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We investigate the potential of high-energy astrophysical events, from which both massless and
massive signals are detected, to probe fundamental physics. In particular, we consider how strong
gravitational lensing can induce time delays in multi-messenger signals from the same source. Ob-
vious messenger examples are massless photons and gravitational waves, and massive neutrinos,
although more exotic applications can also be imagined, such as to massive gravitons or axions. The
different propagation times of the massive and massless particles can, in principle, place bounds on
the total neutrino mass and probe cosmological parameters. Whilst measuring such an effect may
pose a significant experimental challenge, we believe that the ‘massive time delay’ represents an
unexplored fundamental physics phenomenon.
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I. INTRODUCTION

Photons are no longer our only window onto the universe.
The recent detections of GW150914 and GW151226 [1, 2]
announced the arrival of the powerful new tool of grav-
itational wave astronomy. In addition, particle messen-
gers – astrophysical neutrinos and cosmic rays – have
been detected at Earth for some decades. However, mod-
elling the production of gravitational waves (hereafter
GWs) and particles during extreme astrophysical events
is a challenging scientific problem, requiring advanced
numerical work.

In contrast, the subsequent propagation of such signals
across the universe is comparatively straightforwards to
describe. This prompts us to ask if the propagation of dif-
ferent multi-messenger observables can be used as a new
probe for cosmology and/or fundamental physics, inde-
pendent of the complex details of particle or waveform
generation.

In particular, small relativistic corrections that accu-
mulate with propagation distance may become measur-
able for sources at high redshifts, revealing information
about the difference between null and non-null geodesics
of the intervening spacetime. This has the power to tell
us about both the expansion rate of the universe, and also
properties of the massive particles being used to trace the
geodesics [3, 4].

The simplest example that springs to mind is to com-
pare the arrival times of photons and neutrinos from
supernovae, first put forwards by Zatsepin in 1968 [5].
However, in such a system astrophysical complexities
are likely to dominate effects of interest to fundamental
physics. For example, neutrinos from the famous super-
novae 1987A arrived four hours earlier than the appear-
ance of the optical counterpart, because of the prolonged
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escape time of photons from a dense supernova remnant
[6].

Gravitational waves, on the other hand, suffer no such
setbacks. Their minimal interaction with matter – and
hence negligible scattering and absorption – makes them
arguably a cleaner probe, if the source itself is not the
chief object of interest. For example, one could ask the
following, simplistic question: given that we know neutri-
nos have mass, whilst GWs are massless (in GR, at least),
how much later would the neutrinos arrive at Earth – as-
suming the two were emitted simultaneously?

A simple calculation (presented in Appendix A) of
propagation times shows that for a source in the red-
shift range z = 0.5 − 5, the difference in arrival times
between a GW and a typical neutrino would be of order
one second (see also [7]). Unfortunately, in a realistic sce-
nario, there will be an additional contribution imprinted
on this delay by the structure of the astrophysical source,
i.e. the fact that emission of particles and GWs may not
commence exactly simultaneously. This intrinsic source
delay could be of order seconds or longer [8]. Without
detailed knowledge and modelling of the source, it would
be impossible to know how to split the measured differ-
ence in arrival time into its intrinsic and particle-mass
contributions.

As we will show in this paper, the difficulty above can
be resolved if the multi-messenger signals encounter a
gravitational lensing event(s) en route to Earth. Gravita-
tional waves are subject to gravitational lensing in almost
exactly the same manner as photons [9]. A key part of
the derivations presented here is to develop a description
of the lensing of massive particles, a topic that seems to
be curiously absent from current literature. We will find
that lensing imparts an additional delay in arrival times
that is sensitive to the mass-squared of the messenger
particles.

This massive time delay depends on a number of quan-
tities of interest to both cosmology and particle physics,
namely the mass of the particle involved, the redshift of
the source, and the expansion history of the universe.
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Given how small neutrino masses (for example) are ex-
pected to be, it is clear that the massive time delay will
remain small for them (< 1 second). The question we
are interested in here is whether the massive time delay
might nevertheless be, in some cases, large enough to be
measured by a network of future gravitational wave and
particle detectors.

The lensing of gravitational waves is developed in
[9, 10], and the detection rate of such events has been dis-
cussed for the AdLIGO [11], LISA [12, 13] and Einstein
Telescope [14] detector networks. Clearly, a confirmed
single source of all three potential messengers – photons,
gravitational waves, and massive particles – could offer
even further possibilities. The identification of electro-
magnetic counterparts to GW sources is a major focus
of current gravitational wave science, and is discussed
extensively elsewhere [15, 16].

Although the sources themselves are not the main
focus of this paper, let us briefly enumerate some objects
from which one might expect coincident emission of
massive and massless particles.

1)The most promising source, and the one we will
generally focus on, is a merger between two neutron
stars (hereafter NS). This can result in the formation
of a hypermassive neutron star (HMNS) that is stable
for timescales of order 10 ms. The HMNS continues
to accrete material from surrounding debris; shocks
associated to this high-energy accretion environment
result in an outflow of neutrinos from the poles of the
HMNS. This neutrino outflow is generally diffuse rather
than highly beamed, with typical particle energies of
order ∼ 10 MeV [17, 18].

2) Other compact object mergers may produce particle
emission in addition to their GW signals, although
there is a higher degree of uncertainty here. A merger
between a NS and a black hole (BH) has the necessary
matter component, although without the formation of a
long-lived HMNS the neutrino luminosity may be much
lower [19]. A BH-BH merger could produce particle
emission if there is an accretion disc close enough to be
strongly affected by the merger [20].

3) We have already mentioned supernovae above; if
these are significantly asymmetric, they can produce
GWs in addition to particle emissions [21–23]. For
recent discussions of lensed extragalactic supernovae, see
[24–26].

In this work we will treat a simplified scenario, con-
sidering the lensing of massless and massive relativistic
particles by a single, isolated source – the strong lens-
ing regime. In reality, our multi-messengers are likely to
experience many additional small deflections along their
path, analogous to weak lensing in electromagnetic as-
tronomy. We acknowledge from the start the existence
of such complicating factors in any realistic scenario; this
work is intended to be a first step in fleshing out the key

features of a hitherto unexplored phenomenon. We will
discuss our omissions in §IV, and leave a detailed com-
parison to projected experimental sensitivities for future
investigation.

The structure of this paper is as follows: in §II we
derive the correction to the ‘flight time’ of a massive
particle, relative to a massless one, that encounters a
strong gravitational lens. In §III we explain how a strat-
egy of differencing the massive and massless arrival times
can ameliorate the unknown intrinsic delay between their
emission. We then evaluate this differential massive time
delay for some simple lens models: the singular isother-
mal sphere and the power-law lens. §IV discusses some
additional features of the phenomenon, which would
likely complicate a measurement of the effects described
here. We conclude in §V. Several calculations tangential
to our principal discussion are presented in the appen-
dices.

II. THE MASSIVE TIME DELAY

A. Structure of the Calculation

In Fig. 1 we show the basic features of the system un-
der consideration. An energetic event at redshift zS and
conformal distance DS releases both massless emissions
(electromagnetic and/or gravitational radiation) and rel-
ativistic, massive particles of mass m. For argument’s
sake we will sometimes refer to these massive particles as
neutrinos, though our formalism applies more generally.
Note that the massless and massive fluxes will not typi-
cally commence exactly simultaneously – we discuss how
to deal with this in §III.

At redshift zL and conformal distance DL, both types
of emission encounter a gravitational lens with three-
dimensional density profile ρ(~r). Throughout this paper
we will make use of the thin-lens approximation, which
treats all the deflection as occurring instantaneously at
a single plane. Quantities relating to the lens, such as
its density and gravitational potential, will be projected
onto a two-dimensional plane at redshift zL.

The emissions travel on multiple paths i around this
lens, with each path experiencing a total angular deflec-
tion αi and finally being received by an observer O at
angle θi to the optical axis OA (defined as the axis con-
necting the observer to the centre of the lens). In optical
strong lensing of extended sources, these multiple paths
and detection angles correspond to multiple images of the
same source, often distorted in an informative way that
constrains the structure of lens.

The emissions we are interested in here originate from
point sources. Hence, though we expect to detect mul-
tiple, identical point-sources of our massive and mass-
less messengers, there will be no equivalent of the spa-
tial image distortion seen in traditional optical lensing.
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FIG. 1. Diagram illustrating angles and conformal distances relevant for the derivation of §II. Two lensed paths are shown
(intersecting the lensing plane at L1 and L2), and also the undeflected path that the rays would all follow if the lens were
absent, OS. ξ1 and ξ2 are two-dimensional position vectors of the images in the lensing plane, and χ is the position vector of
the source in the plane AS. α1 and α2 are the deflection angles experienced by these two rays at the lens.

However, in some cases it might be possible to associate
the lensed point sources with lensed optical images of
a host galaxy, although this will require significant ad-
vances in source localization of GW and neutrino detec-
tors. That said, even if localization techniques do not im-
prove sufficiently to allow the spatial resolution of lensed
GW sources, emissions that have travelled along different
lensed paths may still be temporally resolvable.

Within the simplified model outlined above, the total
conformal travel time for a massive, relativistic particle
has the structure:

ηtotal(θ,m) = ηundeflected(m) + ηmassless(θ)

+ ηmassive(θ,m) . (1)

The first term in this expression is the travel time from
the source to the observer for a particle in the absence
of any lens. It is the same for all paths (hence no de-
pendence on θ), and provides the largest contribution to
ηtotal; note however, that it will depend on the mass of
the particle (§II B). The remaining terms describe cor-
rections to this minimum travel time induced by the pres-
ence of the lens; in the case of a massless particle only
the first correction term in eq.(1) exists.

In principle, a massive and massless particle will be
deflected by slightly different amounts at the lens – the
derivation of this effect is given in Appendix B. We would
therefore expect there to be a small offset in the posi-
tion of the neutrino and GW sources on-sky, as shown in
Fig. 2. To account for this we compare flight times along
two different but very close paths, by writing the recep-

tion angle of the massive particle as θ = θ̄ + δθ, where θ̄
is the reception angle in the massless case [27].

Performing a Taylor expansion of (1), we then have:

ηtotal(θ,m) u ηundeflected(m) + ηmassless(θ̄) +
∂ηmassless(θ)

∂θ

∣∣∣∣∣
θ=θ̄

δθ

+ ηmassive(θ̄,m) +O
(
δθ2,

m2

p2
0

δθ

)
, (2)

where the last term – using notation to be introduced
shortly in §II B – indicates that significantly suppressed
terms have been neglected [28]. For this reason, it is
sufficient to evaluate ηmassive at θ̄.

The principle of least action (which for a massless par-
ticle, in the geometric optics limit, becomes Fermat’s
principle) tells us that a particle follows a path along
which the travel time is stationary; thus the third term
in eq.(2) must vanish. Hence, to first order in δθ, it is
sufficient to evaluate the flight time of the both massive
and massless particles at the same reception angle θ̄. Any
difference in arrival times then arises purely from their
null/non-null nature, rather than path differences. It is
interesting to note, though, that this difference in deflec-
tion angle does exist in principle, and would need to be
accounted for in high-accuracy calculations.

Now consider the conformal time delay between two
emissions (either massive or massless) that travel about
the lens on widely-separated paths, like those shown in
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FIG. 2. As massive and massless particles are deflected by different amounts at the lens (ᾱ and α respectively), one should
evaluate their travel times along slightly different paths SLO and SL̄O. However, this turns out to produce corrections that
are second-order with respect to the differential massive time delay that is the main focus of this paper. Hence, in what follows,
we can consider both massless and massive particles corresponding to the same image to have propagated along identical
trajectories.
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Fig. 1. These are received at angles θ1 and θ2, corre-
sponding to separate point source images on the sky. The
conformal time interval between their arrivals is:

∆η(θ2, θ1) = ηtotal(θ2,m)− ηtotal(θ1,m) . (3)

The term ηundeflected in eq.(1) makes no contribution to
∆η(θ2, θ1), as it is the same for both paths and there-
fore cancels out. Hence, although ηtotal may be a signif-
icant fraction of the age of the universe, the difference
between the (conformal) travel time of two rays received
at z = 0 is much smaller than the Hubble time, typically
between a few days and a few years. Since cosmological
expansion is negligible over these timescales, the confor-
mal time delay is equivalent to the physical time delay
to an extremely good approximation [29], i.e.

∆t(θ2, θ1) = a(z = 0) ∆η(θ2, θ1) = ∆η(θ2, θ1) . (4)

Therefore, following [30], we can safely formulate our cal-
culation in terms of conformal distances and conformal
times.

B. Derivation

Our goal here is to calculate the travel time of a par-
ticle along the paths shown in Fig. 1; in the thin-lens
approximation each of these consists of two straight-line
segments, with a total deflection angle αi incurred in-
stantaneously at the lens. We use the letter i to label an
unspecified number of different deflected paths; only two
are shown in Fig. 1 for clarity.

We begin from the line element for a particle moving
in a spacetime containing a single linear perturbation Φ
in an otherwise homogeneous universe [31]:

ds2 = −εc2dλ2 = −c2a(η)2dη2

(
1 +

2Φ

c2

)
+ gijdx

i dxj .

For a massive particle dλ would be an element of proper
time; we have chosen slightly unusual notation here to
allow us to unify the massive and massless cases (see be-
low). Note that we have introduced a binary parameter
in the first equality: ε = 1 for a massive particle and
ε = 0 for a massless one. We have also chosen to keep
the spatial part of the metric general for now. A lit-
tle rearrangement of the second equality brings this line
element to the form:

dη =

(
1 +

2Φ

c2

)− 1
2 dλ

a

[
ε+

gij
c2
dxi

dλ

dxj

dλ

] 1
2

. (5)

In the massless case, the quantity λ in the expression
above is simply an affine parameter (not proper time).
Next, we Taylor-expand the first bracket (since Φ/c2

is a small quantity) and introduce the spatial three-
momentum magnitude:

p2 = m2 gij
dxi

dλ

dxj

dλ
. (6)

Path γLS γOL

1 (upper) α1 − θ1 + β θ1 − β

2 (lower) α2 − θ2 − β θ2 + β

TABLE I. Values of γ, the angle between a deflected ray and
the observer-source axis OS, for the two paths shown in Fig. 1.
The second column shows the value on the path segment be-
tween the source and the lens; the third column is the value
on the segment between the lens and observer.

Using eq.(6) in (5) then leads us to

dη ≈
(

1− Φ

c2

)[
ε+

p2

m2c2

] 1
2 dλ

a
. (7)

To find the (conformal) travel time of the particle from
source to observer, we need to integrate dη along one of
the paths SLiO shown in Fig. 1. To do this, we first
eliminate the affine parameter element dλ in favour of a
conformal distance element along the lensed path, d` =√
δijdxidxj [32]. Expanding gij = δija

2(1− 2Φ/c2) and
performing a Taylor expansion in Φ/c2, eq.(6) rearranges
to become

dλ ≈ ma

p

(
1− Φ

c2

)
d` .

Substituting this into eq.(7), we then obtain

dη ≈
(

1− 2
Φ

c2

)[
1 + ε

m2c2

p2

] 1
2 d`

c
. (8)

We can now write d` = dy/ cos γ(y), where y measures
distance along the undeflected ray OS, and γi(x) is the
angle the path element d` makes with OS, giving

d` =
dy

cos γ(y)
≈
(

1 +
γ(y)2

2

)
dy , (9)

where the large distances involved ensure that the small
angle approximation used in the second equality is valid.
Taking eqs.(8) and (9) together, and neglecting terms
that are second-order in the small quantities Φ and γ, we
finally reach

dη ≈
(

1 +
γ(y)2

2
− 2Φ

c2

)[
1 +

m2c2

p2

] 1
2 dy

c
. (10)

Note that now that the mass of the particle is explicitly
present, the parameter ε is surplus to requirement and
has been absorbed into m2 in the line above.

Integrating eq.(10) along the ray OS will yield the con-
formal time taken for the particle to travel the lensed
path. In the thin-lens approximation, the integration
path breaks into two stages, with the value of γ(x) a
constant along each (see Table 1). However, when inte-
grating eq.(10) we must also remember that the spatial
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three-momentum p redshifts in proportion to 1/a; this
is true for both massive and massless particles [33]. Re-

arranging eq.(10), multiplying out the first bracket and
integrating, the conformal time taken to travel one of the
lensed paths is given by

η(θ,m) =

∫ DS

0

[
1 +

m2c2 a2

p2
0

] 1
2 dy

c
+

∫ DS

0

(
γ2

2

)[
1 +

m2c2 a2

p2
0

] 1
2 dy

c
+

∫ DL+δ

DL−δ

(
−2Φ

c2

)[
1 +

m2c2 a2

p2
0

] 1
2 dy

c
(11)

u
∫ DS

0

[
1 +

m2c2 a2

p2
0

] 1
2 dy

c
+
γ2
OL

2

∫ DL

0

dy

c
+
γ2
LS

2

∫ DS

DL

dy

c
−
∫ DL+δ

DL−δ

2Φ

c2
dy

c

+
1

2

(
mc

p0

)2
{
γ2
OL

2

∫ DL

0

a2 dy

c
+
γ2
LS

2

∫ DS

DL

a2 dy

c
−
∫ DL+δ

DL−δ

2Φ

c2
a2 dy

c

}
. (12)

In the first line above we have written the three-momentum as p = p0/a, where p0 is the value at redshift zero. For
most of the results in §III we will used a fixed value p0, so we have not included it as an explicit argument of η here.

The third integral has a restricted integration range, since the integrand is only non-zero in a small region of size 2δ
near the potential well Φ. In moving to the second line we have performed a Taylor expansion in the small quantity
mc/p0 (mc� p0 since we are dealing with relativistic particles), and have broken the second integral of eq.(11) into
the two sections OL and LS indicated in Fig. 1. Since γ is a constant along these sections, it can be factored out
of the integrals. Note that the integrands in the final line above pick up a factor of a2 from the redshifting of the
three-momentum.

Eq.(12) is valid for any lensed path in the thin-lens approximation. However, for the rest of this paper we will
specialize to the two-image case illustrated in Fig. 1. For now, let us evaluate the travel time along the upper path
shown in Fig. 1, using the values of γ given in Table 1. We identify the first term of eq.(12) as the unlensed travel
time of a particle, i.e. ηundeflected in eq.(1). Proceeding to evaluate the remaining integrals, we obtain

η(θ1,m) = ηundeflected(m) +
(θ1 − β)2

2

DL

c
+

(α1 − θ1 + β)2

2

(DS −DL)

c
− DLDS

cDLS
ψ(θ1)

+
1

2

(
mc

p0

)2{
(θ1 − β)2

2

∫ aL

1

da

H(a)
+

(α1 − θ1 + β)2

2

∫ aS

aL

da

H(a)
− DLDS

cDLS
ψ(θ1) a2

L

}
, (13)

where we have changed the integration variables for the integrals in the second line, and in the final term have
taken the limit δ � DS implied by the thin-lens approximation. We have also defined the two-dimensional projected
potential as

ψ(θ) =
DLS

DLDS

∫ DL+δ

DL−δ

2Φ(θ, y)

c2
dy . (14)

Let us briefly focus on the lensing contribution to the travel time that exists for both massive and massless particles,
i.e. the second, third and fourth terms of eq.(13). We make use of the simply-named lens equation [34]

~αscal =
DLS

DS
~α = ~θ − ~β , (15)

where the first equality defines the scaled deflection angle. The second equality is a standard relation that can be
derived by consideration of equivalent triangles in Fig. 1. Notice that it is important to consider the direction of

deflection here. If we let ~̂φ denote a unit vector in the clockwise direction with respect to OA, then (referring to

Fig. 1) ~γ1 = γ1
~̂φ, but ~γ2 = −γ2

~̂φ. This results in the sign differences seen in Table 1 for the two paths.
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Isolating the non-mass-dependent contribution to the time delay and substituting in eq.(15) we obtain

ηmassless(θ1,m) =
(θ1 − β)2

2

DL

c
+

1

2

[(
DS

DLS
− 1

)
(θ1 − β)

]2
DLS

c
− DLDS

cDLS
ψ(θ1) (16)

=
(θ1 − β)2

2

DL

c

[
1 +

DL

DLS

]
− DLDS

cDLS
ψ(θ1) (17)

=
DLDS

cDLS

[
1

2
(θ1 − β)2 − ψ(θ1)

]
. (18)

Eq.(18), is equivalent to the standard expression for the time delay of lensed photons, often expressed in terms of the
Fermat potential [35]. There are two effects that contribute to the lensed travel time: a geometric delay that arises
purely from the increased path length (first term in eq.18) and a Shapiro delay that occurs as particles pass through
a gravitational potential well (second term). Note that the Shapiro delay is incurred at a single redshift, zL. We note
in passing that our derivation of this expression – beginning from a line element – differs substantially from the most
widely-used presentation, which involves deducing the geometric and Shapiro terms from Fermat’s principle.

For a massive particle, the second line in eq.(13) also comes into play. Using the lens equation once more, the
massive correction to the travel time along the upper path of Fig. 1 can be written as

ηmassive(θ1,m) =
1

2

(
mc

p0

)2
{

1

2
(θ1 − β)

2

[∫ aL

1

da

H(a)
+

D2
L

D2
LS

∫ aS

aL

da

H(a)

]
− a2

L

DLDS

cDLS
ψ(θ1)

}
. (19)

This expression merits a few comments. First, note that
the correction to the travel time of a massive, relativistic
particle has an overall prefactor of (mc/p0)2, as might be
intuited from Special Relativistic considerations. For all
the scenarios discussed in this paper, the initial energy,
E0, of the massive particle is substantially greater than
its rest mass. Hence in what follows we will implicitly
take (mc/p0)2 = m2c4/(E2

0 − m2c4) ≈ (mc2/E0)2. In
§III, where we evaluate this correction numerically, we
will see that this ratio is the single most important factor
controlling the magnitude of the effects derived here.

Second, distinct geometric (first two terms) and
Shapiro (last term) contributions are still identifiable in
eq.(19), even though the final form is not as elegantly
compact as eq.(18). We note that the Shapiro-like cor-
rection for a massive particle in a Schwarzchild metric is
derived in [36].

Third, ηmassive depends on the cosmological expansion
history in a more complicated manner than its mass-
less counterpart; note that the expansion history of the
universe only enters eq.(18) via the overall prefactor
DLDS/DLS . This difference occurs because the redshift-
ing three-momentum of massive particles affects their
propagation speed, and hence their travel time. Whilst
clearly massless particles experience energy-momentum
redshifting as well, it does not alter their propagation
speed and hence does not affect the massless time delay
in such an intricate way.

Finally, given the complicated dependence of eq.(19)
on DL, DS and DLS , the redshift-dependence of ηmassive

is not easy to predict. In particular, it may not necessar-
ily peak when the lens is halfway between the observer
and source, as typically occurs for lensing kernels. We

will study this further in §III.

We have found expressions for the three contributions
to the travel time identified in eq.(1): ηundeflected(m),
ηmassless(θ) and ηmassive(θ,m). We now have all the tools
to calculate the relative time delay between the arrival
of two massive particles that have travelled on different
paths around a lens, or between a massive and massless
particle traveling the same path.

III. APPLICATION & LENS MODELS

A. Differencing Strategy

For convenience we summarize here the results of the
previous section, now generalized to apply to both paths
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in Fig. 1:

ηtotal(θ) = ηundeflected(m) + ηmassless(θ) (20)

+ ηmassive(θ,m) +O

([
mc

p0

]4
)

ηundeflected(m) =

∫ DS

0

[
1 +

m2c2 a2

p2
0

] 1
2 dy

c
(21)

ηmassless(θ) =
DLDS

cDLS

[
1

2
(θ ± β)2 − ψ(θ)

]
(22)

ηmassive(θ,m)) =
1

2

(
mc

p0

)2
{

1

2
(θ ± β)

2× (23)[∫ aL

1

da

H(a)
+

D2
L

D2
LS

∫ aS

aL

da

H(a)

]
− a2

L

DLDS

cDLS
ψ(θ)

}

The ± signs correspond to the paths below (+, i =2) and
above (−, i =1) the optical axis shown in Fig. 1. The
simple lens models considered in this paper produce only
two images, such that we can always orient the system
as shown in the figure. We leave the treatment of more
realistic system – which, famously, can only produce odd
numbers of images [37] – to a future work.

Let us explain here the most sensible way to combine
these particle flight times. As we described in the intro-
duction, a major systematic error when trying to measure
the delay in arrival between massive and massless parti-
cles would be the unknown relative emission time. So far
we have implicitly assumed that all our messenger par-
ticles set off exactly simultaneously, but this is unlikely
for any realistic source. For example, in a supernova the
neutrino diffusion timescale in a collapsing stellar core is
of order a second [38]. In the case of a binary BH sys-
tem, there will be a similar light-speed propagation time
for information about the merger to reach the surround-
ing accretion disc. Hence there is an intrinsic component
of the time delay set by the details of a high-energy as-
trophysics event, which is unknowable without detailed
numerical modelling of the event and high levels of cer-
tainty for the source parameters.

Fortunately, this is where our strong lensing formal-
ism can help. Consider a futuristic experimental scenario
which detects the following four events, all confirmed as
originating from the same sky location:

• ta: time in a massless signal (e.g. a GW waveform)
identified as the merger event.

• tb: peak flux in the accompanying massive particle
signal.

• tc: merger time in a massless signal, with the same
structure as the previous massless signal (‘massless
echo’).

• td: peak flux in a second massive particle signal,
with the same flux variations as the previous mas-
sive particle signal (‘massive echo’).

The first two events here correspond to messengers arriv-
ing from the same image, which have travelled along the
same lensed path. The latter two events correspond to
messengers arriving from the second image, having tra-
versed a different lensed path. For example, messengers
travelling the upper path in Fig. 1 could give rise to ta
and tb, and their lensed echoes travelling along the lower
path give rise to tc and td.

We focus on the following time intervals:

tb − ta = δηintrinsic + ηtotal(θ1,m 6= 0)− ηtotal(θ1,m = 0)
(24)

td − tc = δηintrinsic + ηtotal(θ2,m 6= 0)− ηtotal(θ2,m = 0)
(25)

T = (td − tc)− (tb − ta)

= ηmassive(θ2,m)− ηmassive(θ1,m) (26)

where δηintrinsic represents the delay in emission between
massive and massless messengers that is intrinsic to the
source, as described above. The first equality of eq.(26)
defines the quantity T , and the second equality uses
eq.(21). The intervals td − tc and tb − ta correspond
to emissions arriving from the same image of the source;
they are expected to be small compared to td − tb or
tc − ta, which correspond to emissions of the same kind
arriving from different lensed images.

The intrinsic delay between the emission of massive
and massless particles is a property of the source, and is
not affected by the subsequent strong lensing. Hence it
is the same for both lensed images, and therefore can be
cancelled out by the differencing strategy outlined above.
However, this strategy assumes an idealistic situation in
which the flux variations of both the massive and mass-
less signals are well-sampled. In a real-world scenario this
may not be possible – we will discuss this issue further
in §IV.

With a major source of error thus circumvented, we can
now proceed to estimate the magnitude of the quantity
T , which we will term the differential massive time delay.
In particular, we are interested to study the sensitivity
of T to neutrino mass and the late-time cosmological
acceleration (for those sources at cosmological redshifts).
In the rest of this section we do this using two simple lens
models. Although these may not be realistic as a global
description of (say) galaxy clusters, our work here only
requires a sufficient description of the innermost region
of the lens.

In Appendix C we give a few relevant formulae for
describing the properties of a lens model. These belong
to the standard formalism of strong lensing and can be
found in many introductory texts.

B. The Singular Isothermal Sphere Lens

The singular isothermal sphere (SIS) is one of the most
commonly used toy lens mass models, and is a good ap-
proximation for the central regions of early-type galaxies
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[39]. It has the spherically symmetric three-dimensional
density profile

ρ(r) =
σ2
v

2πGr2
, (27)

where the particles that constitute the lens have a
Maxwellian velocity distribution with one-dimensional
velocity dispersion σv. The SIS has some unusual proper-
ties: it has a constant 3D gravitational potential through-
out, a density singularity at r → 0 and infinite mass as
r →∞. These pathologies do not usually cause problems
when we consider particles passing the lens at interme-
diate distances; however, it is the presence of the central
singularity that allows SIS lenses to evade Burke’s odd
number theorem [37].

The constant potential of the SIS results in further
interesting features. In particular, one finds that all rays
reaching the lens undergo the same deflection towards
the lens centre [34]. That is, α(θ)scal is a constant:

αSIS
scal(θ̄) = θSIS

E = 4π
(σv
c

)2 DLS

DS
, (28)

where θSIS
E is the Einstein radius of the lens; we will drop

the label ‘SIS’ for the remainder of this subsection. Using
the formulae of Appendix C, it is fairly easy to derive the
projected mean surface density and projected (i.e. 2D)
gravitational potential of this model:

κ̄(θ) =
θE
θ

ψ(θ) = θE θ . (29)

If the source angular position (β) lies within the Einstein
radius, the SIS lens forms two images on opposite sides
of the lens. Using eq.(15), these are located at angular
radii

θ± = θE ± β , (30)

where for convenience we have labelled the two images
{θ+, θ−} instead of {θ1, θ2} (note that the ‘plus’ path in
eq.(30) corresponds to the upper path in Fig. 1, which
actually incurs the minus signs in Table 1). For the SIS
lens only, the following relations then hold:

2θE = θ+ + θ− 2β = θ+ − θ− . (31)

For a real strongly lensed system the image angular po-
sitions θ+ and θ− can be measured. In order to progress
with our theoretical calculation, we will introduce an
asymmetry parameter, A, that quantifies the offset of
the source position from θE , as follows:

θ− = A θE , where 0 ≤ A ≤ 1 (32)

⇒ θ+ = θE (2−A) , (33)

where A = 1 would imply a perfect Einstein ring system,
for which the two images merge.

We can now evaluate eq.(26) for the SIS model, using
the results summarized above. The terms ηundeflected and
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FIG. 3. Left: Differential massive time delay T (eq.26) for
a SIS lens. Solid curves are for a source galaxy at zS = 3.0,
whilst dashed curves are for zS = 1.5. Note that zL, the
redshift of the lens, cannot exceed zS . All curves are evaluated
for parameters m = 0.3 eV, A = 0.75, p0 = 10 MeV. Planck
2015 cosmological parameters are used. Right: The massless
part of the time delay, as would be measured in standard
strong lensing studies. The velocity dispersion σv acts as a
proxy for the mass of the lens. Only curves for zS = 3 are
shown.

ηmassless(θ̄) cancel out when we difference the time delays
of massive and massless particles, as expected. The only
term that contributes to the differential massive time de-
lay in the SIS case is then ηmassive. We obtain

T =
1

2

(
mc

p0

)2

a2
L

DLDS

cDLS
θE (θ+ − θ−) (34)

=

(
mc

p0

)2

a2
L

DLDS

cDLS
θ2
E (1−A) (35)

=

(
mc

p0

)2

a2
L

DLDLS

cDS

(
4π
σ2
v

c2

)2

(1−A) , (36)

where in fact even the geometric contribution to the dif-
ferential massive time delay has cancelled, and we are left
with only a pure Shapiro-like contribution. This vanish-
ing of the geometric-like term is a unique feature of the
SIS lens, due to its constant deflection angle; it does not
occur for other lens models.

The left panel of Fig. 3 shows the evaluation of T for
parameter values m = 0.3 eV, p0 = 10 MeV, A = 0.75
and standard ΛCDM cosmological parameters. We use
the value m = 0.3 eV as a conservative upper bound on
the neutrino mass, based on the constraint

∑
mν = 0.23
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eV from the Planck satellite [40]. An energy of 10 MeV is
consistent with the typical neutrino energies produced by
accretion onto hyper-massive neutron stars after a NS-NS
merger [17, 18] and in supernovae.

We note that a realistic situation would likely involve
some spread in particle emission energies, and hence a
dispersion in arrival times. In a similar vein, neutrino
oscillations will ensure that even neutrinos emitted as an
instantaneous burst are received with a spread of arrival
times. The size of this dispersion could well be compa-
rable or larger than the differential massive time delay
we are pursuing. However, our quantity T is defined as
a difference of multiple event timings, all of which will
be dispersed in the same manner. Therefore, as long as
the massive and massless fluxes are well-sampled – so
that the peak of a dispersed signal can be located – our
calculation remains unaffected [41]. We assume a futur-
istic scenario where such sampling is possible; of course,
this may not be achievable, see §IV. We do not consider
here any effects relating to the structure of the neutrino
hierarchy; see [22] for a discussion.

For comparison, the right-hand panel of Fig. 3 shows
the standard, massless part of the time delay. For the
parameter values under consideration here, this ranges
between tens of days and tens of years. Note that, in
order to maximise the small corrections of interest, we
are considering higher source and lens redshifts than most
optical strong lensing studies. This is the cause of some
of our unusually large massless time delay values.

We see that, irrespective of the source redshift, the
differential massive time delay peaks when the lens is
located at redshifts around 0.2–0.5. The shape of the
curves in the left-hand panel can be understood using
eq.(35) as follows: the prefactor of DLDS/DLS is shared
with the massless time delay (see eq.22), and imparts
the broad, flat shape seen in the right panel of Fig. 3.
However, this shape is modulated by the appearance of
θ2
E in eq.(35): for a fixed source redshift, the Einstein

radius – being an angular scale measured by the observer
– decreases as the lens is moved to higher redshifts. This
decline is responsible for the skew towards low zL in the
left panel of Fig. 3.

The differential massive time delay is also somewhat
sensitive to cosmological parameters, as shown in Fig. 4.
For a fixed source redshift, an increase in ΩΛ boosts
the conformal distances appearing in the numerator of
eq.(36). In the ideal scenario of having multiple well-
understood multi-messenger lensing systems with zL >
0.5, the differential massive time delay could provide a
new method to probe the equation of state of the dark
energy sector (if assumptions are made about the neu-
trino mass). This complements existing cosmological pa-
rameter constraints made using the massless time delay
of photons [42, 43]. There is also the possibility of test-
ing for novel effects such as the violation of C, P and CP
symmetries in gravity [44], which we will treat in a future
investigation.

The velocity dispersion, σv has a very strong influence
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FIG. 4. The dependence of the differential massive time delay
on the late-time expansion history, controlled via the energy
density ΩΛ. A flat cosmology is assumed in all cases. Solid
lines represent a system with zS = 3.0, whilst dashed lines
are for zS = 1.5. Particle properties are the same as in Fig. 3;
the lens velocity dispersion used is σv = 930 kms−1 and the
asymmetry parameter is A = 0.75.

on the magnitude of T – note that it appears to the fourth
power in eq.(36). In the SIS case σv acts as a proxy for
the mass of the lens, suggesting that lensing by galaxy
clusters (which generally have larger σv than individual
galaxies) may be a more promising, albeit still challeng-
ing, candidate for a measurable differential massive time
delay.

However, the selection of systems with a high veloc-
ity dispersion or mass must be balanced against the cor-
responding interval between the massless and massive
echoes (i.e. the interval tc−tb in eq.25). The lowest curve
in the righthand panel of Fig. 3 (σv = 350 kms−1) has a
window of a few months between echoes, whilst for the
uppermost curve (σv = 1000 kms−1) it is of order thirty
years(!) We note that similar precision timing experi-
ments spanning decades have already been carried out,
for example, monitoring the inspiral rate of the Hulse-
Taylor pulsar [45]. Unquestionably, though, this makes
for an inconveniently slow experiment.

One can speculate on more exotic scenarios: if neutral
particles heavier than neutrinos were emitted in conjunc-
tion with GWs or photons, then the effects discussed here
could be orders of magnitude larger. As an illustrative
example, consider a situation in which particles with the
mass of a nucleon are produced during an event with en-
ergy similar to that of a gamma-ray burst (GRB). Taking
m = 938 MeV and p0 ∼ 1 TeV, the prefactor (mc/p0)2

is boosted by a factor of 108 and differential massive
time delays of order tens of seconds become possible, see
Fig. 5. Note that charged particles would be deflected by
both Galactic and intergalactic magnetic fields, destroy-
ing the signals we are interested in here. See [46] for a
discussion of neutral cosmic ray candidates.
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FIG. 5. The differential massive time delay for particles of
varying mass and energy. The lowest curve corresponds to
our fiducial case of m = 0.3 eV, p0 = 10 MeV, representing
a typical neutrino from an NS-NS merger. The uppermost
curve corresponds to the case of a high-energy, neutral parti-
cle with the mass of a nucleon. Two intermediate cases are
also shown. Solid and dashed curves are the same as previous
figures. All curves use σv = 930 kms−1 and Planck cosmolog-
ical parameters.

Another hypothetical scenario would be to consider the
time delays experienced by WIMPs such as axions, the-
oretical particles hypothesized to solve the strong CP
problem of QCD, and appearing generically in string
theory [47]. Most attention focuses on ultra-light ax-
ions (10−33eV - 10−18eV) as dark matter candidates,
but heavier axions are possible (not as dark matter) and
could be produced in high-energy events such as super-
novae and NS mergers [48]. Axions with a mass of order
1 keV would experience a differential massive time delay
of order seconds; however, we will not pursue such exotic
scenarios further here.

We note that shortly after the present work appeared
online, a letter by Fan et al. [49] was released, applying
similar concepts to constraining the speed of propagation
of gravitational waves.

C. The Power-Law Lens

The first step in complexity beyond the SIS is the
power-law (PL) lens model. This has the spherically sym-
metric density profile

ρ(r) = ρ0

(r0

r

)n
, (37)

where the SIS lens is recovered for n = 2. Like the
SIS, the PL lens has an infinite central cusp that is not
problematic for our current work. This can be allevi-
ated, if desired, by the use of softened power-laws such
as ρ ∝ (r2 + s2)

n
2 , where s is a constant [50].

For some values of n, the PL lens can produce more
than two images, e.g. for n = 1.5, three images are
present when the source lies inside the tangential crit-
ical curve of the lens plane. To facilitate discussion with
the SIS case, in this paper we will use only two of these
images (specifically, the two at greatest radial distance
from the lens centre). We note, though, that a third
image – if resolvable – offers further differencing possi-
bilities that could be used either as a check of nuisance
parameters, or to provide multiple measurements of the
differential massive time delay.

Referring to the standard lensing definitions given in
Appendix C, the PL lens has the following potential,
scaled deflection and convergence profiles [51]:

αscal(θ) = θE

(
θ

θE

)2−n

ψ(θ) =
θ2
E

3− n

(
θ

θE

)3−n

(38)

κ(θ) =
3− n

2

(
θ

θE

)1−n

κ̄(θ) =

(
θ

θE

)1−n

. (39)

Eqs.(31) no longer hold, but we will define analogous
quantities (though note a factor of 2 difference in the
second definition):

2〈θ〉 = θ+ + θ− ∆θ = θ+ − θ− . (40)

In what follows, we will assume that the annulus enclosed
by the two images is narrow compared to their offset from
the lens centre, i.e. ∆θ � θ+, θ−. This is reasonable,
since highly asymmetric lensing systems usually have at
least one strongly demagnified image, and are therefore
less likely to be identified.

The Einstein radius is now given by [51]

θE =

(
θ+ + θ−

θ2−n
+ + θ2−n

−

) 1
n−1

. (41)

As we did for the SIS lens, we will parameterize one of
the image positions in terms of the Einstein radius as
θ− = AθE . The narrow-annulus approximation above
then allows us to expand in the quantity ∆θ/θE (which
will also be small for values of A close to 1. See §4.3 of
[51] for a similar expansion). A little algebra with eq.(41)
leads to the following relations:

2〈θ〉 = A2−nθE

[
2 + (2− n)

∆θ

AθE

]
(42)

∆θ =
2AθE [A1−n − 1]

1−A2−n(2− n)
(43)

T ≡ Tgeo + TShap (44)

=
1

2

m2c2

p2
0

∆θ θEA2−n

{
(n− 2)A1−n× (45)[∫ aL

1

1

H
da+

D2
L

D2
LS

∫ aS

aL

1

H
da

]
+ a2

L

DLDS

cDLS

}
.
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We see that the geometric contribution to T vanishes for
n = 2, in agreement with §III B.

Fig. 6 shows the influence of the power-law index, n, on
the geometric and Shapiro-like contributions to the dif-
ferential massive time delay. The Shapiro contribution
always remains positive, whilst the geometric contribu-
tion switches sign about its vanishing point at n = 2.
For n < 2 there can be a significant degree of cancella-
tion between the two contributions, whilst for n > 2.5
the geometric contribution is dominant.

Physically, the sign change in the geometric contribu-
tion arises because of the behaviour of α(θ) in eq.(38).
Returning to the simple two-image picture of Fig. 1, one
image will sit inside the Einstein radius and one exterior
to it. For n > 2, rays from the image inside the Ein-
stein radius will have experienced the greatest deflection
at the lens. This corresponds to the intuitive picture that
a ray passing close to the centre of the lens, where the
density is highest, will be more strongly deflected than
one passing ‘further out’. We then expect signals from
the θ− image (lower path in Fig. 1) to arrive after those
from the θ+ image.

In the case of n < 2 the mass of spherical shells in-
creases with radii. Because the majority of the lens mass
is now situated at large radii from its centre, the image
appearing at θ > θE experiences the greater deflection
(see the first of eqs.38). The n = 1 case corresponds to a
uniform critical sheet, whilst the central regions of galax-
ies are sometimes modelled using 1 . n . 2 [51]. Based
on purely geometrical considerations, one would now ex-
pect signals from the θ− image to arrive first; hence Tgeo

changes sign. However, the Shapiro-like contribution to
the differential massive time delay has the potential to
contradict this intuition, if it is large enough to outweigh
the geometrical term.

D. Magnifications

As well as deflecting emissions onto multiple paths,
gravitational lenses are able to focus (or sometimes de-
focus) a bundle of rays en route to the observer. For
extended electromagnetic sources, the focussing of rays
results in a decreased image area and hence, due to the
conservation of surface brightness, a boost in flux. Mag-
nification occurs similarly for point-like sources, though
the situation is slightly different (as clearly there can be
no change in image area): the brief explanation is that
rays which otherwise would not intersect the observer
now do so, due to their deflection at the lens.

The magnification is defined as the ratio of the lensed
to the unlensed flux. Although the source flux is clearly
a function of frequency, the spectral shape is preserved
by lensing and hence µ is independent of frequency. As
detailed in standard lensing texts, if the mapping of a
point from the image plane to the source plane is given

by the 2D vector function ~β(~θ), then the magnification
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FIG. 6. Contributions to the relative time delay for a power-
law lens, with density profile ρ ∝ r−n. Both panels have
particle parameters p0 = 10 MeV, m = 0.3 eV, and lens pa-
rameters zS = 3.0, A = 0.95, ρ0 = 2 × 1014 M�Mpc−3 and
r0 = 0.4 Mpc. Left: The geometric contribution, i.e. the
first two terms of eq.(46). This vanishes at n = 2, the SIS
case, and changes sign either side of this value. Right: The
Shapiro contribution, i.e. the third term of eq.(46). The dif-
ference between the n = 2 case here and in Fig. 3 is due to the
different values of A used. Note that in the case of n = 1.5 a
third image is also present, and here we are only considering
the differential massive time delay between two of them – see
text.

factor is:

µ =
1

|detA|
, where A =

∂~β

∂~θ
. (46)

For an axisymmetric source we have [34]:

detA = (1− κ̄) (1 + κ̄− 2κ) , (47)

where the dimensionless surface densities (equivalent to
convergence), κ and κ̄, are defined in Appendix C.

Since they follow the same null geodesics as photons,
these expressions should apply equally well to GWs. The
only two requirements are that the geometric optics ap-
proximation remains valid, and that we avoid the excep-
tional case of a perfect Einstein ring system, for which
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κ → 1, and hence the magnification above formally di-
verges. Takahashi [52] estimates that for a GW of charac-
teristic frequency f , the geometric optics approximation
holds for lens masses above 105 M� (f/Hz)−1; since we
are using galaxy clusters (∼ 1014−1015 M�) as our lenses
and NS binaries (f ∼ 10 − 1000 Hz) as sources, we are
always safely in this regime.

The only exclusion from our calculations, then, is the
finely tuned case of θ = θE exactly; this requires a full
wave optics treatment to remove the apparent divergence
[53]. We will not make this digression here, but one can
rest easy that the singularities seen in Fig. 7 below remain
finite in a fully correct treatment.

Taking eqs.(38), (39) and (47) together, we will cal-
culate the magnification of the images produced by a
power-law lens. We will continue to use the notation of
§III, that is, we write θ2 = AθE (note that the asymme-
try parameter A should not be confused with the Hessian
matrix A). Formally, for a given value of A, the location
of the other image can be determined (in terms of θE)
by solving eq.(41). In practice, this is awkward to do
analytically except in special cases such as n = 2, 3, etc.
Hence we shall make the same restrictions and approxi-
mations as used in §III C, and study systems for which
the images are separated by a narrow annulus such that
∆θ = θ+ − θ− � θ+, θ−. Under these conditions, we
quickly arrive at:

detA
∣∣
θ+
≈
[
1−A(1−n)

{
1 + (1− n)

∆θ

AθE

}]
× (48)[

1 + (n− 2)A(1−n)

{
1 + (1− n)

∆θ

AθE

}]
detA

∣∣
θ−
≈
[
1−A(1−n)

] [
1 + (n− 2)A(1−n)

]
, (49)

where ∆θ is given by eq.(43). Note that the above two
lines then depend solely on the alignment of the lensing
system and the density profile of the lens. As usual, we
can see that the SIS case, n = 2, simplifies the above
expressions considerably.

Figure 7 shows the total magnification of the power-
law lens, which sums over the individual magnification of
all images:

µTot =
∑
i

(∣∣∣detA
∣∣
θi

∣∣∣)−1

(50)

≡
(∣∣∣detA

∣∣
θ+

∣∣∣)−1

+
(∣∣∣detA

∣∣
θ−

∣∣∣)−1

. (51)

For our fiducial case of n = 2 and A = 0.95 the to-
tal magnification is just under 40. This is split roughly
evenly between the two images, though the image inside
the Einstein radius is slightly brighter: µ+ ' 17.2 and
µ− ' 19. In general we cannot simply extended our
formulae through A = 1, as we expect the number of
images to change at critical curves in the image plane
(such as θE = 1). However, the constraints of eqs.(31)
imply that in the SIS case the two images are equally
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FIG. 7. The total magnification (summed over both images)
for the power-law lens. A = 1 corresponds to a perfect Ein-
stein ring system; in the geometric optics limit, the magnifica-
tion of a point source then becomes infinite. This breakdown
signals the need for a wave optics treatment. Note that the
magnification factor depends solely on A and n.

displaced from θE , so we can think of A > 1 as simply
a choice to parameterize the outermost image instead of
the innermost one. The corresponding magnification plot
would then just be a reflection of Fig. 7 about the axis
A = 1. We note in passing that the magnification values
discussed here are comparable to the recent detection of
SN iPTF16geu, the first multiply-imaged Type Ia SN,
with a total magnification µ ∼ 56 [54].

For massive particles, the relevant observable is
the specific particle intensity, measured in units of
m−2s−1J−1sr−1 (though the sr−1 is irrelevant for an ef-
fective point source), or more conveniently the flux. This
too will be boosted by a magnification factor very similar
to that of the GWs and photons. Any small differences
in the magnification factor of non-null particles compared
to null ones are likely to be dominated by uncertainties
in the particle luminosity of the source; hence, to a first
approximation, we can assume massless and massive par-
ticles to experience the same magnification factor.

Dai et al. [55] have emphasized that for LIGO there
exists a degeneracy between a lensed GW from a high-
redshift, low-mass source and an unlensed GW from a
low-redshift, high-mass source. They argue that in the
lensed case the GW echo will be registered as a separate
GW event, and hence will not be of use in breaking the
degeneracy. We note that, in the more futuristic scenario
considered here, detection of the corresponding massive
echo could in principle help to confirm candidate lensed
GWs and hence break this degeneracy.
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IV. SYSTEMATICS & SUBTLETIES

Thus far, our calculations and discussion have been
based around idealized toy models. We stress that this
paper is intended to be a largely theoretical discussion
of an interesting phenomenon in fundamental physics,
and is not an observational call to arms. Nevertheless, in
this section we will discuss some confounding factors that
would require careful treatment in a futuristic attempt to
measure the differential massive time delay.

1. Source Redshifts

Our expression for the differential massive time delay
(eq.19) depends on the redshifts of the source and lens.
The lens redshift is expected to be measurable from an
electromagnetic counterpart (e.g. a massive galaxy clus-
ter at low redshift), but the same is not necessarily true of
the source redshift. In the case of an asymmetric super-
novae this is likely to be possible, though the electromag-
netic counterpart would only become visible some time
(hours to days) after the GW and neutrino signals, due
to the photon escape time of the supernovae remnant.

NS mergers are a candidate for the production of short
gamma-ray bursts (GRBs), and so too may have an elec-
tromagnetic counterpart in a few select cases. However,
GRBs are thought to be beamed in a dipolar fashion,
whilst GWs in GR are of course quadrupolar. This im-
plies that only a fraction ∼ 10−3 of the NS-NS merger
GW signals we receive should be accompanied by a GRB
[56].

In the absence of an electromagnetic counterpart, and
with current ground-based detectors, the mass and red-
shift of a compact merger are famously degenerate.
Specifically, the waveform constrains only the redshifted
mass combination Mz = M(1 + z). As we discussed in
§III D, this degeneracy is preserved even in the case of
gravitationally lensed GWs.

However, the authors of [56] have identified a method
to break this degeneracy that may be achievable by future
GW detectors, at least in the NS-NS merger case. In
brief, the method relies on studying two effects in the
GW waveform: i) corrections to the orbital phase due to
tidal effects during the inspiral stage, and ii) prominent
spectral features during the post-merger HMNS phase.
These two effects have different dependencies on the true
total mass of the binary and its redshift, leading to near-
orthogonal contours in the (M, z) parameter plane (see
Fig. 1 of [56]).

Assuming progress in determining the NS equation of
state, the authors of [56] report a mass determination
within 1% accuracy for all the cases they considered. It is
reasonable to speculate that when/if experiments become
sufficiently mature to measure the differential massive
time delay, either a) the redshift of NS-NS mergers will be
measurable from GWs alone, or b) optical counterparts
will be frequently available.

2. Lens Identification

Though it may not be necessary to have an electromag-
netic counterpart for the source, it is essential for the lens.
Inferring the lens mass distribution from sheared optical
images is now a mature field [57], and is crucial to step
beyond the simple analytic density prescriptions used in
the present work.

Furthermore, the optical lens image will help with sky
localization of the lensed GWs and neutrinos. For exam-
ple, the Large Synoptic Survey Telescope (LSST [58]) is
expected to detect cluster-scale strong lenses at roughly
0.04 − 0.1 sq. deg−2 [59], whilst a future GW detector
network of LIGO+VIRGO+KAGRA [60, 61] should be
able to localize GW sources to less than 10 sq. degrees
[62]. Hence the combined observations should be able
to pin down a cluster-scale lens to within a handful of
candidates. In the case of more than one candidate lens,
estimates of their redshifts and masses will be necessary
to further ascertain which belongs to the system of inter-
est. However, once the correct lens has been identified,
the source of the lensed GWs and neutrinos can then be
localized to broadly lie within the area occupied by the
optical images, at most tens of arcseconds. Triangulation
using a network of neutrino detectors is not expected to
provide significant enhancements over the localization ca-
pabilities of a single neutrino detector [63], making the
process of lens identification particularly crucial.

The influence of multiple lensing events would also
need to be modelled. In this paper we have considered a
situation in which the multi-messenger signals encounter
only a signal, large lens during their propagation. In
reality, they are likely to additionally encounter many
smaller weak lensing events by intervening matter struc-
tures [7, 30, 64], and some of these will vary over the
spatial region spanned by our effective images. This will
add some intrinsic scatter to the arrival time of the multi-
messenger echoes.

In addition, one should also model the Shapiro delay
induced by the gravitational potential well of the Galaxy
[65, 66]. Whether uncertainties in these effects eradicate
the differential massive time delay signal requires a de-
tailed study [4].

3. Detectors & Count Rates

Solar and atmospheric neutrino backgrounds are an ob-
vious systematic for detection of the lensed neutrino sig-
nals discussed here; for example, the dominant solar neu-
trino background at ∼ 10 MeV is a flux of roughly 5×106

cm−2s−1 from the decay of Boron-8. Fortunately, ex-
tracting neutrino candidates of interest from underneath
these backgrounds is a well-studied topic [67]. The solar
neutrino background can be minimized by concentrat-
ing on neutrino events with energies & 20 MeV, though
this comes at the expense of a lowered count rate from
our sources of interest. We note in passing that the Su-
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perKamiokande collaboration were able to identify and
dismiss four neutrino events that were candidates for as-
sociation with the gravitational wave events GW150914
and GW151226 [68].

Our method for cancelling out the unknown intrin-
sic source delay (§III A) should work well in the case
of well-sampled fluxes, e.g. if the emissions occurs as
short, intense bursts. If the emissions occur over a longer
timescale and is poorly sampled, there will be difficulties
in recovering the matching shapes of the original signal
and its echo(es). Not only does this make successful iden-
tification of the massive echo less likely, but it will also
introduce an additional source of error in the measure-
ments of times tb and td, and hence into T .

Undoubtedly low neutrino flux counts are a major ob-
stacle for the extragalactic sources we have talked about
in this paper. It may be that the differential massive
time delay will only ever be measurable for Galactic
sources, for which up to ∼ 105 neutrino events are ex-
pected with future kiloton-scale detectors. Local-group
sources should also be within reach: a future neutrino ex-
periment of several hundred kilotons is expected to detect
a few dozen neutrinos from an event in the Andromeda
galaxy [69]. For these sources there is no possibility of
constraining cosmological parameters, but arguably any
bounds on the neutrino mass should be cleaner without
such degeneracies. Beyond the Local Group begins a bat-
tle between the flux scaling as 1/distance2 and the num-
ber of sources increasing as approximately distance3. We
will not attempt a prediction of the expected outcome in
the present work.

Note that the typical neutrino energies considered in
this paper (∼ 10 MeV) are below the detection threshold
of some current major detectors such as IceCube and
ANTARES [70, 71], though SuperKamiokande, Kam-
LAND and the Sudbury Neutrino Observatory all have
thresholds of order a few MeV [72–74]. Whilst GRBs
associated to compact object mergers may produce high-
energy neutrinos (∼ TeV – PeV) detectable by IceCube
and ANTARES, the differential massive time delay asso-
ciated to these will be miniscule. Still, detection of such
high-energy neutrinos may help with on-sky source local-
ization for the lower-energy neutrino counterparts [75].

Given the magnitude of the differential massive time
delay (∼ 0.1 µs), it will be necessary to know the dis-
tance between all detectors involved in the measurement
to within a metre or so (simply considering the mag-
nitude of cT ). Based on current and improving GPS
sensitivities, this should not prove problematic.

V. DISCUSSION

We have begun here an exploration of what might be
learned from extreme but rare astrophysical events by
future observatories detecting massless carriers, such as
photons or gravitational waves, as well as massive ones,
such as neutrinos or other neutral particles. In particular,

we have considered the information provided by strong
gravitational lensing of such signals by large massive bod-
ies close to the line of sight to such events.

We can draw an analogy between the present status of
GW astronomy and the early days of CMB detection. In
the year 2000, shortly after the first CMB acoustic peak
was detected by BOOMERANG and MAXIMA [76, 77],
it would have seemed absurdly optimistic to consider
measuring the eigth acoustic peak with the precision now
achieved by the Planck satellite. Yet, thanks to continual
improvements in detector technology and data analysis
techniques, intervening experiments (WMAP [78]), and
increasingly sophisticated understanding of systematics,
such exquisite measurements are now possible. Similarly,
though measuring the effects discussed in this paper is
unfeasible with present understanding and experiments,
we envision an equally rapid progression for the forth-
coming decade(s) of multi-messenger astronomy. One of
our goals here is to stimulate forward-thinking about the
novel science that might be possible in future.

To this end we have derived an expression for the dif-
ferential arrival time of massive and massless particles
with a common origin. The resulting expression is sensi-
tive to particle properties, cosmological parameters, and
the masses and separations of elements in the lensing sys-
tem. Though we have only evaluated the magnitude of
this correction for simplified lens models, it could be ap-
plied to real lensing systems whose mass distribution is
relatively well-constrained. In the examples studied here,
the differential time delay is found to have a magnitude
of order 0.1µs. We note a powerfully general paper by
Fleury [79] offers explanation as to why time delay ef-
fects remain small, even when the angular deflection and
magnification of messengers is substantial.

Neutrino detectors are already capable of measuring
intervals of order 0.1µs, having at present a time resolu-
tion down to 100 ns. GW detectors lag behind somewhat
– the timing resolution of the LIGO detectors is currently
at the order of 100µs [80, 81]. However, with the broader
frequency ranges proposed for next-generation detectors
like the Einstein telescope, and improvements in detec-
tor technology, it seems reasonable to speculate that the
necessary precision might be available to future GW ex-
periments.

In addition, we note that a key feature of the differ-
ential massive time delay is a near-coincident feature in
multiple media and multiple detectors. Although clearly
this requires a global coordination of experiments, the
simultaneous nature of events should assist with the se-
lection and rejection of candidate detections.

For ease of discussion, we have generally referred to ex-
tragalactic merging neutron stars as a candidate source.
However, we remind the reader that – under the right
conditions – NS-BH mergers, BH-BH mergers, and asym-
metric supernovae are all potential alternative candi-
dates. Likewise, we have generally focussed on GWs as
the relevant massless messenger; photons can also take
this role (and would arguably be easier to work with), if
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one is certain that prompt emission is being detected.

We have not attempted here a forecast of the con-
straints attainable on neutrino masses or cosmological
parameters from measurements of the differential massive
time delay. To do so would require a detailed description
of the experiments involved; we suspect that instruments
with the required sensitivity are not even at the blueprint
stage yet. Although designs for the LISA observatory [82]
are progressing rapidly, the most promising sources listed
above fall outside of its frequency range.

Even if the differential massive time delay is not within
foreseeable experimental reach for any source types, or
in fact will always be lost to source uncertainties and
systematics, the lensing of massive particles seems an in-
herently interesting and under-explored counterpart to
the extensive research in optical lensing (and the much
less-studied field of GW lensing).

Several logical extensions of the present paper would
be:

• A detailed study of the joint redshift distributions
of candidate sources and massive galaxy clusters,
resulting in an estimate for the number of simul-
taneous GW-neutrino lensing systems in principle
detectable at Earth;

• Further investigation into the projected sensitiv-
ities of future GW and neutrino detectors, their
timing resolutions and sky localization errors, par-
ticularly when operating as a network;

• A more sophisticated treatment of the massive par-
ticle flux expected from the sources listed in the in-
troduction, accounting for the energy spectrum of
different species and the effects of poor sampling of
the burst at detection;

• The possibility that stacking signals from separate
events could alleviate the issue of low count rates
from extragalactic sources. For example, one might
imagine stacking signals from all systems that have
a source and lens in the same redshift bin. This
might allow a first measurement of the extragalac-
tic differential massive time delay, even if the stack-
ing technique means that constraining fundamental
parameters is not possible;

• A consideration of the further differencing opportu-
nities presented by lensing systems with more than
two images (§III C);

• Investigation into the potential of the differential
massive time delay and related phenomena to con-
strain the violation of C,P and CP symmetries in
gravity.

We hope to take up some of these questions in future
work.
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Appendix A: Unlensed Massive Time Delay

Here we provide a basic calculation of the difference be-
tween the propagation time of massive and massless par-
ticles in the absence of any lensing effects. See [7] for a
calculation that incorporates the effects of cosmological
perturbations. We begin from the familiar flat FRW line
element:

ds2 = −dt2 + a(t)2
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
. (A1)

For pure radial motion, the timelike component of the
geodesic equation is

d2t

dλ2
+ aȧ

(
dr

dλ

)2

= 0 , (A2)

where λ is an affine parameter. The normalization of the
four-velocity for a massive particle gives us

uµuµ = −
(

dt

dλ

)2

+ a2

(
dr

dλ

)2

= −1 , (A3)

and combining the two equations above to eliminate
dr/dλ, we obtain

d2t

dλ2
+
ȧ

a

[(
dt

dλ

)2

− 1

]
= 0 . (A4)

Integrating this leads to (where C is a constant):(
dt

dλ

)2

− 1 =
C

a2
. (A5)

We multiply this by m and use the definition of four-
momentum Pµ = muµ = m dxµ/dλ, P 0 = E to yield

E2 −m2 ≡ gijP iP j =
Cm2

a2
, (A6)

from which we see that the magnitude of the spatial
three-momentum redshifts as 1/a:

p =
√
gijP iP j =

√
C
m

a
. (A7)
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FIG. 8. The difference in arrival time between an unlensed
massless particle (photon or gravitational wave) and unlensed
massive particle with m = 0.3 eV, E0 = 10 MeV, as a func-
tion of source redshift. Even for high-redshift sources, the
difference in arrival times remains less than a second.

We will need this result shortly. Now, to find the time
taken for a neutrino to travel a cosmological distance,
eq.(A3) can be rewritten as:

1−
(

dλ

dt

)2

= 1− m2

E2
= a2

(
dr

dt

)2

(A8)

⇒ dr

dt
=

√
E2 −m2

aE
. (A9)

Using our result from eq.(A7), we can write p = a0p0/a
where a0 and p0 are defined at some fixed time, so that

dr

dt
=

p

a
√
m2 + p2

=
a0p0

a2

√
m2 +

a20
a2 p

2
0

. (A10)

For convenience we define y0 = a0p0, in terms of which
the above expression then rearranges as:

dr =

[
a

√
1 +

a2m2

y2
0

]−1

dt . (A11)

Integrating this expression would give us the conformal
distance travelled by a massive particle with initial spa-
tial momentum p0 in a time interval t.

Now we relate this to the analogous, simpler expression
for a massless particle; for linguistic convenience we will
refer to a photon, but our results apply equally to GWs.
We know that the total conformal distances travelled by
the photon and the neutrino are the same. In principle,
the physical distances travelled by the photon and the

massive particle are different, since the universe continues
to expand during the small time interval between their
arrival at Earth. Equating the conformal distances, then:

r =

∫ tν

t0

1√
1 + a2m2

y20

dt

a
≡
∫ tγ

t0

dt

a
, (A12)

where t0 is the (idealized) simultaneous time of emission,
tγ is the time the photon arrives at Earth, tν is the time
of arrival of the massive particle, and all times correspond
to those measured by a comoving observer.

For all the examples discussed in this paper, the mass
of the particle is much smaller than its initial energy.
This correspondingly implies m2 � y2

0 , such that:[
1 +

(
am

y0

)2
]− 1

2

≈ 1− 1

2

(
a

a0

m

p0

)2

+O
[
m4

p4
0

]
.

(A13)

Substituting this into eq.(A12) yields

r =

∫ tν

t0

[
1− 1

2

(
a

a0

m

p0

)2
]
dt

a
≡
∫ tγ

t0

dt

a
. (A14)

This integral can of course be evaluated exactly. How-
ever, for analytic purposes it is helpful to use the fact
that tγ ' tν − δt. Then the RHS can be written:∫ tν−δt

t0

dt

a
=

∫ tν

t0

dt

a
−
∫ tν

tν−δt

dt

a
(A15)

≈
∫ tν

t0

dt

a
− 1

a(tν)
δt , (A16)

where in the second line we have used the fact that the
time interval δt is very small compared to the cosmologi-
cal expansion time. Using this in eq.(A14) and cancelling
terms on either side:∫ tν

t0

[
−1

2

(
a

a0

m

p0

)2
]
dt

a
= − 1

a(tν)
δt (A17)

Normalizing the scale factor such that a(tν) = 1 today
and converting the integral to be with respect to redshift,
we obtain

δt =
1

2

(
m

p0

)2 ∫ z0

0

(
1 + z0

1 + z

)2
dz

H(z)
, (A18)

where z0 is the source redshift. To the accuracy that
we are working here, we can take p0 ≈ E0 in the above
expression, where E0 is the initial energy of the particle.

The resulting difference in arrival time between a mass-
less particle and one with m = 0.3 eV (the maximal neu-
trino mass) and E0 = 10 MeV is shown in Fig. 8. As can
be seen, even for high-redshift sources the difference in
arrival times remains of order a second.
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Appendix B: Lensing of Massive Particles by a Point
Mass

In this appendix we derive the modification to the well-
known formula for the lensing of a massless particle by
a point mass M , i.e. α = 4GM

c2 , for a massive parti-
cle. The classic derivation for the massless case can be
found in many introductory GR texts, e.g. [83]. Thanks
to the two-dimensional equivalent of Birkhoff’s theorem,
the result extends to any axially symmetric mass distri-
bution interior to the trajectory of the lensed particle.
Extended lenses that encompass the particle trajectory
(e.g. a galaxy cluster) require a more sophisticated treat-
ment, though the essential conclusions of this section re-
main the same.

As in §II, we can can account for both massless and
massive particle cases by writing the normalization of the
four-velocity as:

uµuµ = −ε (B1)

and specifying ε = 1 for a massive particle, ε = 0 for
a photon, say. Expanding the above expression in a
Schwarzchild metric and setting G = c = 1:

−
(

1− 2M

r

)(
dt

dλ

)2

+

(
1− 2M

r

)−1(
dr

dλ

)2

(B2)

+ r2

(
dφ

dλ

)2

= −ε ,

where λ is an affine parameter and we have chosen the
motion of our lensed particle to be in the θ = π/2 plane.
We use the two Killing vectors of the Schwarzschild met-

ric, denoted here as ~ξ and ~χ to find the usual energy and

angular momentum conserved quantities:

~ξ = {1, 0, 0, 0} ~χ = {0, 0, 0, 1} (B3)

e = −~ξ · ~u =

(
1− 2M

r

)
dt

dλ
(B4)

` = ~χ · ~u = r2 dφ

dλ
. (B5)

For a massive particle, ~u is the four-velocity. For a pho-
ton, one can choose the affine parameter such that ~u
coincides with the four-momentum of the photon. Sub-
stituting these conserved quantities into eq.(B2) and re-
arranging, we obtain:(

dr

dλ

)2

= e2 −
(

1− 2M

r

)(
`2

r2
+ ε

)
. (B6)

Let us replace e by something directly measurable (in
principle). When the particle is at its closest approach
to the lensing object we have dr/dλ = 0, leading to:

e2 =

(
1− 2M

Rmin

)(
`2

R2
min

+ ε

)
, (B7)
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FIG. 9. Diagram indicating the quantities needed for the
calculation of Appendix B.

where Rmin is the distance of closest approach. Note
that when ε = 0 we recover the fact that only the ratio
e/` is measurable for a photon. Substituting the above
expression back into eq.(B6), and dividing the result by
eq.(B5):

1

r4

(
dr

dφ

)2

=
1

`2

[(
1− 2M

Rmin

)(
`2

R2
+ ε

)
−
(

1− 2M

r

)(
`2

r2
+ ε

)]
. (B8)
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Changing variables to u = Rmin/r, inverting and rearranging gives

dφ

du
=

[(
1− 2M

Rmin

)(
1 + ε

R2
min

`2

)
−
(

1− 2Mu

Rmin

)(
u2 + ε

R2
min

`2

)]− 1
2

(B9)

=

[
1− u2 − 2M

R

(
1 + ε

R2
min

`2
(1− u)− u3

)]− 1
2

(B10)

= (1− u2)−
1
2

[
1− 2M

Rmin
(1− u2)−1

(
1 + ε

R2
min

`2
(1− u)− u3

)]− 1
2

. (B11)

Another change of variables, u = cosα, then yields

dφ = −dα
[
1− 2M

Rmin

1

(1− cos2 α)

(
1 + ε

R2
min

`2
(1− cosα)− cos3 α

)]− 1
2

. (B12)

Using the identity

1− cos3 α

1− cos2 α
≡ (1− cosα)(1 + cosα+ cos2 α)

(1− cosα)(1 + cosα)
(B13)

≡ 1

1 + cosα
+ cosα (B14)

to simplify the integrand, eq.(B12) then becomes:

dφ = −dα

[
1− 2M

Rmin

(
cosα+

(1 + ε
R2

min

`2 )

1 + cosα

)]− 1
2

.

(B15)

For all the situations discussed in this paper, the lensed
particles remain far from the Schwarzchild radius of the
lens. Therefore we can perform a Taylor expansion in the
small parameter 2M/Rmin ≡ rS/Rmin � 1 (where rS is
the Schwarzchild radius), obtaining

dφ ≈ −dα

[
1 +

M

Rmin

(
cosα+

(1 + ε
R2

min

`2 )

1 + cosα

)]

+O
(
M2

R2
min

)
. (B16)

In fact, in the case of the massive particle, an additional
assumption is needed for the Taylor expansion performed
above to remain valid: that the ratio Rmin/` does not
grow very large. In flat space ` has the interpretation
of the angular momentum per unit rest mass. Hence can
roughly estimate ` ∼ dv, where d is the impact parameter
between the particle and the lens and v is the initial 3-
velocity of the particle. Temporarily re-instating factors
of c for dimensional clarity, we require:

R2
minc

2

`2
∼ R2

min

d2

c2

v2
. 1 . (B17)

For small deflection events, the impact parameter b and
distance of closest approach Rmin are comparable in mag-
nitude. So our condition for the Taylor expansion to be

valid then reduces to c2/v2 . 1. Since c/v < 1 is forbid-
den, we will have to enforce the condition v ∼ c. Note
this somewhat unusual situation – the results that follow
here are only valid for particles that are at least moder-
ately relativistic.

Integrating from α = π/2 to α = 0 corresponds to
moving along the particle trajectory from infinity to its
closest approach to the central mass. By the symmetry of
the particle’s approach and retreat, the deflection angle
α will then be 2φ∗ − π (see Fig. 9)

φ∗ ≈
∫ π

2

0

dα

[
1 +

M

R

(
cosα+

(1 + εR
2

`2 )

1 + cosα

)]

+O
(
M2

R2

)
(B18)

=

[
α+

M

R
sinα+

M

R

(
1 + ε

R2

`2

)
tan

(α
2

)]π2
0

(B19)

=
π

2
+
M

R

(
2 + ε

R2

`2

)
, (B20)

⇒ α = 4
M

R

(
1 +

ε

2

R2

`2

)
+O

(
M2

R2

)
. (B21)

Recall the definition of ` (eq.B5) is in terms of the affine
parameter λ, which is equivalent to the proper time τ for
a massive particle. Since ` is a constant, we can choose
to evaluate it anywhere along the particle trajectory. For
convenience, we choose to do this at a location that is
a) sufficiently far from the lens that we can neglect the
potential well Φ at leading order, but b) close enough not
to be separated from the lens by a cosmological distance
(i.e. ∼ Gpc). We approximate this intermediate regime
as Minkowski space, and use it to link the particle motion
in the large-scale FRW space to its local motion near the
lens.

In this Minkowski patch, the particle proper time and
the time measured by an observer at rest with respect
to the lens are related by dτ = dt/γ(v), where v is the
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particle velocity (constant in the patch). Then we have
(with reference to Fig. 9):

` = r2 dφ

dτ
= γr2 dφ

dt
= γrvφ = γrv sinφ (B22)

= γrv

(
d

r

)
= γv d , (B23)

where vφ is the velocity component in the azimuthal di-
rection. Now using this in eq.(B21):

α =
4GM

Rminc2

[
1 +

ε

2

R2
min

d2

(
c2

v2
− 1

)]
, (B24)

where we have reinstated factors of G and c. One can
show fairly easily (we do not do so here for brevity) that
the difference between Rmin and d is a number of order
rS/Rmin, and hence, to the order at which we are work-
ing, we can re-write the above as:

α =
4GM

dc2

[
1 +

1

2

(
c2

v2
− 1

)]
+O

(
r2
S

R2
min

)
. (B25)

Note that we recover the standard result for a massless
particle in the limit v → c (so we do not need the ε
parameter any more). We remind the reader that we
specialized to relativistic particles in eq.(B17), so this
expression is not valid in the limit v → 0.

The analogous derivation for an extended lensing mass
(which may not be entirely interior to the particle trajec-
tory) follows by straightforwards integration over a distri-
bution of point masses. The resulting deflection (scaled)
angle is:

~α(~θ) =
1

π

∫
d2θ′ κ(~θ′)

[
1 +

1

2

(
c2

v2
− 1

)]( ~θ − ~θ′

|~θ − ~θ′|2

)
,

(B26)

where ~θ is the angular position in the lens plane, the

integral is taken over the entire lens, and κ(~θ) is the di-
mensionless surface mass density, to be defined in the
next appendix.

From eqs.(B25) and (B26), we can see that the stan-
dard formulae for deflection of photons incur a small cor-
rection sensitive to the velocity (equivalently, the mass
and momentum) of a massive particle. One therefore
might expect null and non-null effective images of the
same source to be slightly misaligned in the sky. How-
ever, as explained in §II, the effect of this misalignment
on the differential massive time delay can be neglected
to the accuracy used throughout this paper.

Appendix C: Lensing by a Mass Distribution

Some readers of this paper may be unfamiliar with the
formalism of strong gravitational lensing; here we provide

a brief summary of some of the standard definitions. Fur-
ther details and excellent pedagogical introductions may
be found in [34, 51, 53].

The expressions here make use of the thin-lens approx-
imation. To simplify their formulation, we will assume
axial symmetry about the optical axis (the line connect-
ing the observer to the centre of the lens). More general,
vectorial versions can be found in the references above.

As discussed in §II A and derived in Appendix B, in
general the deflection angle experienced by a massive par-
ticle is slightly different to that experienced by a massless
particle. However, this correction only becomes relevant
at order (mc/p0)4, and so is not needed for the present
work. Hence all expressions in this appendix relate to
lensing of massless particles.

We start with a lens model with three-dimensional den-
sity profile ρ(~r). Under the thin-lens approximation we
project this onto a surface at z = zL[84]. The projected
surface mass density is:

Σ(~ξ) =

∫
dr3 ρ(~r) , (C1)

where ~r =
{
~ξ, r3

}
is a 3D position vector centred on the

lens that can be decomposed into a component r3 along
the optical axis, and a 2D position vector in the lensing

plane, ~ξ (see Fig. 1).
One can easily show that the vectorial deflection re-

sulting from a 2D distribution of mass elements is [34]:

~α(~ξ) =
4G

c2

~ξ

ξ2

[
2π

∫ ξ

0

dξ′Σ(ξ′) ξ′

]
, (C2)

where, for example, ξ is the magnitude of ~ξ. The square
bracket gives the mass contained within a radius ξ in the
lensing plane. Eq.(C2) is loosely comparable to the stan-
dard formula for deflection by a point mass with impact

parameter b; α = 4GM/bc2. The prefactor of ~ξ/ξ2 is
analogous to the factor 1/b, but also indicates that the
deflection is towards the centre of the lens.

The quantity appearing in the lensing equation (15)
is in fact the ‘scaled deflection angle’, (DLS/DS)α. To
obtain this, we take the magnitude of the equation above
and replace the 2D position vectors by angular positions
using ξ = DLθ:

αscal(θ) =
DLS

DS
α(θ) (C3)

=
DLSDL

DS

4πG

c2
1

θ

[
2

∫ θ

0

dθ′Σ(θ′) θ′

]
(C4)

=
1

θ

[
2

∫ θ

0

dθ′ κ(θ′) θ′

]
, (C5)

where the convergence κ(θ) and critical density Σcr are
defined as

κ(θ) =
Σ(θ)

Σcr
Σcr =

c2

4πG

DS

DLDLS
. (C6)
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One final simplification is helpful. The second square
bracket in eq.(C5) is, up to a factor of π, the dimen-
sionless mass of the lens contained within angular radius
θ (the dimensions having been removed by Σcr in the
denominator of κ). Defining the dimensionless mean sur-
face mass density by

κ̄(θ) =
M(< θ)

πθ2
, (C7)

eq.(C5) then becomes

αscal(θ) = κ̄(θ) θ . (C8)

Finally, recall that the scalar form of the lens equation is

αscal(θ) = θ ± β . (C9)

In this way the factors of θ−β (and similar) that appear
in our calculations can be calculated from ρ(r). Note
also that the projected 2D potential ψ(θ) can be related

to the density profile via ~αscal(θ) = ∇̃θψ(θ), where ∇̃θ is
a derivative in the lensing plane.
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