. 13:

|0JR,30OR,3〉 = |0OR,4〉
|0JR,31OR,3〉 = |1OR,4〉 (13)

|1JR,30OR,3〉 = |2OR,4〉
|1JR,31OR,3〉 = |3OR,4〉

This mapping should be thought of differently than
Eqn. 12. The particle emitted at time step 3 is lumped
into the (OR, 4) subsystem by time step 4. There are no
interactions here (and no change in entropy) so this evo-
lution can be thought of as just relabeling. In general we
could have evolved the state through trivial phase rota-
tions without introducing interactions but for simplicity
we freeze the evolution when no more interactions occur.

We plug in these changes of basis given by Eqn.12 and
Eqn.13 into the state we had previously written for time
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3, ( Eqn.8) and obtain the entire state for time 4:

1

2
√

2
[

(
|0JR0BH〉

+ |1JR1BH〉

)
|0OR〉 (14)

+

(
|0JR2BH〉

+ |1JR3BH〉

)
|1OR〉 (15)

+

(
|0JR4BH〉

+ |1JR5BH〉

)
|2OR〉 (16)

+

(
|0JR6BH〉

+ |1JR7BH〉

)
|3OR〉]

The overall process is unitary since the entire state re-
mains pure.

To reiterate, we realize locality by only allowing in-
teractions to occur as the just emitted particle leaves
the horizon. During early time evolution, entanglement
is created between the black hole and the just radiated
qubit. During the late time evolution, the newly emit-
ted qubits become entangled with the earlier radiation.
This does not occur due to interactions with earlier radia-
tion but instead relabeling black hole degrees of freedom
as new radiation degrees of freedom. In other words,
what was previously entanglement between earlier radi-
ation and the black hole becomes entanglement between
earlier radiation and new radiation.

Now that we have described the rules for how future
time states are constructed, we will now describe key
features of the Firewall and Multipartite models. Both
models begin with a pure quantum state only describing
a black hole. Each time a state describing the next time
is generated in the Firewall model, the basis change for
the BH system takes the form of Eqn. 12. Each basis
vector of BH is mapped onto a state that takes the form
of a Bell pair between the new JR particle and a subspace
of the new smaller BH system. This evolution ensures
that the final state at the end of evaporation is entirely
comprised of pairs of quanta in Bell-pairs, each exhibiting
maximal bipartite type entanglement. Our Multipartite
model does not have this constraint imposed on its evolu-
tion. The most general form that for remapping of basis
vectors, |kBH,3〉 can take are:

|kBH,3〉 =
∑
i,j

aki,j |iJR,4jBH,4〉 (17)

with the aki,j coefficients chosen such that the basis vec-
tors remain orthonormal. Particular choices for these
coefficients will result in non-trivial multipartite entan-
glement structure in the final state of radiation.

A detailed list of our states for the time evolution can
be found in Appendix D. Even for this small and simple
system, by late times the form of the states grow increas-
ingly complex and it becomes difficult to intuitively see
the entanglement. When choosing these states we used
a combination of intuition, trial and error and exploring
the space of coefficients with a computer. We recommend
that the reader first consider the general analysis of the

properties of our toy model states presented in the fol-
lowing section before looking at the details presented in
the Appendix D.

V. RESULTS

The measures we use in this paper are Von Neumann
entropy and negativity, each of which measures different
aspects of entanglement. First we calculated Von Neu-
mann entropies for the BH, JR and OR systems through
the black hole’s evaporation in Table I. The dashes in Ta-
ble I (as well as Tables II and C) imply non-existing Von
Neumann entropy values since the subsystems aren’t de-
fined at those times. For example, in the first time, since
there is no subsystem JR and OR, thus Von Neumann
entropy of JR and OR are not well defined.

The upper bound on Von Neumann entropy is given
by:

0 ≤ S(ρ) ≤ log2(D) (18)

where D is either the dimension of the measured subsys-
tem or the rest of the space which forms a purification
with the measured system, whichever is smaller.

Von Neumann entropies in the Multipartite Model
Time S(ρBH) S(ρJR) S(ρOR)
1 0.00 - -
2 1.00 1.00 -
3 2.00 1.00 1.00
4 2.01 1.00 2.00
5 1.32 1.00 2.01
6 0.60 1.00 1.32
7 - - -

TABLE I. Von Neumann entropy of three subsystems com-
pared to the maximum possible value of Von Neumann en-
tropy in our Multipartite model at each time step. The dashes
imply non-existing Von Neumann entropy values since the
subsystems aren’t defined at those times. The values from
the first column of this table are plotted as x-s in Fig. V.

For every time, when a new Hawking qubit is radiated
(subsystem JR), the emerging qubit is always maximally
mixed, with the rest of our system serving as its purifi-
cation. This can be seen from Table I, where the Von
Neumann entropy for subsystem JR always numerically
saturates the maximum (log2(2) = 1) for a Hilbert space
of dimension 2. We enforced this property when choos-
ing states for our toy model since this reflects what we
expect from the pair production process.

Fig. V shows that the entropy of BH grows until the
Page Time (time 4 in our system), after which it de-
cays until the end of evaporation. This mirrors the well
known curve found by Page in [7]. Von Neumann entropy
demonstrates how mixed each subsystem is at each time
but since combinations of subsystem are mixed, the en-
tropy will not state which subsystem is entangled with
which. The question of whether or not a firewall exists
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FIG. 2. Calculated Von Neumann entropy of black hole sub-
system (‘x’-s) compared to the maximum possible value of
Von Neumann entropy in our multipartite model (‘+’-s) at
each time step. The maximum values of entropy are based on
the dimension of the smaller Hilbert Space between the mea-
sured subsystem and the rest of the space which together form
a purication. This plot exhibits standard behaviors discussed
by Page[21].

depends on entanglement. Here we consider multipar-
tite entanglement across the horizon region which Von
Neumann entropy of BH does not reveal but negativity
can.

In table II we calculate negativity for our Multipartite
model.

Negativities in the Multipartite Model
Time BH and JR JR and OR BH and OR
1 - - -
2 0.500 - -
3 0.500 0.000 0.500
4 0.023 0.000 0.545
5 0.038 0.000 0.583
6 0.001 0.424 0.233
7 - - -

TABLE II. Negativity values between all combinations of our
three subsystems BH, JR and OR for all times in our Multi-
partite toy model. Negativity between BH and JR are nonzero
for times in which negativity values are well defined. This
implies entanglement across the horizon is not strongly for-
bidden.

At all times including the Page time, when negativ-
ity values between BH and JR are defined, negativity
between BH and JR is nonzero. As it stated earlier,
nonzero values of negativity always means the subsys-
tems are inseparable. Our main result is that we find
entanglement between BH and JR for the entire history
of evaporation. This differs from the AMPS’s expectation
that after the Page time, entanglement between BH and
JR should be forbidden. Further intuition about nega-

tivity is developed in Section C, relating our results to
[5] and comparing negativity values between the Multi-
partite and Firewall toy models.

However there are limits to what negativity can teach
us. Because no upper bound for negativity in a mixed
state is known, the specific meaning of a finite nonzero
value is unclear. Therefore, attempting to compare nega-
tivity values from different time steps can be misleading.
The changing dimensionality of subsystems for different
time steps surely adds to this uncertainty. Addition-
ally, special states called “PPT”states have entanglement
even though they have negativity equal to zero[13].

A good way to move forward despite these confusing
aspects of negativity would be to compare the multipar-
tite entanglement existing across the horizon in our toy
model with the entanglement in a realistic field theory
that could give some physically meaningful point of ref-
erence. In the remainder of this paper we explore what
such a comparison would entail.

VI. DISCUSSION

Answering the question of whether or not there is a fire-
wall involves asking what is seen by an observer falling
into the black hole. The classical GR result is that an
infalling observer would not see the horizon as a special
location, looking no different than flat space which is in
part a consequence of the equivalence principle. Naively,
a proper treatment of quantum gravity would not seem
to change this result since for suitably large black holes
the energy scale set by the curvature near the horizon is
far below the Planck scale and the usual expectation is
that classical GR should apply. However, AMPS would
argue that any attempt at black hole complementarity
would fail at late times and no vacuum-like field the-
ory description can be found in the interior of the black
hole due to entanglement that already exists outside the
horizon between early and late radiation preventing en-
tanglement across the horizon. In our Multipartite toy
model, we have created an example for the time evolution
where an infalling observer can find entanglement across
the horizon and a complementary description could pos-
sibly exist. This is however a single example for the time
evolution, and without more knowledge of how black hole
evaporation should look on the quantum level, we cannot
make any claims that this evolution would be typical 8.

Furthermore, we don’t know how the results from our
toy model generalize to an actual field theory description.
A well-known property of the vacuum in field theory is

8 The firewall argument can change with different assumptions
about typical states. An example of this can be found in [22]
which unlike this paper, considers an evolution that gives states
with an entanglement structure that deviates from the Page re-
sult. Also, in the ER = EPR proposal, it has been argued that
typical states do not have firewalls[23]
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its purity and the presence of entanglement. Although
our work does not address restoring the purity9 that is
typically assumed for the vacuum state, we have consid-
ered a new entanglement structure that differs from the
firewall literature. Our multipartite model does not of-
fer maximal bipartite type entanglement between quanta
leaving the horizon and those falling in. To see how this
could differ from the field theory vacuum state, we would
want to know how our proposal would change the energy
per field mode vs. the ground state. Even a small change
per mode could give a divergent total effect, which would
restore the original arguments of AMPS 10. Answering
these questions is crucial for our ideas to be important
to the actual black hole firewall problem and requires
more technical work than we offer at this point. Still, we
offer some further reflections on this issue.

VII. FIELD THEORY VACUUM
ENTANGLEMENT

In this section, we discuss how our results fit into cur-
rent understanding of vacuum entanglement. First, for
an operational description of the nature of entanglement
in ground states, we will state some well known results in
flat space. If an observer falling into a black hole did actu-
ally encounter the vacuum (or some close approximation)
in the horizon region, then we would expect the same
properties to be present. First is the presence of entangle-
ment in Unruh radiation. Unruh radiation is analogous
to Hawking radiation for accelerating observers in flat
space. If two uniformly accelerated observers accelerated
in opposite directions with the same acceleration, they
would encounter pairs of entangled particles. These ob-
servers could generate entanglement between each other
despite being outside of each other’s lightcones and there-
fore not causally connected. The interpretation is that
the observers are harnessing already existing entangle-
ment from the vacuum state in flat space. Through this
construction, a pair of observers could create Bell pairs
which could suggest Bell pair-like entanglement could be
inherent to the vacuum. Also, [24, 25] have proposed var-
ious experiments which could extract multipartite type
entanglement structures (like GHZ states) analogous to
the Bell pair extraction process just described. These
appear to make the case for a more complicated multi-
partite entanglement structure of the vacuum. However,
because we have not made a clear connection between
our toy model and field theory, we are unable to argue
that the multipartite entanglement considered in [24, 25]
is “the same as that exhibited in our toy model.

9 A possible extension to our work would be to create a comple-
mentarity scheme that explicitly restores purity such as taking
states from or analogous to those in our multipartite model and
remapping them for an infalling observer to construct a pure
vacuum state.

10 We thank Steven Carlip for bringing up this point to us.

Entanglement in the ground state is also revealed us-
ing the path integral formulation for quantum field theory
and is applicable to CFT’s. In this formulation density
matrices can be constructed and represented as path inte-
grals. When tracing out regions of space, the remaining
density matrix will have a Von Neumann entropy that
scales with the area dividing the region [26]. As we have
stated earlier, Von Neumann entropy is a useful measure
of mixedness of a state as well as measuring entangle-
ment across a bipartition for an overall pure state, but
does not reveal all aspects of entanglement. Calculat-
ing other measures of entanglement in this formulation
is much more difficult although negativities have been
calculated in 1+1D CFT’s[27].

In all of these constructions, it is difficult to fully
explore all the properties of multipartite entanglement
in field theory. Even in analogous and much simpler
qubit systems, multipartite entanglement isn’t fully un-
derstood for systems of n qubits. The main emphasis of
the AMPS argument is that the entanglement required
between early and late radiation prevents entanglement
across the horizon due to quantum monogamy and no
cloning theorems. Quantum monogamy is simple to state
for maximal entanglement for a bipartite pure state (e.g.
a Bell pair). However these considerations are not com-
pletely general. For non-maximal multipartite entangle-
ment for mixed states, quantum monogamy inequalities
[28] exist for various entanglement measures which limit
entanglement, but do not strictly forbid the entanglement
we are interested in.

One approach to the firewall question is to ask what is
expected of the final state of the hawking radiation. The
relevance of entanglement observed in this final state to
the firewall problem can be seen by time evolving back
the radiation’s evolution to when it was just leaving the
horizon. The question can be posed as what properties
of the final state’s entanglement say about the state of
the quantum fields near the horizon region at an earlier
time. Inspired by the discussion in [13], we ideally might
want to translate the question of how to restore the vac-
uum near a black hole’s horizon into language that ad-
dresses, for example, the extent to which pure state en-
tanglement can be extracted from infinitely many copies
of the state. A concrete question like this would allow us
to choose measures that have a given physical interpre-
tation such as “entanglement of formation”, “distillable
entanglement”, etc. which could illuminate further the
nature of the vacuum. However, the above translation
is not straightforward and these measures are generally
difficult to calculate.

VIII. CONCLUSIONS

In our toy model we constructed a history of states
to model the evolution of a black hole. The method of
state construction has ensured the state of the whole sys-
tem remains pure, and enforced the evaporation process
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to only involve local unitary interactions. By introduc-
ing a multipartite entanglement measure, entanglement
sharing among black hole and different parts of radiation
can be measured. Our analysis has shown entanglement
between the black hole and the qubit just radiated from
the black hole for the entire history of evaporation. This
differs from the AMPS’s expectation that after the Page
time, entanglement among these systems should be for-
bidden.

Our very simple toy model explicitly shown entangle-
ment across the horizon region isn’t strictly forbidden.
However, it is unclear how this result translates into an
actual field theory description. Because of the limitations
of our toy model, we cannot claim at this point that we
know that a more realistic model could have enough en-
tanglement or even the right type of entanglement to re-
store the expected properties of the field theory vacuum
near the black hole. We also do not explicitly offer a
scheme to restore the vacuum’s purity which may be the
more important property of the vacuum than the entan-
glement. This paper is meant to show a possible loophole
in the AMPS argument. For a complete and proper treat-
ment, we would want to extend this toy model to one
more like a field theory. With a more realistic model,
we could imagine time evolving back the hawking radia-
tion and identifying what types of states you would have
near the horizon for an infalling observer, thus potentially
achieving insights into the firewall problem.
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Appendix A

In these Appendices we address several topics support-
ing the main points of the paper. Appendices B and C
define and develop the ideas of negativity, and Appendix
D gives detailed information about our toy model.

Appendix B: Negativity

Negativity is an entanglement monotone meaning that
it does not increase under local operations and classi-
cal communication. As discussed in [17], negativity may
thus be considered an entanglement measure. As an il-
lustration we can construct mixed state systems by first
considering a pure state in a Hilbert space which is a
product of three smaller spaces: U = HA ⊗ HB ⊗ HC .
Tracing out system C, leaves density matrix ρA⊗B .The

negativity of A,B for the state, ρA⊗B is given by:

εA,B(ρA⊗B) ≡
‖ ρTA

A⊗B ‖ −1

2
(B1)

where the trace norm ‖ ρTA

A⊗B ‖ is the sum of the abso-

lute values of the eigenvalues λi of ρTA

B . ρTA

B is the par-
tial transpose of B respect to A. The Peres - Horodecki
criterion states that to have a state separable it is nec-
essary the partial transpose of ρ has only non-negative
eigenvalues[29]. If the partial transpose of ρ has any neg-
ative eigenvalues then the state is necessarily insepara-
ble. The trace norm measures how much ρTA

A⊗B fails to
be positive[29]. Therefore if negativity is nonzero, then
there is definitely entanglement. However, negativity be-
ing zero does not imply no entanglement. There exist a
class of entangled states with zero negativity said to be
PPT bound entangled states[13]. Thus it can be diffi-
cult to extract precise physical meaning from the mea-
sured value of negativity. It has been noted that neg-
ativity places a bound on the degree to which a single
copy of the state ρ can be used to perform quantum
teleportation together with local operations and classical
communications[13, 18]. For our purposes in this paper
we are mostly interested in its ability to identify when
entanglement is present.

Appendix C: Table of negativity for a man-made
firewall model

Negativities in the Firewall Model
Time BH and JR JR and OR BH and OR
3 0.5 0.0 0.5
4 0.5 0.0 0.5
5 0.0 0.5 0.0

TABLE III. Negativity values between all combinations of our
three subsystems BH, JR and OR for all times. There is no
entanglement between BH and JR at 5 because our choices
of states are known to behave as so. Thus there is firewalls for
all time when negativity is defined including after page time.
The dashes implies the non-existed negativity values. For
example, in the first time, since there is no subsystem JR and
OR, there are no negativity values between all combination
of subsystems.

We have also calculated negativities for the Firewall
toy model which is analogous to the first toy model in
[10]. This model is constructed with a final radiation
state has each pair of qubits appearing in a Bell-pair.
From the form of the states, it can be explicitly seen
that entanglement exists between BH and JR until the
Page Time (time 4), after which there is no entanglement
present. This is consistent with the negativities shown in
Table C, where the negativity of BH and JR is non-
zero prior to time 4 and then is zero after time 4. We
remind the reader that trying gain more insight from
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comparing these values with TableII can be misleading
for the reasons listed in Sec.III.

Appendix D: Time evolution of the multipartite
model

Our method for generating time evolution is based on
the change of basis that we introduce once a qubit shifts
from describing a black hole system to the radiation sys-
tem. Section IV, illustrates the way the new basis is
used to construct the time evolution. The choice of ba-
sis dictates what the entanglement will look like for the
subsequent time state. We wanted to create states that
produced a JR qubit that was maximally mixed as well
as having non-zero negativity between JR and BH (As
explained in IV). Finding a basis that accomplished this
grew increasingly difficult as the states got more compli-
cated and required some trial and error. All mappings
up till time 4 were done by hand, taking advantage of
symmetries in the form of the states to find the types of
states that matched our criteria Getting states for time 5
and 6 were too difficult to do by hand, so the states were
found by varying parameters in the basis vectors with
a computer program. The program is able to generate
random orthonormal bases and do systematic mappings
from one time to the next. Among the many mappings it
generated, the program can select the set of states that
have interesting negativities and have all the conditions
we want to enforce to assure the evolution to be physi-
cal.11

In this section we give a detailed description of the toy
model state at each of the discrete time steps 1–7. At
each time the state is a pure state, thus ensuring unitary
time evolution for the whole system. Several key features
have already been presented in Section IV. These include
the way we enforce locality by limiting which subsystems
interact, and how we use basis mapping as a tool to gen-
erate the state at the N th time step from the state at the
(N−1)th step. The detailed process of the time evolution
of the multipartite model is as follows:

The first time state is trivial, and is written

|ψBH,1〉 (D1)

The second time state is given by

|ψBH,2〉 =
1√
2

(|0BH,2〉 |0JR,2〉 (D2)

+ |1BH,2〉 |1JR,2〉)

where |0BH,2〉 is the 0th basis state for the black hole
subsystem at time 2,etc. Notice that there is nothing in
OR subsystem at time 2.

The ith black hole basis state |iBH,2〉 at time step 2
evolve into states that describe the black hole (BH, 3)
and the newly emitted particle (JR, 3) at time step 3.

This is done by writing the basis for (BH, 2) in terms of
(BH, 3)

|0BH,2〉 = a |0BH,30JR,3〉+ a |2BH,31JR,3〉
+b |4BH,30JR,3〉 (D3)

|1BH,2〉 = a |1BH,30JR,3〉+ a |3BH,31JR,3〉
+b |4BH,31JR,3〉

where the values of coefficients are assigned to be

a =
1√
2

b = 0.

(D4)

We plug in this unitary change of basis into the state we
had previously written to get the third time state:

|ψ2〉 =
1√
2

[(a |0BH,30JR,3〉+ a |2BH,31JR,3〉

+b |4BH,30JR,3〉) |0JR,2〉 (D5)

+(a |1BH,30JR,3〉+ a |3BH,31JR,3〉
+b |4BH,31JR,3〉) |1JR,2〉)].

The mapping we use to go from time 3 to time 4 is

|0BH,3〉 = a1(|0BH,41JR,4〉+ |1BH,40JR,4〉)
+b1(|2BH,40JR,4〉 − |3BH,41JR,4〉)

|1BH,3〉 = a1(|4BH,40JR,4〉+ |5BH,41JR,4〉)
+b1(− |6BH,40JR,4〉+ |7BH,41JR,4〉)

|2BH,3〉 = a1(|4BH,40JR,4〉 − |5BH,41JR,4〉) (D6)

+b1(|6BH,40JR,4〉+ |7BH,41JR,5〉)
|3BH,3〉 = a1(|0BH,41JR,4〉 − |1BH,40JR,4〉)

+b1(|2BH,40JR,4〉+ |3BH,41JR,5〉)
|4BH,3〉 = a1(|2BH,40JR,4〉 |3BH,41JR,4〉)

+b1(− |0BH,41JR,4〉+ |1BH,40JR,4〉)

where

a1 = 0.016

b1 = 0.707 (D7)

(D8)

We plug this unitary change of basis into the time 3
state to get the toy model state for time 4.

Due to the increasing complexity of the expressions,
for time steps 4 and higher we only give the basis map-
pings, and do not explicitly present the outcome of the
substitutions. The information we do provide is sufficient
to fully reproduce our results.

The mapping from time 4 to time 5 is
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|0BH,4〉 = c0,00 |0BH,50JR,5〉+ c0,01 |0BH,51JR,5〉+ c0,10 |1BH,50JR,5〉+ c0,11 |1BH,51JR,5〉
+c0,20 |2BH,50JR,5〉+ c0,21 |2BH,51JR,5〉+ c0,30 |3BH,50JR,5〉+ c0,31 |3BH,51JR,5〉

|1BH,4〉 = c1,00 |0BH,50JR,5〉+ c1,01 |0BH,51JR,5〉+ c1,10 |1BH,50JR,5〉+ c1,11 |1BH,51JR,5〉
+c1,20 |2BH,50JR,5〉+ c1,21 |2BH,51JR,5〉+ c1,30 |3BH,50JR,5〉+ c1,31 |3BH,51JR,5〉

|2BH,4〉 = c2,00 |0BH,50JR,5〉+ c2,01 |0BH,51JR,5〉+ c2,10 |1BH,50JR,5〉+ c2,11 |1BH,51JR,5〉
+c2,20 |2BH,50JR,5〉+ c2,21 |2BH,51JR,5〉+ c2,30 |3BH,50JR,5〉+ c2,31 |3BH,51JR,5〉

|3BH,4〉 = c3,00 |0BH,50JR,5〉+ c3,01 |0BH,51JR,5〉+ c3,10 |1BH,50JR,5〉+ c3,11 |1BH,51JR,5〉
+c3,20 |2BH,50JR,5〉+ c3,21 |2BH,51JR,5〉+ c3,30 |3BH,50JR,5〉+ c3,31 |3BH,51JR,5〉

|4BH,4〉 = c4,00 |0BH,50JR,5〉+ c4,01 |0BH,51JR,5〉+ c4,10 |1BH,50JR,5〉+ c4,11 |1BH,51JR,5〉
+c4,20 |2BH,50JR,5〉+ c4,21 |2BH,51JR,5〉+ c4,30 |3BH,50JR,5〉+ c4,31 |3BH,51JR,5〉 (D9)

|5BH,4〉 = c5,00 |0BH,50JR,5〉+ c5,01 |0BH,51JR,5〉+ c5,10 |1BH,50JR,5〉+ c5,11 |1BH,51JR,5〉
+c5,20 |2BH,50JR,5〉+ c5,21 |2BH,51JR,5〉+ c5,30 |3BH,50JR,5〉+ c5,31 |3BH,51JR,5〉

|6BH,4〉 = c6,00 |0BH,50JR,5〉+ c6,01 |0BH,51JR,5〉+ c6,10 |1BH,50JR,5〉+ c6,11 |1BH,51JR,5〉
+c6,20 |2BH,50JR,5〉+ c6,21 |2BH,51JR,5〉+ c6,30 |3BH,50JR,5〉+ c6,31 |3BH,51JR,5〉

|7BH,4〉 = c7,00 |0BH,50JR,5〉+ c7,01 |0BH,51JR,5〉+ c7,10 |1BH,50JR,5〉+ c7,11 |1BH,51JR,5〉
+c7,20 |2BH,50JR,5〉+ c7,21 |2BH,51JR,5〉+ c7,30 |3BH,50JR,5〉+ c7,31 |3BH,51JR,5〉

Each of the term associate with a coefficient ci,j . If co- efficients c represented as matrix, the values are assigned
as the following:



c0,00 c1,00 c2,00 c3,00 c4,00 c5,00 c6,00 c7,00
c0,01 c1,01 c2,01 c3,01 c4,01 c5,01 c6,01 c7,01
c0,10 c1,10 c2,10 c3,10 c4,10 c5,10 c6,10 c7,10
c0,11 c1,11 c2,11 c3,11 c4,11 c5,11 c6,11 c7,11
c0,20 c1,20 c2,20 c3,20 c4,20 c5,20 c6,20 c7,20
c0,21 c1,21 c2,21 c3,21 c4,21 c5,21 c6,21 c7,21
c0,30 c1,30 c2,30 c3,30 c4,30 c5,30 c6,30 c7,30
c0,31 c1,31 c2,31 c3,31 c4,31 c5,31 c6,31 c7,31


‖

0.3552504 −0.3231891 −0.0253468 −0.2101122 0.0047422 0.251555 −0.0296075 −0.8126361
−0.019072 0.1915158 −0.4876553 −0.2481800 −0.0335412 0.5521110 −0.5682440 0.1862906
−0.0586458 0.7537837 −0.1624502 −0.106498 0.3785648 −0.312295 −0.0106699 −0.3868923
0.5933005 −0.1305636 −0.5811510 0.117670 −0.1202273 −0.4915727 −0.0387296 0.147535
0.1742461 0.065539 −0.0619712 −0.7366273 0.0339155 0.1125694 0.5825466 0.2563204
0.2562844 0.1236680 0.5342872 −0.4165860 −0.2992278 −0.3197298 −0.5129216 0.0718675
−0.5052435 0.0170885 −0.2934006 −0.167775 −0.7153596 −0.2153753 0.0989234 −0.2495859
−0.4082575 −0.5037386 −0.1484463 −0.353213 0.4885280 −0.3625415 −0.2497468 0.0175458


(D10)

The expression of mapping from time 5 to time 6 is
similar. The coefficients matrix for mapping from time 5

to time 6 is:

11 Since we generated the random bases for times 5 and 6 numeri-
cally, the eigenvalues of the density matrix of JR for those times
were not exactly 0.5 but deviated from 0.5 by less than 0.1 per-

cent. We do not expect this reflects any issue that would prevent
cases with a Von Neumann entropy identical to unity in principle.
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1c0,00

1c1,00
1c2,00

1c3,00
1c0,01

1c1,01
1c2,01

1c3,01
1c0,10

1c1,10
1c2,10

1c3,10
1c0,11

1c1,11
1c2,11

1c3,11


‖ 0.5840557 −0.7331548 0.172482 0.3026765

0.4858683 0.1387961 0.3380292 −0.7939798
0.262656 0.5607161 0.5952301 0.5121625
−0.5948299 −0.3589111 0.7082990 −0.1251904

 (D11)

The final step from 6 to 7 is trivial, in that the single BH qubit is reassigned to JR, and the old JR qubit is
reassigned to OR. No black hole remains.
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