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We propose a variant of the D4-D8 construction to describe the low energy effective theory of
heavy-light mesons, interacting with the lowest lying pseudoscalar and vector mesons. The heavy
degrees of freedom are identified with the D8L-D8H string low energy modes, and are approximated
near the world volume of Nf −1 light D8L branes, by fundamental vector field valued in U(Nf −1).
The effective action follows from the reduction of the bulk Dirac-Born-Infeld (DBI) and Chern-
Simons (CS) actions, and is shown to exhibit both chiral and heavy-quark symmetry. The action
interpolates continuously between the U(Nf ) case with massless mesons, and the U(Nf − 1) case
with heavy-light mesons. The heavy-light meson radial spectrum is Regge-like. The one-pion and
two-pion couplings to the heavy-light multiplets are evaluated. The partial widths for the charged
decays G → H + π are shown to be comparable to the recently reported full widths for both the
charm and bottom mesons.

PACS numbers: 11.25.Tq, 11.15.Tk, 12.38.Lg, 12.39.Fe, 12.39.Hg, 13.25.Ft, 13.25.Hw

I. INTRODUCTION

In QCD the light quark sector (u, d, s) is dominated by
the spontaneous breaking of chiral symmetry. The heavy
quark sector (c, b, t) is characterized by heavy-quark
symmetry [5]. The combination of both symmetries led
to the conclusion that the heavy-light doublet (0−, 1−) =

(D,D∗) has a chiral partner (0+, 1+) = (D̃, D̃∗) that is
about one consituent mass heavier [3, 4]. This observa-
tion is supported by the BaBar collaboration [1] and the
CLEOII collaboration [2].

More recently, the Belle collaboration [6] and the BE-
SIII collaboration [7] have reported the observations of
multiquark exotics, with quantum numbers uncommen-
surate with the excited states of charmonia and bottomia,
such as the neutral X(3872) and the charged Zc(3900)±

and Zb(10610)± to cite afew. These sightings and more
have been supported by the DO collaboration at Fermi-
lab [8], and the LHCb collaboration at CERN [9]. They
provide a window to new phenomena involving heavy-
light multiquark states.

Theoretical arguments have predicted the occurence
of some of these exotics as molecular bound states medi-
ated by one-pion exchange much like deuterons or deu-
sons [10–17]. Non-molecular heavy exotics were also dis-
cussed using constituent quark models [19], heavy soli-
tonic baryons [20, 21], instantons [22] and QCD sum
rules [23]. The molecular mechanism favors the forma-
tion of shallow bound states near treshold, while the
non-molecular or quarkonium mechanism leads to deeply
bound states.

The holographic approach offers a useful framework for
discussing both the spontaneous breaking of chiral sym-
metry and confinement, in the double limit of large Nc
and large t′Hooft coupling λ = g2Nc. An example is the
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D4-D8 model suggested by Sakai and Sugimoto [24]. In
short, the model consists of Nf probe D8 and D8̄ branes
in a background of Nc D4 branes. The induced gravity
on the probe branes, cause them to fuse in the infrared
providing a geometrical mechanism for the spontaneous
breaking of chiral symmetry. The DBI action on the
probe branes, provides a low-energy effective action for
the light pseudoscalars with full global chiral symmetry,
where the vectors and axial-vector light mesons are dy-
namical gauge particles of a hidden chiral symmetry [25].

The purpose of this paper is to address the dual con-
cepts of chiral and heavy-quark symmetries by using the
holographic construction. We will show that a variant of
the D4-D8 construct, composed of (Nf−1) light and one
heavy probe branes allows a geometrical set up for the
derivation of the leading heavy-light (HL) effective ac-
tion in conformity with chiral and heavy-quark symme-
try. The heavy-light mesons are identified with the string
low energy modes, and approximated by bi-fundamental
and local vector fields in the vicinity of the light probe
branes. Their masses follow from the vev of the moduli
span by the dilaton fields in the DBI action. We note
that few approaches were proposed for the description of
heavy-light mesons using holography without the stric-
tures of chiral symmetry [26, 27].

The organization of the paper is as follows: In section
2 we briefly outline the geometrical set up for the deriva-
tion of the heavy-light effective action (HL). We iden-
tify the pertinent light and heavy fields and explicit their
contributions to the (expanded) DBI and CS actions. In
section 3, we detail the analysis of the HL meson spec-
trum. In section 4, we derive the chiral interactions to
the HL mesons and deduce their corresponding axial cou-
plings within and across the HL meson multiplets. We
use these couplings to estimate the HL charm and bottom
one pion charged decays. Our conclusions are in section
5.
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II. HOLOGRAPHIC EFFECTIVE ACTION

A. D-brane set up

The D4-D8 construction proposed by Sakai and Sugi-
moto [24] for the description of the spontaneous breaking
of chiral symmetry and the ensuing chiral effective action
is by now well-known, and will not be repeated here. In-
stead, consider the variant with Nf − 1 light D8-D̄8 (L)
and one heavy (H) probe branes in the cigar-shaped ge-
ometry that spontaneously breaks chiral symmetry. Also
and for simplicity, the light probe branes are always as-
sumed in the anti-podal configuration. A schematic de-
scription of the set up for Nf = 3 is shown in Fig. 1.
We assume that the L-brane world volume consists of
R4×S1×S4 with [0− 9]-dimensions. The light 8-branes
are embedded in the [0−3 + 5−9]-dimensions and set at
the antipodes of S1 which lies in the 4-dimension. The
warped [5 − 9]-space is characterized by a finite size R
and a horizon at UKK .

FIG. 1: Nf − 1 = 2 antipodal 8L light branes, and 1 8H

heavy brane shown in the τU plane, with a massive HL-string
connecting them. When the latter is massless, the 8H brane
coincides with the 8L branes, transmuting to Nf 8 + 8̄ light
branes.

B. DBI and CS actions

The lowest open string modes streched between the H-
and L-branes as shown in Fig. 1, when viewed near the L
brane world volume, consist of tranverse modes ΦM and
longitudinal modes Ψ, both fundamental with respect to
the flavor group SU(Nf − 1). At non-zero brane sepa-
ration, these fields acquire a vev that makes the vector

field massive [28]. Strictly speaking these fields are bi-
local, but near the L-branes we will approximate them
by local vector fields that are described by the standard
DBI action. In this respect, our construction is distinct
from the approaches developed in [26].

With this in mind and to leading order in the 1/λ ex-
pansion, the effective action on the probe L-branes con-
sists of the non-Abelian DBI (D-brane Born-Infeld) and
CS (Chern-Simons) action. After integrating over the S4,
the leading contribution to the DBI action is

SDBI ≈ −κ
∫
d4xdzTr (f(z)FµνF

µν + g(z)FµzF
νz) (1)

The warping factors are

f(z) =
R3

4Uz
, g(z) =

9

8

U3
z

UKK
(2)

with U3
z = U3

KK + UKKz
2, and κ ≡ T̃ (2πα′)2 [24]. The

effective fields in the field strengths are (M,N run over
(µ, z))

FMN =(
FMN − Φ[MΦ†N ] ∂[MΦN ] +A[MΦN ]

−∂[MΦ†N ] − Φ†[MAN ] −Φ†[MΦN ]

)
(3)

Specifically, using (3)) we can recast the trace contribu-
tion in (1) in the form fLf + gLg with

Lf = Tr(Fµν − aµν)(Fµν − aµν)− 2f†µνf
µν + bµνbµν

Lg = Tr(Fµz − aµz)(Fµz − aµz)− 2f†µzf
µz + bµzbµz

(4)

and

aMN = Φ[MΦ†N ]

fMN = ∂[MΦN ] +A[MΦN ]

bMN = Φ†[MΦN ] (5)

The CS contribution to the effective action is (form no-
tation used)

SCS =
Nc

24π2

∫
R4+1

Tr

(
AF2 − 1

2
A3F +

1

10
A5

)
(6)

where the normalization to Nc is fixed by integrating the
F4 RR flux over the S4. The matrix valued 1-form gauge
field is

A =

(
A Φ
−Φ† 0

)
(7)
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ForNf coincidental branes, the Φ multiplet is massless.
However, their brane world-volume supports an adjoint
and traceless scalar Ψ in addition to the adjoint gauge
field AM both of which are hermitean and Nf ×Nf val-
ued, which we have omitted from the DBI action in so far
for simplicity. Their leading contribution from the DBI
action is of the form (omitting the warping factors)

1

2
Tr |∇MΨ|2 − 1

4
Tr
(
[Ψ,Ψ]2

)
(8)

with ∇MΨ = ∂MΨ + i[AM ,Ψ]. The extrema of the po-
tential contribution in (8) or [[Ψ,Ψ],Ψ] = 0 define a mod-
uli [28]. For Nf−1 light branes separated from one heavy
brane, we identify one of the moduli solution with a finite
vev v as,

Ψ =

(
− v
Nf−11Nf−1 0

0 v

)
(9)

Since the upper block diagonal contribution commutes
with Aµ, only the Φ multiplet acquires a Higgs-like mass
through the first contribution in (8)

1

2
M2Tr

(
Φ†MΦM

)
≡

v2N3
f

(Nf − 1)2
Tr
(

Φ†MΦM

)
(10)

The vev is related to the separation between the light
and heavy branes [28], which we take it to be the length
of of the HL string of mass M , i.e. v ∼M . Below, M is
also the degenerate (in practice mean) heavy meson mass
for the bi-fundamental field Φ which will be identified
with the HL meson doublets, such as (D,D∗) or (B,B∗).
Throughout, we will refer to the large mass limit also as
the heavy quark limit.

III. HL MESON SPECTRUM

To investigate the holographic spectrum of the heavy-
light mesons, we first specialize to the case where the
simplified gauge potential 1-form (11)

A→
(

0 Φ
−Φ† 0

)
(11)

is inserted in the unexpanded DBI action

−κ
∫
d4xdz

√
−g

×
(
det
(
gMN + 2πα′FMN +∇MΨ†∇NΨ

)) 1
2 (12)

As we noted earlier, the warped mass term in (10) follows
by using (9) and expanding (12) in leading order

−ν̃2

∫
d4xdz(U2

z )(gzzΦ†zΦz + gxxΦ†µΦµ) (13)

Here we have set ν̃2 = T̃ ν2 with the HL mass parameter
ν ∼ v, and defined the warpings as

U2
z g

zz =
9

4

(
Uz
R

) 3
2 U3

z

UKK
≡ 9

4
a(z)

U3
z

UKK

U2
z g

xx = U2
z

(
R

Uz

) 3
2

=

(
Uz
R

) 3
2 R3

Uz
(14)

The corresponding field-strength 2-form (3) is

FMN →

(
−Φ[MΦ†N ] ∂[MΦN ]

−∂[MΦ†N ] −Φ†[MΦN ]

)
(15)

Inserting (15) into (1) and combining it with (13) yield
to quadratic order

SΦ

2κ
=

−
∫
dzd4xf(z)(∂µΦ†ν − ∂νΦ†µ)(∂µΦν − ∂νΦµ)

−
∫
dzd4xg(z)(∂µΦ† − ∂zΦ†µ)(∂µΦ− ∂zΦµ)

−ν̃2

∫
dzd4xa(z)(2f(z)Φ†µΦµ + g(z)Φ†Φ) (16)

A. Mode analysis

To find the HL mass spectrum, we first make use of
the general decomposition

Φµ = εµ(z)eip·x, Φ = −iε(z)eip·x (17)

into the equations of motion following from (16) to obtain

2f(p2εµ − pµε · p) +
d

dz

(
g

(
pµε− dεµ

dz

))
+ 2aν̃2fεµ = 0

g

(
εp2 − p · dε

dz

)
+ aν̃2gε = 0 (18)

We can simplify (18) by redefining

dε̃µ
dz

=
dεµ
dz
− pµε

εµ = ε̃µ + pµ

∫
dzε (19)

in terms of which (18) now reads
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− d

dz

(
g
dε̃µ
dz

)
+2f(p2ε̃µ − pµ(p · ε̃)) + 2ν̃2af ε̃µ + 2aν̃2fpµ

∫
dzε = 0

−gp · dε̃
dz

+ aν̃2gε = 0 (20)

1. Transverse modes

The transverse modes solution to (20) with ε̃ · p = 0,
yields ε = 0 and ε̃ satisfying

− d

dz

(
g
dε̃µ
dz

)
+ 2f(p2 + ν̃2a)ε̃µ = 0 (21)

for ν̃, a 6= 0. The heavy-light states correspond to the
normalizable bulk modes with p2 = −m2

n. Let φn(z) de-
note these normalizable modes. They satisfy the warped
and massive eigenvalue equation

− d

dz

(
g
dφn
dz

)
+ 2f(−m2

n + ν̃2a)φn = 0 (22)

We note that for coincidental branes with zero vev or
ν̃ = 0, (22) reduces to the equation for the pionic zero
mode in the massless limit with mn = 0. As a result,
the spontaneous breaking of chiral symmetry will be en-
larged from SU(Nf − 1) to SU(Nf ), in the limit of Nf
coincidental branes in agreement with the original anal-
ysis in [24]. This point will be emphasized further below
in the ensuing chiral effective action.

In terms of the modes (22), the transverse mode de-
composition is

Φµ(x, z) =
∑
n=1

φn(z)Bnµ(x)

Φz(x, z) = 0 (23)

Inserting (23) into the vector contribution in (16) we ob-
tain

2κ
∑
n,m

∫
dzfφmφn

∫
d4x(∂[µB

m
ν] )
†(∂[µBn,ν])

+2κ
∑
n,m

∫
(2aν̃2fφmφn + gφ′nφ

′
m)dz

∫
d4x(Bmµ )†Bn,µ

(24)

We now note that the coefficient of the second contri-
bution in (24) can be integrated by parts to satisfy the
identity

∫
dz (2aν̃2fφn −

d

dz
(g
dφn
dz

))φm = 2m2
n

∫
dzfφmφn(25)

thanks to (19). This suggests to normalize φn as

4κ

∫
dzfφmφn = δm,n (26)

which brings the quadratic HL vector contribution (24)
to the canonical form

∑
n

∫
d4x

(
1

2
∂[µB

n†
ν] ∂

[µBnν] +m2
nB

n†
µ Bnµ

)
(27)

2. Longitudinal modes

The longitudinal modes correspond to ε̃ · p 6= 0. For
p2 = −m2 nonzero, these modes are of the form ε̃µ =
pµε1. In this case both ε, ε1 are non-zero and satisfy the
coupled equations

− d

dz

(
g
dε1
dz

)
+ 2ν̃2afε1 + 2aν̃2f

∫
ε = 0

aν̃2ε+m2 dε1
dz

= 0 (28)

from which we have

ε = −dε1
dz

+
d

dz

(
1

2aν̃2f

d

dz

(
g
dε1
dz

))
(29)

or equivalently

m2ε = aν̃2ε− d

dz

(
1

2af

d

dz
(agε)

)
(30)

We note that (30) does not lead to the pionic zero mode in
bulk for ν̃,m→ 0, in contrast to (22). This is consistent
with the counting of Golstone modes in the limit when
all the D-branes are coincidental.

In terms of the original fields Φµ and Φz, the expansion
now reads

Φz(x, z) =
∑
n

εn(z)Dn(x)

Φµ(x, z) =
∑
n

−1

2afm2
n

d

dz
(agεn)∂µDn(x) (31)

after using the relation between ε̃ and ε in (20). Inserting
(31) into the pertinent quadratic parts in (16) yields
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2κ
∑
m,n

∫
dz ag

ν̃2εmεn
m2
n

∫
d4x∂µD

†
n∂

µDm

+2κ
∑
m,n

∫
dz ν̃2agεmεn

∫
d4xD†mDn (32)

which suggests the normalization

2κ

∫
dz agεmεn =

m2
n

ν̃2
δmn (33)

as a result, (32) takes the canonical form for the free HL
pseudoscalars∑

n

∫
d4x

(
∂µD

†
n∂

µDn +m2
nD
†
nDn

)
(34)

B. Heavy quark limit

The heavy quark limit will be sought through the
rescaling z = z̃/ν̃β with ν̃ → ∞. With this in mind
(22) reads

−ν̃2β g

2f

d2φn
dz̃2

+ ν̃β
g′

2f

dφn
dz̃

+ ν̃2aφn = m2
nφn (35)

with the limiting values

a→ a0 +
a0

2

(
z̃2

U2
KK

)
1

ν̃2β

g

2f
,
g′

2f
→ g0

2f0
,
g′0
2f0

+O
(

1

ν̃β

)
(36)

and a0 = a(UKK) = (UKK/R)
3
2 . Notice that

d

dz

(
1

2af

d(ag)

dz

)
≈ a0 +O

(
1

ν̃2β

)
(37)

This means that after the rescaling, (30) reduces to (37)
as ν̃ → ∞. A consistent ν̃ → ∞ limit is achieved by
setting 2β = 2 − 2β → β = 1

2 in (35). Matching the
leading poweres in ν̃ gives

− g0

2f0

d2φn
dz̃2

+
a0

2

z̃2φn
U2
KK

= m̃2
nφn (38)

with the squared mass

m2
n = ν̃2a0 + ν̃m̃2

n = M2 + ν̃m̃2
n (39)

We have identified the heavy quark mass as M = ν̃
√
a0.

More specifically, we can re-write the solutions to (38) as

m2
n = M2 + ν̃

√
a0

(
g0

U2
KKf0

) 1
2
(
n+

1

2

)

= M2 +M

(
2m2

ρ

0.67

) 1
2 (

n+
1

2

)
(40)

using the rho mass mρ =
√

0.67MKK [24]. (40) is Regge-
like with an intercept M2 and a slope of about Mmρ.
Note that the mass splitting ∆m between the odd-parity
H-multiplet (say n = 0) and the even-parity G-multiplet
(say n = 1) is finite in this model, with

∆m = mG −mH ≈
mρ√

2
√

0.67
(41)

in the large M limit. The splitting is about ∆m ≈ 665
MeV, which is larger than the reported mean of 420 MeV
for charm and 396 MeV for bottom [2].

In the D3/D7 set up and its variants of heavy-light
mesons presented in [26], the heavy-light meson mass
spectrum was found to be of the form mHL = mH +
O(1/

√
λ) in the chiral limit. In contrast, our result (40)

shows a leading correction of order O(λ0) when chiral
symmetry is spontaneously broken in the holographic
construct.

IV. HL CORRELATION FUNCTIONS

The HL correlation functions from the current-current
correlator

ΠAB(q) = i

∫
d4xeiq·x

〈
0|T ∗

(
JA(x)JB(0)

)
|0
〉

(42)

with the even and odd parity multiplet assigments

(JP , JVµ ) = (q̄iγ5Q, q̄γµQ) (JS , JAµ ) = (q̄Q, q̄iγµγ5Q)

(43)

In the holographic approach, (42) can be obtained from
the boundary effective action SB , by inserting sources
in the UV and integrating out the bulk fields using the
equations of motion [29–31].

A. Vector and Axial-Vector polarizations

We now define the bulk HL vector and scalar source
fields in momentum space as

Φµ(p, z)→ V(p, z)

V(p, zΛ)
Sµ(p)

Φz(p, z)→ 0 (44)
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with zΛ/UKK � 1 setting the UV cutoff. The boundary-
to-bulk propagator V(p, z) satisfies the off-shell version of
(22),

− d

dz

(
g
dV
dz

)
+ 2f(p2 + ν̃2a)V = 0 (45)

subject to the axial and vector boundary conditions

V(p, 0) = 0, axial

∂zV(p, 0) = 0, vector (46)

To construct SB , we first make some general observa-
tions regarding the transverse eigenmode equation (45-
46). In general, the equation admits two independent
solutions. The first is f1 which is square integrable in
the UV limit, and as p2 → −m2

n , f1 aproaches the nor-
malized eigenmodes φn given in (22). The second is f2

which is another independent solution that is not square
integrable in the UV,. We normalize it using the Wron-
skian normalized Wronskian

4κg

(
f2

d

dz
f1 − f1

d

dz
f2

)
= −1 (47)

Also, we note that near the UV boundary with z → ∞,
(45) simplifies to

− d

dz

(
z2 dφn

dz

)
+ c(p) z

1
3φn ≈ 0 (48)

with c(p) a p-dependent function. The two independent
solutions to (48) take the asymptotic forms in terms of
the modified Bessel functions

f1(p, z) ≈
K3(6

√
c(p)z

1
6 )√

z
→ e−6

√
c(p)z

1
6

z
7
12

≡ f1,asy(p, z)

f2(p, z) ≈
I3(6

√
c(p)z

1
6 )√

z
→ e6

√
c(p)z

1
6

z
7
12

≡ f2,asy(p, z)

(49)

The general solutions to (45) satisfying the boundary
conditions (46) are

V(p, z) = f2(p, 0)f1(p, z)− f1(p, 0)f2(p, z), axial

V(p, z) = f ′2(p, 0)f1(p, z)− f ′1(p, 0)f2(p, z), vector

(50)

We now insert (44) using (50) into the massive quadratic
action for Φ. The result is the boundary action (zΛ →∞)

SB = −
∫

d4q

(2π)4
S†µ(q)

(
2κg(zΛ)

∂zV(p, zΛ)

V(p, zΛ)

)
Sµ(q) (51)

from which we read the axial polarization function at the
boundary

ΠA(q2) = 4κg(zΛ)
f2(q, 0)f ′1(q, zΛ)− f1(p, 0)f ′2(q, zΛ)

f2(q, 0)f1(q, zΛ)− f1(q, 0)f2(q, zΛ)

(52)

In the vicinity of the poles, (52) is dominated by

ΠA(q2)→ −f2(q, 0)

f1(q, 0)
4κg(zΛ)

f ′1(q, zΛ)

f2(q, zΛ)
(53)

To simplify (53), we now note that near the poles the
identity (47) simplifies

4κg
f ′1
f2

= − 1

f2
2

→ − 1

f2
2,asy

(54)

where the last relation holds at the UV boundary z =
zΛ. (54) when used in (53) reduces the axial polarization
function to

ΠA(p2) =
f2(p, 0)

f1(p, 0)
f−2

2,asy(p, zΛ) (55)

A similar reasoning with the vector sources gives the vec-
tor polarization function

ΠV (q2) =
f ′2(q, 0)

f ′1(q, 0)
f−2

2,asy(q, zΛ) (56)

The poles in the axial-vector correlator (55) are given by
f1(mn, 0) = 0, while those of the vector correlator (56)
are given by f ′1(mn, 0) = 0, in agreement with the mass
spectrum in (22). The residues are sensitive to the UV
cutoff zΛ. They are further discussed in the Appendix.

B. Scalar and Pseudo-Scalar polarizations

Similarly, for the scalar and pseudo-scalar mesons, we
refer to the square integrable solutions by f̃1 and to the
non-square integrable function by f̃2, and require the nor-
malization through the Wronskian

κν̃2

p2

g̃

f̃

(
f̃1
df̃2

dz
− f̃2

df̃1

dz

)
= −1 (57)

in comparison to the vector normalization in (47). A
repeat of the arguments for the vector polarizations lead
to the pseudo-scalar and scalar polarizations

Π̃S(q2) =
f̃2(q, 0)

f̃1(q, 0)
f̃−2

2,ayy(p, zΛ)

Π̃P (q2) =
f̃ ′2(q, 0)

f̃ ′1(q, 0)
f̃−2

2,ayy(q, zΛ) (58)
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respectively. It is readily checked that in the heavy quark
limit Π = Π̃, and the JJ correlators exhibit heavy-quark
symmetry. This degeneracy follows from the rigid O(4)
symmetry of the vector fields in 5-dimensions.

V. HL CHIRAL INTERACTIONS

A. Chiral symmetry

To identify properly the nature of the chiral transfor-
mation on the holographic field decomposition, we will
recall in this section how this identification is made in
the constituent quark model. For that consider the HL
sources H± in the effective action for bare constituent
quarks

−ψ̄LH+QR − ψ̄RH−QL + c.c (59)

with H± HL sources for the (0±, 1±) multiplet with ±
chiralities. Here ψL,R refer to the bare light quarks and
QL,R to the heavy quarks. Let U be a generic pion field.
Under rigid chiral symmetry, the pion field transforms
linearly as U → LUR†, and the fundamental quarks
transform as ψL → LψL, ψR → RψR, so that

(H+, H−)→ (LH+, RH−) (60)

Rigid chiral symmetry is better enforced through the de-

composition U = ξLξ
†
R, with both ξL → LξLh

†(x) and
ξR → RξRh

†(x) transforming non-linearly. Consider now

the dressed constituent quarks χL,R = ξ†L,RψL,R. It fol-
lows, that the corresponding dressed HL effective fields
with odd parity are

H = (γµD
µ + iγ5D) (61)

with the identification

Dµ = ξ†LH
µ
+ + ξ†RH

µ
−

D = ξ†LH+ + ξ†RH
µ
− (62)

Under chiral symmetry (61) transforms as H → h(x)H.
Similarly, for the (0+, 1+) multiplet we can define the
dressed HL effective fields with even parity as

G = (D0 + γµγ5D
µ
1 ) (63)

which transforms as G → h(x)G under chiral symmetry
We now seek to enforce these symmetries on the bulk
fields in holography.

B. Hologaphic identification

In the axial gauge AM (x, z → ∞) → 0, the residual
gauge transformation g satisfies ∂Mg → 0 at infinity. Fol-
lowing the arguments in [24], we identify the rigid L,R
chiral transformations as L = g(z → +∞) = g+ and
R = g(z → −∞) = g−. In the axial gauge (bare gauge),
the pion field π(x) is identified as

U(x) = e
i
fπ
π(x) = Pe−

∫ +∞
−∞ Az(x,z′)dz′ (64)

As expected, under rigid chiral transformations U →
LUR†. A useful gauge choice is the one where the pion
field is identified with the zero mode in the holographic
direction (dressed gauge)

Az(x, z) = − i

fπ
π(x)ψ′0(z), Aµ(x, z) = 0 (65)

The non-normalizable pion zero-mode running along the
(Nf − 1) coincidental D8L branes is [24]

ψ0(z) =
1

π
arctan

(
z

UKK

)
(66)

This dressed gauge is reached by noting that the pion
identification in (64) allows us to slice the holonomy along
the z-direction through

ξ±(x, z) = Pe−
∫±z
0

Az(x,z′)dz′ (67)

and identify

ξL(x) = ξ+(x, z →∞)

ξ−1
R (x) = ξ−(x, z →∞) (68)

The bare HL meson fields transform as fundamental
fields under rigid chiral transformations

Φ(x, z → ±∞)→ g±Φ(x, z → ±∞) (69)

This means that the bare Φ(z → ±∞) are the analogue
of the bare H±. In particular for charm, the low lying

(φ̃0, φ0) modes contribute to the (D,D∗) meson multiplet

H, and the first excited (φ̃1, φ1) modes contribute to the
(D0, D1) meson multiplet G. The dressed HL meson fields
are readily identifiedas

Φµ(x, z) = ξ+(x, z)φ0(z)Dµ(x)

Φz(x, z) = ξ+(x, z)φ̃0(z)D(x) (70)



8

C. Quadratic HL holographic action

The holographic effective action with all quadratic
terms in the HL fields can now be constructed without re-
course to the heavy quark limit. For that, we follow the
construction in [24] and supplement the AM field with
external flavor sources AL,R by defining

Aµ = Vµ + 2ψ0Aµ +
∑
n

Aµ,nψn (71)

with Az still given by (65). Here, the external sources
are defined as AL,R = (V ± A). For odd values of n
we identify Aµ,n = vµ,n with the light 1−− flavor vector
excitations, and for even values of n we identify Aµ,n =
aµ,n with the light 1++ flavor axial excitations. Using
the additional definition

Aµ(x, z) = e−
i
fπ
ψ0π(∂µ +Aµ)e

i
fπ
ψ0π (72)

we have the identities

e−
i
fπ
ψ0πfµ,ν =

∑
n

φn(∂[µDn,ν] + A[µDn,ν])

e−
i

fπψ0
πfµ,z =

∑
n

(
φ̃n(∂µDn + AµDn)− φ′nDµ,n

)
(73)

The DBI contributions which are quadratic in D,D∗

and linear in A follows by inserting (71-73). The result-
ing action is of the form S2 = κfS1 + κgS2 with

S1 =

+4
∑
m,n

φmφnD
µ†

m (∂µAν − ∂νAµ + [Aµ,Aν ])Dν
n

−4
∑
m,n

φmφnD
†µ
m (AνAµ − hµνA2)Dν

n

−2
∑
mn

φmφn∂[µD
†
n,ν]A

[µDν]
m

−2
∑
m,n

φmφnD
[µ†
m Aν]∂[µDn,ν] (74)

S2 =

−2
∑
m,n

φ̃mφ̃n(∂µD
†
mAµDn −D†nAµ∂µDm)

+2
∑
m,n

φ̃mφ
′
n(Dµ†

n AµDm −D†mAµD
µ
n)

+2
∑
m,n

φ̃mφn(D†m∂zAµD
µ
n −Dµ†

n ∂zAµDm)

+2
∑
m,n

φ̃mφ̃nD
†
mA2Dn (75)

where we have omitted the traces and the integrations for
notational simplicity. Here we have defined A2 = AµAµ.

The expansion of Aµ in terms of the pion and vector
mesons in leading orders, read

Aµ =
i

fπ
ψ0∂µπ +

1

8f2
π

[π, ∂µπ] + ...

+Vµ −
i

fπ
ψ0[π, Vµ] + 2Aµψ0 −

2i

fπ
ψ2

0 [π,Aµ] + ...

+
∑
n

ψ2n−1vn,µ +
∑
n

ψ2nan,µ + ... (76)

The unexpanded CS contribution involving the Φ fields
receives several contributions from (6). They are

SCS = SΦ2,A + SΦ2,A2 + SΦ2,A3 + SΦ4,A + SΦ4 (77)

with each of the contributions given in form-notations as
follows

SΦ2,A = − Nc
24π2

(dΦ†AdΦ + dΦ†dAΦ + Φ†dAdΦ)

SΦ2,A2 = − Nc
16π2

(dΦ†A2Φ + Φ†A2dΦ)

− Nc
16π2

Φ†(AdA+ dAA)Φ

SΦ2,A3 = − 5Nc
48π2

Φ†A3Φ

SΦ4,A = +
Nc
8π2

Φ†ΦΦ†AΦ

SΦ4 = +
Nc

16π2
Φ†Φ(Φ†dΦ + dΦ†Φ) (78)

The Φ field is defined explicitly in (70) and the A field
is defined in (71). We have omitted the flavor trace and
the integration which is 5-dimensional here. The latter
will reduce to 4-dimensions after inserting (70) and inte-
grating over the HL meson holographic wavefunctions.

We note that when only the pion field is retained in
(71) (no vector mesons), (77-78) simplifies as

SΦ2,A2 + SΦ2,A3 → 0 (79)

Also, the first quadratic contribution SΦ2,A does not van-
ish and will be discussed in details below. In addition,
the quartic contributions in (78) do not vanish and con-
tribute

SΦ4,A + SΦ4 →
iNc
8π2

D†DD†AD +
iNc
16π2

D†D(D†dD + dD†D)(80)

Finally, the DBI quadratic holographic action (74) to-
gether with the CS parts (78) are the most general pion
and vector meson interactions with HL mesons with finite
masses. The HL mesons are characterized by a pionic-like
zero mode as noted in (22) in the massless limit. So (74)
and (78) interpolate continuously between massless and
massive HL mesons with exact heavy quark symmetry
asymptotically as we further detail below.



9

D. One-pion interaction

Now we consider the sourceless case with AL,R = 0
and all an,µ, vn,µ = 0. In this case, in leading order in
the pion field, the bare heavy meson fields in (70) reads

Φµ ≈
(

1 +
i

fπ
ψ0π

)
φ1Dµ

Φz ≈
(

1 +
i

fπ
ψ0π

)
φ̃1D

Az = − i

fπ
πψ′0(z), Aµ = 0 (81)

in terms of which the contributions (4-5) are

fµν ≈(
1 +

i

fπ
ψ0π

)
φ1∂[µDν] +

i

fπ
ψ0φ1∂[µπDν]

f0
µz ≈(
1 +

i

fπ
ψ0π

)
φ̃1∂µD −

i

fπ
πψ0φ̃

′
1Dµ

+
i

fπ
ψ0φ̃1∂µπD (82)

and

aµν ≈
(

1 +
i

fπ
ψ0π

)
D[µD

†
ν]

(
1− i

fπ
ψ0π

)
φ2

1

aµz ≈
(

1 +
i

fπ
ψ0π

)
D[µD

†
z]

(
1− i

fπ
ψ0π

)
φ1φ̃1

(83)

with

Fµν = O(π2), Fzµ ≈ ψ′0
i

fπ
∂µπ (84)

In developing the gauge and heavy meson fields in (70),
we have omitted the contributions from the tower of vec-
tor and axial fields, and the contribution of the excited
heavy mesons for simplicity. They will be recalled be-
low. Note that in the dressed gauge, the leading pion
contribution is the current algebra result

f2
π

4
Tr(U−1∂µU)2 (85)

with f2
π/M

2
KK = 4κ/π.

1. (0−, 1−) multiplet

The leading contribution to the interaction between
the heavy-light mesons to the pions follows only from
the first contribution in the CS term in (6) in the form

SCS → −
Nc

16π2

∫
dzd4xTr(dΦ†dAΦ + Φ†dAdΦ) (86)

Using the identification (61), we can re-write (86) as

SπCS = − Nc
32π2fπ

∫
dzψ′0(z)φ2

0

×
∫
d4xTr

(
γ · ∂H̄γ5γ · ∂πH + c.c.

)
(87)

with H̄ = γ0H†γ0. We note that the bolded trace in
(87) is now both over flavor and spin. To obtain the
non-relativistic reduction of (87), we first decompose the
positive frequency part of H → H+ + H− as

H± =
e−iMx0

√
2M

(γµDµ + iγ5D)
1± γ0

2
(88)

which gives

SπCS = S+
CS + S−CS

S±CS =
iNc

32π2fπ

∫
dzψ′0(z)φ2

0

×
∫
d4xTr∂iπ(±(DiD

† −DD†i ) + εijkDkD
†
j)(89)

Keeping only the contribution from H+, which trans-
forms homogeneously as the ( 1

2 ,
1
2 ) representation under

heavy-light spin transformations, is equivalent to deform-
ing the CS contribution (87) to

SπCS → S+
CS = − Nc

32π2fπ

∫
dzψ′0(z)φ2

0

×
∫
d4xTr

(
(γ · ∂ + iM)H̄γ5γ · ∂πH + c.c.

)
(90)

Amusingly, this deformation can be viewed as a fermion
loop with a massive instead of a massless quark, with
γ · ∂ → γ · ∂ + iM acting as a massive projector. There-
fore, keeping positive energy naturally selects the H+

contribution. The modified term is actually a normal
term which requires a metric and may come from a miss-
ing piece of the low-energy effective field theory action
of our underlying brane configuration with large trans-
verse separation. Assuming this, the z-integration can be
performed exactly to give

∫
dzψ′0(z)φ2

0 =
1

πUKK

1

4f0κ
=

1

πT̃ (2πα′)2R3
=

108π3l2s
MKKNc

× 2MKK

πλl2s
=

216π2

Ncλ

(91)
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which allows for (90) to take the standard leading one-
pion interaction form

S+
CS =

gH
fπ

∫
d4xTr∂iπ(DiD

† −DD†i + εijkDkD
†
j) (92)

with the pseudo-vector pion axial coupling gH to the
(0−, 1−) multiplet given by

gH ≡
27

4λ
(93)

In [24] a fit to the low lying meson spectrum led to λ ∼ 8.7
which implies that gH ∼ 0.78 in our holographic model.
The holographic result is close to the reported value of
gH ∼ 0.65, as measured through the charged pion decay
D∗ → Dπ [2].

2. (0+, 1+) multiplet

Using the analogue of the non-relativistic reduction
(88) for the G-multiplet with

G→ G+ =
e−iMx0

√
2M

(D0 + γµγ5D
µ
1 )

1 + γ0

2
(94)

a similar reasoning shows that the pseudo-vector pion
axial coupling gG to the (0+, 1+) multiplet follows simi-
larly with the mode substitution φ0 → φ1 in (87-91). As
a result, we have gG = gH in our holographic construct.

The intra-multiplet one-pion interaction is now seen to
follow from the DBI contribution only,

SπHG =

+
4κ

fπ

∫
fφ0φ1ψ0(z)dz

∫
d4xTr∂0π(DiD

†
1i +D1iD

†
i )

+
2κ

fπ

∫
gφ̃0φ̃1ψ0(z)dz

∫
d4xTr∂0π(DD†0 +D0D

†)

(95)

We note the following identity

2

∫
dz fψ0φ0φ1 =

∫
dz gψ0φ̃0φ̃1 (96)

which allows to rewrite (95) in standard form

gHG
fπ

Tr
(
γ5ḠHv

µAµ
)

+ c.c (97)

The pseudo-vector axial cross pion coupling is

gHG = 4κ

∫
dz fψ0φ0φ1 =

2
1
4

2π

(
MKK

M

) 1
2

= 0.23
(mρ

M

) 1
2

(98)

the last relation follows from the substitution of the rho
mass mρ =

√
0.67MKK [24]. The axial coupling is seen

to vanish in the heavy quark limit M = ν̃
√
a0 →∞.

We observe that in the present holographic model
all one-pion couplings to the HL mesons are pseudo-
vectors. In particular, the Goldberger-Treiman combina-
tion gGH∆m/fπ does not support a pseudo-scalar cou-
pling as initially noted in the chiral symmetric constructs
without confinement in [3, 4]. Using the empirical value
of mρ ∼ 770 MeV and the charm mass with mC = 1275
MeV we find that gHG,C ∼ 0.18, while for bottom with
mB ∼ 4180 MeV we find gHG,B ∼ 0.10.

3. One-pion radiative widths

The strong intra-multiplets decay G → H + π follow
from (97). Both the chargeless and charged pion decay
of charmed and bottom mesons with final momentum pπ
read

Γ(G→ H + π0) =
1

4π

(
gHG,C
fπ

)2

(mG −mH)2|pπ0 |

Γ(G→ H + π±) =
2

4π

(
gHG,C
fπ

)2

(mG −mH)2|pπ± |

(99)

Our holographic result for the HL charm meson gives

Γ(D0
1(2420)→ D∗+(2010)π−) =

1

2π

(
0.18

93

)2

(411)2(354) = 36 MeV (100)

wich is comparable to the measured full width of =
(27.4 ± 2.5) MeV at pπ− = 354 MeV [32]. The partial
width for the charged decay of the HL bottom meson is

Γ(B0
1(5721)→ B∗+(5325)π−) =

1

2π

(
0.1

93

)2

(400)2(362) = 11 MeV (101)

which is to be compared to a full width of 23 ± 5 MeV
at pπ− = 362 MeV [32]. Also, we have the partial decay
width

Γ(B+
1 (5721)→ B∗0(5325)π+) =

1

2π

(
0.1

93

)2

(402)2(409) = 12 MeV (102)

which is to be compared to the measured full width of
49+12
−16 MeV at pπ+ = 409 MeV [32].
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E. Two pion interaction

The two pion interaction terms can be derived using
similar arguments. All terms quadratic in D,D∗ and
linear in A following from the DBI action (74) follow
from the two contributions

−4i
∑
m,n

fφmφn Tr(A0D
µ
mD

†
µn)

−2i
∑
m,n

gφ̃mφ̃n Tr(A0DmD
†
n) (103)

Inserting (76) in (103) and performing the z-integrations
give

− i

8f2
π

∑
n

Tr
(
[π, ∂0π](Dn,µD

µ†
n +DnD

†
n)
)

(104)

which is of order M0. For instance, (104) describes the
parity conserving two pion radiative decays within the
same multiplets (0±, 1±), i.e. H → H + 2π and G →
G+ 2π.

In addition, there are also parity non-conserving two
pion interactions from the Chern-Simons term, leading
to radiative decays of the type G→ H + 2π. To leading
order in the heavy-quark limit, we have

1

8f2
πM

∑
m,n

∫
dz κgφ̃mφ

′
n

∫
d4x

×Tr
(

[π, ∂iπ](DmD
†
ni −Dn,iD

†
m + εijkDmkD

†
nj)
)

(105)

with

∫
dz κgφ̃0φ

′
1 =

(
g0

f0

)1/2 ∫
dz κfφ0φ

′
1 =

√
2

4

(
g0

f0

) 1
4
(

M

UKK

) 1
2

=
2

3
4

4
(MKKM)

1
2 (106)

(106) yields the two-pion cross coupling GGH/f
2
π in (105)

as

GGH =
2

3
4

32

(
MKK

M

) 1
2

= 0.06
(mρ

M

) 1
2

(107)

which is relatively small. The couplings GGH in (107)

and gGH in (98) are both of order 1/
√
M and vanish in

the heavy quark limit.

VI. CONCLUSIONS

We have presented a top-down holographic approach to
the HL mesons interacting with the lightest pseudoscalar
mesons. The geometrical set up consists of Nf − 1 light
D8-D8̄ probe branes plus one heavy brane in the back-
ground of Nc D4 branes. We have identified the HL
degrees of freedom with the string low energy degrees of
freedom near the world volume of the light branes. They
are represented by bi-fundamental vector fields that are
approximately local in the vicinity of the light branes.

We have shown how the holographic effective action
emerges from the bulk DBI and Chern-simons actions,
and explicitly verified that it enjoys both chiral and heavy
quark symmetry in the limit of a heavy quark mass, mod-
ulo a suitable deformation of the CS contribution. The
HL holographic effective action reduces continuously to
the chiral effective action for SU(Nf ) when the heavy
quark mass is removed in the limit of coincidental Nf
light branes. This construction can be made more real-
istic through the use of improved holographic QCD [33].

The HL effective action allows for a description of the
HL meson internal structure in the strong coupling λ =
g2Nc limit. In particular, the squared mass spectrum
is shown to be Regge-like with fixed intercept M2 and
a slope of about Mmρ. In leading order, the splitting
between the even and odd parity multiplets is fixed by
the rho mass mρ. However, it is found to be larger than
the reported empirical splitting for charm and bottom.

We have made explicit use of the HL effective ac-
tion to extract the pertinent axial charges for the low
lying HL multiplets H = (0−, 1−) and G = (0+, 1+)
both of which are degenerate in the heavy quark limit.
Holography shows that the axial couplings are equal with
gH = gG = 27/4λ, and close to the experimentally re-
ported value of gH = 0.65, for λ ∼ 8.7 which is the
value selected in [24]. The inter-multiplet coupling is
fixed by the ratio of the rho to heavy quark mass as
gGH = 0.23 (mρ/M)

1
2 . Estimates of the one-pion partial

decay widths are overall in qualitative agreement with
the data.

The shortcomings of the holographic limit are rooted in
the double limit of large Nc and strong ′t Hooft coupling
λ = g2Nc. The corrections are notoriously hard to calcu-
late. Also, our near-coincidental brane approximation for
the Chern-Simons contribution shows the need for an ad-
ditional mass deformation in the heavy mass limit, which
combines to form a massive projector, that requires a
better first principle undertanding. Overall, the leading
order results we have established are in fair agreement
with data. The holographic HL chiral effective action
provides valuable results for the few pion decays without
and with vector mesons that could be compared with the
upcoming experiments involving especially HL bottom
mesons. It also provides a framework for discussing elec-
tromagnetic decays, as well as single and double heavy
baryons. Some of these issues will be addressed next.
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VIII. APPENDIX: HL DECAY CONSTANTS

The axial and vector polarization functions (55-56) ex-
hibit poles, with the squared axial decay constants as
residues

f2
An,Vn = − lim

q2→−m2
n

((
q2 +m2

n

)
ΠA,V (q2)

)
(108)

In the heavy mass limit, the residues at the poles of the
scalar and pseudoscalar polarization functions (55-56) are
related by heavy quark symmetry which holds in our case.
In the standard definitions, the pseudoscalar constant is
mP fP ≡ fA and vector decay constant is mP∗fP∗ ≡ fV ,
with

〈0|q̄iγµγ5Q|P (p)〉 = fP pµ

〈0|q̄γµQ|P ∗(p)〉 = fP∗εµ (109)

for P = D, B̄, ... and P ∗ = D∗, B̄∗, ... respectively. (109)
are measurable through the weak leptonic decays D →
l̄νl and B̄ → lν̄l.

1. Generalities

To explicit the decay constants as residues at the poles
of polarization functions derived above, we first reorga-
nize the equation for the bulk-to-boundary propagator
V(p, z) in the heavy quark limit using (38),

− d2V
ω0dz̃2

+ (
√
ω0z̃)

2V = −2(p2 +M2)f0

ω0ν̃g0
V (110)

with ω2
0 = f0a0/g0U

2
KK . We can set

α ≡ −p
2 +M2

ω0ν̃

f0

g0
− 1

2
→ m̃2

n

ω0

f0

g0
− 1

2
(111)

where the last identity holds for p2 = −m2
n. Using the

parametrization x =
√

2ω0z̃ =
√

2ω0ν̃z, we can re-write
(110) in the compact harmonic form

d2V
dx2

+

(
α+

1

2
− 1

4
x2

)
V = 0 (112)

The normalized square integrable solutions to (112) are
parabolic cylinder functions Dα(x) (solutions to the har-
monic problem)

f1(α, x) =
(2ω0ν̃)

1
4

√
2

(4f0κΓ(α+ 1)
√

2π)
1
2

Dα(x) (113)

In the heavy quark limit with ν̃ → 0, the spectrum in
(112) is harmonic for p2 = −m2

n, and identical to the
harmonic spectrum in (39-40).

2. Axial decay constants: f2k+1

For the odd harmonic states with α = 2k+ 1, we have

(
df1

dz

)
(α, 0) =

(2ω0ν̃)
3
4

√
2(2k + 1)!!

(4f0κ(2k + 1)!
√

2π)
1
2

(−1)k

(114)

which gives through the Wronskian

f2(α, 0) =
1

2κg0

(4f0κ(2k + 1)!
√

2π)
1
2

√
2(2k + 1)!!(2ω0ν̃)

3
4

(−1)k+1 (115)

Also, in the vicinity of α = 2k + 1 we note that,

α− 2k − 1 = −
p2 +m2

2k+1

ω0ν̃

f0

g0
(116)

as well as

f1(α, 0) =
(2ω0ν̃)

1
4

√
2(2k)!!

(4f0κ(2k + 1)!
√

2π)
1
2

×
√

2π

2
(−1)k+1 × (α− 2k − 1) (117)

Combining the above results, we finally find that

f2
2,asy(2k + 1, zΛ)f2

2k+1 =

1

2κg0

4f0κ(2k + 1)!
√

2π

(2k + 1)!(2ω0ν̃)
√

2π

g0(ω0ν̃)

f0
= 1 (118)

3. Vector decay constants: f2k

A rerun of the previous steps for the even harmonic
states with α = 2k gives

f1(α, 0) = (2ω0ν̃)
1
4

√
2(2k − 1)!!

(4f0κ(2k)!
√

2π)
1
2

(−1)k (119)

which combined with the Wronskian gives



13

(
df2

dz

)
(α, 0) =

1

2κg0

(4f0κ(2k)!
√

2π)
1
2

√
2(2k − 1)!!(2ω0ν̃)

1
4

(−1)k (120)

Also near α = 2k we have

d

dz
f1(α, 0) = (2ω0ν̃)

3
4

√
2(2k)!!(−1)k

√
2π

(4f0κ(2k)!
√

2π)
1
2

(α− 2k − 1)

(121)

and therefore

f2
2,asy(2k, zΛ)f2

2k = 1 (122)

4. Estimate

The dependence on the cutoff zΛ reflects on the depen-
dence on the heavy quark mass which is M in the large
mass limit. In our D-brane set up in section II we have
made the assumption that the stringy HL modes are ap-
proximated by local bi-fundamental vector fields in the
world-volume of the light branes. This approximation
precludes us from a rigorous evaluation of the depen-
dence of zΛ. Qualitatively, we may estimate zΛ(M) by
identifying M with the mass of a straight Nambu-Goto
string pending from the heavy 8H -brane to the light 8L-
branes as shown in Fig. 1. In the Einstein frame and for
large zΛ, we have

M ≈ 1

2πl2s

∫ zΛ

0

dz (−gttgzz)
1
2

≈ 1

2πl2s

∫ zΛ

0

dz

(
4UKK
9Uz

) 1
2

≈ 1

πl
4
3
s

(
2

9
λMKKz

2
Λ

) 1
3

(123)

which shows that zΛ ≈M
3
2 in our estimate. Using (123)

and the explicit form of f2 where the overall constant is
fixed by the Wronskian, we can make an estimate of the
decay constants in (118) and (122). The vector (n-even)
and axial-vector (n-odd) decay constants are

fn(M) =
f(n)√
n!

2n−
33
32

π
37
16 3

25
18

C
n
2 + 11

16

M

eCM

√
Nc λ

17
16 M2

KK (124)

Here CM is the dimensionless combination

CM =
1√
2

(
9π

λ

)3(
M

2MKK

)4

(125)

with MKK = mρ/
√

0.67 = 1.22mρ = 941 MeV. The
constant f(n) is related to the expansion of the parabolic
cylinder functions. Note that (124) is of order

√
Nc.

The holographic result (124-125) holds in the heavy
quark limit. In particular, we note that the ratio of
the pseudo-scalar D to B meson decay constants follow-
ing from (124-125) using the canonical definition fQn =
fn/mn and to leading order in 1/λ, is

fBn
fDn

=

(
mB

mD

)2n+ 7
4
(

1 +O
(

1

λ3

))
(126)

For n = 0, (126) is to be compared to fB/fD =

(mD/mB)
1
2 from general arguments [5]. While the two

ratios reduce to 1 in the heavy mass limit, they differ
sharply at finite masses owing to our crude estimate in
(123), and more generally our use of local bi-fundamental
fields to describe non-local string modes. This last con-
cern can be altogether bypassed in the bottom-up ap-
proach [34].
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