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Using lunar seismological data, constraints have been proposed on the available parameter space
of macroscopic dark matter (macros). We show that actual limits are considerably weaker by con-
sidering in greater detail the mechanism through which macro impacts generate detectable seismic
waves, which have wavelengths considerably longer than the diameter of the macro. We show that
the portion of the macro parameter space that can be ruled out by current seismological evidence
is considerably smaller than previously reported, and specifically that candidates with greater than
or equal to nuclear density are not excluded by lunar seismology.

I. INTRODUCTION

If General Relativity is correct, then dark matter
constitutes most of the mass density of the Galaxy.
Yet, decades after the case for dark matter became
compelling [1] and widely accepted (although see [2])
we still do not know what it is. The most widely con-
sidered and searched for candidates are new particles
not found in the Standard Model of particle physics,
such as the generic class of Weakly Interacting Mas-
sive Particles (WIMPs) (especially the Lightest Su-
persymmetric Particle) and axions.

In this paper, we consider instead a class of macro-
scopic dark matter (macros) candidates. The the-
oretical motivation for this stems originally from
the work of Witten [3], and later, more carefully
Lynn, Nelson and Tetradis [4]. Macroscopic objects
made of baryonic matter with sizable “strangeness”
(i.e. many of the valence quarks are strange quarks,
rather than the usual up and down quarks found in
protons and neutrons) may be stable, and may have
been formed before nucleosynthesis [3, 4], thus evad-
ing the principal constraint on baryonic dark matter.
The appeal of such a dark matter candidate is that
there would be no need to invoke the existence of
new particles to explain the observed discrepancy
between gravitational masses and luminous masses
in galaxies.

Observational limits on such macroscopic dark
matter have been obtained by several groups over
the years. Some of these have been specific to the
original “strange matter” paradigm, while others
have been more phenomenological. Recently, one of
us, with colleagues, presented a comprehensive as-
sessment of limits on such macros as a function of
their mass and cross-section [5], identifying specific
windows in that parameter space that were as yet

unprobed. We later refined those in [6]. An inter-
esting window identified there was for macros with
masses of greater than about 55g, and densities that
included nuclear density. This is shown in Figure 3
of [5] reproduced here as Figure 1.

In [5], no mention was made of seismological
bound on macros – obtained by considering the ef-
fects of macros striking the Earth or Moon – even
though these could conceivably have intruded into
the open window identified above 55g. Here we jus-
tify that caution, reconsidering the seismological sig-
nals that could be observed when such a dark mat-
ter candidate impinges on the Moon, and finding
that the signal (and hence the limits on macro abun-
dance) had been overestimated.

It has been suggested [7] that the energy deposi-
tion into the 1 Hz range from a nuclearite (nuclear-
density macro) impact on the Moon or Earth should
be approximately 5% of the total energy deposition.
This, as shown in section II A, is a sizable overes-
timate even compared to our own purposefully gen-
erous estimate. We produce a more accurate model
of the seismic effects of macro impacts, including in
our model the effects of geometric lensing, stratifi-
cation of the Moon, anelastic attenuation, and geo-
metric attenuation. The most important considera-
tion is that even a sizable mass macro is very small
compared to the multi-kilometer wavelengths of seis-
mic waves that propagate unattenuated through the
Moon or Earth. The production of detectable long-
wavelength seismic waves is therefore highly sup-
pressed relative to short-wavelength waves.

For the balance of this paper, we focus on the
Moon, rather than the Earth, as the target sys-
tem. Unlike the Earth, the Moon is seismically
quiet. Most internal seismological activity in the
Moon originates from deep Moonquakes, which are
very attenuated by the time they reach the surface.
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FIG. 1. Figure 3 of [5] “Constraints on the macro cross
section and mass (assuming the macros all have the same
mass), applicable for both elastically- and inelastically-
scattering candidates. In red are the femto- and micro-
lensing constraints, while in grey are the CMB-inferred
constraints. The black and green lines correspond to ob-
jects of constant density 1g/cm3 and 3.6 × 1014g/cm3,
respectively. Black hole candidates lie on the magenta
line, however, these may be ruled out for other reasons;
objects within the hatched region in the bottom-right
corner should not exist as they would simply be denser
than black holes of the same mass.” The yellow region
labeled “Mica” has been excluded by etching and in-
specting sheets of ancient mica. See [5] for further ex-
planations and appropriate references.

Most of the noise in lunar seismograms comes from
meteoroids, but meteoroid impacts are for the most
part easily identifiable as such. This allows us to
place constraints on the macro flux from the total
seismic event rate. A more sensitive search for macro
impacts could seek, as Teplitz et al. have [7], to
identify the distinctive linear morphology of seismic
events that a macro would cause as it bored straight
through the target at high velocity (typically hun-
dreds of km/s). We look forward to that in a future
paper.

The result of the current analysis is an upper
bound on the event rate that would have been mea-
sured by the Apollo lunar seismometers that sub-
stantially weakens the previously reported macro
bound. In particular, we find that macros of nu-
clear or greater density are not constrained by lunar
seismic data.

II. THE SEISMIC SOURCE

A. Seismic Wave Generation

Once a macro hits the Moon it can suffer a variety
of fates. If it is comparable in density to ordinary
matter, then, like a meteoroid, it will deposit all
of its kinetic energy over a small distance and re-
sult in an impact crater at the lunar surface. Here,
we are more interested in macro candidates that are
much denser, probably comparable to nuclear den-
sity, striking the Moon with an impact speed char-
acteristic of relative orbital speeds in the Milky Way
(several hundred km/s). This is far in excess of the
speed of sound in rock, which is just a few km/s.

A precise evaluation of the seismic signal resulting
from such an impact would require detailed model-
ing of the response of lunar rocks to the passage of a
hypersonic dense projectile. We will attempt below
to put an upper limit on the strength of that seismic
signal, and thereby demonstrate that it is difficult
to place strong limits on macros from lunar seismol-
ogy. We will therefore consistently overestimate the
seismic signal.

Because of the hypersonic impact of the macro,
we expect a good model of the initial effect of its
passage through the rock to be the instantaneous
heating of all the rock in a column swept out by
the cross-section σX of the macro. We approximate
this as each atom of rock material acquiring a ran-
dom velocity approximately equal in magnitude to
the impact velocity of the macro. The macro there-
fore deposits energy along a straight line through the
Moon at a rate

dE

dx
= ρMoonσXv

2
X . (1)

A macro of mass MX will therefore traverse the
Moon without significant deceleration if

2RMoonσXρMoon �MX , (2)

where ρMoon is the appropriately averaged lunar den-
sity and 2RMoon is the lunar diameter. For the bal-
ance of this paper, we will take equation (2) to apply,
unless specifically noted.

This energy deposition transforms the impacted
rock into a column of ionized plasma, and initiates
an outward propagating melt front. We show in ap-
pendix A below that for the macro cross-sectional
areas of interest to us, the melt front either ad-
vances subsonically immediately, or at best the tran-
sition from supersonic to subsonic propagation oc-
curs marginally outside the macro radius. Once the
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velocity of the melt front becomes subsonic, a seis-
mic wave, sourced by the overpressure interior to the
melt front, will begin to propagate radially outward
ahead of the melt front.

Initially the outgoing wave will be non-linear, and
will likely also result in the fracturing of the rock.
Eventually, the pressure amplitude of the wave will
fall below p0, the maximum differential pressure that
the rock in this region can support elastically. From
this time forward, we can treat the outgoing seismic
wave as an ordinary linear wave.

We begin by estimating the energy carried in that
outgoing wave. Taking the column of overpressured
melted rock to be instantaneously generated, the re-
sulting overpressure will be radially symmetric and
of the form

p(r) =

{
p0f(r) if a < r < b,− `

2 < z < `
2 ,

p = 0 otherwise,
(3)

where 0 < f(r) < 1. The overpressure extends over
the entire length of the column (−`/2 < z < `/2)
over some range of radii a < r < b. After a short
time, the pressure will remain in this cylindrically
symmetric form (at least away from the lunar sur-
face), since the inhomogeneity of the Moon (and
hence of the development of the evolving pressure
distribution) is significant only on scales of tens or
hundreds of kilometers.

The energy of a seismic p-wave is

E =
1

2

∫
d3x

(
ρ|∂tu|2 + (λ+ 2µ)|∇u|2

)
, (4)

where u is the displacement field, and ρ, λ, µ are the
density and Lamè coefficients respectively. For p-
waves, p = −K∇ · u where K is the bulk modulus.

We can rewrite (4) in terms of the Fourier trans-
form of p(r). To leading order in kb this is

P =
4πp0
k cos θ

sin

(
`k cos θ

2

)
F + O((kb)0) , (5)

where k is the magnitude of the wave-vector, θ is the
angle the wave-vector makes with the tube axis, and
F ≡ b2f1(b)− a2f1(a), where

f1(r) =

∞∑
n=0

n∑
m=0

(
n

m

)
f (n)(r0)

n!

(−r0)n−m

2 +m
rm , (6)

for any choice of r0 ∈ [a, b]. The form of (6) follows
when we Taylor expand f(r) and apply the binomial
theorem.

Defining κ ≡ K2/(λ+ 2µ), it follows that

E =
1

κ

∫
d3k

(2π)3
|P |2 . (7)

The seismometers that were left on the Moon by
the Apollo astronauts, and which functioned until
being decommissioned in 1977, were sensitive at fre-
quencies up to 20 Hz to displacements as small as
0.3 nm [8, 9]. The detectable energy is therefore

Ek =
1

κ

∫ k

0

dk′ dθ

(2π)2
k′2 sin θ|P |2

=
2p20F

2k2`

κ

[
sin(k`) + k`(cos(k`)− 2)

k2`2
+ Si(k`)

]
+ O((kb)4) .

Note that

π

2
≤ sin(x) + k`(cos(x)− 2)

x2
+ Si(x) ≤ π

2
+

4

x
,

so, when k`� 4 we have

Ek '
1

κ
π`p20F

2k2 ≡ C1k
2 . (8)

The initial pressure profile is probably determined
by the details of the initial macro-induced plasma,
and the subsequent outward propagation of a melt
front. As described above, once that front propa-
gates out subsonically, a seismic p-wave will travel
outward from the column of molten rock. Initially,
however, the overpressures in the wave may be out-
side the linear regime for the rock elasticity. As the
pressure wave propagates outward, it is attenuated
until the pressure differential is within the linear
regime.

The macro travels hypersonically and will gener-
ate a shock wave. Shock waves typically evolve to
pressure fronts resembling a right triangle [10], i.e.
f = (r − r0) /∆r where a = r0 and b = r0 + ∆r.
We adopt this shape also for its simplicity, in the
expectation that the specific shape is unlikely to
grossly alter the conclusions. In this case f1(r) =
(2r − 3r0) /6∆r and

Ek =
∆r2(3r0 + 2∆r)2

36κ
π`p20k

2 . (9)

The total energy of the pressure wave is (from (4))

E =
2πp20`

κ

∫ b

a

r drf(r)2 ,

=
p20
6κ
π∆r`(4r0 + 3∆r) .

Some of that energy would be lost to structural
changes to the rock, such as melting and breaking.
The non-linear regime is characterized by faulting
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and fracturing. Brittle failure for granite occurs at
a stress exceeding 3×108 Pa [11], which is much less
than the initial overpressure that the macros will
leave behind in their melt tubes. By ignoring dis-
sipation during the non-linear evolution of the seis-
mic waves, we will, as intended, overestimate the
energy that would reach the seismometers. Overes-
timating the signal, we set E = ρσX`v

2
X ≡ ε`, take

p0 = min
(
108 Pa, psource

)
, and obtain an expression

for r0, which demarcates the end of the non-linear
regime:

r0 =
3κε

2πp20∆r
− 3∆r

4
. (10)

The fraction of the original deposited energy de-
tectable to seismometers is thus

Ξ ≡ Ek

E
= k2

(
πp20∆r2 − 18κε

)2
576πp20κε

. (11)

A lower bound on r0 is 0, corresponding to linear
behavior from the start. (Actually, the lower bound

is
√
σX/π), but the difference is negligible.) This,

in turn, imposes an upper bound on the pulse width

∆r ≤

√
2κε

πp20
. (12)

When ∆r is restricted to its physical range, Ξ is
a monotonic decreasing function in ∆r. Thus, re-
placing ∆r with its extremal values, we obtain the
following bounds on Ξ,

4

9

κεk2

πp20
≤ Ξ <

9

16

κεk2

πp20
. (13)

It is important to note that these expressions only
hold for k(r0 + ∆r) � 1, however they will always
provide an over-estimate of the fraction of detectable
energy. Moreover, this condition holds for a wide
variety of relevant parameters. Taking ρ = 3.3 ×
103 kg m−3, vX = 2.5×105 m s−1, κ = 5.5×1010 Pa,
and k = 1.5 × 10−2 m−1 [12], we obtain Ξ < 4.5 ×
(σX/cm2). To obtain the 0.05 that Teplitz et al.
used, one must take σX > 10−2 cm2, which is rather
large [13] (cf. Figure 1).

The choice of p0 = 108 Pa does significantly im-
pact our result; ultimately the measured displace-
ments we calculate will be inversely proportional to
p0. Our choice of p0, however, is well below the
overpressure corresponding to the boundary between
linear and non-linear elasticity in the Moon. As the
ambient pressure on a sample of rock increases, so

too does p0 [14–16]. We have taken p0 to be a factor
of 3 below that of granite with a modest 50 MPa
overpressure [11]. In reality, p0 is probably, on aver-
age, orders of magnitude larger than we claim it to
be because the ambient pressure in the Moon is on
the order of GPa rather than MPa. This is one more
way in which we overestimate the seismic signal.

To our knowledge, no measurements probe the
elastic behavior of rock at these high pressures. Note
also that this choice of p0 corresponds to r0 on the
order of 1 km, which well exceeds the regime of non-
linearity we would have expected based on the solu-
tions to the heat equation (Appendix A).

III. SEISMIC WAVE PROPAGATION

The velocity of p-waves as a function of distance
r from the center of the Moon (or the Earth, and
presumably other spherical rocky celestial bodies)
is of the form v(r) = a2 − b2r2 [12, 17] in each of
a number of layers. Using Snell’s law, we obtain
the differential equations for the trajectory of p-wave
rays within each layer

v2 = ṙ2 +
p2rayv

4

r2
,

θ̇ = ±prayv
2

r2
.

where θ is the polar angle of the ray measured from
the center of the Moon, and pray is the ray param-
eter, which is fixed along any given ray trajectory.
These equations can be integrated with the above
v(r) to obtain, for some constants q and θ0,

r(t) =
a
√

(qe2abt − b)2 + 4a2b4pray

b
√

(qe2abt + b)2 + 4a2b4pray
,

tan(θ(t)− θ0) =
q2e4abt − b2

4ab3pray
+ abpray .

The Moon, like the Earth, is stratified. At each
boundary, a ray will be reflected and transmitted.
We assume for simplicity that the reflection and
transmission coefficients are frequency independent.
While this may lead to either an overestimate or an
underestimate of the signal, the net effect of these re-
flections and transmissions on the limit is small, and
so their frequency dependence is unlikely to spoil the
overall point.

The last effect to account for is anelastic attenu-
ation (i.e. absorption), characterized by the quality
factorQ, which depends on both frequency and r For
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a given mode, the ratio of final to initial amplitude
is

exp

[
−k
∫ t

t0

dt′
v(r(t′))

2Q(r(t′))

]
≡ exp [−kD ] . (14)

The VPREMOON Model [12] provides piecewise-
constant data for Q, so it is reasonable to subdi-
vide the Moon further into strata of different Q. For
propagation within a given layer i, the factor D is
given by ∆tivi/2Qi, where we take vi to be the av-
erage velocity within that stratum. For the case of
the Moon (and the Earth), this is a good approxi-
mation, since v doesn’t change significantly within
a given layer of constant Q. Again, while this ap-
proximation may lead to either an overestimate or
an underestimate of the signal, the net effect of the
attenuation on the limit is small, because we are in-
terested only in long wavelength modes which have
less attenuation.

Thus, the amplitude of a ray can be computed by
knowing the two numbers

T ≡
∏
i

Ti ,

D ≡
∑
i

∆tivi
2Qi

,

where Ti are the reflection or transmission coeffi-
cients at boundary i on which the ray is incident.

IV. SEISMIC WAVE DETECTION

Consider a p-wave traveling towards positive x,
and with amplitude that is non-zero only within
some region S in the plane normal to to its motion.
Denote A ≡

∫
S

dy dz, and let χS be 1 on S and 0
elsewhere. The displacement field of the wave is

u(~x, t) = χR×S

∫
dk

2π
U(k)e−ik(x−vpt), (15)

so

|u(~x, t)| ≤
∫

dk

2π
|U(k)| . (16)

Its energy is

E = ρv2pA

∫
dk

2π
k2|U(k)|2 . (17)

As before, we denote the energy in the low frequency
spectrum

Ek = ρv2pA

∫ k

0

dk′

2π
k′2|U(k′)|2 . (18)

It follows that

|U(k)| =
√

2π

ρv2pA

1

k

√
dEk

dk
, (19)

and from the estimate above (16)

|u(~x, t)| ≤ (2πρv2pA)−1/2
∫ k

0

dk′

k′

√
dEk′

dk′
. (20)

In our case Ek = ΞE = C1k
2 before attenuation.

After anelastic attenuation, dEk/dk = 2T C1ke
−k D

|u(~x, t)| ≤
√

2

ρv2pA

√
T ΞE

D

1

k
Erf

[√
D k

2

]
. (21)

No similar simple analytic expression emerges when
Ek includes the energies of two or more different
rays, each with different attenuation factors. If
attenuation were important, we could average D
among the coincident rays and obtain an approxi-
mate upper bound on |u(~x, t)|. However, since we
only wish to consider the lowest frequency modes,
f < 20 Hz, and Dk � 1, so absorption does not sig-
nificantly alter u. Taking kD = 0, the displacement
caused by the incident p-wave is bounded above by

|u(~x, t)| ≤
√

4T ΞE

πkρv2pA
. (22)

V. SIMULATION

In previous works (e.g. [7]), homogeneous Earth
and Moon models have been used to constrain the
parameter space of macroscopic dark matter. This
approach neglects the lensing that occurs because of
the velocity gradient and the spherical boundaries
of strata, as well as the energy losses from reflection
and refraction across these boundaries. Here, we
propagate rays, each carrying a fraction of the to-
tal energy deposited by the macro, from the macro’s
original line of impact to the boundary of the Moon.
We then create an intensity map of the lunar sur-
face for a representative sample of macro impacts.
Finally, we convert the intensity maps to displace-
ment maps, and using the sensitivity of the lunar
seismometers, we obtain an average event rate that
the lunar seismometers would measure.

A. Data Generation

We consider a macro trajectory that passes a dis-
tance D from the lunar center. The trajectory has
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some length L within the moon, which we sample
at M points. From each point we propagate N
randomly oriented rays, each endowed with energy
Ei = ρ(ri)σXv

2
XL/(MN), where i ∈ {1, . . . ,M} la-

bels the points. We use the trajectories derived in
section III to propagate the rays. Because of the ap-
proximation of spherical symmetry, each ray propa-
gates in a plane.

Since the moon is stratified, we split the propa-
gation of a ray at the boundary of each layer into
a reflected and a transmitted ray. During a ray’s
propagation through a given stratum, its time spent
in that layer ∆ti, the attenuation factor in that layer
Di, and the reflection/transmission coefficient Ti are
all recorded. Each time a ray reaches the surface of
the Moon, its position, cumulative propagation time
∆t and other trajectory attributes are recorded. In
this full model, it would take 16 iterations to prop-
agate a ray from one side of the moon to the other.
Since Q is nearly constant, we reduce the number
of boundaries by taking Q = 6750. In this case, it
takes 8 iterations to propagate through the Moon.
We expect this to lead to an overestimate of the sig-
nal, since each encounter with a boundary reduces
the amplitude of the wave that reaches the surface.

B. Data Analysis

To analyze the simulations, we convert the
surface-incident ray position data to HEALPix pix-
elization [18]. (We use nside = 16). The area of
a HEALPix pixel is Apix = 4πR2

moon/npix, where
npix = 12 × n2side. A seismic wave can therefore
cross a HEALPix pixel on the surface in tcrossing '√
Apix/πv2surface. According to [12], vsurface '

1 km s−1. Rays that reach a surface pixel within
tcrossing of one another are taken to add construc-
tively.

We distribute the energy of each ray evenly over
its pixel, and thus set A (as in equation (17) and
following) equal to Apix. This is a good approxi-
mation when N = npix, since the average angular
separation of the rays at the source corresponds to
the average angular separation of the HEALPix pix-
els. We omit the effects of anelastic attenuation, as
inspection of the propagation data showed that typ-
ically kD ' 10−2 for the frequencies of interest in
the Moon.

Using (22), we compute an upper bound for the
displacement within a given surface pixel, and com-
pare that to the sensitivity of the lunar seismome-
ters given in [8]. If the calculated displacement is

less than the seismometer sensitivity, then the seis-
mic wave is considered undetectable in that pixel.
The number of detectable pixels is denoted mD, for
a macro making closest approach D to the lunar cen-
ter.

It is unlikely that a macro impact will be detected
if it only just exceeds the seismometer sensitivity in
one seismometer. As the displacement approaches
dmin = 3×10−10 m in a pixel with a seismometer, we
should expect no chance of detection, while as d →
∞ the impact should always be detected. We model
this by taking the probability of detecting a seismic
signal with displacement ∆xi in the ith surface pixel
(if it contains a seismometer) to be

mD,i ≡ max

{
0, 1− exp

[
p

(
1− ∆xi

dmin

)]}
. (23)

Here p describes how the detection probability in-
creases as the strength of signal increases. (For ex-
ample, if ∆x = 4dmin is q times as detectable as
∆x = 2dmin, then p = ln

√
q.) Summing over all the

pixels yields the effective number of pixels in which
there exists a detectable signal

mD =

npix∑
i=1

mD,i . (24)

In the end, we take p→∞ so as to, once again, over-
estimate the probability of detecting a lunar macro
impact.

This procedure is repeated for 20 values of the
impact parameter D, evenly spaced by 85 km. The
average number of pixels on which there exists a de-
tectable signal is then

m =

∑
DDmD∑

DD
. (25)

If there are n lunar seismometers (or tight clus-
ters thereof), we suppose that each occupies one
HEALPix pixel. If n + m ≥ npix, then detection
is guaranteed. Otherwise, if M macros impact the
moon, the likelihood of any of them being detected
is

P = 1−
[

(npix − n)!(npix −m)!

npix!(npix − n−m)!

]M
. (26)

P is a function of σX , but not of MX .

VI. RESULTS

We have taken p = ∞ in (24) when calculating
mD, so as to overestimate the signal. The resulting
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detection probability versus macro cross-section is
plotted in Figure 2. A very good fit to the curve is

P(σX) ' Erf[(σX/σ0)2(1 + σX/σ1)] (27)

with σ0 = 4.67 × 10−7cm−2 and σ1 = 2.17 ×
10−8cm−2. There is thus a very clear transition
around σX ' 10−7 cm2 where the detection proba-
bility increases rapidly with increasing cross-section.

Using the computed detection probability P(σX),
and the flux of macros impinging on the Moon

Φ(MX) ' 5× 107(MX/ g)−1 yr−1 , (28)

we can determine which values in the σX vs. MX

parameter plane could be excluded using the Apollo
seismometer data. The reported rate of seismic
events detected on the Moon by the four (clusters)
of Apollo seismometers was 2500 events per year.
Therefore a good approximation of the excluded re-
gion is

P(σX)Φ(MX) > 2500. (29)

(If one had confidence that at most some fraction
f of these could be macros, then for fixed MX one
could improve the constraint on σX but only by at
most f1/2, due to the functional form of P(σX).)

In Figure 3, we reproduce Figure 3 of [5] (i.e. Fig-
ure 1) with the “exclusion region” defined by (29)
shaded blue. For MX > 2× 104g, the flux of macros
is too low to give the observed seismic event rate;
below the region, the energy deposited is too small
for the events to be detected. Since our calcula-
tion assumed that the macro passed through the
entire moon without significant slowing, it applies
only for MX > σXρMoon2RMoon, which forms the
upper boundary of the solid blue limit. However, for
fixed MX , increasing σX above MX/(ρMoon2RMoon)
seems unlikely to significantly reduce the signal,
since the total energy deposited will remain fixed
but along a shorter path, nearer the lunar surface.
We thus expect the region above the solid blue re-
gion to be excluded as well, and cross hatch it in
blue.
We emphasize that since we have consistently

overestimated the detectability of the signal, the ac-
tual excluded region of parameter space lies above
the shaded region (i.e. at higher σX for any given
MX).

VII. CONCLUSION

We have considered more carefully than in the
past the seismic signal generated by a macroscopic
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FIG. 2. Detection Probability versus Cross-Section.
The curve of best fit (solid) plotted is of the form
Erf[(σX/σ0)2(1 + σX/σ1)] with σ0 = 4.67 × 10−7cm−2

and σ1 = 2.17× 10−8cm−2.
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FIG. 3. Figure 3 of [5] with the maximum seismic “ex-
cluded” region added in blue. To the right of the blue
region, the event rate is too low because the macro flux
is too low; below the region, the signal strength is defi-
nitely too low. The excluded region is divided in two. In
the solid blue colored region, our calculations apply. In
the hatched region above it, the macro stops inside the
moon and our calculations are not valid, but we expect
this region is excluded as well. We note that the nuclear-
density line lies outside the excluded region. Since we
have consistently overestimated the signal, the true ex-
clusion area from total lunar seismic rate must lie above
the lower boundary of the blue shaded area.
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dark matter candidate incident on the Moon. We
have found that the signal is weakened compared to
prior expectations, in particular by the mismatch be-
tween the small size of the macro and the long wave-
length of the modes that propagate largely unatten-
uated (and to which the lunar seismometers were
sensitive). For macroscopic dark matter of density
greater than or equal to approximately nuclear den-
sity we have found that one cannot infer limits from
the existing data on the total lunar seismological
event rate.

The Earth and the Moon are ideal targets for look-
ing for macros, whose vast surface area is difficult to
improve upon. However, in order to forecast the
sensitivity of future seismological searches, or to in-
terpret future data, it will be necessary to markedly
improve our understanding of how, and with what
efficiency, macro kinetic energy gets transferred into
detectable seismic waves.
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Appendix A: Propagation of the melt front

When a macro impacts the Moon, the rock nearby
is rapidly ionized, vaporized, or melted depending on
its proximity to the macro. The energy deposition
into these changes of phase will not contribute to
primary seismic wave generation. The expansion of
the radius from the macro trajectory to the bound-
ary of the melted rock, the “melt-front,” slows down
with time. When the melt-front velocity is below the
speed of sound, seismic waves will escape the melted
region, the “melt-zone”. These seismic waves carry

away energy that has not already been used in phase
transitions. Because we are interested in an upper
bound on the seismic activity of macro impacts, we
assume that the all the remaining energy propagates
away as seismic waves.

Nuclear dense macros have cross-section σX small
enough that they are reasonably approximated by a
delta source. The t = 0 temperature field is fixed by
equating the heat energy with the macro energy

T (r, 0) = |dE
dx
| σX
2πρσXcp

δ(r)

r
=
σXv

2
X

2πcp

δ(r)

r
, (A1)

where |dEdx |, vX , cp, ρ are the energy deposition,
macro velocity, impacted material heat capacity and
density respectively. The temperature field then
evolves into a Gaussian in r,

T (r, t) =
σXv

2
X

4παcp

e−
r2

4tα

t
. (A2)

Setting T (r, t) = Tmelt yields an expression for the
melt-radius,

rm(t) =
√

4tα ln [C/t] , (A3)

where

C =
v2XσX

4πcpαTmelt
. (A4)

The melt-radius velocity is then

ṙm(t) =

√
α

t

[
(ln [C/t])

1/2 − (ln [C/t])
−1/2

]
. (A5)

For sufficiently small t � C it is a reasonable ap-
proximation to take

ṙm(t) ≈
√
α

t
ln [C/t] . (A6)

We can solve for t such that ṙm = vp, the speed of
longitudinal waves, and hence determine the radius
rfm at which the melt wave propagation slows to less
than the speed of sound,

rfm = AW
[
Dr2X

]
, (A7)

where W is the Lambert W function,

D =
v2X

cpTmeltA2
and A =

2α

vp
. (A8)

There is a critical value of rX , rc ≡
−AW [−(A2D)−1] (where one takes the lower
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branch of W ) above which this calculation yields

rfm <
√
σX/π, which is unphysical. For rX > rc,

we should take rfm =
√
σX/π. For both granite

(α ≈ 10−6m2/s, Tmelt = 1.49×103K and cp = 1.05×
103J/kg K [19]) and limestone (α ≈ 10−6m2/s,
Tmelt = 2.87 × 103K and cp = 1.04 × 103J/kg K
[20]), using vp = 8× 103m/s from the VPREMOON
model [12], and macro velocity vX = 2.5 × 105m/s,
we find rc ' 3× 10−9m. For nuclear-density macros
of the allowed masses (MX > 55 g), rc .

√
σX/π,

so the melt zone is negligible, though this might not

be so for some higher density candidate macros.
Additional peculiarities with modeling the macro

melt-zone are that the steep temperature gradient is
not well approximated by the linear heat equation,
and that the material properties of the rocks them-
selves are not constant in temperature. As we do
not trust our model to accurately predict the energy
lost, we overestimate the signal by assuming that
the macro deposits all its energy into seismic waves.
However, if we did use the results of this analysis,
the energy loss it predicts is many orders of magni-
tude less than the total energy deposition, so it is
inconsequential.
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