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Helical intergalactic magnetic fields at the ∼ 10−14 G level on ∼ 10 Mpc length scales are indicated
by current gamma ray observations. The existence of magnetic fields in cosmic voids and their
non-trivial helicity suggest that they must have originated in the early universe and thus have
implications for the fundamental interactions. We derive the spectrum of the cosmological magnetic
field as implied by observations and MHD evolution, yielding order nano Gauss fields on kiloparsec
scales and a “large helicity puzzle” that needs to be resolved by the fundamental interactions. The
importance of CP violation and a possible crucial role for chiral effects or axions in the early universe
are pointed out.

I. INTRODUCTION

Several independent investigations of gamma rays from
blazars indicate the presence of intergalactic magnetic
fields [1–7]. Emission of TeV energy gamma rays from
blazars and the subsequent electromagnetic cascade in
the intergalactic medium is expected to distort the in-
trinsic blazar spectrum by depleting photons from the
TeV range and adding photons in the GeV range. The
lack of expected additional photons in the GeV range is
explained by invoking an intergalactic magnetic field of
strength& 10−16 GeV. As an intergalactic magnetic field
disperses the additional GeV photons, the intergalactic
magnetic field hypothesis also predicts a halo of GeV pho-
tons around the blazar. An analysis of stacked blazars
provides evidence for such a halo and adds support to
the derived lower bound on intergalactic magnetic fields
[6].

An alternative approach developed in Refs. [8, 9] uti-
lizes the helical nature of intergalactic magnetic fields.
The reasoning is that intergalactic magnetic fields are
measured in cosmic voids, ∼ 100 Mpc away from astro-
physical sources, and thus were most likely generated in
the early universe. (For a review of magnetic fields and
some possible astrophysical generation mechanisms see
Ref. [10].) Unless the magnetic fields are coherent on
very long length scales or are helical at the time of pro-
duction, they would dissipate and not survive until the
present epoch. If the magnetic field generation mecha-
nism was causal, the magnetic fields are not coherent on
large length scales and helicity is essential for survival.
Furthermore, the observation of helicity can help distin-
guish between cosmological and astrophysical magnetic
fields as a globally preferred sign of the helicity would be
indicative of a fundamental production mechanism.

In Refs. [8, 9] it was shown that the helicity of the in-
tergalactic magnetic field leaves a parity odd imprint on
the distribution of cascade gamma rays. Thus helicity
can be deduced by calculating parity odd correlators of
observed gamma ray arrival directions. (Simulations of
the process can be found in [11, 12].) Using this tech-
nique, it becomes possible to measure – not jut bound –
the power spectra of intergalactic magnetic fields. Apply-

ing this technique on current Fermi-LAT data, Refs. [4, 5]
estimate the intergalactic magnetic field to be ∼ 10−14 G
as measured on a length scale ∼ 10 Mpc . The statisti-
cal significance of these measurements is at ∼ 3.5σ level
in analysis with current data [13]. Further observations,
especially using a variety of observational tools, will be
able to confirm or refute these findings. For this paper
we proceed on the assumption that the accumulating ob-
servational evidence is correct.
The existence of helical intergalactic magnetic fields

points to an early universe origin and therefore is of in-
terest to particle cosmology. As observational dataset
gets larger, it will become possible to measure the mag-
netic field correlation functions over a range of scales. If
the spectrum is flat or red, i.e. does not fall off at large
length scales, the magnetic field would likely be a product
of the big bang or inflation. In this case, the primordial
magnetic field may shed light on cosmological initial con-
ditions and it may also have important consequences for
the origin of the matter-antimatter asymmetry [14, 15]
and other theoretical ideas [16]. If the spectrum is mea-
sured to be blue, we expect the magnetic field to have
been produced in high energy particle processes, and the
helicity of the magnetic field points to an important role
for CP violating interactions in the early universe.
For the rest of our discussion, we will assume that the

intergalactic magnetic field is stochastic and isotropic,
and is generated by a causal mechanism. (If the genera-
tion mechanism were acausal, the field may not even be
stochastic within our cosmic horizon.) Then the spatial
correlation function of the magnetic field is given by [17]

〈Bi(x)Bj(x+r)〉 = MN(r)Pij+ML(r)r̂i r̂j+ǫijk r̂kMH(r)
(1)

where Pij = δij − r̂ir̂j . MN (r) and ML(r) are the “nor-
mal” and “longitudinal” power spectra and are related by
a differential equation [17]; MH(r) is the helical power
spectrum and is what is measured by the parity odd
gamma ray correlators.
We will next determine the full spectrum of the mag-

netic field in Sec. II, discuss implications and the “large
helicity puzzle” in Sec. III, and provide some potential
resolutions of the puzzle in Sec. IV. We conclude in
Sec. V.
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II. THE FULL SPECTRUM

Our first task is to relate the spatial helical corre-
lation function to its counterpart in Fourier space be-
cause the magneto-hydrodynamic (MHD) evolution of
the magnetic field is carried out in Fourier space while
the field correlations are measured in physical space.
The Fourier space correlation functions for a stochastic,
isotropic magnetic field are written as

〈bi(k)b∗j (k′)〉 =

[

EM (k)

4πk2
pij + iǫijlkl

HM (k)

8πk2

]

×(2π)6δ(3)(k − k′) (2)

where pij = δij − k̂ik̂j and

b(k) =

∫

d3xB(x)eik·x, B(x) =

∫

d3k

(2π)3
b(k)e−ik·x

(3)
We now use Eq. (3) in (1) to obtain

MH(r) =
1

2

∫ ∞

0

dk kHM (k)
d

dρ

(

sin ρ

ρ

)

(4)

where ρ = kr.
Studies of the MHD equations show that a cosmolog-

ical magnetic field with helicity evolves so that at late
times [18–22]

EM (k) =
k

2
|HM (k)| =

{

E0(k/kd)
4, 0 ≤ k ≤ kd

0, kd < k
(5)

where the first equality is the relation for maximal he-
licity, the functional dependence k4 defines the “Batch-
elor spectrum”, and kd is a dissipation scale that will
be discussed below. For k > kd, the spectrum falls off
rapidly and so we have set it to zero. Strictly, the Batch-
elor spectrum only applies for k < kI where kI < kd
is the “inertial scale” where the spectrum peaks. For
kI < k < kd, the spectrum falls off as a power law and
there is a sharper fall off for k > kd [67] [23]. For simplic-
ity, we have taken kI ≈ kd, which may also be justified
if the magnetic field is generated on very small scales.
We shall also assume HM (k) ≥ 0 to be concrete. Below
we will estimate the power spectrum amplitude, E0 in
Eq. (5).
Gamma ray observations have been used to measure

MH(r). So we use Eq. (5) in (4) to obtain MH(r)

MH(r) =
E0kd
ρ5d

[(ρ3d−8ρd) sin ρd+4(ρ2d−2) cosρd+8] (6)

where ρd ≡ kdr. One can check: MH(r) ∝ r as r → 0
and MH(r) → sin(kdr)/r

2 as r → ∞, so MH(r) is well-
behaved for all r.
Any observation will measure a “smeared”MH(r). For

example, gamma ray observations in Refs. [4, 5] measure
MH on a certain distance scale r that is determined from

the energies of observed gamma rays. However, for sta-
tistical purposes, the observed gamma rays are binned
according to their energies – in 10 GeV wide bins in
Refs. [4, 5]. This means that observations yield MH

that is smeared over a range, ∆r, of r. With present
day observations, r is typically on the order of Mpc, and
ld = 2π/kd is typically kpc, so that ρd = kdr ≫ 1. The
precise smearing function depends on the binning proce-
dure and experimental details (e.g. energy dependence of
time exposure of the experiment), however, with current
parameters ld ≪ ∆r . r.
Let us write ∆ρd = kd∆r. Then, from Eq. (6), the

smearing procedure will effectively replace the oscillat-
ing trigonometric functions by (weighted) averages. For
example,

sin ρd
ρ2d

→ 1

∆ρd

∫ ρd+∆ρd

ρd

dρ
sin ρ

ρ2
≈ O(1)

ρ2d
. (7)

Since ρd ≫ 1, the ρ3d term in the square bracket in Eq. (6)
will dominate and we can write

MH(r) ≈ E0kd
ρ2d

(8)

Therefore a measurement of MH(r) at r = r∗, denoted
MH∗, will give

E0 = kdr
2
∗MH∗ (9)

The magnetic field energy and helicity spectra in Eq. (5)
become,

EM (k) =
k

2
|HM (k)| = kdr

2
∗|MH∗|

(

k

kd

)4

(10)

From Eq. (50) of Ref. [8] [68] we have the estimate

|MH∗| ∼ (10−14 G)2 (11)

and r∗ ∼ 10 Mpc. Subsequent (and ongoing) analyses [5]
show rough agreement with these estimates and future
observations should be able to pin down the values more
accurately. Other analyses [1–3, 6] do not provide mea-
surements of the field strength but they do provide lower
bounds if they assume a coherence scale and a spectrum.
These lower bounds on the field strength are on the order
of 10−16 G (see Fig. 12 of Ref. [10]).
The energy density in the magnetic field is

E =
1

2
〈B2〉 =

∫

dk EM (k) ∼ (10−14 G)2
k2dr

2
∗

5
(12)

Similarly the helicity density is given by

H = lim
V→∞

〈

1

V

∫

V

d3xA ·B
〉

=

∫

dk HM (k) ∼ (10−14 G)2
kdr

2
∗

2
(13)
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where B = curl(A).
Next we discuss the dissipation length scale ld. In

Ref. [24], the authors considered a homogeneous mag-
netic field and calculated the damping rate of small per-
turbations on this background. The dominant dissipation
of the small perturbations is due to the damping of fast
magnetosonic modes. Hence this mechanism sets the dis-
sipation scale that then depends on the strength of the
background uniform field.
The damping of a stochastic, helical magnetic field has

been discussed in Ref. [25, 26]. The evolution of the dissi-
pation scale, which roughly coincides with the coherence
scale for the Batchelor spectrum, depends on properties
of the magnetic field at the time it was generated. The
result for the dissipation scale at the present epoch is (see
Eqs. (4) and (5) of [27])

ld0 = 0.45 pc
√
n

(

ΩBRadg

0.083

)1/2

x−2/(n+2)

×
(

Tg

100 MeV

)−n/(n+2)

(14)

where n is the spectral index for the magnetic field,
ΩBRadg is the ratio of the energy density in magnetic
fields to that in radiation (in all relativistic species), Tg

is the temperature, and all quantities are taken at the
time of magnetic field generation (denoted by subscript
“g”). Also, x = 2.3 × 10−9 is a numerical factor. This
formula yields

ld0 ≈ 1 pc− 1 kpc (15)

for magnetic field generation at the electroweak epoch
(Tg = 100 GeV), for n = 2 − 5 – larger n gives smaller
ld0 – and with ΩBRadg = 0.083. The index n is defined in
[27] by the relation ρB ∝ l−n where ρB is the energy den-
sity in magnetic fields on a length scale l at the epoch of

magnetogenesis. Translating this into our language with
the relation in Eq. (12) we have n = 5 for the Batchelor
spectrum, and n = 3 based on a model of processes that
might have occured during a first order phase transition
[28].
With r∗ = 10 Mpc in Eq. (10), we get the full spectrum

of the observed cosmological magnetic field to be

EM (k) =
k

2
|HM (k)| ≈ 10−22

(

k

kd

)4 (
1 kpc

ld0

)

G2 Mpc

(16)
for 0 < k < kd, and EM (k) ≈ 0 for kd < k, where
kd = 2π/ld0 and ld0 estimated as in Eq. (15).
Eq. (12) now gives the magnetic field energy density

at the present epoch,

E0 ∼ (3× 10−10 G)2
(

1 kpc

ld0

)2

(17)

and Eq. (13) gives

H0 ∼ 3× 10−20 G2 kpc

(

1 kpc

ld0

)

(18)

In natural units (~ = 1 = c), with the conversions 1 G =
1.95× 10−20 GeV2 = 5× 107 cm−2, we can also write

H0 ∼ 2× 1017 cm−3

(

1 kpc

ld0

)

(19)

To summarize this section, Eq. (16) gives the closed
form expressions for the magnetic field spectra, and,
(17) and (18) (or (19)) give the magnetic energy and
helicity densities as indicated by current observations.
These estimates use existing observational data together
with some theoretical input. As more data accumulates,
the method described in Ref. [8] and implemented in
Refs. [4, 5], can be used to directly, i.e. without addi-
tional theoretical input, measure the helical power spec-
trum.

III. IMPLICATIONS AND THE LARGE

HELICITY PUZZLE

To get a feel for these estimates, we compare the energy
density in magnetic fields to that in photons,

ΩBγ0 =
E0
ργ0
∼ 10−8

(

1 kpc

ld0

)2

. (20)

where ργ0 = 4.6× 10−34 gms/cm3 ≈ (4× 10−6 G)2 is the
energy density in photons at the present epoch.
To proceed further we would like to estimate ΩBγ at

earlier times. The full details of the evolution are compli-
cated because of episodes (e.g. e+e− annihilation), vis-
cosity, finite electrical conductivity, and unknown factors
(e.g. neutrino masses). However a simple approximate
picture emerges from various studies within the context
of conventional MHD [20, 25, 29–32]. Most crucially, he-
licity is found to be conserved, so the helicity density
H ∝ a−3 where a(t) is the cosmic scale factor. The iner-
tial scale, also the scale where most of the magnetic en-
ergy is stored, grows as lI ∝ a×a2/3 in the radiation dom-
inated era and as lI ∝ a greater than the temperature at
matter-radiation equality Teq ≈ 1 eV) as long as the he-
licity is maximal [20]. So, from the relations in Eqs. (12)
and (13), the energy density scaling is E ∝ a−4×a−2/3 in
the radiation dominated era and E ∝ a−4 in the matter
dominated era. With these scalings, and with the cos-
mic cooling rate T ∝ a−1 and the temperature at big
bang nucleosynthesis (BBN) TBBN ∼ 0.1 MeV, we get
ΩBγBBN ∼ 10−5(1 kpc/lI0)

2. Requiring ΩBγBBN . 1,
this means that the inertial scale today (assumed to be
close to the dissipation scale today, ld0) is observationally
constrained to be larger than ∼ 10 pc.
Spectral distortions of the cosmic microwave back-

ground (CMB) also provide a means to probe small
scale magnetic fields for cosmological redshift z between
103 and 106 [33–36]. As of now the bounds from
COBE/FIRAS measurements of the CMB spectrum are
not competitive with the BBN bound. Proposed exper-
iments, such as PIXIE, can change this situation and
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be able to detect CMB µ−distortions for ld0 ∼ 1 kpc
(see Figs. 2 and 3 of Ref. [36]). Small scale magnetic
fields may also leave an imprint on the CMB anisotropies
through non-linear effects [37–40].
The estimate in Eq. (17) shows that intergalactic mag-

netic fields that are indicated by gamma ray observa-
tions may be of ∼ 3× 10−10 G strength on 1 kpc scales.
During structure formation, the field would get com-
pressed within galaxies by a factor (ρgal/ρc)

1/3, where
ρgal ≈ 10−24 gm/cm3 is the baryonic density in the
galactic disk and ρc ≈ 10−31 gm/cm3 is the cosmic
baryon density. If we assume flux freezing during struc-
ture formation, the magnetic field strength will increase
by (ρgal/ρc)

2/3 ≈ 105 and the coherence scale will de-

crease by (ρc/ρgal)
1/3 ≈ 10−2. With these numbers, and

ld0 = 1 kpc, a galaxy would inherit a magnetic field with
strength ∼ 3× 10−5 G and coherence ∼ 10 pc. A some-
what larger value of ld0 ∼ 10 kpc would lead to estimates
that are closer to observations of the random component
of the Milky Way magnetic field, 4−6 µG on 10−100 pc
[41]. This conclusion is in line with that of Ref. [27] where
the authors argue that magnetic fields in galaxy clusters
may arise directly from the intergalactic magnetic field.
However, these relatively large seed fields during galaxy
formation do not obviate the need for a galactic dynamo
such as discussed in Ref. [42]. Dissipative and dynami-
cal effects within the galaxy will diminish the magnetic
field over time and dynamo action is necessary even to
maintain the field (see Sec. 2 of [43]).
We now turn to the helicity of the magnetic field, a

quantity that is parity (P) odd and also odd under com-
bined charge and parity (CP) transformations. Hence
observed non-zero magnetic helicity indicates a period of
CP violation in the early universe, as is also necessary for
the generation of the observed cosmic matter-antimatter
asymmetry. Thus it is natural to compare the observed
magnetic helicity to the cosmic baryon number density,
nb0 ≈ 10−7 cm−3,

ηBb0 ≡
H0

nb0
∼ 2× 1024

(

1 kpc

ld

)

(21)

This estimate, also discussed in Ref. [36], raises a chal-
lenge for fundamental physics – what processes can gen-
erate such a large helicity to baryon number ratio?
The simplest particle physics based scenarios of mag-

netogenesis are based on the evidence that a baryon
number changing process via an electroweak sphaleron
[44] also produces magnetic fields with ∼ 102 helicity
[45, 46]. Then the magnetic helicity is proportional to
the baryon number and we get ηBb0 ∼ 102 [47, 48]. Even
in the unbroken phase of the electroweak model, where
the electroweak sphaleron solution does not exist per se,
we expect gauge field production to occur during changes
of Chern-Simons number which is necessary for baryon
number violation.
A more realistic view of the production of cosmic mat-

ter asymmetry is that baryon number violating processes
occur so as to produce both baryons and antibaryons

but with a slight excess of baryon production. In terms
of magnetic fields this means that both left- and right-
handed helical fields are produced but with a slight excess
of left-handed helicity that is given by the fundamental
CP violation [45]. Within the context of baryogenesis in
the standard model, CP violation is extremely weak [49]
and the total helicity is tiny compared to the energy den-
sity in the magnetic field [45]. The estimates of Ref. [50]
show that the energy density in magnetic fields after the
phase transition can be comparable to that in other forms
of radiation. Thus the energy density in magnetic fields
may be much larger than that implied by magnetic he-
licity alone. However, the problem we are encountering
based on observation, is that the initial magnetic helicity
also needs to be much larger (see Eq. (21)). Is there some
dynamics beyond standard MHD that could potentially
increase the magnetic helicity and saturate the maximal
helicity condition in the early universe?

IV. CHIRAL EFFECTS, AXIONS AND

MAGNETIC FIELDS

A simple possibility to resolve the large helicity puz-
zle is to look for a mechanism that selectively amplifies
one handedness of the magnetic field. Then, if we start
with a magnetic field, even with zero net helicity, the
dynamics will amplify one of the two helicities, increase
the magnetic field energy density, and also saturate the
helicity at its maximal value. This has been the focus of
earlier studies starting with [51], of the “chiral magnetic
effect” [52], in which a magnetic field induces an elec-
tric current j ∝ B, which results in the amplification of
certain Fourier modes of only one handedness. More im-
portantly for us, however, the chiral magnetic effect also
selectively dissipates one handedness of the magnetic field
(see, for example, [53]). Thus, if baryon number violat-
ing interactions (or other dynamics) produce a large but
non-helical magnetic field, the chiral magnetic effect can
dissipate one of the two helicities, the handedness being
determined by the sign of the chiral imbalance, and thus
reduce the magnetic field energy by half while saturating
the helicity at its maximal value.
More quantitatively, in terms of comoving variables

(denoted by a subscript c), the magnetic field evolution
takes the form [53]

∂ηBc = ∇c × (vc ×Bc) + γDc∇2
cBc

+γωc∇c × (∇c × vc) + γBc∇c ×Bc, (22)

where σc ∼ 102 is the comoving plasma electrical con-
ductivity in the early universe, γDc = 1/σc, γωc =
e∆µ2

c/4π
2σc, γBc = e2∆µc/2π

2σc, ∆µc is the chiral
asymmetry of the medium as given by the difference of
the left- and right- chemical potentials, ∇c is differen-
tiation with respect to the spatial metric δij and vc is
the comoving velocity. All quantities have been rescaled
so that the unit of length is given by the inverse cosmic
temperature [53].
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After some manipulation, and ignoring the velocity
field for the present analysis, the MHD equations can
be written in terms of the right- and left- circularly po-
larized modes B±(k) as [53]

∂η|B+|2 = 2(−γDk2 + γBk)|B+|2 (23)

∂η|B−|2 = 2(−γDk2 − γBk)|B−|2 (24)

The evolution of the ensemble averaged comoving chem-
ical potential is given by

d∆µc

dη
= −c∆α

∫

kdk

2π2
∂η

[

|B+|2 − |B−|2
]

− ΓF∆µc .

(25)
where ΓF tells us the strength of the left-right flipping
due to fermion-Higgs interaction and c∆ is a numerical
constant.
From Eqs. (23) and (24), the difference of the two

helical amplitudes of the magnetic field Fourier modes,
∆B ≡ |B+(k)| − |B−(k)|, evolves according to

∂η∆B = +
kp
σc

(|B+|+ |B−|) +O(∆B) (26)

where η is the conformal time, σ is the electrical con-
ductivity of the plasma and kp = e2∆µc/2π

2. Thus ∆B
grows in proportion to the summed amplitudes of the
two helicities of the magnetic field and the field tends to
become maximally helical on a time scale τ ∼ σc/kp ∝
2π2σc/(e

2∆µc). Hence the helicity is most efficiently gen-
erated for large chiral imbalance.
A chiral imbalance might arise naturally above the

electroweak scale since the weak interactions distinguish
between left- and right-handed particles at a fundamen-
tal level. At these epochs the relevant magnetic field
is the hypermagnetic (not electromagnetic) field. There
are also some difficulties with this idea. First the chiral
imbalance has to be relatively large for the time scales
of helicity dissipation to be shorter than the Hubble ex-
pansion time scale. Further, the scenario has to assume
magnetic field generation prior to the electroweak epoch.
Magneto genesis may well take place during inflationary
reheating but this requires a whole new set of interac-
tions in the fundamental action and, depending on the
strength of those interactions, the magnetic field might
be helical even when first generated, thus obviating the
need for any chiral effects.
Scenarios that evolve magnetic fields in a homogeneous

chiral medium have received some attention in the liter-
ature [54, 55]. The precise dynamics, however, needs
further investigation since the analysis outlined above
ignores the plasma velocity field. The joint evolution
of the magnetic field and the plasma velocity is essen-
tial to see effects such as the inverse cascade of helical
fields [56]. For an inhomogeneous chiral medium, even
the equations necessary to describe dynamics with spa-
tially varying chirality have not yet been established (re-
cent attempts can be found in [57, 58]).
Another possibility is to consider axion-MHD, since

a time dependent axion field behaves very much like a

chiral asymmetry in the MHD equations. Differences
with the chiral asymmetry arise in the dynamical equa-
tions for the axion as compared to the anomaly equa-
tions for the chiral asymmetry. As discussed in Ref. [16],
the axion-MHD equations (in Minkowski space and in
Lorentz-Heaviside units) are

ϕ̈−∇2ϕ+m2
aϕ− gaγE ·B = 0 (27)

∇×B− gaγϕ̇B− gaγ∇ϕ×E− σE

−σv ×B− Ė = 0 (28)

Ḃ+ ∇×E = 0 (29)

where φ is the axion field, v is the plasma velocity field,
gaγ is the photon-axion coupling, ma is the mass of the
axion which turns on at the QCD epoch, and σ is the
electrical conductivity of the plasma. In the MHD ap-
proximation, we ignore the displacement current term
(Ė), then solve Eq. (28) for E and substitute in Eq. (29).
The resulting expressions are quite messy but simplify if
we only work to leading order in gaγ/ξ where ξ is a length
(or time) scale associated with the gradient (or scale of
time variation) of ϕ.
It is convenient to define:

a ≡ gaγ
σ

∇ϕ (30)

b ≡
(

1

σ
∇×B− v ×B

)

− gaγ
σ

ϕ̇B (31)

≡ c− gaγ
σ

ϕ̇B (32)

Then the dynamical MHD equation for B becomes

Ḃ = −∇×E = −∇×
(

b+ (a · b)a− a× b

1 + a2

)

(33)

To linear order in gaγ , this simplifies to

Ḃ = ∇× (v ×B) +
1

4σ
∇

2
B

+
gaγ
σ

∇×
(

φ̇B+∇φ× c

)

(34)

The first two terms on the right-hand side are the stan-
dard advection and diffusion terms of MHD; the last term
is the contribution of the axion field. Assuming the axion
field is approximately homogeneous so that gradients are
small, only the φ̇ term survives. This term is equivalent
to the usual chiral-magnetic effect that also appears in
Eq. (22) with the identification

γBc =
e2∆µc

2π2σc
←→ gaγ

σ
ϕ̇. (35)

The time scale for the growth of helicity is now σ/(gaγϕ̇)
and is short only if the axion field varies rapidly.
The assumption of approximate homogeneity of the

axion field at early times may be valid in certain cosmo-
logical scenarios in which there is a period of inflation at
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low energy scales. However, without a period of infla-
tion, the universe will contain a network of axion strings
until the QCD epoch, and it is dubious to assume that
inhomogeneities in the axion field are unimportant. The
evolution of the magnetic field will then be affected by
the network of axion strings as they move through the
magnetized plasma. Even if the axion field is initially ho-
mogeneous, the electromagnetic source term in Eq. (27),
with E replaced by the expression in Eq. (33), will be
inhomogeneous and will induce inhomogeneities in the
axion field. We plan to analyze some of these issues in
the future.

V. CONCLUSIONS

The main point of this paper is that current observa-
tional evidence for intergalactic magnetic fields has pro-
found implications for fundamental interactions. The in-
dicated magnetic fields must have originated in the early
universe since they are seen in voids and are helical. With
more data, the method of Ref. [8] that uses parity odd
correlators of gamma ray arrival directions, has the ca-
pability to uncover the full power spectrum of magnetic
fields. If we uncover a red spectrum, we would know
that magnetic fields were generated by an acausal mech-
anism. The magnetic fields would then provide valuable
information about the earliest moments of the universe.
If the spectrum turns out to be blue, the properties of the
magnetic field will give us important clues about particle
physics beyond the standard model.
The observation of magnetic helicity implies a strong

role for fundamental CP violation in the early universe.
Since helical magnetic fields are closely connected with
baryon number violating processes, the observation of he-
lical magnetic fields can inform us about matter-genesis.
But baryogenesis by itself is insufficient to explain the
large helicity that is indicated by observations. We have
suggested that there may be a role for the chiral-magnetic
effect, either due to a primordial chiral asymmetry or due
to an axion field, to drive magnetic helicity to its maxi-
mal value. Then the standard model must be extended
to allow for successful baryogenesis and the chiral mag-
netic effect should play a role in cosmology. This would

have implications for particle physics close to the elec-
troweak scale and may perhaps also be testable at the
LHC or future accelerator experiments. Future observa-
tions (e.g. by the Cherenkov Telescope Array [59]) will
further clarify the case for intergalactic magnetic fields
and allow for more precise measurements of their power
spectra.
Before closing it is worthwhile to step back and point

out some caveats to the considerations in this paper.
First, the observational situation could be misleading.

It is true that the claimed existence of inter-galactic mag-
netic fields is based on analyses carried out by several
independent groups using different methodologies [1–7].
However all these analyses are based on either the blazar
spectra or the distribution of diffuse gamma rays. There
is also a claim that we don’t fully understand the cascade
process and that there might be instabilities [60–64], even
though direct observations [65] and simulations [66] sug-
gest that the instability is not operative. Nonetheless it
would be extremely valuable to have a separate indepen-
dent tool to observe intergalactic magnetic fields.
Second, only one method actually claims to be able

to measure the correlation function of the magnetic
field [8, 9]. In the present paper, we have combined the
measurement of the correlation function at a single spa-
tial separation [4, 5] with theoretical studies of the evo-
lution of magnetic fields to find the full magnetic field
spectrum [20, 25, 29–32]. If there are any new ingredi-
ents in the evolution of magnetic fields – e.g. additional
drivers of turbulence, chiral or other effects – the evolu-
tion might be different than what we have supposed and
this would alter some of our conclusions.
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