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Abstract

The single-field consistency conditions and the local ansatz have played separate but important roles in characterizing
the non-Gaussian signatures of single- and multifield inflation respectively. We explore the precise relationship between
these two approaches and their predictions. We demonstrate that the predictions of the single-field consistency
conditions can never be satisfied by a general local ansatz with deviations necessarily arising at order (ns − 1)2.
This implies that there is, in principle, a minimum difference between single- and (fully local) multifield inflation
in observables sensitive to the squeezed limit such as scale-dependent halo bias. We also explore some potential
observational implications of the consistency conditions and its relationship to the local ansatz. In particular, we
propose a new scheme to test the consistency relations. In analogy with delensing of the cosmic microwave background,
one can deproject the coupling of the long wavelength modes with the short wavelength modes and test for residual
anomalous coupling.
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I. INTRODUCTION

Understanding the origin of the initial conditions for the universe is one of the primary goals of modern cosmol-
ogy. Most ambitiously, we hope to test fundamental principles behind the origin of structure, independently of any
framework. For example, one might hope to distinguish whether the initial seeds are the result of quantum or classical
fluctuations [1]. Even within the context of inflation, we would like to test the nature of inflation, including whether
inflation was single- or multifield [2] or if inflation is a weakly or strongly coupled phenomenon [3, 4]. Significant
progress has been made in identifying possible observational targets [5], often in the context of deviations from Gaus-
sianity. Still, many of these targets are qualitative in nature and more work remains to connect them to fundamental
principles [4].

Perhaps the most quantitative tools for testing inflation are the single-field consistency conditions [2, 6]. They
state that when inflation is driven by a single field (or clock), the coupling of short and long modes is completely
specified: (N +1)-point correlation functions involving short and long modes can be specified in terms of lower order
correlation functions. These relations are testable observationally.

The basic reason underlying these conditions is that, to leading order in gradients, the long mode metric fluctuation
ζL is locally a constant that is equivalent to a re-parameterization of the clock. This logic has been extended to show
the long mode has no local physical effects up to quadratic order in gradients [2, 7, 8]. As such, the statement of the
consistency conditions is essentially that, modulo gradients of the long mode, the short modes cannot measure the
presence of the long mode physically. The leading order effect of the long mode that can be measured locally is a
perturbation to the local curvature, which is suppressed by k2L, where kL is the wave-number of ζL.

Whereas these consistency conditions were initially introduced by Maldacena to explain the properties of infla-
tionary correlation functions [6], they have since been found to have very general consequences to cosmology [2], even
at much later times. The essence of these consistency conditions was understood much earlier in the context of the
separate universe approach (see e.g. [9, 10]). Weinberg [11] later understood that these are all consequences of a large
gauge transformation that may be implemented at any time (not just during inflation), which has ultimately made a
number of powerful applications possible. In particular, it was shown to be straightforward to predict the implications
of the consistency conditions for any observable and thus look for deviations [12–14].

Since the full set of consistency conditions strongly constrains the statistics of the initial conditions, it is natural
to compare these constraints to those stemming from a common prescription for the initial conditions, namely the
local ansatz. The local ansatz simply assumes that there exists some Gaussian random field ζg(x, t) such that the
initial conditions for the adiabatic mode are generated locally in this Gaussian field:

ζ(x, ti) =
∑

n

cnζg(x, ti)
n = ζg +

3

5
f local
NL ζ2g + . . . . (I.1)

Data from the Planck satellite currently constrain f local
NL = 0.8± 5.0 [15] but future observations have the potential to

reach σ(fNL) < 1 [16–19]. This is particularly interesting as |fNL| > 1 is a common feature of models that reproduce
the local ansatz [5, 20–22].

The idea that some non-linear but local physics generated the initial conditions is very plausible and is indeed
found to arise in many multifield models of inflation and alternatives to inflation. Nevertheless, the origin of the local
ansatz in physical examples is qualitatively different from the single-field consistency conditions. The local ansatz is
usually the consequence of local non-linear evolution at times when all the observable modes are outside the horizon.
Since there are no physical scales larger than the horizon, long and short wavelength modes are treated on the same
footing. While local interactions also govern the single-field consistency conditions, only the long wavelength modes
are outside the horizon and therefore the short and long modes are physically distinguishable in the resulting statistics.

Given the differences in the physics, it is natural to ask at what level one expects to find deviations in predictions
made by the local ansatz and single-field inflation. This is particularly important when testing observationally the
nature of inflation. The statement that the consistency conditions imply that fNL = − 5

12 (ns − 1) would seem to
suggest that single-field inflation is equivalent to a local ansatz with specific coefficients. As we will show explicitly,
this statement is not correct. First of all, the single-field consistency conditions are really an infinite set of constraints
rather than just a statement of a single statistic [23] and matching the above relation would only confirm one from this
infinite set. Second, as will be discussed further below, these relation between fNL and ns involves statistically average
quantities whereas the consistency conditions should hold for any realization and not just statistically. This suggests
that mapping the single-field consistency conditions onto parameters predicted by the local ansatz mischaracterizes
the relevant physical effects.

Another motivation for this work is to further clarify the observability of the single-field consistency conditions.
As has been emphasized by a number of authors, the consistency conditions physically imply that the short modes
are statistically independent of the long mode, in physical coordinates. In this sense, single-field inflation predicts
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“zero mode-coupling” which suggests there is no natural target for local non-Gaussianity, even in principle [14, 24, 25].
Nevertheless, as we will show, the local ansatz can never reproduce this prediction; it leaves a non-zero mode coupling
at least of order (ns − 1)2 in any such observable and therefore sets a natural target (although unobservable in
practice). For example, the local ansatz will always lead to scale-dependent bias1 while single-field inflation does
not [13, 14, 25].

In this paper, we will explore the relationship between the consistency conditions and the local ansatz. In Section II,
we will show that the local ansatz cannot reproduce the consistency conditions for any choice of parameters. In
Section III, we describe how the local ansatz needs to be modified to be consistent with Weinberg’s derivation of the
consistency conditions. In Section IV, we will demonstrate how the mode coupling induced in single-field inflation can
be deprojected from the observed statistics in direct analogy with weak lensing of the cosmic microwave background.

II. VIOLATING THE SINGLE-FIELD CONSISTENCY CONDITIONS

In this section, we will show that the local ansatz, ζ(x) =
∑

n cnζg(x)
n, cannot satisfy the single-field consistency

conditions for any choice of cn. It will be important that the coefficients cn cannot depend on the location in space
because we are assuming that only ζg(x) breaks homogeneity. Therefore, cn is a list of numbers rather than functions.

The qualitative reason these two models do not agree can be understood as follows. The local ansatz cannot
distinguish long and short modes (as required by locality), and therefore a given coefficient predicts that a number
of different mode couplings are related. This is particularly important for cn>2 as there is more than one long-
short coupling per coefficient. If the local ansatz is to match the single-field consistency conditions, these non-trivial
relations must also arise in single-field inflation. However, single-field inflation distinguishes long and short modes
and there is no reason to expect the same relations to hold. The essence of this section is check that this expected
difference cannot be eliminated by carefully choosing the coefficients of the local expansion.

We first need to be clear about how the consistency conditions act on correlation functions of short modes2. Let
us start with a metric without a long mode such that

ds̃2 = −dt2 + a(t)2 e2ζ̃S(x̃) dx̃2 . (II.1)

Now we introduce the long mode through the transformation x = e−ζL x̃, which implies

ds2 = ds̃2 = −dt2 + a(t)2 e2ζ̃S(x̃) dx̃2 = −dt2 + a2(t) e2ζ̃S(eζLx)+2ζL dx2 . (II.2)

where ζ̃S is the original short perturbation that is independent of ζL. Throughout, we will ignore all gradients3 of ζL
and keep only the leading order behavior in the limit of vanishing wave-number, kL → 0. The resulting transformation
of the short mode is

ζS(x) = ζ̃S(e
ζLx) = ζ̃S(x) + ζL x · ∇ζ̃S(x) + . . . . (II.3)

Thus, in the presence of a long mode ζL, all “local” statistics of ζ, i.e. N−point functions purely of the short modes ζS ,
can be obtained by evaluating the same quantities in the absence of the long mode, but at a different scale, x → x eζL ,
or k → k e−ζL .

We will compare this to the local ansatz, which we will define as

ζ(x, ti) =
∑

n

cnζg(x, ti)
n = ζg +

3

5
f local
NL ζ2g + . . . (II.4)

where from here on, we will drop the dependence on the initial time ti. Here ζg is assumed to satisfy Gaussian
statistics and therefore ζg,S and ζg,L are statistically independent4. The local ansatz thus leads to a mode coupling,

ζS = c1 ζg,S + c2 ζ
2
g,S + c3 ζ

3
g,S + . . .

+ ζg,L
(

2 c2 ζg,S + 3 c3 ζ
2
g,S + . . .

)

+ ζ2g,L (3 c3 ζg,S + . . .) . (II.5)

1 Here, scale-dependent bias refers to any term in the bias expansion which is not consistent with locality in space. This includes terms
like ζn>2

L
which are non-local and also non-linear.

2 The exact separation between short and long modes is not always precise. Very conservatively, requiring kL/kS < O(100) should
guarantee that we are in the squeezed limit where the consistency conditions apply [26]. For many single-field models, a small hierarchy
is sufficient.

3 We can extend these results to linear order in gradients using the conformal consistency conditions [8].
4 The perturbation ζ̃S appearing in the consistency conditions is simply the small-scale perturbation in the absence of the long mode so
that ζ̃S is not in general equal to ζg because we have made no assumption about the statistics of ζ̃S .
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While this series extends to arbitrary orders in ζg,S and ζg,L it is important that the modulation of a connected

(N + 1)-point correlation function of short modes at O
(

ζqg,L

)

is determined by cn≤N+q (ignoring loop-suppressed

corrections).
Now, let us examine what the single-field consistency conditions predict for the behavior of the two-point statistics

of the short modes. Up to second order in the long mode, we find

〈ζS(k) ζS(k
′)〉′ = 〈ζ̃S(k e−ζL) ζ̃S(k

′ e−ζL)〉′ = e−(ns−1)ζL 〈ζ̃S(k) ζ̃S(k
′)〉′

= PS(k)− (ns − 1)PS(k) ζL +
1

2
(ns − 1)2 PS(k) ζ

2
L +O(ζ3L) . (II.6)

The primes in the first line indicate that we suppress the usual factor (2π)3 δ(D)(
∑

i ki) from the expectation value.
We have taken ns to be constant, since if it depended on scale, the local ansatz would fail to match the predictions
of the single-field consistency conditions. Thus, a first (trivial) requirement for the local ansatz to reproduce the
predictions of the consistency conditions is that the spectral index is scale-independent.

Up to second order in the long mode, we find for the local ansatz

〈ζS(k) ζS(k
′)〉′ =

(

c21 + 4c1c2 ζL + (4c22 + 6c1c3) ζ
2
L

)

〈ζg,S(k) ζg,S(k
′)〉′ +O(ζ3L)

= c21PS(k) + 4c1c2PS(k) ζL + (4c22 + 6c1c3)PS(k) ζ
2
L +O(ζ3L) . (II.7)

Matching5 the two-point predictions of the single-field consistency conditions order by order requires that we have
c1 = 1, c2 = − 1

4 (ns − 1) (i.e. the familiar fNL = − 5
12 (ns − 1)), and c3 = 1

24 (ns − 1)2. This choice of coefficients then
dictates the behavior of the three-point function of short modes for the local ansatz

〈ζSζSζS〉
′ = 6c21c2PS(k)

2 + (18c21c3 + 24c1c
2
2)PS(k)

2ζL +O(ζ2L)

= −
3

2
(ns − 1)PS(k)

2 +
9

4
(ns − 1)2PS(k)

2ζL +O(ζ2L) . (II.8)

Returning to the predictions of single-field inflation, we are free to choose the form of the bispectrum containing
only short modes since that correlation is unconstrained by symmetries (although it would be very constraining if
the only way to reconcile the local ansatz with single-field inflation is for this exact form of the local bispectrum).
Once this choice is made, however, the scaling of the bispectrum with long modes is completely determined by the
single-field consistency conditions

〈ζSζSζS〉
′ = −

3

2
(ns − 1)PS(k)

2e−2(ns−1)ζL

= −
3

2
(ns − 1)PS(k)

2 + 3(ns − 1)2PS(k)
2ζL +O(ζ2L) . (II.9)

Comparing Eqs. (II.8) and (II.9), we see that if the coefficients of the local ansatz are chosen to make the behavior of
the two-point statistics of the short modes match the predictions of the consistency conditions, then the predictions for
the bispectrum necessarily disagree atO

(

(ns − 1)2
)

. Furthermore, we cannot correct this disagreement by introducing
additional terms to the local ansatz with cn>3 because no such terms contribute to the three-point statistics of the
short modes at first order in ζL (except through loops which are highly suppressed).

The origin of this contradiction can be generalized to arbitrary orders in ζL. Suppose we truncate the local
expansion at order ζN . In this case, once we make the split into long and short modes, we have

ζ =

N
∑

n=1

cn(ζg,S + ζg,L)
n (II.10)

we can always fix c1 = 1 by definition. This means we have N − 1 unknown coefficients to match 〈ζmg,S〉 to order

ζN−m+1
L where m = 2...N . We find that there are

∑N
m=2(N −m+1) =

∑N−1
i=1 i = N × (N − 1)/2 different coefficients

that we need to match using these N − 1 unknown coefficients. This system is therefore overconstrained and it would
thus be a miracle if the coefficients matched the consistency conditions.

5 Note that our predictions are for the global statistics of ζ and may not match the observations in a given Hubble patch [27, 28]. A
similar argument could be applied instead to the statistics only in a specific Hubble region. The claim that the local anstaz cannot
reproduce the single-field consistency conditions holds for both cases.
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We can see that the general pattern matches the explicit calculations including c1,2,3. For N = 2, we have one
coefficient (c2) but we only have to match one number, the squeezed limit of the bispectrum. At order N = 3, we have
2 coefficients c2, c3 but now we have 3 different squeezed limits to match and we simply cannot pick c2 and c3 to make
them all agree with the single-field consistency conditions. At order N we should find that floor(N/2) consistency
conditions cannot be satisfied by the local ansatz.

Summary: We have shown that it is impossible to exactly obey the single-field consistency conditions with the
local ansatz. In that sense, testing the single- vs. multifield nature of inflation by constraining fNL, etc., within the
local ansatz is technically not correct, as no point in this parameter space is consistent with single-field inflation.
However, the local ansatz is of course still very useful as a shorthand description for the squeezed limit behavior of
the bispectrum and/or the collapsed limit trispectrum. These are also the quantities that determine the leading order
signal of scale-dependent halo bias [29–32], which is one of the main ways in the near future to constrain primordial
non-Gaussianity using large-scale structure [5]. This is how the local ansatz is most commonly used, and in this
sense the single-field case is indeed equivalent to fNL = − 5

12 (ns − 1). However, if one were to use the local form

to also predict e.g. the modulation of the short-scale bispectrum, 〈ζL ζ3S〉, and higher order modulations in ζ2L such
as 〈ζ2L ζ2S〉, we have shown that one would inevitably make predictions inconsistent with single-field inflation. Of
course, in practice, these deviations from the predictions of single-field inflation are too small to be detected with any
near-term observations.

III. CONSISTENCY CONDITIONS FOR THE LOCAL ANSATZ

In the previous section, we found that the local ansatz can never match the predictions of the single-field consistency
conditions. Physics is rarely discontinuous and therefore we expect that there is some generalization of the local ansatz
that should allow us to interpolate between the two. This is also obvious from the point of view of model building,
as we can certainly write models of inflation that interpolate between single- and multifield by varying the mass of
the additional fields. However, if we take the local ansatz as our starting point, we want to know the minimal set of
terms needed to reproduce both limits.

There are two generalizations of the local ansatz that could plausibly change our results: (1) multiple random
fields and (2) “non-local” terms6 in the expansion in the Gaussian random field(s). Given that the local ansatz is a
prediction of multifield inflation, adding more random fields is an obvious choice. We will see that adding multiple
fields is not a sufficient condition, but that both non-local terms and multiple fields are needed to interpolate between
the consistency conditions and the local ansatz.

Let us consider a scenario with perturbations in two directions (this can be straightforwardly generalized to the
case of more than two fields), ζ and σ, and let us assume that any shift in the perturbation with ∆σ = 0 implies the
shift is along the adiabatic direction. Varying σ at ζ = 0 then of course describes an isocurvature fluctuation7.

The single-field consistency conditions in this more general context are really consistency conditions about the
effects of an adiabatic shift in the long-mode fluctuation (see e.g. [12, 24, 33–35] for related discussions). Specifically,
the generalization of the single-field consistency conditions, Eq. (II.3), is that under such a transformation,

ζ̃(x) → ζ(x) = ζ̃S(e
∆ζL x) + ζ̃L +∆ζL

σ̃(x) → σ(x) = σ̃S(e
∆ζL x) + σ̃L , (III.1)

where quantities with a tilde are the fields in the absence of the shift ∆ζL, which must be statistically independent of
∆ζL. If all we wanted was to express the consistency conditions in a multifield scenario, Eq. (III.1) would be sufficient.
However, the above expression does not fully specify the statistics of the curvature perturbation (nor of σ), as it does

not say anything about the statistics of ζ̃S and σ̃, other than their independence of ∆ζL. In particular, we have not
fully specified the response of ζS to long modes, because we have not specified the response to σL.

The usual local ansatz, Eq. (II.4), fixes the full statistics of the curvature perturbation by expressing ζ as a local
function of a Gaussian field ζg. We would like to do the same here, but using the presence of σ (or in general of
multiple fields) to remain in agreement with the consistency conditions. Specifically, we would like to express the

6 We remind the reader that local is taken in the sense of the local ansatz, i.e. functions of the form Φ(x) = F ({φi(x)}). Non-local terms
need not imply a violation of causality/locality in the dynamics of φ. Non-local terms can arise when statistics have memory of past
evolution and/or when there is a scale, such as the horizon, that can distinguish the wavelengths of φ(x) (the local form necessarily
treats all wavelengths on the same footing).

7 As a simple example, in the case with two scalar fields φ = φ̄+ δφ and χ = χ̄ + δχ, a commonly considered scenario is one where the
curvature-isocurvature basis is approximately aligned with the δφ-δχ basis, so that ζ ≈ −H

˙̄φ
δφ, and σ ≈ δχ. This is typically the case

for the initial conditions in models where χ is a spectator field during inflation.
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perturbations in terms of two Gaussian fields, ζad (an adiabatic fluctuation) and σg, to fully specify the statistics8.
Based on Eq. (III.1), a minimal consistent ansatz we could write is,

ζ(x) = ζad,S(e
ζad,L x) + ζad,L

σ(x) = σg(e
ζad,L x) , (III.2)

with the component fields Gaussian. Now, the most general9 local transformation of this ansatz that still respects
Eq. (III.1) is,

ζ → ζ = ζ + f(σ)

σ → σ = g(σ) , (III.3)

leading to the generalized local ansatz,

ζ(x) =
[

ζad,S + f(σg)
]

(eζad,L x) + ζad,L

σ(x) = [g(σg)] (e
ζad,L x) . (III.4)

Finally, expressing the generalized local ansatz for ζ to second order, and separating short and long modes, gives,

ζ =
[

ζad,S + σg,S

]

(eζad,L x) + c2 σ
2
g + ζad,L + σg,L + . . .

= ζad + σg + ζad,L x · ∇
[

ζad,S + σg,S

]

+ c2 σ
2
g + . . . (generalized local ansatz) (III.5)

where we have Taylor expanded f in powers of σg and then absorbed the coefficients ∂σf and ∂2
σf into σg and c2.

The statistics of ζ, and in particular the mode coupling, are now fully determined by Eq. (III.5) as soon as the
variance of ζad and σg are specified. We choose them to be uncorrelated10 〈ζad σg〉 = 0. Clearly, the restriction
placed on Eq. (III.3) by the adiabatic consistency conditions means our final form can only have significant local-type
non-Gaussianity due to the presence of the second field, σg .

Finally, in cases where there is more than one non-adiabatic mode (more than two fields), one can without loss
of generality define σg ≡ σg,1 to be the linear combination contributing linearly to ζ, generalizing Eq. (III.5) so that
only the quadratic term is modified,

c2 σ
2
g →

∑

ij

c2,ij σg,i σg,j , (III.6)

where the sum is over all non-adiabatic modes σg,i, with 〈σg,i σg,j〉 = 0 for i 6= j. The modes σg,i with i > 1 exclusively
contribute to stochastic non-Gaussianity because they are by definition uncorrelated with ζ at linear order.

Equation (III.5) is not intended to be the most general form for non-Gaussianity in multifield inflation. It is merely
an ansatz that, loosely speaking, minimally satisfies the consistency conditions, and allows for all local (in the sense
discussed in the beginning of this section) terms that do not violate them. However, we have not addressed how this
ansatz can arise physically. There are two implicit assumptions about the dynamics that are crucial:

• The mode coupling at horizon crossing is trivial. The horizon sets a natural scale that allows for terms that are
not of the local form. Most significantly, this would allow for terms of the form (ζS)

m (σL)
n that are allowed by

the consistency conditions.

• The fluctuations in ζ at constant σ correspond to the adiabatic mode that is constant in time outside of the
horizon. It is this mode that can be removed by a coordinate transformation. This is an assumption about
having reached the inflationary attractor solution.

We can make these points more concrete by considering a simple multifield inflation scenario. The discussion below
closely resembles the “derivation” above of the generalized ansatz. We can decompose field perturbations in terms

8 The fields technically do not have to be Gaussian. To specify the mode coupling, we really only need to demand that the short-mode
components of ζad and σg are independent of the long-mode components.

9 It is straightforward to check that any other local term is not allowed in Eq. (III.3). The contributions ζ → F (ζ) = F (ζad,S(e
ζad,L

x)+

ζad,L) or σ → G(ζ) = G(ζad,S(e
ζad ,L

x) + ζad,L) will not obey the transformation in Equation (III.1) unless F (x) = x and G(x) = 0.
10 If Eq. (III.5) holds, but ζad and σg are a priori not independent, we can always apply a redefinition ζad → ζad

′ ≡ ζad +Aσg such that
ζad

′ and σg are independent. However, after the redefinition, the mode-coupling would have a slightly more general form (dropping the
prime and reabsorbing some coefficients into σg and c2),

ζ =
[

ζad,S + σg,S

]

(eζad,L−ασg,L
x) + c2 σ2

g + ζad,L + σg,L + . . .
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of curvature and isocurvature fluctuations. For instance, in a 2-field model with separable potential W (φ, χ) =
U(φ) + V (χ), and assuming slow-roll for simplicity, the curvature perturbation is, to first order,

ζ =
W Uφ

U2
φ + V 2

χ

δφ+
W Vχ

U2
φ + V 2

χ

δχ+O(δφ2, δχδφ, δχ2) . (III.7)

While we have only included the linear order terms, ζ is defined to all orders in the fluctuations. We can choose

σ ∝
δφ

Uφ

−
δχ

Vχ

, (III.8)

so that σ = 0 corresponds to an adiabatic fluctuation (to first order).
Now consider initial conditions at some time when all modes of interest have just exited the horizon, indicated

by a ∗ subscript. In scenarios with two light fields, δφ∗ and δχ∗ are typically close to Gaussian and independent.
Writing only the minimal mode coupling required to satisfy the consistency conditions, we can then express the initial
fluctuations in the ζ −σ basis in terms of truly independent Gaussian fields (which we will again write as ζad and σg)
as,

ζ∗ = ζad,S(e
ζad,L x) + ζad,L (III.9)

σ∗ = σg,S(e
ζad,L x) + σg,L . (III.10)

In essence, we are assuming that the physics of horizon crossing is trivial (in local coordinates) and all subsequent
evolution can be treated classically from these initial conditions11. After all modes have exited the horizon, one can
then describe the evolution of perturbations in terms of the separate Universe picture/δN formalism, where evolution is
classical and local (in the sense discussed above). The initial adiabatic perturbations are then non-linearly conserved,
but the entropy perturbation can be transferred into ζ at both linear and non-linear order. Moreover, a purely
adiabatic perturbation (σ∗ = 0) remains adiabatic. In other words, evolution gives

ζ∗ → ζ = ζ∗ + f(σ∗) = ζ∗ +Nσ∗
σ∗ +

1

2
Nσ∗σ∗

σ2
∗ + . . .

σ∗ → σ = g(σ∗) , (III.11)

where Nσ∗
and Nσ∗σ∗

refer to the fact that in the δN formalism, the effect of the initial isocurvature perturbation can
be computed as the response of the number of e-foldings of expansion up to a constant-density hypersurface. Thus,
in this scenario, we end up with exactly our generalized local ansatz (III.5), where ζad and σg now have the physical
interpretation of (Gaussian components of) the initial curvature and isocurvature perturbations at horizon exit.

We can understand from this example where our implicit assumptions are necessary. The critical simplification is
that we reduced the problem from four real solutions down to two, the growing modes ζ⋆ and σ⋆. If we set σ⋆ = 0, then
we are by definition in the adiabatic attractor solution and, by definition, we must reproduce all the predictions of
the single-field consistency conditions. This is what forces ζ|σ⋆=0 = ζ⋆. Furthermore, having truncated the number of
solutions, the second solution can always be rewritten in terms of the initial condition for the isocurvature mode, σ⋆.
If we allow for non-trivial mode coupling at horizon crossing, but retain the truncation of the superhorizon solutions,
we can generate mode coupling of the from (ζS)

m (σL)
n, but no coupling to ζL beyond those in (III.9). Although the

consistency conditions allow mode coupling between ζS and ζ̇L, the evolution requires that ζ̇ ∝ f(σ⋆), and we can
always rewrite the result in terms of the isocurvature mode.

The more dramatic modification to the local ansatz occurs when the “decaying” modes are no longer negligible.
It remains generally true that when we set σ(x, t) = 0, we must reproduce all the predictions of single-field inflation;
yet, a more general model allows higher order mixing between σ and ζ, like those appearing in the EFT of multifield
inflation [36]. In deriving Equations (III.5) and (III.11), we were able to forbid all such terms by symmetry. However,
in doing this, we were assuming that ζad(x, t) is the solution that is constant outside the horizon. Of course, there is
always a second solution that violates this assumption, but typically decays as a−3 and plays no role in the dynamics.
However, with sufficiently rapid time dependence, sharp turns in field space, or other non-trivial dynamics, the
decaying modes may not be negligible at some time during inflation and may generate non-trivial mode couplings12.

11 We could even allow for significant initial non-Gaussianity in σ by adding a term O(σ2
g) to Equation (III.10). This would leave the

final form of the statistics unchanged. In models with multiple light fields, deviations from these initial statistics are typically slow-roll
suppressed.

12 One may wonder how such contributions can arise without violating the symmetries in Equation (III.3). Because the decaying mode
necessarily depends on time, one can include terms of the form

∫

dt′ ζ̇ad,L(t
′) that are manifestly invariant under (III.3) but are

proportional only to the decaying mode. These terms are non-local in time in our ansatz, but are perfectly consistent with local time
evolution. This is simply a reflection that the statistics have a memory of the past evolution (which is the same reason they encode
information about inflation when we measure them much later).
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In fact, if we allow for non-attractor solutions (i.e. the constant mode is the decaying mode), we may violate the
consistency conditions even in single-field inflation [26, 37–40].

Now that we have covered the physical interpretation of the generalized local ansatz, let us briefly consider its
implications. Although ζad must always be present to maintain diffeomorphism invariance, when Pζad ≪ Pσ we
can effectively neglect ζad for the purpose of computing statistics. In this limit, we will reproduce the results of the
standard local ansatz. More generally, one should include both terms. For example, if we compute fNL using Equation
(III.5) we have

fNL =
5

12

〈ζL ζS ζS〉
′

〈ζ2L〉
′ 〈ζ2S〉

′

=
5

12

[

− Pζad,L(3 +
∂

∂ ln k
)(Pζad,S

+ PσS
) + 4 c2PσL

PσS

]

(Pζad,L
+ PσL

)(Pζad,S
+ PσS

)
. (III.12)

It is easy to see that the first term is a statement of the consistency conditions in the presence of σ. Furthermore,
the contribution to fNL from each term is suppressed by the relative contribution σL or ζad,L makes to ζL. Now if we
take the limit PσL

≫ Pζad,L
or PσL

≪ Pζad,L we effectively return to the local ansatz or the single-field consistency
conditions respectively.

For higher N -point functions, the presence of ζad and σ with 〈ζad σ〉 = 0 will also lead to stochastic non-Gaussianity
(and scale-dependent stochastic bias [41]). Specifically, the collapsed limits of higher N -point functions will be
enhanced relative to the expectation from lower N -point functions. For example if c2 ≫ (ns − 1), τNL is given by

τNL =
1

4

1

PζLP
2
ζS

〈ζ(kS − kL)ζ(−kS)ζ(k
′
S + kL)ζ(−k′

S)〉
′

≈ 4 c22
PσL

P 2
σS

PζLP
2
ζS

≈

(

6

5
fNL

)2 (PζadL
+ PσL

)

PσL

, (III.13)

where the last line follows from Equation (III.12) and PζL ≡ PζadL
+ PσL

. We see that the amplitude is enhanced

by
(PζadL

+PσL
)

PσL

≥ 1 relative to the expectation from local ansatz with a single field13, namely τNL =
(

6
5fNL

)2
. The

reason is that the non-collapsed N -point functions are suppressed by the correlation coefficient of σ with ζ because
we do not observe σL directly. This additional suppression does not arise in collapsed configurations where we do not
need to directly measure σL to be sensitive to its mode coupling. It is the same reason that one finds scale-dependent
stochastic bias in these models [41]; halos are biased with respect to σL which is not fully correlated with the linear
density field.

IV. DEPROJECTING THE LONG MODE

We showed in Section II that the single-field consistency conditions are more than just statements about the
squeezed limit bispectrum, but instead dictate the response of the full short-wavelength statistics to a long mode.
Specifically, in terms of the statistically independent fluctuation, ζ̃S(x), it is a remapping of coordinates by the long
mode,

ζS(x) = ζ̃S(e
ζL(x)x) . (IV.1)

One way of testing this condition in all its richness is to study various N -point functions, correlating the long mode
with powers of the short mode, e.g. 〈ζL ζnS 〉. An intriguing alternative follows from the realization that the remapping
in Eq. (IV.1) is reminiscent of the effect of the gravitational lensing deflection field on cosmic microwave background
(CMB) fluctuations (see e.g. [46] for review). For example, lensing of CMB temperature is given by

T (x) = T̃ (x+α(x)), (IV.2)

13 The Suyama-Yamaguchi inequality [42], τNL ≥
(

6

5
fNL

)2
, must always be satisfied [43, 44] but is saturated for a single degree of freedom

(up to loop corrections [45]).
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where T (x) is the lensed CMB temperature, T̃ the unlensed temperature, and α(x) is the deflection field. In the
CMB, given a measurement of the lensed temperature map T (x), it is well known that one can reconstruct the actual

realization of the lensing deflection field and then “delens” the CMB fluctuations to obtain T̃ (see e.g. [47–49]). It
should therefore be possible, in principle, to do the same in the present context, i.e. use an estimate of the long mode,

ζ̂L (we will use hats to denote estimators), to locally map ζS back to ζ̃S , assuming the consistency conditions,

ˆ̃
ζS(x) ≡ ζ̂S(e

−ζ̂L x). (IV.3)

Assuming ζ̂L is unbiased, the resulting “deprojected” short mode thus gives the fluctuations in a local unperturbed
coordinate system, i.e. the fluctuations as they would appear to a local observer14. If the consistency conditions
indeed hold, these local fluctuations should be completely independent of the long mode,

ˆ̃
ζS(x) → ζ̃S(x). (IV.4)

Technically speaking, the procedure defined in Equation (IV.3) does not perfectly deproject the long mode, due to
the position dependence of the long mode, but this procedure can be promoted to an exact inversion along same lines
as delensing in the CMB.

Thus, one can test the consistency conditions by comparing the local statistics of the deprojected short mode in
different spatial patches, and checking that they are independent of ζL. These local statistics can be N -point functions

of
ˆ̃
ζS or histograms of the mode amplitudes, or another statistic. The point is that the consistency conditions predict

that any local statistic will have to be independent of the long mode.

For the estimate of the long mode ζ̂L, there are two scenarios. First, one could imagine measuring it directly from
large-scale structure. Second, one could take the CMB lensing analogy further, and reconstruct the realization of the
long mode directly from the statistics of the short modes assuming the consistency conditions. By analogy with the
quadratic estimator for lensing reconstruction, we have

ζ̂q.e.L (k) = N(k)

∫

d3k′ ζS(k
′) ζS(k− k′) g(k′,k) . (IV.5)

If we assume that the consistency conditions hold, we can make our estimator unbiased at first order in ζL by requiring
that

ζL(k) =
〈

ζ̂q.e.L (k)
〉′

ζS
= N(k)

∫

d3k′ 〈ζS(k
′) ζS(k− k′)〉

′
g(k′,k)

≈ −N(k)

∫

d3k′ (ns − 1)PS(k
′)ζL(k) g(k

′,k) , (IV.6)

where we have used Eq. (II.6) in the second line. This then fixes our choice of N(k) to be

N(k)−1 = −(ns − 1)

∫

d3k′ PS(k
′) g(k′,k) . (IV.7)

One could go on to define the weights g(k′,k) which minimize the variance of the estimator for a particular set of
observations of the short modes, but that will not be necessary here.

Note, however, that if the long mode is estimated via “lensing” reconstruction, Eq. (IV.5), ζ̂L will be biased if the
consistency conditions are violated. To leading order in ns − 1 and ζL, we can estimate this bias by

ζ̂q.e.L (k) ≈

∫

d3k′ 〈ζS(k
′) ζS(k− k′) ζL(k)〉

′
P−1
L (k) g(k′,k)

−(ns − 1)
∫

d3k′ PS(k′) g(k′,k)
ζL(k) . (IV.8)

We see that the leading bias is determined by the squeezed limit of the three-point function. However, if we do not
have an independent measure of ζL we cannot see this bias directly. Furthermore, for the local ansatz we would also

find that the variance of
ˆ̃
ζS(x) = ζ̂S(e

−ζ̂
q.e.
L x) is independent of ζL despite the consistency conditions being violated,

〈

ˆ̃
ζS

ˆ̃
ζS

〉′

= 4c2PS(k)ζL + (ns − 1)PS(k)ζ̂
q.e.
L +O(ζ2L) = O(ζ2L) . (IV.9)

14 In general, one can test the consistency conditions by considering any local observable and testing if it depends on the long mode.
Another good example is halo number density, which can only depend on local physics. If the consistency conditions hold, this quantity
can not be modulated by ζL (modulo gradients of ζL) so that the ∝ k−2 scale-dependent bias has to be exactly zero [13, 14, 25].
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Since our quadratic estimator is only unbiased at linear order in ζL when the consistency conditions apply, we will
see no visible mode coupling in the power spectrum to the expected level of accuracy. Nevertheless, violations would
show up in higher order correlation functions

〈

ˆ̃
ζS

ˆ̃
ζS

ˆ̃
ζS

〉′

= 6c2PS(k)
2 + 24c22PS(k)

2ζL + 12c2(ns − 1)PS(k)
2ζ̂q.e.L +O(ζ2L)

= 6c2PS(k)
2 − 24c22PS(k)

2ζL +O(ζ2L) , (IV.10)

where we set c3 = 0 for simplicity. Since we are only able to check mode coupling to linear order in ζL, this mode
coupling can be made to vanish with an appropriate choice of c3.

Ultimately, the analogy with CMB lensing is limited because we want to define a procedure that works to all orders
in ζL rather than just linear order, as defined by the quadratic estimator. Fortunately, we can measure ζL directly
rather than inferring it through mode coupling. With such a measurement, one can directly check the bias of the
quadratic estimator as a test of the consistency conditions. A direct measurement of ζL can also be used to deproject
ζS to all orders in ζL when the consistency conditions are satisfied. If ζ is determined by the local ansatz, then we

will find that for some n,m with m ≥ 1 and n + m ≤ 4, such that 〈
ˆ̃
ζnS ζ̂mL 〉 6= 0. Since the consistency conditions

require that
ˆ̃
ζS(x) is statistically independent of ζ̂L, the presence of any non-zero contribution defines the violation

of the consistency conditions when using the deprojected modes.
The description here is an idealized description of deprojection and is more challenging to implement on real

observables. In reality, we do not have the luxury of observing ζ(x) directly, but instead see projection effects due
to redshifts, lensing, recombination, etc. [50–55]. One may hope to separate the three-dimensional projections from
the consistency conditions for these other projections. Showing that this procedure can be implemented in practice
is beyond the scope of this work. From a conceptual point of view, this method of deprojection highlights that the
single-field consistency conditions are a statement about about the universe for every realization of ζL, rather than
just its statistics, and can therefore be removed realization-by-realization.

V. DISCUSSION

Local non-Gaussianity as parametrized by the local ansatz is a natural consequence of many scenarios that convert
isocurvature fluctuations into curvature perturbations at late times. Such situations arise frequently in both multi-
field inflation and alternatives to inflation and is therefore a compelling target for current and future observations.
Meanwhile, single-field inflation makes a very specific set of predictions for the same correlation functions that are
predicted by the local ansatz. Thus, a common way of observationally distinguishing between single-field inflation and
its alternatives is by measuring local non-Gaussianity parameters. For instance, the consistency conditions predict a
squeezed limit bispectrum corresponding to fNL = − 5

12 (ns − 1) in the local ansatz and any deviation from this points

to a clear violation of single-field inflation15.
On the other hand, the local ansatz makes statements of a fundamentally different nature than the consistency

conditions, and it is not a priori clear that constraining local non-Gaussianity is equivalent to testing the single-field
consistency conditions. In this article, we have attempted to clarify the relation between these two approaches.

First, we have shown that, while the local ansatz can reproduce, e.g., the single-field prediction for the squeezed
limit bispectrum, it is impossible to agree with the consistency conditions to all orders, so that the local ansatz is in
general inconsistent with single-field inflation. Thus, in principle, precision measurements of the correlation functions
validating the consistency relations can rule out the local ansatz and confirm the single-field consistency conditions.
This is nontrivial in the sense that by choosing coefficients carefully, the local ansatz can match the prediction of
single-field inflation for any one correlation function. However, we have showed that there is no choice of coefficients
that may satisfy all the conditions simultaneously. Violations must appear which are at least of order (ns − 1)2.

Secondly, we have noted that, even in multifield inflation, a weaker version of the consistency conditions persists,
namely the fact that small-scale statistics should be independent of an adiabatic shift in the long mode. This means
that, technically, the usual local ansatz is inconsistent even with multifield inflation. However, the local ansatz can be
generalized in a simple way, by explicitly adding a second field (loosely identified with the isocurvature fluctuation), to
make it explicitly consistent with these consistency conditions. This generalized form reduces to the usual local form
in the limit where the final curvature fluctuations are dominated by the second field, and reduces to the single-field
prediction in the limit where the second field is negligible.

15 Violations within single-field inflation are possible by violating some of the technical assumptions discussed in Section III [26, 37–40]
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Finally, we have suggested a novel way of testing the consistency conditions. Instead of studying a hierarchy
of N -point functions, one could follow an approach analogous to delensing of the cosmic microwave background,
i.e. remove the effect of the long mode from the short modes assuming the consistency conditions, and then check
that the short-wavelength statistics are indeed independent of the long mode.

In practice, the minimal deviation of the local ansatz from the single-field consistency conditions is unobservably
small. Nevertheless, understanding the precise predictions of these models provides an important framework for
future tests of inflation and its alternatives. It is often argued that measuring fNL = − 5

12 (ns − 1) would confirm
single-field inflation. This view has been challenged on the ground that this prediction does not require inflation
but only that the short wavelength modes are statistically independent of the long wavelength modes in physical
coordinates [14, 24, 25]. In this work, we showed that even if the mode coupling underlying this relation is “trivial”
in physical coordinates, it can never be reproduced locally in space after inflation. As a consequence, any physical
observable, such as scale-dependent bias, should therefore show a minimum violation of the consistency conditions in
a universe governed by the local ansatz.
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[12] P. Creminelli, J. Noreña, M. Simonović, and F. Vernizzi, “Single-Field Consistency Relations of Large Scale Structure,”

JCAP 1312 (2013) 025, arXiv:1309.3557 [astro-ph.CO].
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