
This is the accepted manuscript made available via CHORUS. The article has been
published as:

No fifth force in a scale invariant universe
Pedro G. Ferreira, Christopher T. Hill, and Graham G. Ross

Phys. Rev. D 95, 064038 — Published 22 March 2017
DOI: 10.1103/PhysRevD.95.064038

http://dx.doi.org/10.1103/PhysRevD.95.064038


No fifth force in a scale invariant universe.

Pedro G. Ferreira,1, ∗ Christopher T. Hill,2 and Graham G. Ross3

1Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK
2Fermi National Accelerator Laboratory, P.O.Box 500, Batavia, Illinois 60510, USA

3Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

We revisit the possibility that the Planck mass is spontaneously generated in scale invariant scalar-tensor

theories of gravity, typically leading to a “dilaton.” The fifth force, arising from the dilaton, is severely con-

strained by astrophysical measurements. We explore the possibility that nature is fundamentally scale invariant

and argue that, as a consequence, the fifth force effects are dramatically suppressed and such models are viable.

We discuss possible obstructions to maintaining scale invariance and how these might be resolved.

I. INTRODUCTION

The possibility that the gravitational constant, G, or alter-

natively the Planck mass, MPl is dynamically generated has

been considered for more than half a century. P. Dirac argued

that the large number hypothesis indicated the possibility that

G obeyed an equation of the form �G∼ ρ while C. Brans and

R. Dicke proposed the action

SBD =

−
∫

d4x
√−g

[
− α

12
φ2R+

1

2
gµν∂µφ∂ν φ −V(φ)+Lm

]
(1)

where gµν is the metric, R the corresponding Ricci scalar, Lm

is the matter Lagrangian, minimally coupled to gµν and α is

a dimensionless constant [1] (we are assuming the mostly mi-

nus sign convention). Brans and Dicke’s original theory is

normally expressed in terms of the dynamical Planck mass

Φ =−α
6

φ2, V = 0 and the parameter ωBD ∼ 1/α . The Brans-

Dicke action has become one of the workhorses of gravita-

tional physics and is used to explore extensions of general rel-

ativity that appear in a wide range of fundamental contexts. It

has a more modern, complete incarnation - the Horndeski ac-

tion - which encapsulates all possible Scalar-Tensor theories

which have second order equations of motion [2].

If scalar tensor theories are to work, we require a mech-

anism by which the Planck mass stabilizes at its observed

value. This can be achieved through a variety of ways, most

notable by picking a potential V such that, during its cosmic

history, the scalar field settles at its minimum. The potential

can have an explicit mass scale, φ0 set by it’s minimum and

the curvature of the effective potential will then set the ef-

fective range of the fifth force arising from the scalar field; a

judicious choice of curvature can lead to a small enough range

that current observational constraints can be avoided.

The non-minimal coupling of φ with R can lead to a richer

variety of dynamics than those observed for standard scalar

fields. In particular it is possible to construct models such that

there are no dimensionfull parameters. If we choose V = λ φ4

and observe that, in the absence of matter, the equation of

∗Electronic address: pedro.ferreira@physics.ox.ac.uk

motion for φ can be cast as

(1−α)

[
�φ +

∇µφ∇µ φ

φ

]
+φ4 d

dφ

(
V

φ4

)
= 0 (2)

we find that the homogenous solution satisfies

a3φ
dφ

dt
= constant (3)

where a is the scale factor of the Universe. In an expanding

Universe, φ̇ → 0 and φ → φ0. The final value will not be set

by the minimum of the potential but by the field’s initial value.

This is a universe of eternal inflation and a spontaneously gen-

erated Planck mass, as described in the single scalar model of

[3]. It is seen to be equivalent (in the Einstein frame) to a

theory with a cosmological constant, fixed Planck scale and a

completely decoupled dilaton. In two-field, or more, general-

izations we can have inflation, Planck scale generation, and

end up in a vacuum with vanishing cosmological constant.

The time evolution naturally evolves the system from a Jor-

dan frame to an Einstein frame [3].

Generic Scalar-Tensor theories are very severely con-

strained by observations. The process of estimating these con-

straints is well established (and clearly presented in the origi-

nal paper by Brans and Dicke [1] and then generalized in [4]

and [5]). While the original calculation [1] was done in the

Jordan frame (i.e. the frame in which φ is non-minimally cou-

pled to R) it has now become customary to transform to the

Einstein frame where we have the standard Einstein-Hilbert

action but where Lm is now coupled to A(φ)gµν (where A(φ)
arises from the conformal transformation between frames).

The direct coupling between φ and matter brings out the in-

terpretation of φ as the mediator of a “fifth force” which sup-

plements the ordinary gravitational force.

The presence of φ leads to modifications of the

usual solutions to the Einstein equations. For example

the Schwarzschild-like solutions will have two non-trivial

Parametrized Post Newtonian (PPN) parameters, γ and β ,

which can be constrained using, for example, measurements

of the Shapiro time delay, light deflection and the Nordvedt

effect. The current, tightest constraints come from an anal-

ysis of the Cassini spacecraft placing an upper bound on γ
such that ωBD > 40,000 [6]. Comparable constraints (within

a factor of 2) have been obtained from the analysis of the rel-

ativistic pulsar-white dwarf binary, J1738+033 [7].
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In this letter we will show that these results can be evaded

if Lm is exactly scale invariant or (in the case of a diffeomor-

phism invariant theory) exactly Weyl invariant. Let us clar-

ify what we mean by this. Weyl transformations hold coordi-

nates fixed, and contain a multiplicative scale transformation

of fields. So for example, we transform gµν → Ω−2gµν and

φ →Ωφ (where Ω is a constant). A coordinate scale transfor-

mation δxµ =Ωxµ is a subclass of diffeomorphisms. A theory

that is Weyl invariant and diffeomorphism invariant is there-

fore, exactly scale invariant. Throughout this paper we will

refer to the symmetry as scale invariance even though we will

only rely on part if it, Weyl invariance, to prove our results.

Thus, throughout, we will assume that SM =
∫

d4x
√−gLm is

invariant under Weyl transformations.

In the scenario we consider in this paper, the Weyl sym-

metry is spontaneously broken when the scalar field settles

down to an asymptotic, random, vacuum expectation value,

and the Planck mass is stabilised. As a result, there is a

Nambu-Goldstone boson - the dilaton - which is the media-

tor of the fifth force and is, at most, derivatively coupled to

the matter sector. We then find that the fifth force is com-

pletely non-existent if the underlying symmetry is exact. That

the fifth force should be suppressed is a consequence of the

decoupling theorem of Nambu-Goldstone bosons.

Derivative couplings between the dilaton and the matter

sector will lead to a suppression, at large distance in the 5th

force. We will show, in detail, that, in fact, in a scale in-

variant universe, in the symmetry broken phase, the dilaton

does not perturbatively couple at all to the matter energy

momentum tensor. There are several ingredients to this ef-

fect. The first one is that, given that the dilaton is deriva-

tively coupled, the relevant terms in the action are of the form

[δL/δ (∇µ σ)]∇µ σ = Kµ ∇µσ where L is the Lagrangian in-

cluding all terms in σ and Kµ is a four current, the global

scale symmetry current, which is conserved. In the symmetry

broken phase, Kµ = 0 and thus σ decouples from the mat-

ter dynamics of the theory. The second ingredient is that the

kinetic term for fermions involves a symmetrized derivative,

(
−→
/∇ −
←−
/∇ ), which is completely blind to a real rescaling of the

fermion field (as opposed to one involving a complex phase).

Thirdly, gauge fields are neutral under Weyl transformations,

and the dilaton is automatically decoupled from a classical

gauge action. If the Weyl symmetry is valid at the quantum

level as well, again the dilaton completely decouples from the

gauge field action. We will use this paper to show how all

these ingredients come into play and flesh out the proof that

scale invariant theories evade fifth constraints by examining a

number of specific examples.

We begin, in section Section II by re-deriving the con-

straints in the standard derivation and then show how they

may be evaded for the case of single scalar field coupled to

a scale invariant matter action - we should expect, at most, a

derivative coupling of the dilaton to the matter source. In the

Section III we delve deeper and explored how the scale sym-

metry of a multi-scalar field action actually leads the dilaton

to completely decouple from the matter sector. In Section IV

we build on our previous results and show how a proxy for the

standard model - a fermion that acquires a mass via the Higgs

mechanism - will lead to the same result. We also demonstrate

the decoupling of the dilaton from gauge bosons. Finally we

discuss non-perturbative effects that can lead to the coupling

of the dilaton to matter, but in a highly suppressed manner.

In Section V we briefly address the fact that, while quan-

tum corrections would seem to invalidate scale invariance via

trace anomalies, this problem can be avoided [3]. It is well

known that a quantum theory in D = 4 with no input masses

and vanishing β -functions to all orders in h̄ is scale symmet-

ric. However, the converse is not necessarily true: a quantum

theory in D = 4 with no input masses and non-vanishing β -

functions is not necessarily non-scale invariant. That is, it can

be interpreted as a subsector of a fully scale invariant theory.

In these theories, ratios of observables to fixed mass scales,

such as φc/M, where φc is a classical field VEV (or an external

momentum scale in a scattering amplitude) and M is a fixed

mass scale, do not occur as arguments of logs. Rather renor-

malization group running occurs in scale invariant ratios, e.g.,

φc/χc which respects overall scale symmetry [3]. In short, in

these theories there is no absolute mass scale in nature, but

rather just dimensionless ratios of VEV’s. In Section VI we

summarize our findings.

II. EVADING FIFTH FORCE CONSTRAINTS WITH THE

DILATON.

We take as our starting point the action presented in Equa-

tion 1. The modified Einstein field equations are

−M2Gαβ =
(

1− α

3

)
∂α φ∂β φ −

(
1

2
− α

3

)
∂µφ∂ µ φgαβ

+
α

3

(
φgαβ −∇α∇β φ

)
+Vgαβ −Tmαβ (4)

where we have defined M2 = −αφ2/6. The modified Klein-

Gordon equation is

�φ +
α

6
Rφ +Vφ = 0 (5)

where Vφ = dV/dφ .

We are interested in studying these equations in two lim-

its. First we will expand around Minkowski space, ηαβ and

will assume that φ has stablized around a minimum value,

φ0. Hence we are interested in linear fluctuations around the

scalar field minimum, φ = φ0 +ϕ and the Minkowski met-

ric, gαβ = ηαβ + diag(Φ,Ψδi j). Second, we are interested in

the Newtonian, or quasi-static regime where we can discard

all time derivatives of the metric and scalar field. Taking the

trace of Equation 4 to eliminate the Ricci scalar in Equation

5 and the taking the two approximations described above we

end up with

∇2ϕ =− α

6(1−α)

φ0

M2
Pl

Tm (6)

where we have defined M2
Pl ≡ −αφ2

0 /6 and we have consid-

ered the case that contributions from d2V/dφ2 are negligible.



3

This is because such terms will introduce a self-coupling to

the field equations and generate a Yukawa mass term. By

discarding them we are considering the worst-case scenario

where there is no mass, and hence no finite range, that may

screen the force.

The Einstein field equations become, in terms of the gravi-

tational potentials,

−M2
Pl∇

2Ψ = −1

2

3− 2α

3(1−α)
Tm00

−M2
Pl∇

2(Φ−Ψ) =
2α

3(1−α)
Tm00 (7)

where we have assumed a non-relativistic source, Tm ≃ Tm00

and Tmi j ≃ 0. A localized mass gives us Tm00 ≃ Mδ 3(r) and

we can solve for the potentials to find

Ψ = − 3− 2α

6(1−α)

1

M2
Pl

M

r

Φ =
1

2(1−α)

1

M2
Pl

M

r
(8)

If we define Netwon’s constant via Φ = G0M/r we have that

the PPN parameter γ defined through

Ψ≡ γ
G0M

r

is given by

γ =
2α− 3

4α− 3
. (9)

We have recovered the well established expression for γ for

scalar-tensor theories.

Crucial, in this derivation, is the fact that ϕ is sourced by

Tm and furthermore, that the energy momentum tensor of ϕ
then sources the gravitational potentials. Because of the non-

minimal coupling, ϕ enters the Einstein field equations in

combinations of the form φ0∇2ϕ , bringing in extra contribu-

tions of Tm to the right hand side. We can immediately see

that, if the energy momentum tensor of matter fields is trace-

less there is no extra contribution to the metric potentials.

If the action presented in Equation 1 is scale invariant,

the situation changes dramatically. Specifically, assume that

V = λ
4

φ4 and that, under Weyl transformations,
√−gLm is in-

variant. Then consider the following Weyl field redefinitions

φ = φ0e
σ
f

gαβ = ĝαβ e
− 2σ

f (10)

where φ0 is the stationary solution of the background field

equations and σ is a scalar field - the dilaton. Transforming

the action, we find

SBD→
∫

d4x
√
−ĝ

[
− α

12
φ2

0 R̂+
1

2
ĝµν∂µσ∂νσ −V(φ0)+ L̂m

]

(11)

where we have chosen f =(1−α)φ2
0 so as to canonically nor-

malize σ . Note that, because of our assumptions about scale

invariance, the transformed matter action, L̂m does not couple

directly to the dilaton σ although it may, however, couple to

∂α σ . This means that the dilaton equation of motion will be

of the form

�σ = ∂α σSα (12)

where Sα is constructed from elements of Tmµν . In fact, it is

likely that Sα = ∂ α S where S is a local function of the matter

fields. We then have that σ is non zero inside the source but

satisfies �σ = 0 outside, i.e. a damped wave equation. This

means that, at late times, any contribution from σ to the en-

ergy momentum tensor sourcing the Einstein field equations

is severely surpressed (as we shall see in Section IV C) and

the standard constraints on Jordan-Brans-Dicke gravity do not

apply.

A key aspect to this derivation is the scale invariance of Lm.

We have assumed that there will be a derivative coupling to

σ as we would expect from Goldstone’s theorem. For this

coupling to be completely absent, as we saw above, we would

naively expect that we would have to restrict ourselves to a

conformally matter source and that the result, therefore, fol-

lows trivially from our original derivation. In the next section

we will dig a bit deeper and consider explicit forms for Lm to

see that this is not necessarily the case.

III. THE DILATON IN A MULTI-SCALAR UNIVERSE.

Let us now consider a multi-scalar tensor theory of gravity

of the form

S =

∫
d4x
√−g

[
− 1

12

N

∑
i

αiφ
2
i R+

1

2

N

∑
i

∂µφi∂
µφi−W (~φ)

]

(13)

where we assume a generalized “λ φ4” potential of the form:

W (~φ ) =
N

∑
i

N

∑
i

φ2
i Wi jφ

2
j

The action in Equation 13 is scale invariant: it is invariant

under gµν →Ω−2gµν , φi→Ωφi where Ω is a constant. Here,

what we call the matter action will be a subset of the scalar

field action; for example we can define φ1 to be the φ and φi,

with i = 2, · · · ,N, to be the matter fields in Lm in the previous

section.

As shown in [8, 9], this system has a conserved current

which is tied to the underlying scale symmetry of the theory.

The evolution equations for the scalar fields are

�φi−
αi

6
φiR−Wφi

= 0 (14)

where Wφi
= ∂W/∂φi and R is the Ricci scalar which, in this

case, is given by

−1

6

N

∑
i=1

αiφ
2
i R =

N

∑
i=1

[
(αi− 1)∇µφi∇

µφi +αiφi�φi

]
+ 4W

(15)
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Multiplying each of the field equations 14 by φi and adding

all of them together, one finds a conservation law of the form

∇µKµ = 0 where Kµ = ∇µ K and

K =
1

2

N

∑
i=1

(1−αi)φ
2
i (16)

We can easily understand the dynamics of this theory at the

level of the background. If we take the φi to be functions of

time t only, we have that the conservation equation give us

K̈ + 3
ȧ

a
K̇ = 0 (17)

and can be solved to give

K = c1 + c2

∫
dt

a3(t)
. (18)

Therefore we find that, under general conditions, K will

evolve to a constant value, K→ K0. In other words, the scalar

fields will evolve such that their values will be constrained to

lie on the ellipse given by 16. Furthermore, one can show that,

if Wi j is non-singular, that there will be a fixed point on this el-

lipse where the ratios between all possible φ2
i are determined

by the coupling constants. We then have that the effective

Planck mass, MPl is determined by the initial conditions of

the scalar fields and the coupling constants in the theory. This

behaviour is a generalization of the simple scalar field model

presented in the introduction.

The phenomenology of the two scalar model is rich and

has been extensively explored before. In particular, [8, 10–

12] suggested that one of the fields could be a non-minimally

coupled standard model Higgs and have extensively studied

the phenomenology of what they have dubbed ”Higgs-Dilaton

cosmology. We have explored the fixed point structure and

the inflationary regime in [3, 9] arguing that a scale-invariant,

two field model can unify the IR and UV accelerated regimes

into a viable cosmological model. A number of authors have

explored various phenonomenological aspects of this theory

in [13–16].

As before, we want to focus on what happens once the

Planck mass has stabilised. In effect, the global scale invari-

ance of the theory will have been broken and, as one would

expect, a massless Nambu-Goldstone mode, the dilaton will

emerge. We will show, in this case, that the dilaton is uncou-

pled from the matter sector. In other words, there is no fifth

force. To see how this happens in practice, we change vari-

ables to

φi = e
− σ

f φ̂i

gµν = e
2 σ

f ĝµν (19)

where φ̂i are constrained to lie on the ellipse given by

K̄ =
1

2

N

∑
i=1

(1−αi)φ̂
2
i = f 2 (20)

where f 2 is a constant.

Transforming the full action we find

S =

∫
d4x

√
−ĝ

[
− 1

12

N

∑
i

αiφ̂
2
i

(
R̂− 6

f 2
∂µσ∂ µσ − 6

f 2
�σ

)

+
1

2

N

∑
i

∂µ φ̂i∂
µ φ̂i +

1

2 f 2

N

∑
i

φ̂2
i ∂µσ∂ µ σ +

1

f
∂µσ

N

∑
i

φ̂i∂
µ σi

−W (~̂φ )+λLC (~̂φ )
]
. (21)

where we have added a Lagrange multiplier, λL and the con-

straint C = K̄− f 2. Note that the scale invariant form of W

results in all factors of e−σ/ f being compensated by the cor-

responding factors arising in
√−g. Equation 21 can be inte-

grated by parts and rewritten as

S =
∫

d4x
√
−ĝ

[
− 1

12

N

∑
i

αiφ̂
2
i R̂+

1

2

N

∑
i

∂µ φ̂i∂
µ φ̂i

+
1

f 2
K̄∂µσ∂ µ σ +

1

f
∂µσ∂ µ K̄−W(~̂φ )+λLC (~̂φ )

]

(22)

Given that K̄ = f 2 is a constant we have there are no cross-

terms between σ and φ̂i and thus the dilaton is completely de-

coupled from everything else; in particular there are no deriva-

tive couplings between the dilaton and the remaining fields.

The dilaton is canonically normalized and satisfies �σ = 0 so

that in can be set to zero in the symmetry broken phase.

It is interesting to rephrase the result in terms of φ̂1 (with

non-minimal coupling α ≡ α1) and the matter action, L̂m con-

structed from the remaining N − 1 fields. For simplicity we

restrict ourselves to N = 2 and minimal coupling for the sec-

ond field, χ ≡ φ2). The background equations of motion fix

φ̂1 = φ0 and χ0 = 0. We then have f 2 = 1
2
(1−α)φ2

0 and, as in

the previous section, we can define an effective Planck mass,

MPl ≡− 1
6
αφ2

0 . The matter action is simply

L̂m =
1

2
ĝµν∂µ χ∂ν χ +W(φ0, χ̂) (23)

where scale invariance is now explicitly broken by the expec-

tation value of φ1. Again, note that there is no coupling at all

to the dilaton, as advertised.

IV. ADDING MATTER FIELDS.

A. Complex Scalar and Fermions

We could construct a more realistic model of the matter sec-

tor which includes fermions, gauge fields and a Higgs sector.

It turns out that it is sufficient to consider a fermion, ψ , cou-

pled to a complex scalar field, H; gauge fields are conformally

invariant and automatically decouple from the dilaton. The

gravitational part of the action is

SBD =
∫

d4x
√−g

[
− α

12
φ2R+

1

2
∂µφ∂ν φ −V(φ)

]
(24)
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where V = λ
4

φ4.

We have that fermions, ψ will transform as ψ→Ω3/2ψ and

therefore, the fermion action with a Weyl invariant mass term

must take the form

Sψ =
∫

d4x
√−g

[
i

2
ψ̄(
−→
/∇ −
←−
/∇ )ψ− gψ̄ψRH− gψ̄ψLH∗

]

(25)

where ψL = 1−γ5

2
ψ , ψR = 1+γ5

2
ψ and γ5 is a Dirac matrix.

We have defined the covariant Dirac operator,
−→
/∇ = Eaµγa∂µ ,

where Eaµ is the vierbein such that gµν = ηabEaµEbν and ηab

is the Minkowski metric.

The action for the complex scalar field will take the form

SH =
∫

d4x
√−g

[
∇µH∇µH∗+U(φ ,H)

]
(26)

where the potential takes the form

U(φ ,H) = ξ (H∗H)2 + δφ2H∗H (27)

The full action is then given by S = Sφ +Sψ +SH . We can eas-

ily introduce Yang-Mills gauging by suitably correcting the

covariant derivative and adding in the gauge kinetic term.

Ignoring the phase of the Higgs field, we can define H =
h/
√

2 to end up with a two scalar theory

S =

∫
d4x
√−g

[
1

2
gµν∂µ φ∂ν φ +

1

2
gµν∂µh∂νh

+
i

2
ψ̄(
−→
/∇ −
←−
/∇ )ψ− g′ψ̄ψh−W(φ ,h)− 1

2
αφ2R

]

(28)

where g′ = g/
√

2 and W =V +U .

As before, we now want to extract the dilaton by transform-

ing the fields as follows:

φ = φ̂e
− σ

f

h = ĥe
− σ

f

gµν = e
2 σ

f ĝµν

Eaµ = e
σ
f Êaµ

ψ = e
3σ
2 f ψ ′ (29)

Applying this transformation, integrating by parts and defin-

ing the kernel, K̄ = 1
2
(1−α)φ̂2 + 1

2
ĥ2, we find

S =

∫
d4x

√
−ĝ

[
1

2
ĝµν∂µ φ̂ ∂ν φ̂ +

1

2
ĝµν∂µ ĥ∂ν ĥ+

1

f
∂µ ∂ µ K̄

+
1

2 f 2
K̄∂µσ∂ µσ − 1

12
αφ̂2R̂−W(φ̂ , ĥ)+

i

2
ψ̄ ′(
−→
/∇ −
←−
/∇ )ψ ′

−g′ψ̄ ′ψ ′ĥ+λLC (φ̂ , ĥ)
]

(30)

As in the multi-scalar case, we have a conserved Weyl cur-

rent; canonically normalizing the dilaton we have f 2 = K̄ and

which decouples the dilaton kinetic term from the remaining

scalar fields. Again we have added the constraint to the action.

Focusing on the symmetry broken phase where we have

φ̂ = φ0 + φ̃ and φ0≫ ĥ we can solve for ∂ φ̃ to get

∂ φ̃ =− 1

1+α

ĥ

φ0

∂ ĥ (31)

which means that ∂ φ̃ ≪ ∂ ĥ. Furthermore, we have that K̄ ≃
1
2
(1−α)φ2

0 and so φ̃ ≃ −ĥ2/2(1−α) and the leading order

terms in the potential are

W (φ̂ , ĥ)≃ λ

4
φ4

0 +
δ ′

2
φ2

0 ĥ2 +
ξ ′

4
ĥ4 (32)

where δ ′ and ξ ′ can be expressed in terms of λ , δ , ξ and α .

The resulting action (with M2
Pl =− 1

6
φ2

0 ) is Einstein gravity:

S =

∫
d4x

√
−ĝ[

1

2
M2

PlR̂+Lm] (33)

with

Lm =
1

2
ĝµν∂µ ĥ∂ν ĥ +

1

2
∂µσ∂ µσ −W

+
i

2
ψ̄ ′(
−→
/∇ −
←−
/∇ )ψ ′− g′ψ̄ ′ψ ′ĥ

(34)

As in the previous cases, we have found that there is no

coupling between the dilaton and the matter sector and thus,

such a scale invariant theory won’t be subject to fifth force

constraints.

B. Gauge Bosons

Covariant (lower index) vector bosons are neutral under the

Weyl transformations laid out in Equation 29 . This is re-

lated to how the notion of length is contained in the covari-

ant metric, and not in the coordinates under scale symmetry.

This means that there is a big difference between contravari-

ant and covariant and one has to be careful: gµν → Ω2gµν

has dimensions of L2 (where L∼ length), but gµν →Ω−2gµν

has dimensions of L−2. Hence the contravariant coordinates

and their differentials, dxµ , are dimensionless numbers, and

ds2 = gµνdxµdxν has dimensions L2 via the metric. Covari-

ant coordinates, dxµ = gµνdxν thus carry L2.

Therefore, derivatives ∂µ = ∂/∂xµ are likewise neutral un-

der a Weyl transformation, ∂µ → ∂µ . When we construct

a gauge covariant derivative for electromagnetism or other

unitary gauge group based theories, we introduce a vector

potential and have Dµ = ∂µ − ieAµ . Consistency thus dic-

tates that Aµ is also neutral under Weyl transformations, i.e.

Aµ → Aµ . (Note that Weyl’s original gauge field enters as

Dµ = ∂µ − qe′Aµ , and gauges Weyl transformations, where

q is the (mass ∼ L−1)-scale dimension, i.e., q = 1 for φ and

q =−2 for gµν ).

Hence the electromagnetic field Fµν = ∂µAν−∂νAµ is also

neutral, transforming as Fµν→ Fµν , but Fµν = gµρ gνλ Fρλ →
Ω−4F µν has dimensions of L−4, as an energy density. Since
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Maxwellian electromagnetic fields
−→
E and

−→
B have mass di-

mension L−2, we see that they must be identified with E i ∼ F i
0

and Bk ∼ εki
jF

j
i .

The canonical kinetic term for gauge theories is therefore

L =−1

4
gµρgνλ FµνFρλ (35)

and we see that that L →Ω−4L is an energy density. Since,√−g → Ω4√−g, the action, SA =
∫ √−gL , is invariant.

Since the Dilaton follows by replacing lnΩ→ σ/ f , we see

that it decouples from the classical vector potential action.

What about a renormalization group running gauge cou-

pling, e? The action can be written in the noncanonical

normalization as SA =
∫
(1/e2)

√−gL . If we use external

mass scales to define renormalized running couplings (and

for an infinitesimal Weyl transformation, Ω≃ 1+ ε) we have

(1/e2)→ (1/e2)−2(β (e)/e3)ε , (e.g. with e2 = e2(φ/M) and

d ln(φ/M) = ε where φ → (1+ ε)φ ).

With “external” renormalization, i.e., using external input

masses M to define renormalized quantities, we have the trace

anomaly:

1√−g

δSA

δε
= −2β (e)

e3
L

→ β (e)

2e
Fµν Fµν (canonical normalization). (36)

However, with “internal” renormalization we use fields in the

action in place of M, hence ln(φ/M)→ ln(φ/χ). With this

scale invariant argument of the log, the action is invariant un-

der δ I/δε and there is no trace anomaly (i.e., the associated

Weyl current is conserved). There is still running of the cou-

pling, g(φ/χ), but now in the variable ln(φ/χ). There is still a

physical ΛQCD, but now ΛQCD/χ = exp{−8π2/|b0|e2
QCD(χ)}

and the ratio ΛQCD/χ is Weyl invariant to this order of pertur-

bation theory.

Hence, the dilaton completely decouples from gauge fields

in quantum mechanics as well, provided we use “internal

renormalization.” This is a world in which there are no abso-

lute mass scales, but only dimensionless ratios of field VEV’s

[3], and may be an underlying symmetry in nature.

C. Higher Dimension Operators

The previous discussion has been restricted to D≤ 4 opera-

tors. In fact, this provides an easy way to see why dilaton de-

coupling from spinors occurs: the quantity ∂µ σ is C =+ (i.e.

charge conjugation even), while the fermionic current ψ̄γµψ
is C = −. However, there will generally occur higher dimen-

sion operators, such as those involving the nucleon (i.e. ψ)

that arise nonperturbatively in QCD. For example, we might

have an operator taking the form:
√−gκgµν∂µσψ̄∂ µψ/ f ΛQCD (37)

We’ve chosen an operator that is chiral symmetry breaking

and hence scales like ΛQCD/Λ2
QCD However, the fermionic op-

erator now has C =+ and the dilaton can couple derivatively

to the fermion density.

Now consider a compact source, like a star or planet where

the nucleon density can be approximated by a local static

function ψψ(x) = ρ(−→x ) and ψ(−→x )→ 0 for |−→x |> R . In this

approximation the source ψ̄∇iψ ∼ (1/2)∇iρ , and we have a

vanishing surface term:

∫
d3x ~∇2ρ = 0 (38)

If we assume approximate flat space and we can seek a static

solution for the σ field around the source. The equation of

motion in the static limit is thus:

−∇2σ̂ +
κ

f ΛQCD

∇2ρ(−→x ) = 0 (39)

A Green’s function solution for the dilaton halo is then:

σ =− κ

f ΛQCD

∫
1

4π |−→r −−→x |∇
2ρ(−→x )d3x (40)

Performing a double integration by parts and using

∇2(4π |−→r −−→x |)−1 = δ 3(−→r −−→x ) yields:

σ(−→r ) =− κ

f ΛQCD

ρ(−→r ) (41)

This is a halo field that simply tracks the source distribution

and vanishes outside. Other operators and distributions might

produce at most weak 1/r3 halos. This is analogous to the fact

that pseudoscalar fields, such as axions, couple to Ψ̄γ5Ψ ∼
Ψ†−→σ ·−→∇ Ψ, where we indicate the nonrelativistic limit. This

implies that pseudoscalar fields couple to dipole densities ∼−→
S · −→∇ ρ (where

−→
S is a net spin polarization). It is beyond

the scope of the present work to determine if ultra-sensitive

experiments could detect such a suppressed short-range halo.

V. OBSTRUCTIONS AND SOLUTIONS.

We have argued that the fifth-force bounds on Brans-Dicke

theories are absent if a scale invariance is only broken spon-

taneously. In the context of a complete theory of the fun-

damental forces this requires that the Standard Model (SM)

should also be scale invariant with all masses generated spon-

taneously. Indeed, with the exception of the scalar potential,

the SM Lagrangian is scale invariant and the masses of the

gauge bosons, the quarks and the charged leptons are gener-

ated through spontaneous breaking of the electroweak (EW)

symmetry.

However, in the SM the spontaneous breaking of EW sym-

metry is triggered by the inclusion of a scalar mass term in

the Lagrangian that explicitly breaks scale invariance. In the

context of the SM this term is at the heart of the naturalness

problem that either hampers our understanding of the founda-

tion of the SM or hints at new physics, depending on the eye

of the beholder.

A rejuvenated approach has been advocated that builds

scale-invariance into the core of the SM [17]. The idea is that
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the spontaneous EW breaking occurs via dimensional trans-

mutation in which radiative corrections drive the Higgs ru-

uning quartic scalar coupling negative below the EW scale,

leading to the Coleman-Weinberg mechanism [18], and trig-

gering spontaneous EW breaking at that scale. In the original

implementations of this idea the classical theory is scale in-

variant and scale breaking occurs through the trace anomaly

arising from the one-loop radiative corrections to the quadratic

coupling proportional to ln(|H|2/M2) where M is an explicit

mass scale at which the coupling is defined and H is the SM

scalar field. However, introducing M as an external input

mass leads to explicit breaking of scale symmetry, and such a

term will induce non-derivative couplings of the dilaton to the

SM states, re-introducing the fifth-force bounds on the Brans-

Dicke coupling.

A more ambitious viewpoint argues that any mass scales

that might enter via regularization and renormalization should

be vacuum expectation values of fields in the action of the

theory itself, and thus maintain the scale invariance. So, for

example, logarithmic corrections to the action of the form

ln(|H|2/M2) in a scale broken theory would be replaced by

ln(|H|2/φ2) such that the argument of the logarithm is it-

self scale invariant. A case for this approach has been made

in [3, 19, 20] (see also [21]). This allows for nonzero β -

functions and renormalization group running of coupling con-

stants in quantities like ln(|H|2/φ2), however the scale sym-

metry is now maintained at the quantum level. In this case,

scale invariance is only spontaneously broken, so the decou-

pling of the dilaton persists and there are no fifth-force bounds

on the Brans-Dicke coupling.

There remains the question whether neutrino masses explic-

itly break scale symmetry. In the SM neutrinos are massless

due to the absence of right-handed (RH) SM-singlet neutrinos.

If they are added to the SM then, after spontaneous EW break-

ing, neutrinos will acquire Dirac masses upon EW breaking

through their Yukawa coupling to the SM scalar. It is possible

these couplings are anomalously small and give rise to the ob-

served neutrino masses. As for the quarks and charged leptons

they do not lead to explicit scale breaking so the dilaton still

decouples. Alternatively the LH neutrinos may acquire Ma-

jorana masses via a dimension 5 coupling to two SM scalars

through the exchange of a heavy state such a RH neutrino or

a heavy scalar state. Provided the RH states also acquire their

mass through spontaneous breaking of the scale symmetry the

decoupling of the dilaton will be preserved.

VI. DISCUSSION

In this paper we have explicitly shown that perturbatively,

in scalar-tensor theories in a scale invariant universe, there

is no fifth force. This means that the usual, extremely

tight, astrophysical constraints can be completely evaded. We

have done so by looking at a representative selection of ac-

tions which encapsulate the essential structure of the standard

model and beyond. We have discussed how this result may be

obstructed in the real world by explicit mass scales but have

also described how to evade these obstructions.

Our result is not unexpected. We are considering a global

scale symmetry which is spontaneously broken. From Gold-

stone’s theorem we expect the dilaton, which is the mediator

of the fifth force, and to be derivatively coupled. In fact, how-

ever, the dilaton doesn’t couple at all to the energy momentum

tensor of the matter fields in the spontaneous symmetry bro-

ken phase. The dilaton obeys a damped wave equation and its

dynamics are trivial: any residual non-zero fluctuations in the

dilaton will dissipate away following the onset of the symme-

try broken phase.

The fact that the dilaton decouples from the rest of a scale

invariant world has been alluded to before. In [22–24] the su-

pression due to derivative coupling was extensively discussed.

In [25], the author constructed simple scalar field models in-

volving one and two scalar fields and showed there that the

massless scalar mode would decouple from any additional

static matter sector. Our calculation generalizes the result of

[25] (see also [26–28] as well as [29] for a similar calculation

in the early universe context). An interesting proposal was re-

cently made in [30] for radiative screening of forces in scale

invariant theories.

The question remains: does the Universe have an underly-

ing exact scale invariance, that is hidden by spontaneous sym-

metry breaking? The conventional view, e.g., such as that of

string theory where scale symmetry is explicitly broken by the

string tension, is that it is not an exact symmetry and, if so,

our results do not hold. If there are explicit mass scales built

into the fundamental action of the Universe then we would be

stuck with the extremely tight constraints on scalar-tensor the-

ories: scalar tensor theories are then disfavored. But the recent

resurgence in interest in scale-invariance, driven in part by the

discovery of a fundamental scalar particle, the Higgs boson,

is leading to a fresh look at some of the impediments and ad-

vantages to having a scale-invariant world. It may well be

that scale-invariance solves the problems currently facing our

understanding of fundamental physics. If, indeed, all explicit

mass scales can be dropped from our fundamental action, then

scalar-tensor theories will be given a completely new lease on

life.
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