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We extend our analysis of quasi-distributions onto the pion distribution amplitude. Using the
formalism of parton virtuality distribution amplitudes (VDAs), we establish a connection between
the pion transverse momentum dependent distribution amplitude (TMDA) Ψ(x, k2

⊥) and the pion
quasi-distribution amplitude (QDA) Qπ(y, p3). We build models for the QDAs from the VDA-based
models for soft TMDAs, and analyze the p3 dependence of the resulting QDAs. As there are many
models claimed to describe the primordial shape of the pion DA, we present the p3-evolution patterns
for models producing some popular proposals: Chernyak-Zhitnitsky, flat and asymptotic DAs. Our
results may be used as a guide for future studies of the pion distribution amplitude on the lattice
using the quasi-distribution approach.

PACS numbers: 11.10.-z,12.38.-t,13.60.Fz

I. INTRODUCTION

The parton distribution functions (PDFs) f(x), and
two-body distribution amplitudes (DAs) ϕ(x) are related
to matrix elements of bilocal operators on the light cone
z2 = 0, which prevents a straightforward calculation of
these functions in a lattice gauge theory formulated in
the Euclidean space. The usual way out is to calculate
their moments. In particular, high precision lattice cal-
culations of the second moment of the pion distribution
amplitude ϕπ(x) were reported in Ref. [1]. However, re-
cently, X. Ji [2] suggested a method allowing to calculate
PDFs and DAs as functions of x. To this end, he proposes
to use purely space-like separations z = (0, 0, 0, z3).

The matrix elements of equal-time bilocal operators
produce distributions Q(y, p3) in the momentum p3 com-
ponent (quasi-distributions). The crucial point is that
they tend to the light-cone distributions f(y), ϕ(y) in
the p3 →∞ limit. In case of PDFs, the results of lat-
tice calculations of the parton quasi-distributions (PQDs)
were reported in Refs. [3–8]. It is expected [9] that
PQDs Q(y, p3) should have a mild perturbative evolu-
tion [10–13] with respect to p3 for large p3. However,
the values of p3 used in the cited lattice calculations are
not very large, and the observed strong variation of PQDs
with p3 does not have a perturbative form.

In our recent paper [14] we have studied nonperturba-
tive evolution of PQDs using the formalism of virtuality
distribution functions [15, 16]. We found that PQDs can
be obtained from the transverse momentum dependent
distributions (TMDs) F(x, k2

⊥). Then we built models
for the nonperturbative evolution of PQDs using simple
models for TMDs. Our results are in qualitative agree-
ment with the p3-evolution patterns obtained in lattice
calculations [3–8] and also in diquark spectator models
[17–19].

As emphasized in Ref. [14], because of the relation
between PQDs and TMDs, the nonperturbative evolu-
tion of PQDs reflects the k⊥-dependence of the TMDs
F(x, k2

⊥), and thus its study provides a new approach

to the investigation of the 3-dimensional structure of
hadrons.

Our goal in the present paper is to perform a sim-
ilar analysis of the pion quasi-distribution amplitude
(QDA) Qπ(y, p3) that produces the pion DA ϕπ(y) in the
large-p3 limit. The basic ingredients of our analysis are
virtual distribution amplitudes and transverse momentum
dependent amplitudes introduced in Refs. [15, 16].

The paper is organized as follows. We start in Section
2 with an introductory overview of the basic concepts
involved. First, we remind a covariant definition of the
twist-2 pion distribution amplitude. After that, we dis-
cuss its definition within the light-front formalism. Then
we outline the basics of the VDA/TMDA approach. In
Section 3, we discuss the quasi-distribution amplitudes.
In particular, we show that QDAs are completely deter-
mined by TMDAs through a rather simple transforma-
tion. Since the basic relations between the parton distri-
butions are rather insensitive to complications brought
by spin, in Section 3 we refer to a simple scalar model.
In Section 4, we discuss modifications related to quark
spin and gauge nature of gluons in quantum chromody-
namics (QCD). In Section 5 we discuss the VDA-based
models for soft TMDAs, and present our results for non-
perturbative evolution of QDAs obtained in these models.
The large-p3 limit of perturbative evolution is discussed
in Section 6. Our conclusions are given in Section 7.

II. PION DISTRIBUTION AMPLITUDE

A. Covariant Definition

The pion distribution amplitude (DA) ϕπ(x, µ2) was
originally introduced [20] as a function ϕπ(x, µ2) whose
xn moments

fn(µ2) =

∫ 1

0

xn ϕπ(x, µ2) dx (1)
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are given by reduced matrix elements of twist-2 local op-
erators

in+1Rµ2

〈
0|d̄(0)γ5 {γνDν1 . . . Dνn}u(0)|π+, P

〉
= {PνPν1 . . . Pνn} fn(µ2) . (2)

As usual {. . .} denotes the twist-2 projection of a Lorentz
structure, i.e., symmetrization of indices and subtraction
of traces. Since matrix elements of local operators with
n > 0 diverge, one needs to supply them by a renormal-
ization procedure denoted above by Rµ2 , with µ2 being
the renormalization scale. In QCD, the standard choice
of Rµ2 is based on the dimensional regularization and the

modified minimal subtraction scheme MS. As a result of
such a renormalization, the zeroth moment f0(µ2) does
not have µ2-dependence since the anomalous dimension
of the axial current is zero. Hence, f0(µ2) for all µ2 is
equal to the pion decay constant fπ

f0(µ2) =

∫ 1

0

ϕπ(x, µ2) dx = fπ (3)

known experimentally, fπ ≈ 130 MeV.
This definition of DA is oriented on the use of the op-

erator product expansion and a description of the pion in
terms of the twist-2 DA ϕπ(x, µ2) that gives the collinear
distribution of the pion momentum p among its two va-
lence constituents. The dependence of ϕπ(x, µ2) on µ2 is
governed by perturbative evolution [21–23] and does not
reflect the primordial (nonperturbative) pion’s structure
in the direction transverse to p.

As is well-known, for very large µ2, the pion DA tends
to the “asymptotic DA” ϕas

π (x) = 6fπx(1− x) [24]. In
general, ϕπ(x, µ2) may differ from its asymptotic form.
Over the years, several forms were proposed for the
pion DA “at low normalization point”, e.g., Chernyak-
Zhitnitsky DA ϕCZ

π (x) = 30fπx(1− x)(1− 2x)2 [25],
“flat DA” ϕflat

π (x) = fπ [26–30], “root DA” ϕroot
π (x) =

8fπ
√
x(1− x)/π [31], etc.

B. Light-Front Formalism Definition

A different definition [23] is used in the light-front (LF)
quantization framework, where the pion distribution am-
plitude φπ(x, µ2) is understood as the k⊥-integral

φπ(x, µ2) =

√
6

(2π)3

∫
k2⊥≤µ2

ψ(x, k⊥) d2k⊥ (4)

of the light-front wave function (LFWF) ψ(x, k⊥). We in-
tentionally use here a different notation φπ(x, µ2) to em-
phasize the fact that ψ(x, k⊥) is an object of the Hamilto-
nian light-front framework, while the pion DA ϕπ(x, µ2)
in Eq. (1) is defined within the covariant Lagrangian
formulation of the quantum field theory (QFT).

Another difference is the use of a straightforward cut-
off k2

⊥ ≤ µ2 rather than a more sophisticated MS-like

subtraction. As a result, φπ(x, µ2) has a nonpertur-
bative evolution with µ2 even if the perturbative evo-
lution is absent. Take a simple example ψ(x, k⊥) ∼
φ(x) e−k

2
⊥/Λ

2

. Then the zeroth x-moment of φπ(x, µ2)

has the ∼ [1− e−µ2/Λ2

]-dependence, i.e. it is not con-
stant, reaching fπ in the µ2 →∞ limit only.

Of course, if one has in mind only the applications in
which nonperturbative part of the µ2-dependence may be
ignored, then φπ(x, µ2) of the LF definition is very sim-
ilar to the covariantly defined ϕπ(x, µ2), and the differ-
ence between them may be treated as the use of different
renormalization schemes.

As a matter of fact, in actual LF calculations one en-
counters LFWFs integrated to some process-dependent
scale µ, i.e. the choice of the renormalization prescrip-
tion and the scale µ is dictated by diagrams. Moreover,
if the relevant µ2’s are not extremely large, the simple
example above shows that one may need to take into ac-
count the nonperturbative µ2-dependence of φπ(x, µ2) re-
flecting the transverse momentum behavior of the LFWF
ψ(x, k⊥), i.e., the 3-dimensional structure of the pion,
which may be essential for some processes.

In particular, the photon-pion transition form factor
involves φπ(x, µ2 = x2Q2)/[xQ2], i.e. LFWF ψ(x, k⊥)
integrated over k⊥ till xQ [32, 33]. As a result, the re-
maining x-integral in the LF formula has a finite Q2 → 0
limit: the infrared small-x divergence is eliminated by a
cut-off provided by φ(x, µ2 = x2Q2). On the other hand,
a formula involving MS-based DA ϕ(x, µ2) with a fixed
scale µ2 is singular in the Q2 → 0 limit. One may ques-
tion the applicability of the LF formula down to Q2 = 0,
but at least it does not give an infinite result for a quan-
tity that is known to be finite. For this reason, the LF
formula looks as a more attractive tool for modeling the
form factor behavior at moderate Q2 than the perturba-
tive QCD 1/Q2 twist expansion.

Still, a problem with the LF formalism is that LFWFs
are not directly connected with the usual objects of the
covariant field theory, such as matrix elements of local or
nonlocal operators.

In our papers [15, 16], we have developed the formalism
of virtuality distribution amplitudes (VDAs) that is fully
based on the covariant field theory concepts. In the VDA
approach, the pion is described by the transverse momen-
tum dependent distribution amplitude (TMDA) which has
a direct connection with the objects of the covariant
QFT. On the other hand, just like the LF wave functions,
the TMDAs give a 3-dimensional description of the pion
structure.

C. Pion TMDA

To omit inessential complications related to spin, we
illustrate the ideas underlying TMDAs using a simple
example of a scalar theory. The key element of our ap-
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proach [15] is the VDA representation

〈0|ψ(0)ψ(z)|p〉 =

∫ ∞
0

dσ

∫ 1

0

dx

× Φ(x, σ) e−ix(pz)−iσ(z2−iε)/4 (5)

that basically reflects the fact that the matrix element
〈0|ψ(0)ψ(z)|p〉 depends on z through (pz) and z2. It
may be treated as a double Fourier representation with
respect to these variables.

The main non-trivial feature of this representation is
in its specific limits of integration over x and σ. They
hold for any contributing Feynman diagram [16], so we
assume that this property is true in general. Note that
starting with the first loop, the diagram contributions
are non-analytic in z2 due to ln z2 factors, but the VDA
representation, unlike the Taylor expansion in z2, is valid
nevertheless.

While the VDA representation is a fully covariant ex-
pression, it is convenient to use a frame in which the
pion momentum p is purely longitudinal p = (E,0⊥, P ).
Choosing some special cases of z, one can get representa-
tions for several parton functions, all in terms of one and
the same universal VDA Φ(x, σ). In particular, choosing
z on the light front z+ = 0 and with z⊥ = 0 (i.e., taking
z = z−) gives the twist-2 distribution amplitude ϕ(x)

〈0|ψ(0)ψ(z−)|p〉 =

∫ 1

0

dxϕ(x) e−ixp+z− . (6)

Comparing this relation with the VDA representation we
have

ϕ(x) =

∫ ∞
0

Φ(x, σ) dσ , (7)

provided that the z2 → 0 limit is finite, e.g. in the
super-renormalizable ϕ3 theory. In the renormalizable
ϕ4 theory, the function Φ(x, σ) has a ∼ 1/σ hard part,
and the integral (7) is logarithmically divergent, reflect-
ing the perturbative evolution of the DA in such a the-
ory. In this case, one may arrange a regularization of the
σ-integral characterized by some parameter µ2. Then
ϕ(x)→ ϕ(x, µ2).

Light-cone singularities are avoided if we choose a
spacelike z, e.g., take z that has z− and z⊥ components
only. Then we can introduce the transverse momentum
dependent distribution amplitude Ψ(x, k2

⊥) as a Fourier
transform

〈0|ψ(0)ψ(z−, z⊥)|p〉 =

∫ 1

0

dx e−ixp+z−

×
∫
d2k⊥Ψ(x, k2

⊥) ei(k⊥z⊥) (8)

of the matrix element with respect to z− and z⊥. Because
of the rotational invariance in z⊥ plane, TMDA depends
on k2

⊥ only, the fact already reflected in the notation.

The TMDA may be written in terms of the VDA as

Ψ(x, k2
⊥) =

i

π

∫ ∞
0

dσ

σ
Φ(x, σ) e−i(k

2
⊥−iε)/σ . (9)

The integrated TMDA

f(x, µ2) ≡ π
∫ µ2

0

dk2
⊥Ψ(x, k2

⊥) (10)

is analogous to the µ2-dependent pion distribution ampli-
tude φ(x, µ2) of the LF formalism (but, of course, being
an object of the covariant QFT, f(x, µ2) does not coincide
with it). In terms of the VDA,

f(x, µ2) =

∫ ∞
0

dσ
[
1− e−i(µ

2−iε)/σ
]

Φ(x, σ) . (11)

Since it is defined by a straightforward cut-off, f(x, µ2)
evolves with µ2 even if the limit µ2 →∞ is finite, e.g. in
a super-renormalizable theory. The evolution equation

µ2 d

dµ2
f(x, µ2) =πµ2Ψ(x, µ2) (12)

follows from the definition (10). When the TMDA
Ψ(x, k2

⊥) vanishes faster than 1/k2
⊥ (such a TMDA will

be called “soft”), evolution essentially stops at large µ2.
In a renormalizable theory, it makes sense to treat

Φ(x, σ) as a sum of a soft part Φsoft(x, σ), generating a
nonperturbative evolution of f(x, µ2), and a ∼ 1/σ hard
tail. To avoid nonperturbative evolution, one may choose
an MS-type construction, e.g. regularize the σ-integral
in Eq. (7) by a σ−ε factor and then subtract 1/ε poles.

However, just like in the LF formalism, the objects that
appear in actual calculations are exactly the integrated
TMDAs rather than their MS-type sisters. In particu-
lar, the photon-pion transition form factor is given in the
VDA approach by the x-integral of f(x, µ2)/[xQ2] taken
at µ2 = xQ2 [15], i.e., it involves TMDA Ψ(x, k2

⊥) inte-
grated over k2

⊥ till xQ2. As a result, the TMDA formula
has a finite Q2 → 0 limit. Furthermore, using simple
models for soft TMDAs one can get a very close descrip-
tion of experimental data by the nonperturbative evolu-
tion of the integrated TMDA [16].

For very large µ2, the perturbative evolution domi-
nates and eventually brings f(x, µ2) to its asymptotic
form 6fπ x(1−x). The question, however, is what kind of
shape f(x, µ2) has at low scales µ ∼ 1 GeV, and also how
this shape changes with µ2. As we have discussed, this
nonperturbative µ2-evolution reflects the k⊥ dependence
of the soft part of the pion TMDA.

Below, we shall see that there is another function,
the pion quasi-distribution amplitude Qπ(y, P ) whose
P -dependence is also determined by the k⊥-dependence
of the pion TMDA. The quasi-distributions have been in-
troduced recently by X. Ji [2] to facilitate a calculation
of light-front functions (PDFs, DAs, etc.) on the lattice.
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III. QUASI-DISTRIBUTION AMPLITUDE

A. Definition

The basic proposal of Ref. [2] is to consider equal-time
bilocal operators corresponding to z = (0, 0, 0, z3) [or, for
brevity, z = z3]. Incorporating the VDA representation,
we have

〈0|ψ(0)ψ(z3)|p〉 =

∫ ∞
0

dσ

∫ 1

−1

dxΦ(x, σ) eixp3z3+iσz23/4 .

(13)

Using again the frame in which p = (E, 0⊥, P ), and in-
troducing the pion quasi-distribution amplitude through

〈0|ψ(0)ψ(z3)|p〉 =

∫ ∞
−∞

dy Qπ(y, P ) e−iyPz3 , (14)

we get a relation between QDA and VDA,

Qπ(y, P ) =

√
i P 2

π

∫ ∞
0

dσ√
σ

∫ 1

0

dxΦ(x, σ) e−i(x−y)2P 2/σ .

(15)

It is easy to see that, for large P , we have√
i P 2

πσ
e−i(x−y)2P 2/σ = δ(x− y) +

σ

4P 2
δ′′(x− y) + . . .

(16)

and Qπ(y, P → ∞) tends to the integral (7) leading
to ϕπ(y). This observation suggests that one may be
able to extract the “light-cone” distribution amplitude
ϕπ(y) from the studies of the purely “space-like” func-
tion Qπ(y, P ) for large P [2].

B. Evolution

Again, to study the P -evolution of Qπ(y, P ) it makes
sense to split Φ(x, σ) into the soft part, for which the
integral over σ is finite, and the hard tail that generates
perturbative evolution.

The nonperturbative evolution of Qsoft(y, P ) with re-
spect to P has the area-preserving property. Namely,
since ∫ ∞

−∞
dy e−i(x−y)2P 2/σ =

√
πσ

iP 2
(17)

we have∫ ∞
−∞

dy Qsoft
π (y, P ) =

∫ 1

0

dxϕsoft
π (x) = fπ . (18)

In other words, Qsoft
π (y, P ) for any P has the same area

normalization as ϕsoft
π (x). In this respect, the pion QDA

pleasantly differs from the integrated TMDA fsoft(x, µ2)
whose zeroth moment is µ2-dependent.

Similarly, we have the momentum sum rule∫ ∞
−∞

dy y Qsoft
π (y, P ) =

∫ 1

0

dxxϕsoft
π (x) . (19)

C. Relation to TMDA

Comparing the VDA representation (16) for Qπ(y, P )
with that for the TMDA Ψ(x, k2

⊥) (9) (note that they are
valid both for soft and hard parts) we conclude that

Qπ(y, P ) =

∫ ∞
−∞

dk1

∫ 1

0

dxP Ψ(x, k2
1 + (x− y)2P 2) .

(20)

Thus, the quasi-distribution amplitude Qπ(y, P ) is com-
pletely determined by the form of the TMDA Ψ(x, k2

⊥).
This formula may be also obtained if one takes

z = (0, z1, 0, z3) in the VDA representation and intro-
duces the momentum k1 conjugate to z1. Then∫ ∞
−∞

dy eiyPz3〈0|ψ(0)ψ(z1, z3)|p〉

=

∫ ∞
−∞

dk1 e
−ik1z1

∫ 1

0

dxΨ(x, k2
1 + (x− y)2P 2) . (21)

Taking z1 = 0 gives Eq. (20). Furthermore, introducing
the variable k3 ≡ (x− y)P , we have

Qπ(y, P ) =

∫ ∞
−∞

dk1

∫ (1−y)P

−yP
dk3 Ψ(y + k3/P, k

2
1 + k2

3) .

(22)

Thus, Qπ(y, P ) is given by an integral over a stripe
of width P in the 2-dimensional (k1, k3) plane. When
P →∞ for a fixed nonzero y, the stripe covers the whole
(k1, k3) plane. Moreover, for a soft TMDA Ψ(x, k2) that
rapidly decreases outside a region k2 . Λ2, only the val-
ues of k3 . Λ are essential, and for large P one may ap-
proximate the first argument of the TMDA by y. Hence,
the P →∞ limit gives ϕsoft

π (y).
For comparison, the integrated TMDA f(y, µ2) is ob-

tained by integrating Ψ(y, k2
⊥) over a circle of radius µ

in the k⊥ plane. Again, the circle covers the whole plane
when µ→∞, and fsoft(y, µ2)→ ϕsoft

π (y).
Thus, while the patterns of the nonperturbative evolu-

tion of Qsoft
π (y, P ) and fsoft(y, µ2) are different, they be-

come more and more close for large P and µ, eventually
producing the same function ϕsoft

π (y).

IV. QCD

A. Spinor quarks

In spinor case, one deals with the matrix element

Bα(z, p) ≡ 〈0|ψ̄(0)γ5γ
αψ(z)|p〉 . (23)

It may be decomposed into pα and zα parts: Bα(z, p) =
pαBp(z, p) + zαBz(z, p), or in the VDA representation

Bα(z, p) =

∫ ∞
0

dσ

∫ 1

−1

dx

×
[
pαΦ(x, σ) + zαZ(x, σ)

]
e−ix(pz)−iσ(z2−iε)/4 . (24)
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If we take z = (z−, z⊥) in the α = + component of
Oα, the purely higher-twist zα-part drops out and we
can introduce the TMDA Ψ(x, k2

⊥) that is related to the
VDA Φ(x, σ) by the scalar formula (9).

In the QDA case, the easiest way to avoid the effects
of the zα admixture is to take the time component of
Bα(z = z3, p) and define

B0(z3, p) = p0

∫ 1

−1

dxQπ(y, P ) eiyPz3 . (25)

The connection between Qπ(y, P ) and Φ(x, σ) is given
then by the same formula (15) as in the scalar case. As a
result, we have the sum rules (18) and (19) corresponding
to charge and momentum conservation. Furthermore,
the quasi-distribution amplitude Qπ(y, P ) is related to
TMDA Ψ(x, k2

⊥) by the scalar conversion formula (20).

B. Gauge fields

In QCD, for π+ one should take the operator

Oα(0, z;A) ≡ d̄(0) γ5 γ
α Ê(0, z;A)u(z) (26)

involving a straight-line path-ordered exponential

Ê(0, z;A) ≡ P exp

[
ig zν

∫ 1

0

dtAν(tz)

]
(27)

in the quark (adjoint) representation. As is well-
known, its Taylor expansion has the same structure as
that for the original ψ̄(0)γ5γ

αψ(z) operator, with the
only change that one should use covariant derivatives
Dν = ∂ν − igAν instead of the ordinary ∂ν ones.

Again, the zα admixture is avoided if the pion quasi-
distribution amplitude is defined through the time com-
ponent of Oα. Then we have the same relation between
the VDA and QDA as in the scalar case. Due to Eq.
(18), this results in the area preserving property for the
soft part ∫ ∞

−∞
dy Qsoft(y, P ) = fπ . (28)

Also, due to Eq. (19) we have the momentum sum rule∫ ∞
−∞

dy (y − 1/2)Qsoft
q (y, P ) = 0 . (29)

Since the VDA Φ(x, σ) is defined through the ma-
trix element of a gauge-invariant operator, it is gauge-
invariant also. For this reason, TMDA Ψ(x, k2

⊥) is a
gauge-invariant object as well. It should not be confused
with the kT -dependent (and gauge-dependent) “underin-
tegrated distributions” that appear in perturbative loop
calculations based on Sudakov decomposition of the in-
tegration momentum k.

V. MODELS FOR SOFT PART

A. Models

To get an idea about patterns of the nonperturbative
evolution of the QDAs, we need some explicit models of
the k⊥ dependence of soft TMDAs Ψ(x, k2

⊥). We will use
here the same models as in our papers [14, 16]. While
TMDAs are functions of two independent variables x and
k2
⊥, we take, for simplicity, the case of factorized models

Ψ(x, k2
⊥) = ϕπ(x)ψ(k2

⊥) , (30)

in which x-dependence and k⊥-dependence appear in sep-
arate factors.

If we assume a Gaussian dependence on k⊥,

ΨG(x, k2
⊥) =

ϕπ(x)

πΛ2
e−k

2
⊥/Λ

2

, (31)

the conversion formula (20) results in

QG
π (y, P ) =

P

Λ
√
π

∫ 1

0

dxϕπ(x) e−(x−y)2P 2/Λ2

. (32)

In the space of impact parameters z⊥, the Gaussian

model gives a e−z
2
⊥Λ2/4 fall-off that is too fast for large

z⊥. As an alternative extreme case, we take a model with
the 1/(1 + z2

⊥Λ2/4) dependence on z⊥, whose fall-off at
large z⊥ is too slow. It corresponds to the “slow” model
for the TMDA

ΨS(x, k2
⊥) = 2ϕπ(x)

K0(2|k⊥|/Λ)

πΛ2
(33)

that has a logarithmic singularity for small k⊥ reflecting
a too slow fall-off for large z⊥. For the QDA, we have

QS
π(y, P ) =

P

Λ

∫ 1

0

dxϕπ(x) e−2|x−y|P/Λ . (34)

Note that the Gaussian model and the “slow” model
have the same ∼ (1− z2

⊥Λ2/4) behavior for small z⊥, i.e.
they correspond to the same value of the 〈0|ϕ(0)∂2ϕ(0)|p〉
matrix element (in the scalar case), provided that one
takes the same value of Λ in both models. For large z⊥,
however, the Gaussian model has a fall-off that is too
fast, while the fall-off of the “slow” model is too slow.
Thus, they look like two extreme cases, and provide a
good illustration of the nonperturbative evolution of the
pion QDA, with expectation that other models would
produce results somewhere in between these two cases.

B. Numerical Results

To compare evolution patterns induced by the Gaus-
sian and “slow” models, we take the Ansatz (30) with
ϕπ(x) having a drastic shape of the Chernyak-Zhitnitsky
DA ϕCZ

π (x) = 30fπx(1− x)(1− 2x)2. As one can see
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FIG. 1. Quasi-distribution amplitude QCZ
π (y, P ) for P/Λ = 1, 3, 5, 10 in the Gaussian (left) and “slow” models (right).

from Fig. 1, for P/Λ = 1 the Gaussian model shows no
indication of humps visible for higher P/Λ ratios. In the
“slow” model, small humps are present even for P/Λ = 1.
For high ratios P/Λ = 5 and 10, the two models give close
results, with strong humps.

Assuming Λ ∼ 0.6 GeV suggested by the VDA-based
fits of the photon-pion transition form factor in Ref. [16],
we expect that P ∼ 3 GeV would be required to support
(or rule out) the CZ-type shape of the pion DA.

It is also interesting to note that the nonperturbative
evolution pattern here is exactly opposite to the pertur-
bative one. In the latter case, the humps of the initially
CZ-shaped DA become less pronounced as the normal-
ization scale increases and eventually disappear, with the
DA tending to the asymptotic ∼ x(1− x) shape.

To compare patterns of the QDA’s nonperturbative
evolution for different shapes of the limiting DA, we take
three models for ϕπ(x): Chernyak-Zhitnitsky ϕCZ

π (x),
flat ϕflat

π (x) = fπ and asymptotic ϕas
π (x) = 6fπx(1− x).

The results in the Gaussian and the “slow” models are
rather similar. To avoid plotting too many graphs, we
take, for definiteness, the “slow” model. Then, for the

flat limiting DA we have

1

fπ
QS,flat
π (y, P ) =

P

Λ

∫ 1

0

dx e−2|x−y|P/Λ . (35)

This integral can be calculated analytically. Writing
y = (1 + η)/2 in terms of a symmetric variable η, we get

1

fπ
QS,flat
π (y, P ) =

(
1− e−P/Λ cosh(Pη/Λ)

)
θ(|η| ≤ 1)

+ sinh(P/Λ)e−P |η|/Λθ(|η| ≥ 1) . (36)

Similar, but more lengthy expressions may be obtained
for two other models. As one can see from Fig. 2, for
small P = Λ we have very close curves. For larger P = 3Λ
the difference becomes visible, and for large P = 5Λ and
P = 10Λ the curves shown in Fig. 3 are distinctly dif-
ferent. In fact, the P = 10Λ curves are very close to
their limiting forms. Again, the nonperturbative evolu-
tion pattern in case of the flat DA is opposite to the per-
turbative one: as P increases, Qflat

π (y, P ) broadens from
a rather narrow function for P = Λ and becomes almost
constant for P = 10Λ.

VI. LEADING-ORDER HARD TAIL

The nonperturbative evolution of Qπ(y, P ) essentially
stops for P/Λ & 20, and for larger values of P the domi-
nant role is played by the perturbative evolution induced
by the hard part. In our papers [15, 16], it was suggested
to take a purely soft TMDA (or VDA) as a starting ap-
proximation, and then “generate” hard tail by adding
one-gluon exchanges. The only new parameter is the
overall factor αs, while the k⊥-dependence of the hard
tail of the TMDA Ψ(x, k2

⊥) is completely determined by
the soft part.

For large k⊥, the generated hard part of the TMDA

has a ∼ 1/k2
⊥ behavior, but its explicit functional form

is much more complicated. In particular, it is finite in
the k⊥ → 0 limit [16]. The infrared cut-off for the naive
1/k2
⊥ extrapolation is provided by the finite size of the

pion encoded in the parameters, like Λ, present in the
soft TMDA. Postponing the analysis of the interplay be-
tween the nonperturbative and perturbative evolution for
future studies, we just outline below the VDA treatment
of the hard tail.

For large σ, the lowest-order (in αs) hard tail has the
form

Φhard(x, σ) = ∆(x)/σ , (37)
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FIG. 3. Quasi-distribution amplitudes Qπ(y, P ) in the “slow” model for P = 5Λ (left) and P = 10Λ (right) evolving to CZ, flat
and asymptotic DAs.

with ∆(x) given by

∆(x) =

∫ 1

0

dz V (x, z)ϕsoft
π (z) , (38)

where V (x, z) is the perturbative evolution kernel
[21–23]. The asymptotic form (37) corresponds to a
∼ 1/k2

⊥ TMDA, which is singular for k⊥ = 0. As ex-
plained above, this singularity is absent in the exact
(rather complicated) expression for the hard tail. For il-
lustration purposes, we take now the simplest regulariza-
tion 1/k2

⊥ → 1/(k2
⊥ +m2). It corresponds to the change

1/σ → e−im
2/σ/σ in the hard part of VDA,

Φhard(x, σ) → ∆(x)

σ
e−im

2/σ . (39)

To proceed with the conversion formula, one needs the

integral over σ

I(x, y, P ) =

∫ ∞
0

dσ√
πσ

P

σ
e−(x−y)2P 2/σ−m2/σ

=
1√

(x− y)2 +m2/P 2
. (40)

This gives the hard part of the quasi-distribution ampli-
tude

Qhard
π (y, P ) =

∫ 1

0

dx
∆(x)√

(x− y)2 +m2/P 2
. (41)

It generates evolution with respect to P 2 in the form

P 2 d

dP 2
Qhard
π (y, P ) =

m2

2P 2

∫ 1

0

dx
∆(x)

[(x− y)2 +m2/P 2]3/2
.

(42)
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Taking the m/P → 0 limit we have

m2

2P 2

∫ 1

0

dx
V (x, z)

[(x− y)2 +m2/P 2]3/2

= V (y, z) +O(m2/P 2) , (43)

i.e. for large P 2 the quasi-distribution amplitude evolves
according to the perturbative evolution equation with re-
spect to P 2. This evolution is completely determined by
the form of the soft DA ϕsoft(x). When the model for
the latter is fixed, the particular choice of the soft TMDA
Ψsoft(x, k2

⊥) does not affect the form of the hard part and
the perturbative P -evolution of the pion QDA Q(y, P ).

VII. CONCLUSIONS

In this paper, we extended the approach of Ref. [14],
where we have been dealing with the parton distribu-
tion functions, the basic ingredients of perturbative QCD
analysis of hard inclusive processes. Now we have dealt
with the pion distribution amplitude, the basic ingredi-
ent of hard exclusive processes involving the pion. We
applied the formalism of virtuality distribution ampli-
tudes to study the p3-dependence of quasi-distribution
amplitudes Qπ(y, p3).

Just like in Ref. [14], we have established a simple
relation between QDAs and TMDAs that allows to derive
models for QDAs from the models for TMDAs. Unlike
the PDF case, there are many drastically different models
claimed to describe the primordial shape of the pion DA.
We have presented the p3-evolution patterns for models
producing some popular proposals: Chernyak-Zhitnitsky,
flat and asymptotic DAs. Our results may be used as a
guide for future studies of the pion distribution amplitude
on the lattice using the quasi-distribution approach.

As our estimates show, one would need P of the order
of a few GeV for the nonperturbative evolution to settle.
It is natural to expect that perturbative evolution will be
rather important at such scales. Thus, an interesting and
technically challenging question for future studies is the
interplay between the nonperturbutive and perturbative
evolution of the pion quasi-distribution amplitude.

Another interesting problem for future studies is
the analysis of more complicated models for TMDAs,
in particular, models with non-factorized k⊥ and x-
dependence. As the simplest generalization of the mod-
els used in the present paper, one can take x-dependent
functions Λ(x) instead of the constant values Λ.
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