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We derive the secular evolution of the orbital elements of a stellar-mass object orbiting a spinning
massive black hole. We use the post-Newtonian approximation in harmonic coordinates, with test-
body equations of motion for the conservative dynamics that are valid through 3PN order, including
spin-orbit, quadrupole and (spin)2 effects, and with radiation-reaction contributions linear in the
mass of the body that are valid through 4.5PN order, including the 4PN damping effects of spin-
orbit coupling. The evolution equations for the osculating orbit elements are iterated to high PN
orders using a two-timescale approach and averaging over orbital timescales. We derive a criterion
for terminating the orbit when its Carter constant drops below a critical value, whereupon the body
plunges across the event horizon at the next closest approach. The results are valid for arbitrary
eccentricities and arbitrary inclinations. We then analyze numerically the orbits of objects injected
into high-eccentricity orbits via interactions within a surrounding star cluster, obtaining the number
of orbits and the elapsed time between injection and plunge, and the residual orbital eccentricity
at plunge as a function of inclination. We derive an analytic approximation for the time to plunge
in terms of initial orbital variables. We show that, if the black hole is spinning rapidly, the flux
of gravitational radiation during the final orbit before plunge may be suppressed by as much as
three orders of magnitude if the orbit is retrograde on the equatorial plane compared to its prograde
counterpart.

PACS numbers:

I. INTRODUCTION AND SUMMARY

The relativistic motion of a star or small black hole
in the field of a spinning massive black hole is a sub-
ject of much current interest, on two fronts. Such or-
bits may lead to gravitational-wave (GW) emission at a
level that is potentially detectable by ground-based laser-
interferometric detectors, such as LIGO-VIRGO, or by a
future space-based detector, such as LISA [1]. In addi-
tion, relativistic effects on the orbits may play an im-
portant role in the evolution of dense nuclear clusters of
stars and black holes orbiting a massive black hole at
the center of a galaxy (for a recent review, see [2]). In-
deed, these two problems are intertwined: interactions
among the bodies in the cluster may inject bodies into
orbits that pass very close to the black hole, leading to
the emission of waves and a consequent inspiral into the
hole.

At the one extreme – very close to the massive black
hole – the analysis of gravitational-wave emission and in-
spiral is a notoriously difficult problem, particularly if
one seeks sufficiently accurate predictions to be used ef-
fectively in the analysis of data from gravitational-wave
detectors. A leading approach to this problem is the
“self-force” program, which attempts to go beyond sim-
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ple black-hole perturbation theory by incorporating the
back-reaction effects on the geometry of the small mass of
the orbiting particle, while keeping the background Kerr
geometry of the black hole exact (see [3] for a review).
While great progress has been made, concrete results are
currently limited to orbits around Schwarzschild black
holes and equatorial orbits around Kerr black holes (see,
e.g. [4]). Other approaches are hybrid in nature, combin-
ing information on the flux of radiation from black-hole
perturbation theory with assumptions of energy and an-
gular momentum balance, separations of timescales, and
adiabatic evolution of orbital parameters [5–8].

At the other extreme – very far from the black hole –
relativistic effects are small, but can have important long-
term effects on the evolution of the cluster. A leading ex-
ample of this is the so-called “Schwarzschild barrier”, in
which the relativistic advance of the pericenter of a given
orbit can, over long timescales, reduce the probability
of the star being injected into an orbit that becomes a
gravitational-wave driven, “extreme mass-ratio” inspiral
(EMRI) [9–14]. In this realm, post-Newtonian (PN) the-
ory, the weak-field, slow-motion approximation to gen-
eral relativity, is adequate for including the dominant
relativistic effects. These can include the standard PN
effects of the Schwarzschild geometry, notably the peri-
center advance, as well as the effects of frame-dragging
and the quadrupole moment of the Kerr geometry, and
post-Newtonian “cross-terms” [15] arising from the non-
linear interactions between the field of the black hole and
the fields of the orbiting bodies.

Our interest lies between these extremes. We wish
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to use post-Newtonian theory to study a star or black
hole that has just been injected into an orbit of such low
angular momentum that it will pass close to the black
hole, and thus will have its motion strongly influenced
by gravitational radiation. Ignoring further perturba-
tions by other stars, we will then follow its motion un-
til its orbital parameters require the body to cross the
event horizon at the next closest approach. To get a
sense of what this means in terms of orbital parameters,
consider a 106M� black hole, surrounded by a cluster
of stellar-mass objects at a distance of a few millipar-
secs. The Schwarzschild radius of such a black hole is
50 nanoparsecs. Thus, in order to get close to the black
hole, the body must be injected into a very low angu-
lar momentum orbit, L ∼ [GMa(1 − e2)]1/2 ∼ bv where
a is the semi-major axis, of order a few milliparsecs, e
is the eccentricity, b is the impact parameter, which has
the scale of Schwarzschild radii, and v ∼ (GM/a)1/2 is
the orbital velocity. This gives (1 − e2) ∼ (b/a)2. For
b ∼ 100 Schwarzschild radii, and a ∼ 1 mpc, this implies
1 − e ∼ 10−5. Such extreme eccentricities are not the
usual realm for applications of PN theory.

Still, initially the star is not in the final, highly rel-
ativistic inspiral regime, and thus we might expect PN
theory to be a reasonable approach to the study of such
orbits, particularly if it is carried out to high orders in
the PN expansion. The PN approximation has proven
to be “unreasonably effective” [16] in describing the
quasi-circular inspiral of comparable mass-compact bod-
ies, such as black holes or neutron stars. In regimes where
it might be expected to fail, it agrees surprisingly well
with results from numerical relativity. Whether this ef-
fectiveness will carry over to the highly eccentric, exreme
mass-ratio inspiral problem will depend in part on what
questions are being addressed. If the question is “what
is the precise, late-time gravitational waveform including
phase evolutions”, then there is reason to be skeptical of
any answer based on PN theory, absent some corrobora-
tion from self-force theory, numerical relativity or some
other technique. However if the questions include

• how many orbits or how much time does it take to
go from initial injection to plunge into the black
hole?

• what is the distribution of late-time orbital eccen-
tricity as a function of inclination of the orbit rela-
tive to the black hole’s equatorial plane?

• how do the late-time energy flux and gravitational-
wave frequency depend on inclination?

then PN theory might give quantitative estimates. Time
to plunge, for example, is useful input into schemes for
evolving the cluster, including the effects of the loss of
stars to the inspiral process. Whether the late-time orbits
are highly circularized or could have significant residual
eccentricities, depending on inclination, could be impor-
tant guides for research on such schemes as the self-force
program. And the dependence of the gravitational-wave

signal on inclination could impact estimates of the de-
tectability of EMRI radiation by space detectors such as
LISA. Questions such as these will be the main focus of
this paper.

We first develop the necessary analytic formulae to de-
scribe the evolution of very eccentric orbits from injection
to plunge, for a stellar-mass object of mass m in the grav-
itational field of a massive Kerr black hole of mass M and
dimensionless spin parameter χ, derived to high orders
in the PN approximation. In Sec. II we derive and dis-
play the basic two-body equations of motion to be used.
They are valid through 3PN order for the conservative
part of the orbital dynamics of a test particle, including
frame-dragging, quadrupole-moment and (spin)2 effects.
They are valid through 4.5PN order in the dissipative
part caused by gravitational radiation reaction, including
the 4PN-order effects of spin-orbit coupling. The key re-
sults are Eqs. (2.3) and (2.4) (together with detailed for-
mulae displayed in Appendix A), expressed in harmonic
coordinates. The dissipative terms are given to first or-
der in the reduced mass parameter η = mM/(m+M)2,
which is assumed to be very small. They are presented in
a ready-to-use form that permits them to be integrated
into an N -body code for evolving the stellar cluster.

Section III uses the formalism of osculating orbit ele-
ments and the “Lagrange planetary equations” for evolv-
ing the orbit elements in the presence of the relativis-
tic, non-Keplerian perturbations (Sec. III A). We use a
two-scale analysis to separate each orbit element into an
orbit-averaged piece and a piece that varies on an orbital
timescale, and derive equations both for the “secular”
variations of the average elements on longer timescales,
and for the periodic variations (Sec. III B and Appendix
B). Because we are working to high orders in a PN ex-
pansion, we must carefully iterate the planetary equa-
tions to high orders. From the conservative sector of the
equations of motion (Sec. III C), we obtain the usual ad-
vance of the pericenter of the orbit through 3PN order,
and PN and higher-order variations in the angle of nodes.
We also find, beginning at 3PN order, quadrupole and
(spin)2-induced variations in the eccentricity, semilatus
rectum and inclination [Eqs. (3.22) and (3.23)]. We ob-
tain 3PN accurate expressions for the conserved energy,
angular momentum component along the black-hole spin
axis, and Carter constant, in terms of the average or-
bit elements [Eqs. (3.24)]. From the radiation-reaction
sector (Sec. III D), we obtain equations of evolution for
the eccentricity and semilatus rectum that include the
conventional “Newtonian” or quadrupole formula contri-
butions (Peters-Mathews terms) at 2.5PN order, along
with 3.5PN and 4.5PN terms, as well as 4PN spin-orbit
terms [Eqs. (3.27)]. The latter terms change sign between
prograde and retrograde orbits. We also find spin-orbit
induced, radiation-reaction variations at 4PN order in
the inclination, pericenter and nodal angle.

Section IV addresses an issue that arises with the oscu-
lating element formalism when the eccentricity tends to
unity. This limit is not well-behaved, in a manner similar
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to the well-known singular behavior of the eccentricity-
pericenter pair of orbital elements in the limit of circular
orbits. We define a new eccentricity related to the old
by PN corrections, and display the conserved quantities
and the secular evolution equations in terms of this new
variable.

In Sec. V, we use these results to numerically evolve
eccentric orbits from injection to plunge. We recast the
equations for gravitational radiation damping of the or-
bit in terms of dimensionless variables ε ≡ GM/c2pi,
x = p/pi, e, ι, and θ, where p, e and ι are the semilatus
rectum (pi is its initial value), eccentricity and inclina-
tion of the orbit, and θ is orbital phase. These equations
depend only on the spin parameter χ, and thus the evo-
lution in terms of θ depends only on ε, χ and the ini-
tial conditions ei and ιi. The black hole mass does not
appear. In Sec. V A we use our PN expression for the
Carter constant along with results of [17] to establish a
critical value of p such that for p < pc, the orbit will have
no inner turning point and will plunge across the event
horizon [Eq. (5.5)]. This will mark the termination of
our numerical integrations. Table I shows representative
values of pc in units of GM/c2 for various values of χ and
ι.

In Sec, V B we evolve the orbits with respect to phase,
or number of orbits. Figure 1 illustrates the results and
places them in an astrophysical context. It is a “phase
space” diagram (in the terminology of those who study
cluster dynamics) of energy vs angular momentum. Here,
semimajor axis a = p/(1 − e2) is a proxy for energy
and 1− e2 is a proxy for angular momentum. The scale
of the a-axis assumes a 106M� black hole; we also as-
sume that χ = 1. The dashed line (red in online ver-
sion) shows schematically the Schwarzschild barrier, be-
low which stellar orbits effectively decouple from resonant
and non-resonant relaxation effects caused by perturba-
tions from the other stars that drive random-walk behav-
ior in eccentricity. The precise location and slope of this
barrier depends on the properties of the surrounding star
cluster, and thus the curve shown is merely schematic.
Below this barrier, a stellar orbit is still subject to per-
turbations by other stars, of course, but we have chosen
to ignore such perturbations.

The three dotted curves show the critical values of a vs.
1−e2 for plunge for equatorial prograde (lower, red), po-
lar (middle, green), and equatorial retrograde (top, blue)

TABLE I: Critical semilatus rectum for capture

Inclination ι pc/(GM/c2)

χ = 0 χ = 0.5 χ = 1

0 9.04 6.09 2.71

45o 9.04 6.78 4.05

90o 9.04 8.77 7.84

135o 9.04 11.04 12.90

180o 9.04 12.03 14.98

orbits, respectively, as established by our capture crite-
rion of Sec. V A. These are curves of roughly constant
p or a ∝ (1 − e2)−1. The three solid curves show the
orbits in phase space of a body with m = 50M�, with
initial values of pi = 100, 50 and 20GM/c2, and with
ei = 0.999 for equatorial prograde (dashed, red) and ret-
rograde orbits (solid, black). Because η = 5×10−5, radi-
ation reaction is a tiny effect initially, thus for all but the
late phase of the evolution, p and e are approximately
constant, thus a for these orbits also varies inversely as
1 − e2. The difference between prograde and retrograde
orbits is too small to be seen initially. The right-hand
panel of Figure 1 provides a blow-up of the late evolu-
tion of the orbits, showing the termination of each orbit
when the condition for plunge is reached. Retrograde or-
bits terminate at larger a and larger e than do prograde
orbits. We also obtain the number of orbits to plunge
and the residual eccentricity as functions of pi/(GM/c2)
and ι. For initial values ei so close to unity, the results
are independent of ei. While prograde orbits are highly
circularized by the time of plunge because of their longer
inspiral, retrograde orbits may be left with significant ec-
centricity at the time of plunge. Table II shows residual
values for ι = 180o (equatorial retrograde) orbits for a
range of initial pi.

Using an expression for the gravitational-wave flux ac-
curate to 2PN order beyond the quadrupole approxima-
tion including spin-orbit contributions, we estimate the
flux from the final orbit before plunge as a function of
inclination. Using a 2PN accurate expression for the or-
bital period P , we also estimate the gravitational-wave
frequency at plunge. The results are shown in Fig. 2.
We note that, for rapidly spinning black holes, there is a
strong suppression of the energy flux for highly inclined
and retrograde orbits compared to their prograde coun-
terparts. This is mostly due to the fact that inclined
orbits plunge from greater distances than do equatorial
prograde orbits, as can be seen in Fig. 1. For rapidly spin-
ning black holes, the frequency can vary by as much as
a factor of three between prograde and retrograde equa-
torial orbits, again because the former orbits survive to
much closer to the spinning black hole than do the latter.

These effects of inclination on the flux and frequency
may have an impact on estimates of detectability of grav-
itational radiation from EMRIs by a space-based detector
such as LISA. Stars are likely to be injected into EMRI

TABLE II: Residual eccentricity, ι = 180o

Semilatus rectum Residual Eccentricity

pi/(GM/c2) e

20 0.48

40 0.18

60 0.10

80 0.07

100 0.05
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FIG. 2: Final-orbit gravitational-wave energy flux and frequency vs inclination for various Kerr spin parameters. Fluxes are
normalized to the value for 0o inclination, while frequencies are normalized to the value for χ = 0.

orbits with random inclinations. Thus an estimate that
uses only the gravitational-wave flux calculated by black
hole perturbation theory for an equatorial prograde orbit
in Kerr before plunge, multiplied by a rate of injection
of stars into EMRI orbits, may overestimate the total
flux by failing to take the suppression induced by orbit
inclination into account.

In Sec. V D we convert from θ to time using a 2PN
accurate expression for orbital period P and evolve the
orbits with respect to time. Fig. 3 shows typical results,
here for M = 106M�, χ = 1, and ei = 0.999. Unlike
the evolution with respect to orbital phase, the time to

plunge is sensitive to M and ei for a given initial pi,

because P ∝ M−1/2p
3/2
i (1 − e2

i )
−3/2. In fact, the de-

pendence is sufficiently simple that we were able to find
an analytic approximation for the time to plunge, that
agrees very well with the numerical results over many
orders of magnitude of times, given by

Tplunge =
1

74.3 η

(
GM

c3

)
G′(ei)ε

−3.96

×
(

1 + 3ε+ 8ε3/2χ cos ι
)4

, (1.1)
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where ε = GM/c2pi and

G′(ei) =
3.35√
1− e2

i

− 5 + 8
√

1− e2
i . (1.2)

Equation (1.1) can be incorporated into numerical codes
that evolve stellar clusters around rotating black holes,
providing a simple way to quickly determine the fate of
a star that is injected into an orbit with an initial p, and
e, and that suffers no further significant stellar perturba-
tions.

The remainder of this paper provides the details un-
derlying these results. Section VI makes concluding re-
marks.

II. POST-NEWTONIAN EQUATIONS OF
MOTION FOR A BODY ORBITING A

SUPERMASSIVE ROTATING BLACK HOLE

We study the motion of a body with a very small mass
m in the field of a supermassive rotating black hole of
mass M and spin S. At zeroth order in the mass of
the orbiting body, the motion is described by the stan-
dard geodesic equation for the Kerr geometry. These
equations of motion are conservative, in that they ad-
mit conservation laws for energy E, angular momentum
component Le in the direction of the spin axis e, and the
so-called “Carter constant” C.

We also include the effects of gravitational radiation
reaction, which at lowest order are linear in the mass of
the small body. This introduces a new parameter into
the problem, conventionally denoted by the “symmetric
mass ratio” η, defined by

η ≡ Mm

(M +m)2
∼ m

M
whenm�M . (2.1)

Formally this is inconsistent with our test-body conser-
vative equations of motion, which assume m = 0. How-
ever, in post-Newtonian theory, the equations of motion
for non-spinning bodies are known to high PN orders for
arbitrary masses, and in those equations the coefficients
are polynomials in powers of η < 1/4. The problems
that we wish to address with this work all involve stars
or small black holes orbiting supermassive black holes so
that η � 1. Thus corrections due to finite masses in the
conservative terms will be subdominant. But the grav-
itational radiation reaction terms are proportional to η.
They are also dissipative, i.e. they violate the conserva-
tion of quantities associated with the orbit. We will only
be interested in the long-term dissipative effects of grav-
itational radiation at lowest order in η, and therefore we
are justified in ignoring finite mass contributions to the
conservative equations of motion.

Throughout, we will work in harmonic coordinates,
since those are the most suitable for discussing gravita-
tional radiation and radiation reaction, and are the basis
for post-Newtonian theory [18]. Appendix A provides

details for transforming the Kerr geometry from the con-
ventional Boyer-Lindquist coordinates to harmonic coor-
dinates, expanding the metric to 3PN order, and obtain-
ing the test-body equations of motion and the conserved
quantities E, Le and C to 3PN order. We make use of the
fact that the black hole spin S and the Kerr parameter
a can be written as

S ≡ GM2

c
χe , a ≡ S

M
=
GM

c
χ , (2.2)

where χ is the dimensionless Kerr spin parameter
bounded by 0 ≤ χ ≤ 1 and e is a unit vector parallel
to the spin axis. The geodesic equation to 3PN order is
then given by

dv

dt
= −GMn

r2

−GM
c2r2

[(
v2 − 4

GM

r

)
n− 4ṙv

]
+
GM2

c3r3
χ [6e · (n× v)n

+6ṙ(n× e)− 4(v × e)]

−G
2M2

c4r3

{[(
9GM

r
− 2ṙ2

)
n+ 2ṙv

]
−3

2

GM

r
χ2
[
5n(e · n)2 − 2e(e · n)− n

]}
−G

2M2

c5r3
χ

{
GM

r

(
20e · (n× v)n

+16ṙ(n× e)− 12(v × e)

)
+6ṙe · (n× v)v

}
+
G3M3

c6r4

{[(
16GM

r
− ṙ2

)
n+ 4ṙv

]
+χ2

[
3

2

(
5n(e · n)2 − 2e(e · n)− n

)
×
(
v2 − 4GM

r

)
−6v

(
5ṙ(e · n)2 − 2(v · e)(e · n)− ṙ

)
+

2GM

r

(
n− 6n(e · n)2 + (e · n)e

)]}
.

(2.3)

“Monopole”, or pure mass PN terms occur at the usual
1PN (c−2), 2PN (c−4) and 3PN (c−6) orders. Spin-
orbit terms linear in χ occur at 1.5PN (c−3) and 2.5PN
(c−5) orders, shifted as usual by a half PN order relative
to their counterparts for normal slowly rotating bodies.
The 2PN term quadratic in χ is the leading-order contri-
bution of the black hole’s “Newtonian” quadrupole mo-
ment, while the 3PN terms quadratic in χ are a combi-
nation of (spin)2 terms and of “cross-terms” between the
quadrupole and monopole terms.
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FIG. 3: Evolution of semilatus rectum p and eccentricity e vs. time, for three initial values of p, for a 106M� black hole; in all
cases, ei = 0.999 and χ = 1.

We now supplement these equations with the contri-
butions from gravitational radiation reaction. These in-
clude 2.5PN terms (c−5), 3.5PN terms (c−7) [19], a 4PN
spin-orbit contribution (c−8) [20] and 4.5PN terms (c−9)
[21]. They are given, in harmonic coordinates, by

dv

dt RR
=

8

5
η
G2M2

c5r3

[(
3v2 +

17

3

GM

r

)
ṙn

−
(
v2 + 3

GM

r

)
v

]
−8

5
η
G2M2

c7r3

[(
183

28
v4 +

519

42
v2GM

r

−285

4
v2ṙ2 +

147

4
ṙ2GM

r

+70ṙ4 +
989

14

G2M2

r2

)
ṙn

−
(

313

28
v4 − 205

42
v2GM

r
− 339

4
v2ṙ2

+
205

12
ṙ2GM

r
+ 75ṙ4 +

1325

42

G2M2

r2

)
v

]
−1

5
η
G3M3

c8r4
χ

{
e · (n× v)

× (A4SO ṙn+B4SO v)

−2

3
(v × e)ṙC4SO +

1

2
(n× e)D4SO

}

+
8

5
η
G2M2

c9r3

[
E4.5ṙn− F4.5v

]
. (2.4)

The expressions for A4SO, B4SO, C4SO, D4SO, E4.5 and
F4.5 are given in Appendix A. For simplicity we do not
include the non-local 4PN “tail” term.

In studying the evolution of the system under radia-
tion reaction, we cannot simply ignore the conservative
PN test-body terms displayed in Eq. (2.3), and treat the
problem as if it were Newtonian gravity plus radiation
reaction. That is because, in solving for the secular evo-
lution of the orbital elements, there will be “cross term”
interactions between, say the 1PN conservative pertur-
bations or the 1.5PN spin-orbit terms and the 2.5PN
radiation-reaction terms, that could produce dissipative
contributions at 3.5PN order or 4PN spin-orbit order, re-
spectively. These interactions must be taken into account
to get the complete higher-order evolution.

III. LAGRANGE PLANETARY EQUATIONS
FOR THE OSCULATING ORBIT ELEMENTS

A. Basic equations

We begin with a brief review of standard orbital per-
turbation theory, used to compute deviations from Ke-
plerian two-body motion induced by perturbing forces,
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described by the equation of motion

d2x

dt2
= −GM

r3
x+ δa , (3.1)

where δa is a perturbing acceleration. For a general orbit
described by x and v = dx/dt, we define the “osculating”
Keplerian orbit using a set of orbit elements: the semi-
latus rectum p, eccentricity e, inclination ι, nodal angle
Ω and pericenter angle ω, defined by the following set of
equations:

x ≡ rn ,
r ≡ p/(1 + e cos f) ,

n ≡ (cos Ω cosφ− cos ι sin Ω sinφ) eX

+ (sin Ω cosφ+ cos ι cos Ω sinφ) eY

+ sin ι sinφeZ ,

λ ≡ ∂n/∂φ , ĥ = n× λ ,

h ≡ x× v ≡
√
GMp ĥ , (3.2)

where f ≡ φ−ω is the true anomaly, φ is the orbital phase
measured from the ascending node, and eA are chosen
reference basis vectors. From the given definitions, we
see that v = ṙn + (h/r)λ and ṙ = (he/p) sin f . We also
define the alternative orbit elements:

α = e cosω ,

β = e sinω , (3.3)

so that now

r = p/(1 + α cosφ+ β sinφ) . (3.4)

One then defines the radial R, cross-track S and out-
of-plane W components of the perturbing acceleration
δa, defined respectively by R ≡ n · δa, S ≡ λ · δa and
W ≡ ĥ · δa, and writes down the “Lagrange planetary
equations” for the evolution of the orbit elements,

dp

dt
= 2

√
p

GM
rS ,

dα

dt
=

√
p

GM

[
R sinφ+ S(α+ cosφ)

(
1 +

r

p

)
+W r

p
β cot ι sinφ

]
,

dβ

dt
=

√
p

GM

[
−R cosφ+ S(β + sinφ)

(
1 +

r

p

)
−W r

p
α cot ι sinφ

]
,

dι

dt
=

√
p

GM
W
(
r

p

)
cosφ ,

dΩ

dt
=

√
p

GM
W
(
r

p

)
sinφ

sin ι
,

dφ

dt
=

h

r2
− cos ι

dΩ

dt
, (3.5)

(see [18] for further discussion.) The final equation is not
really an orbit element equation, but serves to close the
system; in some formulations the sixth equation deter-
mines the “time of pericenter passage”. These equations
are exact: they are simply a reformulation of Eq. (3.1)
in terms of new variables. However, they are particu-
larly useful when the perturbations are small, so that
solutions can be obtained by a process of iteration. At
lowest order (no perturbations), the elements p, α, β, Ω
and ι are constant, and dφ/dt =

√
GMp/r2; those so-

lutions can be plugged into the right-hand-side and the
equations integrated to find corrections, and so on. The
corrections to the orbit elements tend to be of two classes:
periodic corrections, which vary on an orbital timescale,
and secular corrections, which vary on a longer timescale,
depending upon the nature of the perturbations. There
are many approaches to separating secular from periodic
effects (see [22], for example), but we will adopt a spe-
cific approach, known as “multiple-scale analysis”, that
is used in many problems in physics [23]. One advantage
of this method is that it can be carried out systematically
to higher orders in perturbation theory.

We have formulated the Lagrange planetary equations
using α and β instead of e and ω because of the well-
known problem that the latter formulation is singular in
the limit e → 0 (the pericenter angle ω is formally un-
defined in this limit). At 1PN order, for example, the
osculating orbit that corresponds to a true circular or-
bit (r = constant) is one in which e ≈ 3GM/c2p, the
pericenter advances at the same rate as the orbital mo-
tion, ω ∝ φ, and the true anomaly is perpetually fixed at
apocenter, f = π [24]. The fact that ω no longer expe-
riences a small precession illustrates the singular nature
of this limit. By contrast, the α− β formulation is com-
pletely regular in the limit e = (α2 + β2)1/2 = 0. An
alternative approach involves defining two eccentricities,
one associated with the radial motion and one with the
angular motion [25, 26]. However, we will stick with the
α, β orbit elements.

We now use the sixth planetary equation to express
the remaining five equations as differential equations in
φ, in the general form

dXα(φ)

dφ
= εQα(Xβ(φ), φ) , (3.6)

where α, β label the orbit element, ε is a small parameter
that characterizes the perturbation, and

Qα(Xβ(φ), φ) =
(r2/h)Q

(t)
α

1− (r2/h) cos ιQ
(t)
Ω

, (3.7)

where the Q
(t)
α , denote the right-hand-sides of Eqs. (3.5).

Note that, because we are working to higher PN orders,
we must, at least in principle, include the additional fac-

tor involving Q
(t)
Ω .
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B. Two-timescale analysis of the planetary
equations

We anticipate that the solutions for the Xα will have
pieces that vary on a “short” orbital timescale, corre-
sponding to the periodic functions of φ, but may also
have pieces that vary on a long timescale, of order 1/ε
times the short timescale. In a two-timescale analysis
[7, 23, 24, 27], one treats these two times formally as in-
dependent variables, and solves the ordinary differential
equations as if they were partial differential equations for
the two variables. We define the long timescale variable

θ ≡ εφ , (3.8)

and write the derivative with respect to φ as

d

dφ
≡ ε ∂

∂θ
+

∂

∂φ
. (3.9)

We make an ansatz for the solution for Xα(θ, φ):

Xα(θ, φ) ≡ X̃α(θ) + εYα(X̃β(θ), φ) . (3.10)

On short timescales, this would represent the standard
solution: an initial value of the variable X̃α, plus a solu-
tion that depends on the initial conditions. But on longer
timescales, these “initial” values are allowed to vary.

This split of Xα is not unique. However, if the explicit
φ dependence in Qα is periodic, a natural choice to define
the split is to assume that

X̃α(θ) = 〈Xα(θ, φ)〉 , 〈Yα(X̃β(θ), φ)〉 = 0 , (3.11)

where the “average” 〈. . . 〉 is defined by

〈A〉 ≡ 1

2π

∫ 2π

0

A(θ, φ)dφ , (3.12)

holding θ fixed. For any function A(θ, φ) we define the
“average-free” part as

AF(A) ≡ A(θ, φ)− 〈A〉 . (3.13)

We now substitute Eq. (3.8) into (3.6), and divide by the
parameter ε, to obtain

dX̃α(θ)

dθ
+
∂Yα
∂φ

+ ε
∂Yα

∂X̃γ

dX̃γ

dθ
= Qα(X̃β + εYβ , φ) , (3.14)

where we sum over the range of γ. Taking the average
and average-free parts of this equation, we obtain

dX̃α

dθ
= 〈Qα(X̃β + εYβ , φ)〉 , (3.15a)

∂Yα
∂φ

= AF
(
Qα(X̃β + εYβ , φ)

)
− ε ∂Yα

∂X̃γ

dX̃γ

dθ
. (3.15b)

These equations can then be iterated in a straightfor-
ward way. At zeroth order, Eq. (3.15a) yields dX̃α/dθ =
〈Q0

α〉 where Q0
α ≡ Qα(X̃β , φ), which is the conven-

tional result whereby one averages the perturbation hold-
ing the orbit elements fixed. We write the expansion

Yα ≡ Y (0)
α + εY

(1)
α + ε2Y

(2)
α + . . . . We then integrate Eq.

(3.15b) holding θ fixed to obtain Y 0
α . Appendix B pro-

vides details on integrating this equation with boundary
conditions chosen to ensure that the answer is average-
free. The iteration continues until one obtains all con-
tributions to dX̃α/dθ compatible with the order in ε to
which Qα is known. The final solution including periodic
terms is given by Eq. (3.10), with the secular evolution of

the X̃α given by solutions of Eqs. (3.15a). From these so-
lutions one can reconstruct the instantaneous orbit using
Eqs. (3.2).

If one is interested only in the secular evolutions to
a chosen order, then one can Taylor expand Qα in Eqs.
(3.15) in powers of ε and carry out the iterations explic-
itly. Through order ε2 beyond the lowest order term, the
result is

dX̃α

dφ
= ε〈Q(0)

α 〉+ ε2
[
〈Q(0)

α,β

∫ φ

0

Q
(0)
β dφ′〉

+〈Q(0)
α,β〉〈φQ

(0)
β 〉 − 〈φQ

(0)
α,β〉〈Q

(0)
β 〉

−π〈Q(0)
α,β〉〈Q

(0)
β 〉
]

+O(ε3) , (3.16)

where the subscript , β denotes ∂/∂X̃β , and where we
have converted from θ back to φ. Since we are working
to 3PN order in the conservative dynamics and to 4.5PN
order in the radiation-reaction sector, we will need to
include the O(ε3) contributions; Appendix B provides
details.

C. Secular conservative dynamics

We first carry out this procedure for the conservative part of the equations of motion. At zeroth order in ε, we
obtain

dp̃

dθ
=

dι̃

dθ
=
dΩ̃

dθ
= 0 ,

dα̃

dθ
= −3GM

c2p̃
β̃ ,
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dβ̃

dθ
=

3GM

c2p̃
α̃ , (3.17)

from which we obtain dẽ/dθ = 0 and dω̃/dθ = 3GM/c2p̃, the standard 1PN results for Schwarzschild. For the
average-free part, we obtain, including the 1.5PN order spin-orbit contribution,

Y 0
p = −8

GM

c2
(α̃ cosφ+ β̃ sinφ) + 4p̃

(
GM

c2p̃

)3/2

χ cos ι̃(α̃ cosφ+ β̃ sinφ) ,

Y 0
α = −GM

2c2p̃

[
5β̃ sin 2φ+ 5α̃ cos 2φ+ 2(3 + 7α̃2 − β̃2) cosφ+ 16α̃β̃ sinφ

]
+

1

2

(
GM

c2p̃

)3/2

χ cos ι̃
[
β̃2 cos 3φ− α̃β̃ sin 3φ− 2β̃ sin 2φ− (4− 4α̃2 + 9β̃2) cosφ+ 11α̃β̃ sinφ

]
,

Y 0
β = −GM

2c2p̃

[
5α̃ sin 2φ− 5β̃ cos 2φ+ 2(3 + 7β̃2 − α̃2) sinφ+ 16α̃β̃ cosφ

]
+

1

2

(
GM

c2p̃

)3/2

χ cos ι̃
[
α̃2 sin 3φ− α̃β̃ cos 3φ+ 2α̃ sin 2φ− (4− 4β̃2 + 7α̃2) sinφ+ 13α̃β̃ cosφ

]
,

Y 0
ι = −1

2

(
GM

c2p̃

)3/2

χ sin ι̃
[
α̃ cos 3φ+ β̃ sin 3φ+ 2 cos 2φ+ 3α̃ cosφ+ β̃ sinφ

]
,

Y 0
Ω = −

(
GM

c2p̃

)3/2

χ
[
sin 2φ(1 + α̃ cosφ+ β̃ sinφ)− 2α̃ sinφ+ 2β̃ cosφ

]
. (3.18)

The solution for the orbital separation as a function of φ is given by

r−1 =
1 + (α̃+ Y 0

α ) cosφ+ (β̃ + Y 0
β ) sinφ

p̃+ Y 0
p

, (3.19)

In the limit α̃ = β̃ = 0, this yields

r−1 =
1− 3(GM/c2p̃)− 2(GM/c2p̃)3/2χ cos ι̃

p̃
, (3.20)

corresponding to a circular orbit, without any of the singular behavior associated with ω̃. On the other hand, in the
limit ẽ→ 1, we obtain

r−1 =
1 + cos f

p̃

[
1 +

11

2

GM

c2p̃
−
(
GM

c2p̃

)3/2

χ cos ι̃ (6− 2 cos f − sin f sin 2φ)

]
− 15

2

GM

c2p̃2
. (3.21)

where f = φ− ω̃. Because of the presence of the final 1PN term, r−1 does not vanish in the obvious manner at f = π,
as might be expected for an unbound orbit, but rather at f = π + (15GM/c2p̃)1/2. We will address this and other
unusual behavior of the solutions as ẽ→ 1 in Sec. IV.

Carrying out the iterations to an order consistent with the 3PN order of the equations of motion, we obtain finally

dp̃

dθ
= −6p̃

(
GM

c2p̃

)3

α̃β̃χ2 sin2 ι̃ , (3.22a)

dα̃

dθ
= −3GM

c2p̃
β̃ + 6

(
GM

c2p̃

)3/2

β̃ χ cos ι̃+
3

4

(
GM

c2p̃

)2

β̃
[
10− α̃2 − β̃2 − χ2(5 cos2 ι̃− 1)

]
−3

(
GM

c2p̃

)5/2

β̃(8− 3α̃2 − 3β̃2)χ cos ι̃

−3

2

(
GM

c2p̃

)3

β̃

[
(29 + 34α̃2 + 34β̃2) +

1

4
χ2
(

7 + 2α̃2 − 18β̃2 − [23− 62α̃2 − 90β̃2] cos2 ι̃
)]

, (3.22b)

dβ̃

dθ
=

3GM

c2p̃
α̃− 6

(
GM

c2p̃

)3/2

α̃ χ cos ι̃− 3

4

(
GM

c2p̃

)2

α̃
[
10− α̃2 − β̃2 − χ2(5 cos2 ι̃− 1)

]
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+3

(
GM

c2p̃

)5/2

α̃(8− 3α̃2 − 3β̃2)χ cos ι̃

+
3

2

(
GM

c2p̃

)3

α̃

[
(29 + 34α̃2 + 34β̃2)− 1

4
χ2
(

3 + 6α̃2 + 26β̃2 + [13− 70α̃2 − 98β̃2] cos2 ι̃
)]

, (3.22c)

dι̃

dθ
= −3

(
GM

c2p̃

)3

α̃β̃χ2 sin ι̃ cos ι̃ , (3.22d)

dΩ̃

dθ
= 2

(
GM

c2p̃

)3/2

χ− 3

2

(
GM

c2p̃

)2

χ2 cos ι̃− 3

(
GM

c2p̃

)5/2

χ(4− α̃2 − β̃2)

+
3

2

(
GM

c2p̃

)3

(8− 7α̃2 − 9β̃2)χ2 cos ι̃ . (3.22e)

We also obtain, but do not display, the average-free, periodic contributions Yα through 3PN order. From the equations
for α and β we obtain

dω̃

dθ
= 3

GM

c2p̃
− 6

(
GM

c2p̃

)3/2

χ cos ι̃− 3

4

(
GM

c2p̃

)2 [
10− ẽ2 + χ2

(
1− 5 cos2 ι̃

)]
+3

(
GM

c2p̃

)5/2 (
8− 3ẽ2

)
χ cos ι̃+

3

8

(
GM

c2p̃

)3{
4
(
29 + 34ẽ2

)
− χ2

[
4(4− 17ẽ2)− 2(9− 40ẽ2) sin2 ι̃

+
(
4ẽ2 + 5(1− 2ẽ2) sin2 ι̃

)
cos(2ω̃)

]}
, (3.23a)

dẽ

dθ
= −3

4

(
GM

c2p̃

)3

ẽ(5 + 4ẽ2)χ2 sin2 ι̃ sin ω̃ cos ω̃ . (3.23b)

Substituting the definitions (3.2) of the osculating orbits into the expressions (A8), (A9), and (A11) for E, Le
and C, we obtain E = −GM(1 − ẽ2)/2p̃ + . . . , Le = (GMp̃)1/2 cos ι̃ + . . . , and C = (GMp̃) + . . . , where the
PN corrections depend in general on the phase φ. However, now substituting the solutions for each orbit element
Xα = X̃α + Yα(X̃β , φ), with the Yα computed through 3PN order, we find that all φ dependence cancels, and the

conserved quantities are given purely in terms of the X̃α:

c−2E = −1

2

GM(1− ẽ2)

c2p̃
+

1

8

(
GM

c2p̃

)2 (
19 + 38ẽ2 + 3ẽ4

)
− 1

16

(
GM

c2p̃

)3 {(
197− 205ẽ2 − 98ẽ4 − 5ẽ6

)
− χ2

[
(4 + 6ẽ2)(1− 3 cos2 ι̃)− 9ẽ2 sin2 ι̃ cos 2ω̃

]}
−1

4

(
GM

c2p̃

)7/2 [
2(20 + 70ẽ2 + 33ẽ4)− ẽ2(9 + 4ẽ2) cos(2ω̃)

]
χ cos ι̃

+
1

128

(
GM

c2p̃

)4 {(
9923 + 12756ẽ2 + 11478ẽ4 + 952ẽ6 + 35ẽ8

)
+ χ2

[
8(220 + 347ẽ2 + 254ẽ4)

−4(644 + 1099ẽ2 + 695ẽ4) sin2 ι̃− 8ẽ2(94 + 80ẽ2 − 235 sin2 ι̃− 177ẽ2 sin2 ι̃) cos2 ω̃
]}

, (3.24a)

Le =
√
mp̃ cos ι̃

{
1 +

GM

2c2p̃
(7 + ẽ2)− 1

8

(
GM

c2p̃

)2 (
37− 18ẽ2 − 3ẽ4

)
+

1

16

(
GM

c2p̃

)3 [
411 + 481ẽ2 + 86ẽ4 + 5ẽ6

+χ2
[(

4(46 + 61ẽ2)− 5(40 + 63ẽ2) sin2 ι̃− 2ẽ2(32− 111 sin2 ι̃) cos2 ω̃
)]]}

−
√
mp̃χ

{(
GM

c2p̃

)3/2

(1 + cos2 ι̃) +
1

4

(
GM

c2p̃

)5/2 [
4(5 + 12ẽ2)− (30 + 41ẽ2) sin2 ι̃

−2ẽ2(4− 5 sin2 ι̃) cos2 ω̃
]}

, (3.24b)

C = mp̃

{
1 +

GM

c2p̃
(7 + ẽ2)− 4

(
GM

c2p̃

)3/2

χ cos ι̃+
1

2

(
GM

c2p̃

)2 [
6 + 16ẽ2 + 2ẽ4 + χ2 sin2 ι̃

(
1− 2ẽ2 cos2 ω̃

)]
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−2

(
GM

c2p̃

)5/2

χ cos ι̃
(
12 + 13ẽ2 − 2ẽ2 cos2 ω̃

)
+

1

8

(
GM

c2p̃

)3 [
152 + 570ẽ2 + 125ẽ4 + 8ẽ6

+χ2
[
4(54 + 61ẽ2)− (280 + 347ẽ2) sin2 ι̃− 2ẽ2(32− 49 sin2 ι̃+ 4ẽ2 sin2 ι̃) cos2 ω̃

]]}
. (3.24c)

Thus E, Le and C are constant over an orbital timescale. However, a closer inspection of E and C indicates a
potential problem. Because p̃, ẽ and ι̃ are constant through 2.5PN order in the conservative part of the dynamics
[see Eqs. (3.22a), (3.22d) and (3.23b)], the PN corrections in E, Le and C are constant through 3PN order, except
for two: the 2PN terms in E and C, proportional to χ2, that depend on ω̃. The quadrupole moment of the black
hole is responsible for these ω̃-dependent terms. The pericenter ω̃ varies at 1PN order at a rate dω̃/dθ = 3GM/c2p̃,
suggesting that E, and C might not really be constant through 3PN order. However, the variations induced by the
advance of ω̃ in those 2PN terms in E and C are exactly cancelled by the 3PN variations in p̃ and ẽ [Eqs. (3.22a)
and (3.23b)] acting on the Newtonian terms −GM(1 − ẽ2)/c2p̃ and mp̃, respectively. In Le, the 3PN variations in
p̃ and ι̃ acting on the Newtonian term (GMp̃)1/2 cos ι̃ automatically cancel each other. Thus E, Le and C are also
conserved on a pericenter precession timescale, as expected. But to verify this, it was essential to include the relevant
quadrupole-monopole cross-terms in the equations of motion, and to include the higher-order corrections in solving
the Lagrange planetary equations. This is an example of how the “quadrupole conundrum”, discussed in [15], is
resolved.

We also need the orbital period, given by

P ≡ 2π

〈
dt

dφ

〉
= 2π

〈
(r2/h)

1− (r2/h) cos ιQ
(t)
Ω

〉
. (3.25)

Substituting the full solutions (3.10) for the orbital elements, we obtain, to 2PN order,

P = 2π

(
p̃3

GM(1− ẽ2)3

)1/2 [
1 +

3

2

GM

c2p̃

(
4 + 9ẽ2 + 2ẽ4

1− ẽ2

)
+ 6

(
GM

c2p̃

)3/2

χ cos ι̃

− 3

16

(
GM

c2p̃

)2
1

(1− ẽ2)2

{
56− 1214ẽ2 − 941ẽ4 − 151ẽ6 − 40(1− ẽ2)7/2

+χ2(1− ẽ2)(24− 4ẽ2 − (32 + 7ẽ2 − 18ẽ2 cos2 ω̃) sin2 ι̃
}]
. (3.26)

Higher-order contributions to P will not be needed.

D. Secular evolution with radiation reaction

We now include the radiation-reaction terms in the equations of motion. At zeroth order in our two-scale analysis,
we have the usual orbital average of the Q0

α, holding the orbit elements fixed on the right-hand-side. But since we are
working to 4.5PN order, we must again include higher-order corrections in the two-scale analysis. Because we work
only to linear order in the reduced-mass parameter η, we need to include only cross terms between the conservative and
radiation-reaction sectors. For example, periodic terms induced by 1PN, 1.5PNSO and 2PN conservative perturbations
in the orbit elements occurring in the 2.5PN radiation reaction expressions could generate secular contributions at
3.5PN, 4PNSO and 4.5PN orders, while periodic terms induced by 2.5PN radiation-reaction perturbations in the orbit
elements occurring in the 1PN, 1.5PNSO, and 2PN conservative expressions could also generate secular contributions
at the same order. These cross-term effects are why it is essential to include conservative terms at high PN orders
when analysing radiation reaction effects at high PN orders.

We carry out the iterations of the two-scale equations to an order consistent with the 4.5PN order of the radiation
reaction terms in the equations of motion. After transforming from α̃ and β̃ to ẽ and ω̃, we obtain

dp̃

dθRR
= −8

5
ηp̃

(
GM

c2p̃

)5/2 (
8 + 7ẽ2

)
+

1

210
ηp̃

(
GM

c2p̃

)7/2 (
22072− 6064ẽ2 − 1483ẽ4

)
+

2

15
ηp̃

(
GM

c2p̃

)4

χ cos ι̃
(
968 + 2280ẽ2 + 297ẽ4

)
− 1

11340
ηp̃

(
GM

c2p̃

)9/2 (
8272600 + 777972ẽ2 − 947991ẽ4 − 4743ẽ6

)
, (3.27a)
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dẽ

dθRR
= − 1

15
ηẽ

(
GM

c2p̃

)5/2 (
304 + 121ẽ2

)
+

1

840
ηẽ

(
GM

c2p̃

)7/2 (
144392− 34768ẽ2 − 2251ẽ4

)
+

1

30
ηẽ

(
GM

c2p̃

)4

χ cos ι̃
(
9400 + 10548ẽ2 + 789ẽ4

)
− 1

30240
ηẽ

(
GM

c2p̃

)9/2 (
43837360 + 4062372ẽ2 − 1866490ẽ4 − 250065ẽ6

)
, (3.27b)

dι̃

dθRR
= − 1

30
η

(
GM

c2p̃

)4

χ sin ι̃
[
88− 1248ẽ2 − 441ẽ2 + 24ẽ2(20 + 13ẽ2) cos2 ω̃

]
, (3.27c)

dω̃

dθ RR
=

4

5
η

(
GM

c2p̃

)4

χ cos ι̃ ẽ2(20 + 13ẽ2) sin ω̃ cos ω̃ , (3.27d)

dΩ̃

dθ RR
= −4

5
η

(
GM

c2p̃

)4

χẽ2(20 + 13ẽ2) sin ω̃ cos ω̃ . (3.27e)

Notice that the 4PN spin-orbit terms act to reduce the orbital decay for prograde orbits (ι̃ < π/2) and act to enhance
the decay for retrograde orbits (ι̃ > π/2). This phenomenon has also been seen in numerical simulations of the late
stage of inspiral of spinning black holes.

Substituting Eqs. (3.27) into Eqs. (3.24), keeping contributions through 2PN order beyond the leading terms, and
dropping χ2 terms, since they are not present in the radiation reaction terms, we obtain the rates of change of E, Le
and C:

dE

dθ
= −32

5
η

(
GM

c2p̃

)7/2{(
1 +

73

24
ẽ2 +

37

96
ẽ4

)
−
(
GM

c2p̃

)(
95216 + 73224ẽ2 − 18074ẽ4 − 2393ẽ6

5376

)
−
(
GM

c2p̃

)3/2

χ cos ι̃

(
1936 + 12024ẽ2 + 6582ẽ4 + 195ẽ6

192

)
+

(
GM

c2p̃

)2(
121274560 + 71538080ẽ2 + 191064ẽ4 − 317664ẽ6 − 427473ẽ8

580608

)}
, (3.28a)

dLe

dθ
= −32

5
η
√
GMp̃

(
GM

c2p̃

)5/2{(
1 +

7

8
ẽ2

)
cos ι̃

−5

(
GM

c2p̃

)(
6296− 1000ẽ2 − 739ẽ4

2688

)
cos ι̃

− 1

192

(
GM

c2p̃

)3/2

χ
[
2(584 + 1944ẽ2 + 297ẽ4)− 3(488 + 1744ẽ2 + 293ẽ4) sin2 ι̃

+12ẽ2(20 + 13ẽ2) cos 2ω̃ sin2 ι̃
]

+

(
GM

c2p̃

)2(
14458192− 819888ẽ2 + 38886ẽ4 + 147537ẽ6

145152

)
cos ι̃

}
, (3.28b)

dC

dθ
= −64

5
η(GMp̃)

(
GM

c2p̃

)5/2{(
1 +

7

8
ẽ2

)
−
(
GM

c2p̃

)(
22072− 14576ẽ2 − 4871ẽ4

2688

)
−
(
GM

c2p̃

)3/2

χ cos ι̃

(
776 + 2112ẽ2 + 297ẽ4

96

)
+

(
GM

c2p̃

)2(
7837144− 985668ẽ2 + 1212441ẽ4 + 294930ẽ6

145152

)}
. (3.28c)

E. Comparison with other work

We compare these results with other approaches in sit-
uations where there is overlap. Mora and Will [27], found

the secular evolutions of the orbit elements in the conser-
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vative sector to 3PN order in the spinless (χ = 0), arbi-
trary mass case, using the α−β formulation and the same
two-scale approach. In that limit, our Eqs. (3.22) and

(3.23), reduce to dp̃/dθ = dẽ/dθ = dι̃/dθ = dΩ̃/dθ = 0,
and

dω̃

dθ
= 3u− 3

4
u2(10− ẽ2) +

3

2
u3(29 + 34ẽ2) , (3.29)

where u = GM/c2p̃. On the other hand, Mora and Will
obtained [Eq. (2.29) of [27]]

dω̃

dθ
= 3ũ− 3

4
ũ2(10− ẽ2) +

3

2
ũ3(29− 30ẽ2) . (3.30)

where ũ was defined to be 〈GM/c2p〉. These expressions
appear to differ. However, u and ũ are not quite the
same. Using our solutions for Yp to the appropriate order,
it is straighforward to show that ũ = 〈GM/c2(p̃+Yp)〉 =
u+32ẽ2u3 +O(u5), and thus that the two expressions are
in fact equivalent. This illustrates the caution that, when
working to high orders in perturbation theory, the precise
definition of “average” is important. Mora and Will also
obtained the radiation-reaction driven evolution of the
elements to 3.5PN order in the spinless black hole case.
Eqs. (3.27) agree completely with Eq. (2.28) of [27] to the
relevant order; in this case the transformation between
ũ of Mora-Will and our u = GM/c2p̃ is a higher-order
effect.

Our results also agree with calculations of the rate
of evolution of the orbital frequency Ωcirc of a quasi-
circular inspiral orbit using high PN-order calculations
of the energy flux combined with the assumption of en-
ergy balance [28, 29]. Through 2PN order beyond the
quadrupole approximation (corresponding to our 4.5PN
order in the equations of motion), including the leading
spin-orbit contributions, the result in the small-η limit is
[Eq. (3) of [29]]

dΩcirc

dt
=

96

5
η

(
c3

GM

)2

x11/3

[
1− 743

336
x2/3

−113

12
xχ cos ι̃+

34103

18144
x4/3

]
, (3.31)

where x ≡ GMΩcirc/c
3. In [29], Ωcirc was defined to be

Ωcirc ≡ |v|/r

=
(GM)1/2

p3/2
(1 + α cosφ+ β sinφ)(1 + α2

+β2 + 2α cosφ+ 2β sinφ)1/2 . (3.32)

Substituting our solutions for the orbit elements p, α and
β including periodic terms, and taking the ẽ = 0 limit,
we obtain

x =

(
GM

c2p̃

)3/2
[

1− 6
GM

c2p̃
− 4

(
GM

c2p̃

)3/2

χ cos ι̃

+39

(
GM

c2p̃

)2
]
. (3.33)

For ẽ = 0, the orbital period (3.26) becomes

P = 2π

(
p̃3

GM

)1/2
[

1 + 6
GM

c2p̃
+ 6

(
GM

c2p̃

)3/2

χ cos ι̃

−3

(
GM

c2p̃

)2
]
, (3.34)

after dropping the 2PN contribution involving χ2. Then
calculating dΩcirc/dt = (2π/P )(c3/GM)dx/dθ, inserting
(dp̃/dθ)RR from Eq. (3.27) in the ẽ = 0 limit, and then
using Eq. (3.33) to convert the result from p̃ back to x,
we obtain exactly Eq. (3.31).

Gergely et. al. [30] derived the 4PN spin-orbit effects
on the radiation-reaction evolution of the orbit elements
by calculating fluxes of energy and angular momentum
at infinity including the contributions from the current
multipole moments of a rotating body (not necessarily a
black hole), and including 1.5PN spin-orbit effects in the
conservative equations of motion, while Sago and Fujita
[31] calculated the fluxes in black-hole perturbation the-
ory and then expanded in a PN sequence. Both papers
used a specific definition of the orbit elements a0, e0 and
i0, given by [see for example Eqs. (2.15) and (5.1) of [30]]

rmax(min) ≡ a0(1± e0) ,

cos(i0) =
Le
L
, (3.35)

and calculated 〈dE/dt〉, 〈dLe/dt〉, 〈dL/dt〉 in terms of
those orbit elements. Using our solutions (3.18) through
1.5PN order for the orbital elements (including the pe-
riodic contributions), and using the approximation L =√
C, it is straightforward to show that

a0 =
p̃

1− ẽ2
+

(
GM

c2

)
3 + 13ẽ2 − ẽ4

(1− ẽ2)2

+2p̃

(
GM

c2p̃

)3/2

χ cos ι̃+ . . . ,

e0 = ẽ+ ẽ
GM

2c2p̃
(17− 2ẽ2)

−2ẽ(1− ẽ2)

(
GM

c2p̃

)3/2

χ cos ι̃+ . . . ,

cos i0 = cos ι̃−
(
GM

c2p̃

)3/2

χ sin2 ι̃+ . . . . (3.36)

Converting from d/dt to d/dθ using the corrections to
the orbital period in Eq. (3.26) through 1.5PN order, it
is straightforward to show that the Newtonian and the
1.5PN spin-orbit contributions to the fluxes of E, Le and
L displayed in Eqs. (5.6), (5.7) and (5.8) of [30] and in
Eqs. (32) – (34) of [31] are completely equivalent to the
corresponding contributions in our Eqs. (3.28). On the
other hand, the 1PN and 2PN contributions in Eqs. (32)
– (34) of [31] are not equivalent. This is undoubtedly
another example of how different kinds of averages can
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affect higher-order PN terms. Furthermore, at leading
PN order, 〈dX/dt〉 is the same as 〈dX/dφ〉/〈dt/dφ〉. This
also holds for the leading contribution of a specific type of
effect, such as the spin-orbit contribution. But because
of “cross-term” effects, it does not necessarily hold for
1PN and 2PN corrections to the leading Newtonian flux.

We have not attempted a direct comparison with other
related results [32–36], largely because they use rather
different orbital parametrizations than those used here.

IV. HIGHLY ECCENTRIC ORBITS

In this section, we prepare the groundwork for the nu-
merical analysis of the evolution of highly eccentric or-
bits around a massive black hole, to be addressed in Sec.
V. We have already noted the unexpected behavior of
r−1 in the ẽ → 1 limit in Eq. (3.21). Examination of
the expression for E [Eq. (3.24a)] reveals that, for fixed
semilatus rectum p̃, the Newtonian energy vanishes as
the eccentricity ẽ tends toward unity, but the PN cor-

rections remain finite. Similarly, while the Newtonian
part of the period P [Eq. (3.26)] tends to infinity in this
limit as (1− ẽ2)−3/2 as expected for the transition from a
bound to an unbound orbit, the PN and 2PN corrections
to the period blow up even faster. It suggests that the
true boundary between bound and unbound orbits in PN
theory corresponds to something other than ẽ = 1. This
behavior is reminiscent of the singular behavior of the
ẽ− ω̃ parametrization of osculating orbits in the limit of
circular orbits in PN theory, which forces either the α−β
parametrization of the orbit elements or a parametriza-
tion in terms of two eccentricities [25, 26]. But to our
knowledge, this behavior at ẽ = 1 does not seem to have
received much attention.

In an attempt to cure this problem, we shall define
a post-Newtonian corrected eccentricity e, subject to the
following constraints: (i) the limit e→ 0 still corresponds
to ẽ → 0; (ii) the energy vanishes as (1 − e2) as e → 1,
holding p̃ fixed. We define the transformation to the new
eccentricity by

ẽ ≡ e

[
1 +

GM

c2p̃
f1(e) +

(
GM

c2p̃

)3/2

f1.5(e)χ cos ι̃+

(
GM

c2p̃

)2

f2(e)

+

(
GM

c2p̃

)5/2

f2.5(e)χ cos ι̃+

(
GM

c2p̃

)3

f3(e) + . . .

]
, (4.1)

where fα(e) are to be polynomials in e, constrained to be finite as e → 0. We substitute this into Eq. (3.24a) and
require that E acquire the form

E → −1

2

GM(1− e2)

p̃

[
1 +

GM

c2p̃
g1(e) +

(
GM

c2p̃

)3/2

g1.5(e)χ cos ι̃+

(
GM

c2p̃

)2

g2(e)

+

(
GM

c2p̃

)5/2

g2.5(e)χ cos ι̃+

(
GM

c2p̃

)3

g3(e) + . . .

]
. (4.2)

The solutions are

f1(e) =
8g1(e)(1− e2)− 19− 38e2 − 3e4

8e2
,

f1.5(e) =
g1.5(e)(1− e2)

e2
,

f2(e) =
1

e4

{
(8g1(e)− 19)2 − 4e2

[
(8g1(e)− 19) (4g1(e)− 19) + 32g2(e) + 394− 8χ2

(
1− 3 cos2 ι̃

)]
+O(e4)

}
,

f2.5(e) = − 1

8e4

{
(8g1(e)− 19)g1.5(e)− e2 [g1.5(e)(16g1(e)− 57) + 80 + 8g2.5(e)] +O(e4)

}
,

f3(e) =
1

1024 e6

{
(8g1(e)− 19)3 − 2e2

[
(8g1(e)− 19)2(12g1(e)− 19)

+4(8g1(e)− 19)
(
16g2(e) + 197− 4χ2(1− 3 cos2 ι̃)

)
+ 256g1.5(e)2χ2 cos2 ι̃

]
+e4

[
4(8g1(e)− 19)2(6g1(e)− 7) + 8(16g1(e)− 57)

(
16g2(e) + 197− 4χ2(1− 3 cos2 ι̃)

)
+(8g1(e)− 19)

(
755 + χ2(32− 120 sin2 ι̃+ 144 cos2 ω̃ sin2 ι̃)

)
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+1024g3(e)− 79384 + 6528χ2 − 20608χ2 cos2 ι̃+ 1024g1.5(e)2χ2 cos2 ι̃
]

+O(e6)

}
, (4.3)

A necessary and sufficient condition that the fα(e) be regular at e = 0 is the set of constraints

g1(e) =
19

8
,

g1.5(e) = 0 ,

g2(e) = −197

16
+

1

4
χ2(1− 3 cos2 ι̃) ,

g2.5(e) = −10 ,

g3(e) =
9923

128
− 1

8
χ2(51− 161 cos2 ι̃) , (4.4)

resulting in the transformation

ẽ = e

{
1− 3

8

GM

c2p̃

(
19 + e2

)
+

1

128

(
GM

c2p̃

)2 [
5351 + 698e2 + 23e4 + 8χ2

(
20− sin2 ι̃(39− 18 cos2 ω̃)

)]
+

1

4

(
GM

c2p̃

)5/2

χ cos ι̃
[
7(10 + 27e2)− 2(9 + 4e2) cos2 ω̃

]
− 1

1024

(
GM

c2p̃

)3 [
343065 + 107609e2 + 4243e4 + 91e6

+χ2
(
32(1571 + 571e2)− 8(10791 + 3293e2) sin2 ι̃− 128(47 + 40e2) cos2 ω̃

+16(2137 + 843e2) cos2 ω̃ sin2 ι̃
)]}

, (4.5)

With this transformation, E now takes the form

c−2E = −1

2

GM(1− e2)

c2p̃

[
1− 19

4

GM

c2p̃
+

1

8

(
GM

c2p̃

)2 (
197− 4χ2(1− 3 cos2 ι̃)

)
+20

(
GM

c2p̃

)5/2

χ cos ι̃− 1

64

(
GM

c2p̃

)3 (
9923 + 16χ2(110− 161 sin2 ι̃)

)]
. (4.6)

As expected, in the limit e→ 0, E agrees with Eq. (3.24a) in the limit ẽ→ 0.
In addition, there is no longer any ω̃ dependence in the 2PN terms in E, thus curing the “quadrupole conundrum”

discussed in Sec. III C. This can be understood as follows: in the conservative dynamics, p̃ and ẽ are constant through
2.5PN order, but vary at 3PN order [see Eqs. (3.22a) and (3.23b)]. However, ω̃ appears in the 2PN term in the
transformation between ẽ and e in Eq. (4.5). Thus through 3PN order

dẽ

dθ
=
de

dθ
− 9

4
e

(
GM

c2p̃

)2

χ2 sin2 ι̃ sin ω̃ cos ω̃
dω̃

dθ
. (4.7)

Substituting Eq. (3.23b) for dẽ/dθ along with dω̃/dθ = 3GM/c2p̃, we obtain

de

dθ
= 3e

(
GM

c2p̃

)3

χ2 sin2 ι̃ sin ω̃ cos ω̃ . (4.8)

Combining this with Eq. (3.22a) for dp̃/dθ, which is unaffected to this order by the change in e, we find that

dã

dθ
≡ d

dθ

(
p̃

(1− e2)

)
= O

(
GM

c2p̃

)7/2

. (4.9)

In other words, 3PN variations in ã are no longer needed to compensate for variations in E induced by the advance
of the pericenter, since that orbit element no longer appears in E.
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The transformation of e simultaneously cures the bad behavior of P , which now takes the form

P = 2π

(
p̃3

GM(1− e2)3

)1/2{
1 +

3

8

GM

c2p̃
(16− 5e2) + 6

(
GM

c2p̃

)3/2

χ cos ι̃

− 3

128

(
GM

c2p̃

)2 [
448− 88e2 + 35e4 − 320(1− e2)3/2 − 64χ2(1− 4 cos2 ι̃)

]}
. (4.10)

It also cures the behavior of the orbit shown in Eq. (3.21); in terms of e, r−1 now factorizes into

r−1 =
1 + cos f

p̃

[
1− 2

GM

c2p̃
−
(
GM

c2p̃

)3/2

χ cos ι̃ (6− 2 cos f − sin f sin 2φ) + . . .

]
. (4.11)

In terms of the new eccentricity, C and Le become

Le =
√
mp̃

{
cos ι̃

[
1 +

GM

2c2p̃
(7 + e2)− 1

8

(
GM

c2p̃

)2 (
37 + 39e2

)
+

1

16

(
GM

c2p̃

)3 (
411 + 1043e2 + 18e4

+2χ2[92 + 132e2 − (100 + 177e2) sin2 ι̃− 32e2 cos2 ω̃ + 120e2 cos2 ω̃ sin2 ι̃]
)]

−χ
(
GM

c2p̃

)3/2{
(1 + cos2 ι̃) +

GM

4c2p̃

[
20 + 48e2 − (30 + 41e2) sin2 ι̃

−8e2 cos2 ω̃ + 10e2 cos2 ω̃ sin2 ι̃
]}

, (4.12a)

C = mp̃

{
1 +

GM

c2p̃
(7 + e2)− 4

(
GM

c2p̃

)3/2

χ cos ι̃+
1

4

(
GM

c2p̃

)2 [
12− 25e2 + e4 + 2χ2 sin2 ι̃

(
1− 2e2 cos2 ω̃

)]
−2

(
GM

c2p̃

)5/2

χ cos ι̃
(
12 + 13e2 − 2e2 cos2 ω̃

)
+

1

8

(
GM

c2p̃

)3 [
152 + 733e2 − 21e4

+2χ2
(
108 + 132e2 − (140 + 193e2) sin2 ι̃− 32e2 cos2 ω̃ + (115− e2)e2 cos2 ω̃ sin2 ι̃

)]}
. (4.12b)

The final step in transforming to the new eccentricity is to determine the evolution induced by radiation reaction.
We invert Eq. (4.5) to obtain e as a function of ẽ, p̃, ι̃ and ω̃, find de/dθ by inserting the radiation-reaction equations

(3.27) for the dX̃α/dθ, and then convert back to the new e. In the remaining dX̃α/dθRR expressions, we convert from
ẽ to e. The results are

dp̃

dθRR
= −8

5
ηp̃

(
GM

c2p̃

)5/2 (
8 + 7e2

)
+

1

210
ηp̃

(
GM

c2p̃

)7/2 (
22072 + 27452e2 + 281e4

)
+

2

15
ηp̃

(
GM

c2p̃

)4

χ cos ι̃
(
968 + 2280e2 + 297e4

)
− 1

810
ηp̃

(
GM

c2p̃

)9/2 (
590900 + 941316e2 − 100860e4 − 4383e6

)
, (4.13a)

de

dθRR
= − 1

15
ηe

(
GM

c2p̃

)5/2 (
304 + 121e2

)
+

1

840
ηe

(
GM

c2p̃

)7/2 (
221000 + 120086e2 + 1277e4

)
+

1

30
ηe

(
GM

c2p̃

)4

χ cos ι̃
(
9400 + 10548e2 + 789e4

)
− 1

15120
ηe

(
GM

c2p̃

)9/2 (
39598064 + 26131872e2 − 1139399e4 − 150795e6

)
, (4.13b)

dι̃

dθRR
= − 1

30
η

(
GM

c2p̃

)4

χ sin ι̃
[
88− 1008e2 − 285e2 + 12e2(20 + 13e2) cos(2ω̃)

]
, (4.13c)

dω̃

dθ RR
=

2

5
η

(
GM

c2p̃

)4

χ cos ι̃ e2(20 + 13e2) sin(2ω̃) , (4.13d)



17

dΩ̃

dθ RR
= −2

5
η

(
GM

c2p̃

)4

χe2(20 + 13e2) sin(2ω̃) . (4.13e)

V. NUMERICAL EVOLUTIONS

We now wish to apply the analytic results obtained in
Secs. II – IV to the long-term evolution of highly eccen-
tric orbits around a massive spinning black hole. For a
106M� black hole, these would be orbits with semimajor
axis a ∼ milliparsecs, and 1 − e ∼ 10−5. Since GM/c2

for the black hole is of order 50 nanoparsecs, this corre-
sponds to an initial semilatus rectum p ∼ 2a(1 − e) ∼
20(GM/c2). Since our PN expansion is in powers of
GM/c2p̃, this is a regime where we might hope to ob-
tain reasonable results for the orbital evolution.

We first average the secular evolution equations (4.13)
over ω̃; since the pericenter advances on a timescale that
is short compared to the radiation-reaction timescale,
this is a reasonable approximation (since the dependence
on ω̃ occurs only in the highest order terms in Eqs. (4.13),
we do not need to carry out an additional two-scale anal-
ysis, and can average over ω̃ holding the other elements
fixed. (Notice from Eqs. (3.22) and (4.8) that the 3PN
conservative variations in p̃, e, and ι̃ also average to zero
over a pericenter timescale.) We then scale p̃ by GM/c2,
defining the dimensionless variables ε ≡ GM/c2p̃i and
x ≡ p̃/p̃i, where p̃i is the initial value of p̃. In terms of
these variables, the evolution equations become (hence-
forth, we drop the tildes on all our orbital variables)

dx

dθ RR
= −8

5
ηε5/2x−3/2

(
8 + 7e2

)
+

1

210
ηε7/2x−5/2

(
22072 + 27452e2 + 281e4

)
+

2

15
ηε4x3χ cos ι

(
968 + 2280e2 + 297e4

)
− 1

810
ηε9/2x−7/2

(
590900 + 941316e2

−100860e4 − 4383e6
)
, (5.1a)

de

dθRR
= − 1

15
ηeε5/2x−5/2

(
304 + 121e2

)
+

1

840
ηeε7/2x−7/2

(
221000 + 120086e2

+1277e4
)

+
1

30
ηeε4x−4χ cos ι

(
9400 + 10548e2 + 789e4

)
− 1

15120
ηeε9/2x−9/2

(
39598064 + 26131872e2

−1139399e4 − 150795e6
)
, (5.1b)

dι

dθRR
= − 1

30
ηε4x−4χ sin ι

(
88− 1008e2

−285e2
)
, (5.1c)

dω̃

dθ RR
= 0 , (5.1d)

dΩ̃

dθ RR
= 0 . (5.1e)

Notice that, when the initial p is scaled in units of
GM/c2, and with xi = 1 the orbital evolution as a func-
tion of phase θ depends only on ε, ei and ιi and is inde-
pendent of the mass of the black hole. We shall see that
the only place where the black-hole mass plays a role is
in setting the conversion from orbital phase to time.

In addition, the effect of spin-orbit radiation reaction
on the inclination ι is so small that the inclination has
been found to be constant in all our numerical solutions.
Henceforth we shall drop Eq. (5.1c), and treat the incli-
nation as strictly constant.

A. Capture by the black hole

As the body inspirals toward the black hole, its angu-
lar momentum decreases to a point whereupon, even in
the absence of additional radiation reaction, it finds itself
in an orbit with no inner turning point, and it ultimately
crosses the event horizon. In most previous work this crit-
ical angular momentum has been chosen to be 4GM/c,
corresponding to the angular momentum of a particle
with zero energy at the innermost unstable peak of the
effective potential in the Schwarzschild geometry. For
rotating black holes, this is not a good approximation,
because of the strong effects of frame dragging, among
other things. In Ref. [17], we derived a general condition
for capture by a rotating black hole, for a body with zero
energy (or with relativistic energy Ẽ = 1), by finding the
critical value of the Carter constant such that the effec-
tive radial potential for a geodesic simultaneously van-
ish and have vanishing radial derivative (with a suitable
sign for the second radial derivative), corresponding to a
turning point right at the unstable peak of the potential.
Defining L ≡

√
C, and cos ι ≡ Le/L, the result was an

eighth-order polynomial equation for the critical value Lc
as a function of ι and the Kerr parameter χ. The numer-
ical results are plotted in Fig. 1 of [17]. We then found
an analytic approximation to the curves given by

Lc =
2GM

c

[
1 +

√
1− χ cos ι− 1

8
χ2 sin2 ιF (χ, cos ι)

]
,

(5.2)
which has the correct behavior both when χ = 0
(Schwarzschild) and when ι = 0 or ι = π (equatorial
orbits) for arbitrary χ. The function F is a power series
in χ

F (χ, cos ι) = 1 +
1

2
χ cos ι+

1

64
χ2(7 + 13 cos2 ι)
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hole as a function of the Kerr parameter χ, for various orbital
inclinations. Orbital energy E is assumed to be zero.

+
1

128
χ3 cos ι(23 + 5 cos2 ι)

+O(χ4) . (5.3)

This series solution agrees with the numerical solutions
of the critical condition to better than 0.5 percent for 0 ≤
χ ≤ 0.9; and to better than 5 percent for 0.9 ≤ χ ≤ 0.99.

In our numerical evolutions, we will impose the condi-
tion

√
C = Lc, where C is given by Eq. (4.12b) and Lc

is given by Eq. (5.2). However, in the capture condition
(5.2) the inclination was defined by cos ι ≡ Le/L; from
Eqs. (4.12a) and (4.12b), we see that

cos ι = cos ι̃−
(
GM

c2p

)3/2

χ sin2 ι̃+O

(
GM

c2p

)2

. (5.4)

The difference between ι and ι̃ is a maximum for polar
orbits, but then we expect GM/c2p to be less than 1/16,
so we expect the difference between the two measures of
inclination to be only a few percent. We will ignore that
difference.

Using the expression for C to 2PN order and converting
to our variables x and ε, we obtain the capture condition

x1/2

[
1 +

ε

2x
(7 + e2)− 2

( ε
x

)3/2

χ cos ι

−1

8

( ε
x

)2 (
37 + 39e2 − 2χ2(1− e2) sin2 ι

)]
= ε1/2

[
1 +

√
1− χ cos ι− 1

8
χ2 sin2 ιF (χ, cos ι)

]
.

(5.5)

Solutions for pc/(GM/c2) = xc/ε as a function of ι and χ
are shown in Fig. 4. Since the orbits will have circularized

to varying degrees by the time of plunge, we have chosen
e = 0 in that figure; for e = 0.5, for example, the curves
are virtually the same.

We shall use the capture condition (5.5) to terminate
the numerical evolutions of x and e. An important caveat
is that this condition strictly applies only for orbits with
E = 0; however, since E ∼ GM/p, we might expect the
error in our capture condition to be O(GM/c2p), smaller
for retrograde orbits, larger for prograde orbits. Improve-
ment of the capture criterion for E 6= 0 is a topic for
further work.

B. Evolution in terms of orbital phase

We have integrated Eqs. (5.1a) and (5.1b) numerically,
for initial values of p ranging from 10 to 100 GM/c2, for
1−ei ranging from 10−2 to 10−5, and for ιi ranging from
0 (equatorial prograde) to π (equatorial retrograde). We
choose η = 5 × 10−5, corresponding to a 50M� object
orbiting a 106M� black hole. We will frequently choose
χ = 1, in order to maximize the effects due to the spin
of the black hole.

Figure 5 shows the evolution of p/(GM/c2) and e as
a function of the number of orbits, for initial values
pi/(GM/c2) 100, 50 and 20, and for ei = 0.999. We
find, not surprisingly, that, for initial values of e very
near unity, the evolution with phase is independent of ei.
Retrograde orbits are seen to decay faster than prograde
orbits, a phenomenon that is clear from the spin-orbit
terms in Eqs. (5.1a) and (5.1b), and that has also been
observed in numerical relativity simulations of inspiraling
spinning black holes. In some mysterious way, this may
be related to the cosmic censorship hypothesis; since any
residual angular momentum that the particle carries into
the black hole increases the hole’s angular momentum
if the inspiral orbit is prograde, the particle must inspi-
ral for longer to ensure that enough angular momentum
is radiated away to preclude creating a black hole with
χ > 1 (a naked singularity). No such issue is present for
retrograde orbits. Because of the shorter inspiral time,
retrograde orbits are also seen to plunge from orbits with
larger eccentricity than prograde orbits. In all cases, the
larger the initial p, the longer the inspiral, and hence the
smaller the final eccentricity. The residual values of e are
plotted against pi for various inclinations in the left panel
of Fig. 6. The right panel of Fig. 6 shows the number of
orbits to plunge vs. the initial p, for ei = 0.999. The
curves for i = 135o and 180o drop precipitously to zero
at values of pi that are already at the critical value for
immediate plunge.

C. Inclined orbits and the late-time flux of
gravitational waves

Here we study the effect of orbital inclination on the
flux and frequency of gravitational waves near the end-



19

0 0.05 0.1 0.15 0.2 0.25 0.3

5

10

15

20

p/
(G

M
/c

2 )
0 0.05 0.1 0.15 0.2 0.25 0.3

0.2
0.4
0.6
0.8
1

ec
ce

nt
ric

ity

0 0.5 1.0 1.5 2.0

10
20
30
40
50

p/
(G

M
/c

2 )

0 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8
1

ec
ce

nt
ric

ity
0 2.0 4.0 6.0 8.0

Number of orbits x 106

20
40
60
80
100

p/
(G

M
/c

2 )

0 2.0 4.0 6.0 8.0

Number of orbits x 106

0.2
0.4
0.6
0.8
1

ec
ce

nt
ric

ityi = 0o

i = 45o

i = 90o

i = 135o

i = 180o
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ei = 0.999 and χ = 1.
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cases ei = 0.999 and χ = 1.

point of the orbital evolution. It is not our intent to
provide accurate predictions for the flux itself – in the
highly relativistic regime near the onset of plunge, this
may be pushing the PN approximation beyond its regime
of validity. However, our PN results may give useful in-
sights into the dependence of the gravitational waves on
the inclination of the orbit. To investigate this we esti-

mate the flux as

F =
2π

P

(
dE

dp

dp

dθRR
+
dE

de

de

dθRR

)
, (5.6)

where E is given by Eq. (4.6) multiplied by ηM , P is
given by (4.10), and dp/dθRR and de/dθRR are given by
(4.13a) and (4.13b). Since the radiation-reaction expres-
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sions do not include χ2 terms, we set χ2 = 0 in the expressions for E and P . The result is

F = C−1 32η

5

c5

G

(
GM

c2p

)5

(1− e2)3/2

{(
1 +

73

24
e2 +

37

96
e4

)
− GM

c2p

(
95216 + 306240e2 + 53242e4 + 715e6

5376

)
−
(
GM

c2p

)3/2

χ cos ι

(
1936 + 12024e2 + 6582e4 + 195e6

192

)
+

(
GM

c2p

)2(
121274560 + 421538216e2 + 84768510e4 − 1355193e6 − 659322e8

580608

)}
, (5.7)

where

C = 1 +
3

8

GM

c2p
(16− 5e2) + 6

(
GM

c2p

)3/2

χ cos ι− 3

128

(
GM

c2p

)2 [
448− 88e2 + 35e4 − 320(1− e2)3/2

]
. (5.8)

We estimate the gravitational-wave frequency as twice
the orbital frequency, or ωGW = 4π/P . We then evalu-
ate the flux and frequency at the point of plunge for var-
ious orbital evolutions. Both quantities depend almost
entirely on the value of p at plunge and on the orbital
inclination and χ. Because the eccentricity is generally
less than 0.5 in all cases, the dependence on e is very
weak, and therefore largely independent of the initial val-
ues of p and e. The top panel of Fig. 2 shows the flux
for pi = 100GM/c2 and ei = 0.999, as a function of χ,
for a range of inclinations, all normalized to the flux for
ι = 0, i.e. for equatorial prograde orbits. For the GW
frequency, we normalize to the frequency for χ = 0, so
that the true GW frequency is given by

ωGW = 0.057

(
106M�
M

)
g(χ, ι) Hz , (5.9)

where g(χ, ι) is the function plotted in the right panel of
Fig. 2 .

The strong suppression of the energy flux for highly
inclined and retrograde orbits is mostly due to the fact
that inclined orbits plunge from greater distances than
do equatorial prograde orbits. For example, for χ = 0.6,
the factor of 140 suppression of the flux between 0o and
180o inclination is accounted for within a factor of two
by the factor of 2.3 between the values of p at plunge
for the two types of orbit (see Fig. 4), raised to the fifth
power. We have not plotted the corresponding curve for
χ = 1; while the PN expansion should be a reasonable
approximation for the flux for retrograde orbits, with p
between 8 and 15GM/c2, it is not likely to be reasonable
for the prograde equatorial orbit, with p ∼ 3GM/c2.

D. Evolution in terms of time

We now address the evolution of our orbits with respect
to time. We assume that, for each orbit element X̃α, we

can approximate

dX̃α

dt
=

2π

P

dX̃α

dθ
. (5.10)

This is not strictly the same as having solved the origi-
nal Lagrange planetary equations (3.5) in terms of time
directly, since time-averaged orbit elements are not the
same as angle-averaged elements, beyond first order in
perturbation theory. But since the differences occur at
higher PN orders, Eq. (5.10) will serve our present pur-
poses. Figure 3 shows the evolution of p and e vs. time
for various initial values of p, for a 106M� black hole, and
the left panel of Figure 7 shows the time to plunge as a
function of pi for various inclinations. Because the initial
periods for these highly eccentric orbits are so long for
a given p, a relatively small number of orbits consumes
a great deal of time, so that nothing dramatic happens
until very late (compare Figs. 3 and 5).

Because of this fact, it is possible to derive a simple
analytic formula that encapsulates the time to plunge to
reasonable accuracy, and then to refine it empirically to
obtain a formula that also accounts for the differences
due to spin-orbit effects. We first note from Eqs. (4.13a)
and (4.13b) at leading quadrupole order, and for e ≈ 1,
that

dp

de
≈ 72

85

p

e
, (5.11)

so that e ≈ ei(p/pi)
85/72, as long as e ∼ 1. Then, again

to quadrupole order,

dp

dt
≈ 2π

P

dp

dθ
= −24ηc

(
GM

c2p

)3

(1− e2)3/2 , (5.12)

where we have used the Newtonian approximation for P .
Substituting x = p/pi and e = eix

85/72, we obtain

dx

dt
= −24η

(
c3

GM

)(
GM

c2pi

)4
(1− e2

ix
85/36)3/2

x3
.

(5.13)
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The time to plunge is then given by inverting Eq. (5.13)
and integrating over x from xplunge to unity. Since
xplunge � 1 and since the integrand varies as ∼ x3 for
small x, we can safely integrate over x from 0 to 1, to
obtain

Tplunge =
1

96η

(
GM

c3

)
ε−4G(ei) , (5.14)

where ε = GM/c2pi, and

G(ei) = 4

∫ 1

0

x3dx

(1− e2
ix

85/36)3/2

= 2F1

(
3

2
,

144

85
;

229

85
; e2
i

)
= −11328

935

√
π

Γ(59/85)

Γ(33/70)
2F1

(
3

2
,

144

85
;

3

2
;Z

)
+

288

85
Z−1/2

2F1

(
1,

203

170
;

1

2
;Z

)
, (5.15)

where 2F1(a, b; c; z) is the hypergeometric function and
Z = 1 − e2

i . Thus for a chosen ε and ei, Tplunge scales
linearly with the mass of the black hole. The final repre-
sentation of G(ei) is the most useful for values of ei near
unity; it can be expressed as a series expansion of the
form

G(ei) ≈
288/85√

1− e2
i

− 5.925739 + 8.091903
√

1− e2
i + . . . .

(5.16)
Including only the first term in Eq. (5.16), we obtain
Tplunge = (3/85η)(GM/c3)ε−4(1 − e2

i )
−1/2, which is in

agreement with the results of Peters [37] (see also Eq.
(26) of [38]). We will adjust the coefficients slightly from
the nominal values provided by Eq. (5.16) to get a decent

fit to the actual dependence of Tplunge on ei. Including
PN corrections to Eq. (5.14) particularly to account for
spin-orbit effects, and adjusting the power of ε slightly
from 4 to 3.96, we obtain the fit given in Eq. (1.1). As
shown in the right panel of Fig. 7, this gives a surprisingly
good fit to the time to plunge, to better than a percent
for pi ranging from 80 to many hundred GM/c2, to a few
percent for pi between 40 and 80GM/c2 and to better
than 20 percent down to pi = 20GM/c2. For example,
for pi = 100 and ei = 0.999, the difference in plunge time
between ι = 0o and ι = 180o is about seven percent,
while Eq. (1.1) agrees with the calculated time for each
inclination to 0.3 percent. The agreement as a function
of ei for a given pi is at the level of fractions of a percent
over values of ei ranging from 0.99 to 0.99999 that imply
a range of over 4 orders of magnitude in orbital period.
We have not attempted to tweak the formula to improve
the fit for smaller values of p, since the orbits in this
regime are already sufficiently relativistic that the PN
approximation is becoming less accurate anyway.

Amaro-Seoane et al. [39] (hereafter ASF) have also en-
deavored to analyse the effects of black hole spin on the
evolution of orbits. They employed a hybrid approach
that combined 2PN results for the conservative orbital
motion, black-hole perturbation theory results for gravi-
tational radiation, and an adiabatic assumption that cor-
rected orbits in response to the changes in E, Le and C
[5, 6, 40]. In particular, ASF reported results for the
time to plunge (Table 1 of [39]) for a range of black
hole masses and spins, for a range of initial semimajor
axes and eccentricities, and for inclinations of 0o and
57.3o (one radian). As they point out, all the orbits
discussed in that table actually correspond to the single
choice pi = 8GM/c2, corresponding to the critical value
for plunge for a Schwarzschild black hole, but above the
critical value for prograde orbits around a Kerr black
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TABLE III: Time to plunge: a comparison

MBH mass MBH spin Semimajor axis Eccentricity Inclination Time to Plunge (yr)

(M�) χ ai (pc) 1 − ei ι (radians) This work Ref [39]

5.0 · 104 0.30 9.57 · 10−3 10−6 0.0 93 392

5.0 · 104 0.30 9.57 · 10−3 10−6 0.7 ∗ ∗ ∗ 392

5.0 · 105 0.30 9.57 · 10−2 10−6 0.0 934 4.31 · 104

5.0 · 105 0.30 9.57 · 10−2 10−6 1.0 ∗ ∗ ∗ 4.31 · 104

1.0 · 107 0.30 1.91 10−6 0.0 1.87 · 104 4.02 · 106

1.0 · 107 0.30 1.91 10−6 1.0 ∗ ∗ ∗ 3.78 · 106

1.0 · 106 0.70 1.91 · 10−2 10−5 0.0 960 1.35 · 104

1.0 · 106 0.70 1.91 · 10−2 10−5 1.0 644 1.20 · 104

5.0 · 106 0.70 9.57 · 10−2 10−5 0.0 4.80 · 103 1.55 · 105

5.0 · 106 0.70 9.57 · 10−2 10−5 1.0 3.22 · 103 1.36 · 105

5.0 · 107 0.70 9.57 · 10−1 10−5 0.0 4.80 · 104 1.55 · 107

5.0 · 107 0.70 9.57 · 10−1 10−5 1.0 3.22 · 104 1.35 · 107

1.0 · 106 0.99 1.91 · 10−2 10−5 0.0 1.66 · 103 1.43 · 104

1.0 · 106 0.99 1.91 · 10−2 10−5 1.0 782 1.17 · 104

1.0 · 107 0.99 1.91 · 10−1 10−5 0.0 1.66 · 104 1.44 · 106

1.0 · 107 0.99 1.91 · 10−1 10−5 1.0 7.82 · 103 1.18 · 106

5.0 · 107 0.99 9.57 · 10−1 10−5 0.0 8.32 · 104 1.65 · 107

5.0 · 107 0.99 9.57 · 10−1 10−5 1.0 3.91 · 104 1.35 · 107

hole (see Fig. 4, where our value for the critical p for
Schwarzschild is closer to 9GM/c2). With this common
choice of initial condition for p, then for all cases with
the same values of ei, ιi and χ, the time to plunge should
scale with black-hole mass [see Eq. (5.14)]. Table III
shows a selection of results comparing our computation
of time to plunge with those from Table 1 of ASF. The
first thing to notice is that the scaling with mass is not
apparent in the results of ASF. In addition, our times to
plunge are consistently shorter than those of ASF and
the dependence on the angle of inclination is stronger in
our case. The starred entries in Table III are cases where
the initial orbits are already below our plunge criterion
of Eq. (5.5), and thus the plunge time is zero. We must
acknowledge that, because p in our calculations of Tplunge

is evolving from 9GM/c2 to around 3GM/c2, the PN ap-
proximation is being pushed up to or beyond its limit of
validity, so we do not wish to claim too much accuracy
for our values of Tplunge in Table III. Nevertheless, the
scaling with black-hole mass and the dependence on in-
clination should be robust. Reconciling the differences
between these two approaches is a subject for future re-
search.

VI. DISCUSSION AND CONCLUSIONS

We have used post-Newtonian theory to analyze the
motion of stars orbiting rotating black holes in orbits
that are initially very eccentric and with arbitrary incli-
nations relative to the black hole’s equatorial plane. We

incorporated conservative terms from the test body equa-
tions of motion in the Kerr geometry, including all spin
effects through 3PN order, and radiation reaction contri-
butions to the equations of motion through 4.5PN order,
including spin-orbit contributions, and carefully solved
the evolution equations for the osculating orbit elements
to the corresponding PN order using a two-timescale ap-
proach. The orbits were terminated when the Carter con-
stant associated with the orbit dropped below a critical
value. We found that retrograde orbits terminate farther
from the black hole and with larger residual orbital eccen-
tricities than do prograde orbits, and consequently that
the flux of gravitational radiation from the final stage
of retrograde orbits can be substantially suppressed rela-
tive to flux from the comparable prograde orbit. We also
provided a number of results in forms that are “ready-to-
use” in numerical simulations of star clusters orbiting a
spinning central black hole, include two-body equations
of motion and an analytic formula for the time to plunge
that take into account the effect of the spin of the black
hole.

A key question is how well the PN approximation
can be trusted in the relativistic regimes we consider
here. The inverse of the relativistic expansion param-
eter GM/c2p ranges from values as large as the hundreds
when the star is injected into a high-eccentricity orbit
from the surrounding cluster to as small as 3 when a
prograde orbit terminates at the plunge point. Conse-
quently, some caution is in order in interpreting these
results. While the PN approximation has proven to be
“unreasonably effective” in describing the dynamics of
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comparable-mass binary systems [16], its effectiveness is
not so clear in the extreme mass ratio limit, particularly
in the absence of alternative approaches such as numer-
ical relativity or self-force theory against which detailed
comparisons could be made. It would be interesting to
see if various resummations of the PN sequence, along the
lines of the “effective one body” (EOB) approach [41, 42]
might be useful for the eccentric orbits being considered
here (see e.g. [43]).
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Appendix A: Motion of a particle around a spinning
black hole in harmonic coordinates

In this Appendix, we provide some of the details under-
lying the equations of motion used in this paper. Parts of
the following subsection are based on unpublished work
by CMW and A. Le Tiec.

1. Test-body equations to 3PN order

The conservative equations of motion used in this pa-
per are those of a test body orbiting a Kerr black hole,
to 3PN order and in harmonic coordinates. We begin
with the Kerr line element in standard Boyer-Lindquist
coordinates [44], given by

ds2 = −
(

1− 2mrbl

ρ2

)
c2dt2bl +

ρ2

∆
dr2

bl + ρ2dθ2
bl

+

(
r2
bl +

a2

c2
+

2mrbla
2 sin2 θbl

c2ρ2

)
sin2 θbldφ

2
bl

−4marbl

ρ2
sin2 θbldtbldφbl , (A1)

where m ≡ GM/c2 is the geometrized mass and a =
GMχ/c is the Kerr parameter, related to the spin angular
momentum S by a ≡ S/M , with |χ| ≤ 1 required for the
metric to describe a black hole; ρ2 = r2

bl + (a/c)2 cos2 θbl,
and ∆ = r2

bl − 2mrbl + (a/c)2. The transformation from
Boyer-Lindquist coordinates to Cartesian-like harmonic

coordinates satisfying ∂α(
√
−ggαβ∂βx(γ)

H ) = 0 is given by
[45–47]

tH = tbl ,

xH + iyH = (rbl −m+ ia/c)eiψ sin θbl ,

zH = (rbl −m) cos θbl , (A2)

where

ψ = φbl +
a

c(r+ − r−)
ln

∣∣∣∣rbl − r+

rbl + r−

∣∣∣∣ (A3)

and r± = m±
√
m2 − (a/c)2. Inverting these transforma-

tions iteratively to the requisite PN order and inserting
into Eq. (A1), we obtain the metric in harmonic coordi-
nates to 3PN order:

g00 = −
(

1−GM/c2r

1 +GM/c2r

)
−
(
GM

c2r

)3

χ2
[
3(n · e)2 − 1

]
+2

(
GM

c2r

)4

χ2
[
4(n · e)2 − 1

]
+O(ε5) ,

g0j = 2
GM2

c4r2
χ(n× e)j

(
1− GM

c2r

)
+O(ε4) ,

gij =

(
1 +

GM

c2r

)2

(δij − ninj) +

(
1 +GM/c2r

1−GM/c2r

)
ninj

−
(
GM

c2r

)3

χ2
[
3(n · e)2 − 1

]
δij

+2

(
GM

c2r

)3

χ(n× e)(inj) +O(ε4) , (A4)

where e is a unit vector in the direction of the black-hole
spin. The first term in g00 is the usual Schwarzschild
piece in harmonic coordinates; the second term is the
contribution of the body’s quadrupole moment, and the
third term is a 3PN “cross-term” between the monopole
and quadrupole terms combined with a (spin)2 term.
That the terms in the time-space component g0j are of
order c−4 and c−6 rather than c−3 and c−5 is a reflection
of the well-known fact that for black holes, effects lin-
ear in spin are effectively 1/2 PN order higher than they
would be for normal slowly rotating bodies. In gij the
first two terms are again the standard Schwarzschild con-
tribution, while the third is the quadrupole term. The
final term may be dropped: it is a pure gauge term, as
can be checked by making the spatial coordinate trans-
formation

xj = x̄j +
1

3

(
GM

c2r̄

)3

χ(x̄× e)j , (A5)

which maintains harmonic gauge, eliminates that term,
and leaves the rest of the metric unchanged, to 3PN or-
der.

The equations of motion for a test body can then be
obtained from the geodesic equation, expressed using co-
ordinate time as the parameter,

d2xi

dt2
+

(
Γjβγ − Γ0

βγ

vj

c

)
vαvβ = 0 , (A6)

where vα ≡ (c, vj), and Γαβγ are the Christoffel symbols
computed from the metric. The result through 3PN or-
der is Eq. (2.3). Since the Kerr metric is stationary and
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axisymmetric, it admits the two conserved quantities of
energy (per unit mass-energy) Ẽ and e-component of an-
gular momentum per unit mass, Le, given by

Ẽ ≡ −u0/c , Le ≡ uφ . (A7)

where uα ≡ dxα/dτ is the four-velocity of the test par-
ticle. It is straightforward to express these to 3PN or-
der in harmonic coordinates using Eq. (A4). Defining

Ẽ ≡ 1 + E/c2, we obtain

E =
1

2
v2 − GM

r
+

1

8c2

(
3v4 + 12v2GM

r
+ 4

G2M2

r2

)
+

1

c4

(
5

16
v6 +

21

8
v4GM

r
+

7

4
v2G

2M2

r2
+

1

2
ṙ2G

2M2

r2
− 1

2

G3M3

r3

)
+

1

2c4

(
GM

r

)3

χ2
[
3(n · e)2 − 1

]
− 2

c5

(
GM

r

)2

v2χ
Lz
r

+
1

c6

(
35

128
v8 +

55

16
v6GM

r
+

135

16
v4G

2M2

r2
+

3

4
v2ṙ2G

2M2

r2
+

5

4
v2G

3M3

r3
+

3

2
ṙ2G

3M3

r3
+

3

8

G4M4

r4

)
− 1

4c6

(
GM

r

)3

χ2

(
3v2

[
3(n · e)2 − 1

]
+ 2

GM

r

[
5(n · e)2 − 1

])
, (A8)

Le = Lz

{
1 +

1

2c2

(
v2 + 6

GM

r

)
+

1

8c4

(
3v4 + 28v2GM

r
+ 28

G2M2

r2

)
− 2

c5

(
GM

r

)2
Lz
r
χ

+
1

c6

(
5

16
v6 +

33

8
v4GM

r
+

45

4
v2G

2M2

r2
+

1

2
ṙ2G

2M2

r2
+

5

2

G3M3

r3

)
− 3

2c6

(
GM

r

)3

χ2
[
3(n · e)2 − 1

]}
+

2

c3
G2M2

r
χ
[
(n · e)2 − 1

](
1 +

v2

2c2

)
, (A9)

where Lz ≡ (x × v) · e. The geometry admits an additional constant of the motion known as the Carter constant
[48], given by C0 ≡ Kµνu

µuν , where Kµν is the Killing tensor of the metric. However, we will find it more useful to
employ a related “Carter” constant, given by

C ≡ C0 − (aẼ)2 + 2aẼLe

= ρ4
bl

(
uθbl

)2
+ sin−2 θblL

2
e + a2 cos2 θbl(1− Ẽ2) . (A10)

This definition has the advantage that, in the Schwarzschild limit (a → 0),
√
C is equal to the conserved total

angular momentum, and in the Newtonian limit, it is equal to L ≡ |x× v|. Thus this version of C will have a more
useful post-Newtonian expansion. Converting to harmonic coordinates using Eqs. (A2), inserting the expressions for

Ẽ = 1 + E/c2 and Le, and using the fact that, in our harmonic coordinates, (dθ/dt)2 = r−4(L2 − sin−2 θL2
z), we

obtain, to 3PN order,

C = L2

{
1 +

1

c2

(
v2 + 6

GM

r

)
+

1

c4

(
v4 + 10v2GM

r
+ 16

G2M2

r2

)
+

1

c4

(
GM

r

)2

χ2
[
2(n · e)2 − 1

]
− 4

c5

(
GM

r

)2
Lz
r
χ

+
1

c6

(
v6 + 14v4GM

r
+ 47v2G

2M2

r2
+ ṙ2G

2M2

r2
+ 26

G3M3

r3

)
+

1

c6

(
GM

r

)2

χ2

(
v2
[
2(n · e)2 − 1

]
+ 3

GM

r

[
(n · e)2 − 1

])}

− 4

c3
G2M2

r
Lzχ

{
1 +

1

c2

(
v2 + 3

GM

r

)}
+

1

c4

(
GM

r

)2

L2
zχ

2

{
1 +

1

c2

(
v2 + 6

GM

r

)}
−G

2M2

c4
χ2(n · e)2

{
v2 − 2

GM

r
+

1

c2

(
v4 + 2v2GM

r
+ 2

G2M2

r2

)}
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− 2

c4
Lṙ
G2M2

r
χ2(λ · e)(n · e)

{
1 +

1

c2

(
v2 + 6

GM

r

)}
− 4

c6
G4M4

r2
χ2
[
(n · e)2 − 1

]
, (A11)

where λ ≡ ĥ × n, ĥ = L/L and we use the fact that r2 sin θ θ̇ = −h(λ · e). In these expressions the terms of odd
orders in 1/c arise from spin-orbit coupling, whose effects are always shifted by half a PN order relative to monopole
or quadrupole contributions.

2. Radiation reaction terms at 4PN spin-orbit and 4.5 PN order

Here we display the coefficients in the 4PN spin-orbit and 4.5PN contributions to radiation reaction in Eq. (2.4).
The spin-orbit terms were derived from first principles in [20]; the coefficients are given by

A4SO = 120v2 + 280ṙ2 + 453
GM

r
,

B4SO = 87v2 − 675ṙ2 − 901

3

GM

r
,

C4SO = 48v2 + 15ṙ2 + 364
GM

r
,

D4SO = 31v4 − 260v2ṙ2 + 245ṙ4 − 689

3
v2GM

r
+ 537ṙ2GM

r
+

4

3

(
GM

r

)2

. (A12)

Because we are dealing with a single spinning body at rest, these coefficients are independent of the “spin-
supplementary condition” adopted.

The 4.5PN contributions were derived by Gopakumar et al. [21], extending a method developed by Iyer and Will
[49, 50]. The idea is to write down the most general expression for 4.5PN radiation reaction terms for a binary system
of point masses (in the center-of-mass frame), and to fix the coefficients in that expression by requiring that the
equations yield the proper expressions for energy and angular momentum flux, accurate to 2PN order beyond the
quadrupole approximation. The procedure does not fix the coefficients uniquely, but the remaining free parameters
can be shown to be related to the freedom to make coordinate or gauge changes at the relevant 4.5PN order. At
4.5PN order, there are 12 degrees of freedom, parametrized by ψ1 . . . ψ9, χ6, χ8 and χ9, in the notation of Ref. [21].
The resulting functions E4.5 and F4.5 in Eq. (2.4) are given by

E4.5 =

(
779

168
+ 3ψ2 − 3χ6

)
v6 −

(
295

84
+ 5ψ2 − 5χ6 − 5ψ4 + 5χ8

)
v4ṙ2 − 9ψ7ṙ

6

+

(
145

6
− 7ψ4 + 7χ8 + 7ψ7

)
v2ṙ4 +

(
6793

84
− 2ψ1 − 3ψ2 + 3χ6 + 3ψ6 − 3χ9

)
v4GM

r

−
(

218401

504
+ 4ψ2 + 5ψ4 + 6ψ6 − 5ψ8 − 2χ6 − 5χ8 − 6χ9

)
v2ṙ2GM

r

+

(
54161

126
− 2ψ4 − 7ψ7 − 8ψ8

)
ṙ4GM

r
− (83 + 2ψ3 + 3ψ6 − 3χ9 − 3ψ9) v2G

2M2

r2

+

(
83407

252
− 2ψ6 − 5ψ8 − 7ψ9

)
ṙ2G

2M2

r2
+

(
41297

108
− 2ψ5 − 3ψ9

)
G3M3

r3
,

F4.5 =

(
417

28
− ψ1

)
v6 −

(
380

3
− 3ψ1 + 3χ6

)
v4ṙ2 −

(
485

6
− 7χ8

)
ṙ6

+

(
34445

168
+ 5χ6 − 5χ8

)
v2ṙ4 +

(
1859

56
+ ψ1 − ψ3

)
v4GM

r

−
(

16687

42
− 4ψ1 − 4ψ3 − 3χ6 + 3χ9

)
v2ṙ2GM

r

+

(
99499

252
+ 2χ6 + 5χ8 + 6χ9

)
ṙ4GM

r
−
(

2967

28
− ψ3 + ψ5

)
v2G

2M2

r2

+

(
3166

21
+ 2ψ3 + 5ψ5 + 3χ9

)
ṙ2G

2M2

r2
+

(
395929

2268
+ ψ5

)
G3M3

r3
. (A13)
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It turns out, not surprisingly, that the arbitrary parameters completely drop out of the orbit-averaged equations for
the orbital elements.

Appendix B: Two-scale analysis of the Lagrange
planetary equations

Here we provide some of the details of the two-scale
analysis that we used to find the equations for the secular
evolutions of the orbit elements. The Lagrange planetary
equations for the orbit elements Xα(t) take the general
form

dXα(t)

dt
= εQα(Xβ(t), t) , (B1)

where α labels the orbit element, ε is a small parameter
that characterizes the perturbation, and the Qα(Xβ(t), t)
are functions of the orbit elements Xβ as well as explicit
functions of t (in practice, an angular variable such as
the phase φ or the true anomaly f is often a proxy for t).
Those functions are assumed to be periodic with period
P or 2π. To zeroth order in ε, dXα/dt = 0, and thus the
Xα are constants.

In general there are six orbital elements, including one
related to the “time of pericenter passage”, but for many
problems for which the actual time of events is not im-
portant, it is useful to eliminate time from the problem
and to work in terms of an angular variable expressing
the orbital phase. The possibilities include the phase φ
measured from the ascending node, the true anomaly f
measured from the pericenter of the orbit, or the “eccen-
tric anomaly” u, related to f by the transformations

cosu =
cos f + e

1 + e cos f
, sinu =

√
1− e2 sin f

1 + e cos f
, (B2)

with r = p/(1 + e cos f) = a(1 − e cosu), where a =
p(1 − e2). The transformations between these variables
and time t are given by

dφ

dt
=

h

r2
− cos ι

dΩ

dt
,

df

dt
=

h

r2
− dω

dt
− cos ι

dΩ

dt
,

du

dt
=

√
1− e2

1 + e cos f

df

dt
. (B3)

Another possibility is the “mean anomaly”, ` ≡ 2πt/P ,
where P is the orbital period. After one of these trans-
formations, we arrive at five orbit element equations in
the generic form

dXα(φ)

dφ
= εQα(Xβ(φ), φ) , (B4)

where Qα(Xβ(φ), φ) = (dt/dφ)Qα(Xβ(t), t), where
we use φ to represent generically the phase variable
{φ, f, u, `} being used.

As outlined in Sec. III B, we define the long timescale
variable θ ≡ εφ, write the derivative with respect to φ as
d/dφ ≡ ε∂/∂θ + ∂/∂φ and define

Xα(θ, φ) ≡ X̃α(θ) + εYα(X̃β(θ), φ) . (B5)

where X̃α(θ) is the average of Xα over φ, and Yα is
the average-free part, where the average and average-free
parts are defined by

〈A〉 ≡ 1

2π

∫ 2π

0

A(θ, φ)dφ , AF(A) ≡ A(θ, φ)− 〈A〉 ,

(B6)
where the integrals are done holding θ fixed.

Substituting our definition of Xα into Eq. (B4), and
taking the average and average-free parts, we obtain the
two main equations of the procedure

dX̃α

dθ
= 〈Qα(X̃β + εYβ , φ)〉 , (B7a)

∂Yα
∂φ

= AF
(
Qα(X̃β + εYβ , φ)

)
− ε ∂Yα

∂X̃γ

dX̃γ

dθ
. (B7b)

Note that, by virtue of our assumption that θ and φ are
independent, ∂Yα/∂X̃γ is automatically average-free.

In integrating Eq. (B7b), it is useful to consider the
general equation

∂A

∂φ
= AF(B) , (B8)

for some functions A and B, where B is periodic with
period 2π. The solution is

A =

∫ φ

0

AF(B)dφ′ + C , (B9)

where C is a constant of integration, fixed by the condi-
tion that 〈A〉 = 0. Note that for any function D,〈∫ φ

0

Ddφ′

〉
=

1

2π

∫ 2π

0

dφ

∫ φ

0

Ddφ′

= 2π〈D〉 − 〈φD〉 , (B10)

after switching the order of integration. It is then simple
to show that C = 〈φB〉 − π〈B〉, so that the general,
average-free solution of Eq. (B9) is

A =

∫ φ

0

B dφ′ − (φ+ π)〈B〉+ 〈φB〉 . (B11)

Note that 〈∂A/∂φ〉 = 0, and that A(0) = A(2nπ) =
〈(φ−π)B〉, for any integer n, thus A is also periodic. Av-
erages of expressions involving integrals satisfy the useful
property

〈A
∫ φ

0

Bdφ′〉 = −〈B
∫ φ

0

Adφ′〉+ 2π〈A〉〈B〉 . (B12)
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We now iterate Eqs. (B7) in powers of ε. We first
expand

Qα(X̃β + εYβ , φ) ≡
∞∑
m=0

εm

m!
Q

(0)
α,β...γYβ . . . Yγ , (B13)

where we sum over repeated indices β, γ, etc, and where

Q(0)
α ≡ Qα(X̃β , φ) , (B14)

Q
(0)
α,β...γ ≡

∂mQ
(0)
α

∂X̃β . . . ∂X̃γ

. (B15)

We also expand

Yα ≡ Y (0)
α + εY (1)

α + ε2Y (2)
α + . . . . (B16)

Then, to order ε0, we have

dX̃α

dθ
= 〈Q(0)

α 〉 , (B17)

and

dY
(0)
α

dφ
= AF

(
Q(0)
α

)
, (B18)

with the solution

Y (0)
α =

∫ φ

0

Q(0)
α dφ′ − (φ+ π)〈Q(0)

α 〉+ 〈φQ(0)
α 〉 . (B19)

At first order in ε, we find, from Eq. (B7b)

dY
(1)
α

dφ
= AF

(
Q

(0)
α,βY

(0)
β

)
− Y (0)

α,β

dX̃β

dθ
. (B20)

Substituting for Y
(0)
α from Eq. (B19) and for dX̃β/dθ

from Eq. (B17), and making use of (B11), we obtain

Y (1)
α =

∫ φ

0

Q
(0)
α,βdφ

′
∫ φ′

0

Q
(0)
β dφ′′

+
[
〈φQ(0)

β 〉 − (φ+ π) 〈Q(0)
β 〉
] ∫ φ

0

Q
(0)
α,βdφ

′

+ (φ+ π) 〈Q(0)
β

∫ φ

0

Q
(0)
α,βdφ

′〉

+ 〈φQ(0)
α,β

∫ φ

0

Q
(0)
β dφ′〉

+
1

2

(
φ2 − 4π2/3

)
〈Q(0)

β 〉〈Q
(0)
α,β〉

− (φ+ π) 〈φQ(0)
β 〉〈Q

(0)
α,β〉

− 1

2
〈Q(0)

β 〉〈φ(φ+ 2π)Q
(0)
α,β〉+ 〈φQ(0)

β 〉〈φQ
(0)
α,β〉 .
(B21)

It is straightforward to show explicitly that 〈Y (1)
α 〉 = 0.

To obtain dX̃α/dθ to order ε2, we expand Eq. (B7a) to
second order in ε and substitute Eqs. (B19) and (B21) for
Y

(0)
α and Y

(1)
α , to obtain an expression purely in terms of

derivatives and averages of Q
(0)
α . Converting back to the

unscaled φ = θ/ε, we obtain

dX̃α

dφ
= ε〈Q(0)

α 〉+ ε2
[
〈Q(0)

α,β

∫ φ

0

Q
(0)
β dφ′〉+ 〈Q(0)

α,β〉〈φQ
(0)
β 〉

− 〈φQ(0)
α,β〉〈Q

(0)
β 〉 − π〈Q

(0)
α,β〉〈Q

(0)
β 〉
]

+ ε3
[
〈Q(0)

α,βY
(1)
β 〉+

1

2
〈Q(0)

α,βγY
(0)
β Y (0)

γ 〉
]

+O(ε4) ,

(B22)

where Y
(0)
β and Y

(1)
β are given by Eqs. (B19) and (B21).

The first term in Eq. (B22) is the standard lowest-order
result in which “constant” values of the orbit elements
are inserted into Qα and the result averaged over one
period. The higher-order terms result from the effect of
periodic terms in the orbit elements on the behavior of
the Qα.

For the conservative parts of the equations of motion
used in this paper, the first term is of 1PN order and
higher, the second is of 2PN order and higher and the
third is of 3PN order and higher; thus the terms shown
are sufficient to calculate the conservative evolution of
the elements through 3PN order. For the radiation reac-
tion evolution, the first term is of 2.5PN order and higher.
Since we are only concerned with effects linear in the
mass ratio η, the higher order terms will contribute only
cross terms between radiation reaction and conservative
effects. Thus the second term will be of 3.5PN order and
higher, while the final term will be of 4.5PN order and
higher. Thus the terms shown will be sufficient to de-
termine the radiation-reaction evolution through 4.5PN
order.
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