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Abstract
We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-

MeV mass dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium

primarily deposit energy into long-lived phonon and roton quasiparticle excitations. If the energy

thresholds of the detector can be reduced to the meV scale, then dark matter as light as ∼ MeV

can be reached with ordinary nuclear recoils. If, on the other hand, two or more quasiparticle

excitations are directly produced in the dark matter interaction, the kinematics of the scattering

allows sensitivity to dark matter as light as ∼ keV at the same energy resolution. We present in

detail the theoretical framework for describing excitations in superfluid helium, using it to calculate

the rate for the leading dark matter scattering interaction, where an off-shell phonon splits into two

or more higher-momentum excitations. We validate our analytic results against the measured and

simulated dynamic response of superfluid helium. Finally, we apply this formalism to the case of a

kinetically mixed hidden photon in the superfluid, both with and without an external electric field

to catalyze the processes.

I. INTRODUCTION

Weakly Interacting Massive Particles (WIMPs) with a mass of O(100) GeV have been

one of the leading dark matter (DM) candidates for the past few decades. However, recent

null results in direct detection and collider experiments now provide strong motivation to

extend the scope of our models and searches as much as possible. In addition, theoretical

advances have shown that there are a variety of models for sub-GeV dark matter that are only

now beginning to be explored. Such dark matter may reside in a low mass hidden sector

(or “hidden valley”) at the MeV-GeV scale [1], with either strongly or weakly interacting

dynamics [2–5]. These particles can be invisible to production at colliders, but give rise

to large scattering cross-sections in direct detection experiments. They are moreover well-

motivated in Asymmetric Dark Matter (e.g. [6]), supersymmetric hidden sectors [7, 8], and

SIMP dark matter [9], to name a few.

The theoretical progress in identifying sub-GeV dark matter has been accompanied by

effort to experimentally probe such light dark matter [10]. Among the various ways to detect

dark matter, existing direct detection experiments have traditionally focused on nuclear

recoils from WIMPs, with typical recoil energies of 10-100 keV. Rapid progress in recent
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years has thus produced strong limits on DM-nucleon scattering in the 10-100 GeV mass

range [11–14], tightly constraining many well-motivated models of WIMP dark matter. To

improve sensitivity to lower mass DM, a number of these experiments have successfully

developed techniques that lower the nuclear recoil thresholds below ∼ keV. This has been

implemented for example in CDMSlite [15] and CRESST [16], which are sensitive to GeV-

scale dark matter.

For a given deposited energy, sensitivity to lighter dark matter can be obtained by scat-

tering from electrons, rather than nuclei. This is because in elastic scattering with the target

at rest, the deposited energy is ω = q2/2mT , where mT is the target mass and the momen-

tum transfer q ∼ µrvX is given by the dark matter velocity vX and the dark matter-target

reduced mass µr. The first effort in this direction utilized an electron ionization process

in XENON10, deriving a constraint on electron interaction cross-sections for DM heavier

than 10 MeV [17]. For this mass, the DM possesses the minimum kinetic energy needed to

ionize an electron from xenon, ∼ 12 eV. In the future, SuperCDMS may have sensitivity to

MeV-scale DM, on account of the smaller ∼ eV excitation energy set by the band gap of the

semiconductor [18–20]. (SuperCDMS may also probe unexplored parameter space for light

bosonic DM with eV-keV mass through an absorption process [21, 22].) Other small gap

materials may also make good targets for MeV-GeV mass dark matter in scattering, most

notably graphene [23], giving access to directional information, and crystal scintillators [24].

To reach DM lighter than an MeV, new ideas are needed. The first proposal sensitive

to keV-scale DM considered superconductors [25, 26] for DM-electron scattering. A conven-

tional superconductor has a small ∼0.3 meV electron band gap and a large electron Fermi

velocity, vF ∼ 10−2c; these two facts combined kinematically allow access to keV mass DM

(carrying a meV of kinetic energy). It was also shown that these targets have a remarkable

sensitivity to bosonic DM in the meV-eV mass range via absorption on electrons, followed

by phonon emission [27]. Aside from the ∼meV electron band gap, superconductors have

another property which can allow for detection of small energy depositions; a DM scattering

that breaks a Cooper pair will give rise to long-lived quasiparticle excitations (which be-

have very much like an electron). In a very clean superconductor, excitations created in the

bulk can then be detected in sensors at the surface of the target. Among the experimental

challenges to implementing this idea, it is necessary that the energy resolution be improved

significantly, down to the meV scale.
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In this paper, we turn to a new proposal to detect keV-MeV scale DM via nuclear recoils

in superfluid helium, first discussed in Ref. [28]. Similar to the superconductor target,

the low-energy degrees of freedom in superfluid helium are long-lived quasiparticles. These

quasiparticle excitations (called phonons, rotons and maxons) are collective modes in the

fluid, analogous to sound waves in the long-wavelength limit. These modes are produced

by nuclear scattering, and have been extensively probed by neutron scattering experiments

on superfluid helium. Since a large fraction of the deposited energy in a low-energy nuclear

scattering is converted to phonons and rotons, it may then be possible to detect dark matter

as light as an MeV via regular nuclear recoils if experimental thresholds can be lowered to

∼ 10 meV. This is because MeV mass dark matter deposits ∼ meV of energy in a nuclear

recoil process, but this energy is amplified by ∼ 10 meV through the evaporation of the

excitation at the surface of the superfluid. For a discussion of experimental aspects of

a liquid helium detector, and possibilities for detecting the phonons and rotons, see for

example Refs. [29, 30].

The idea of Ref. [28] was to probe lower mass DM, in the keV-MeV range, by taking

advantage of multi-excitation production in superfluid helium. For these low masses, which

have correspondingly small momentum . keV, the DM couples directly to the collective

quasiparticle modes. However, the kinematics prohibit the creation of a single excitation

with energy above a meV. The underlying reason is that the dark matter velocity is much

larger than the typical sound speed in the fluid, such that the typical energy and momentum

transfer for sub-MeV DM cannot match the dispersion relation of a single, on-shell excitation.

However, by considering the process of emitting two or more excitations, it is possible to

deposit energies larger than ∼ meV even with the small momentum transfers characteristic

of such light dark matter. The final state excitations are higher-momentum excitations and

very nearly back-to-back. The left panel of Fig. 1 illustrates this process.

The purpose of this paper is two-fold. First, we amplify the discussion of Ref. [28], provid-

ing many more details of the theory utilized for computing the multi-excitation scattering

rate. We update the analytic calculation of Ref. [28] with the measured structure factor

for the leading-order scattering rate, and again compare against the available computations

of the literature. While neutron scattering data and detailed numerical simulations have

been studied in some parts of the multi-excitation phase space, the fluid response for DM

with mass below ∼ 100 keV rests partially in previously unconsidered regimes of momentum
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FIG. 1. Leading order contribution to DM scattering via quasiparticle production in superfluid

helium. (left) For scattering through a contact interaction, the off-shell intermediate excitation

splits into two, nearly back-to-back on-shell excitations. (right) For scattering through an inter-

mediate hidden photon A′, the hidden photon splits into a real photon, which carries nearly all the

energy, and a fluid excitation, which carries nearly all the momentum.

transfer and energy deposition. This therefore requires some theoretical understanding of

the rates. Second, we elaborate on the reach for a simplified model of dark matter coupling

to nuclei via a new mediator and compare with existing constraints. We additionally con-

sider scattering and absorption via hidden photons, where the final state is a real photon

plus a fluid excitation (see right panel of Fig. 1). In this case, the real photon carries away

the bulk of the energy, while the fluid excitation absorbs most of the momentum. However,

since the net electric charge of a helium atom is screened at the wavelengths of interest, we

find that the reach for this case is not competitive with existing stellar constraints.

We introduce the basic elements of the theory for superfluid helium in Sec. II, beginning

with a broad introduction to the nature of quasiparticle excitations in the superfluid. In order

to calculate the two-excitation process, we employ the correlated basis function formalism,

standard in the liquid helium literature, and derive the three-excitation matrix element.

App. A provides an alternative formulation in terms of second quantization, and App. B

fills in extra details of calculating the three-excitation matrix element. In Sec. III, we turn to

a comparison of numerical calculations of the multi-excitation process, applying our results

to derive the sensitivity of a liquid helium target to light DM. The results here focus on

DM scattering via a mediator that couples to the nucleus. In Sec. IV, we discuss scattering

and absorption processes involving a hidden photon, which couples to liquid helium via its

polarizability. We conclude in Sec. V.
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II. THEORY OF SUPERFLUID HELIUM

A unique property of helium in the superfluid phase is the nature of the elementary

excitations. At long wavelengths (1/λ . few keV), the elementary degrees of freedom are

no longer single-atom excitations. Instead, the elementary excitations are acoustic phonon

modes, a collective mode which is equivalent to a density perturbation at long wavelengths.

The quasiparticle nature of the phonon modes is also essential for dark matter detection.

While phonon modes are present even at temperatures above Tc = 2.17 K, the critical

temperature for the superfluid phase transition, it is only well below Tc that the width

of the phonon mode becomes narrow. In this regime these phonon modes are the only

excitations present and they can be thought of as nearly stable quasiparticles. Since a large

fraction of the energy deposited in a low-energy dark matter scattering will be in the form

of phonons, it is important that these excitations be long-lived states that can propagate to

the surface of the liquid and be measured, for a ∼ 10 cm3 volume (or 1 kg) of liquid helium

(see Refs. [31, 32] for a discussion on phonon lifetimes).

In this section, we describe the theory for superfluid helium needed to calculate the

production of multiple excitations in the liquid. Due to the strongly-interacting nature

of the liquid, the underlying microscopic theory for superfluid helium is not completely

understood. However, somewhat phenomenological methods have been proposed which can

successfully reproduce many features of the data. The basic idea behind these methods goes

back to Feynman in 1954 [33], and starts with a posited form for the ground state |Ψ0〉,
or equivalently a wavefunction for an N -atom system. While determining the form of the

ground state is difficult (though it can be tested by comparison with data), excited states are

momentum eigenstates that are written simply as the number density operator acting on the

ground state, |q〉 ∝ nq|Ψ0〉. This starting point will then allow us to calculate the creation

of excitations of the liquid, even without complete knowledge of the full ground state. We

will compare this approach with more complete calculations available in the literature. For

a thorough discussion of the various theoretical descriptions of excitations in liquid helium,

see also Refs. [34–36].
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A. Bijl-Feynman relation for single-excitations

Much of our knowledge of the excitations in a strongly-interacting quantum fluid (such

as superfluid helium) comes from the dynamic structure function S(q, ω), which describes

the response of the liquid to a density perturbation with momentum transfer q and en-

ergy deposited ω. For instance, S(q, ω) can be directly measured in neutron scattering by

measuring the differential cross section:

d2σ

dΩdω
= b2

n

pf
pi
S(q, ω), (1)

where pi and pf are the initial and final momenta of the scattered neutron, q = pf − pi,

and bn is the scattering length of a neutron on an individual helium nucleus.

The dynamic structure function thus depends on the matrix element for the creation of

a quasiparticle with momentum q and energy ω. Concretely, S(q, ω) is defined as:

S(q, ω) ≡ 1

n0

∑

β

|〈Ψβ|nq|Ψ0〉|2δ(ω − ωβ), (2)

where the final states in the scattering are denoted as |Ψβ〉 with energy Eβ, the ground state

|Ψ0〉 has energy E0, and ωβ = Eβ − E0. Here nq is the Fourier transform of the density

operator (in real space, n(r) =
∑

i δ
(3)(r− ri)),

nq ≡
1√
V

N∑

i=1

exp(iq · ri), (3)

and ri are the coordinates of the individual helium atoms in the fluid. We take an arbitrary

quantization volume V , with N the number of He atoms in the volume; physical results

will only depend on the average number density n0 = N/V . To facilitate some of the

later computations, we will occasionally go to the continuum limit by replacing
∑

q →
V/(2π)3

∫
d3q and δq,q′ → (2π)3/V δ(3)(q− q′).

The reason neutron scattering (or dark matter scattering) couples to density fluctuations

can be understood by considering the potential V (r) seen by a neutron in the liquid,

V (r) =
2πbn
mn

∑

i

δ(3)(r− ri) =
2πbn
mn

n(r), (4)

assuming a hard-sphere interaction and neutron massmn. This is the underlying justification

for Eq. (1), which we derive in Sec. IIIA for the case of DM scattering. In particular, we
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similarly obtain such a potential for dark matter by coupling the DM to helium atoms, with

bn/mn → bX/mX , with bX andmX the dark matter mass and scattering length, respectively.

The dynamic structure function S(q, ω) is thus crucial to understand the response of su-

perfluid helium to dark matter scattering. While it can be obtained from neutron scattering

data at moderate momentum transfer (q & 0.1/Å, corresponding to q ∼ 0.2 keV in units

where q = 2π/L), a certain level of theoretical control is also possible. As we will see, this

theoretical control will be crucial for extrapolating the dynamic structure function to lower

momentum transfers, which is necessary to compute the scattering rate when the DM is

lighter than ∼ 100 keV.

The leading order contribution to S(q, ω) is given by the probability to create a single on-

shell quasiparticle excitation. One of the earliest theories of the single excitation spectrum,

due to Bijl [37] and Feynman [33], applies the variational method to understand the shape

of the dispersion curve. Concretely, the trial wavefunction for a single excitation is given by

|q〉 =
1√

n0S(q)
nq|Ψ0〉, (5)

with nq defined in Eq. (3), and where the static structure function S(q) is defined by

S(q) ≡ 1

n0

〈Ψ0|n−qnq|Ψ0〉. (6)

where S(q) is a function only of q = |q|, and its appearance in the definition of the state

ensures that 〈q|q〉 = 1. The left panel of Fig. 2 shows the experimentally measured S(q) in

helium, which is linear in |q| at small momentum and approaches 1 at high momentum. In

the limit of a single excitation, which does not split to multi-excitations, S(q) is related to

the dynamic structure function by

S(q, ω) ≈ 1

n0

∣∣〈q|nq|Ψ0〉
∣∣2δ(ω − ε0(q)) (7)

= S(q)δ(ω − ε0(q)),

where ε0(q) is the energy of |q〉, which we will refer to as the Bijl-Feynman energy.

Since the state in Eq. (5) is by construction orthogonal to the ground state, the variational

method dictates that its energy ε0(q) provides an upper bound on the true energy eigenvalue

ε(q). As we will shown in the next section, the single excitation energy is

ε0(q) ≡ 〈q|H − E0|q〉 =
q2

2mHeS(q)
≥ ε(q), (8)
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with H the Hamiltonian and E0 the ground-state energy. The factor S(q) comes from the

normalization of the states in Eq. (5), and in the limit of a free Bose gas S(q) → 1. The

Bijl-Feynman theory for ε0(q) produces the single resonance curve shown in the right panel

of Fig. 2, and approaches the free-particle quadratic dispersion at high q. For comparison,

we also show the measured dispersion curve for single-resonance excitations in Fig. 2. We see

that the Bijl-Feynman energy agrees roughly with the measured energy at long wavelengths,

where the excitations can be identified with sound waves (phonons) with energy ε0(q) =

cs|q|, where cs ≈ 2.4 × 104 cm/s is the sound speed. In this regime, the static structure

factor is then linear in the momentum with

S(q) ≈ |q|
2mHecs

. (9)

However, as the curve reaches a maximum and begins to turn over (the maxon and roton

regions), the agreement no longer persists, and is not even qualitatively correct as the

dispersion curve reaches a plateau.

The original Bijl-Feynman theory contains, however, no multiphonon response. More

generally, the dynamic structure function will contain both the single pole, with strength

Z(q), and a continuum component, Sm:

S(q, ω) = Z(q)δ(ω − ε(q)) + Sm(q, ω), (10)

and the static structure function now satisfies the more general relation S(q) =
∫
dω S(q, ω).

Any large deviation of Z(q) from S(q) indicates that the state defined in Eq. (5) is no

longer a good approximation to the single-excitation state, which will be the case in the

roton region. The continuum component Sm results from multi-excitation production in

the medium. These multi-excitation modes are also important for computing the correct

single resonance dispersion curve through radiative corrections to the propagator. It is the

multi-excitation response Sm(q, ω) that we will focus on in the rest of this section.

B. Hamiltonian formulation

We now lay out the ingredients to describe phonon interactions, focusing on the elements

needed to compute Sm(q, ω). We follow the correlated basis function formalism, which

we briefly review here. This formalism adopts the Bijl-Feynman approach, positing that
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FIG. 2. (left) Interpolation of the data for the static structure function S(q) (at T = 1 K) from

neutron scattering experiment [38]. In the small q limit, S(q) behaves linearly according to Eq. (9).

(right) We compare the measured dispersion curve for single excitations in superfluid helium (solid

black line) with the Bijl-Feynman relation for excitations, q2/(2mHeS(q)) (dashed blue line). The

measured dispersion curve [39] comprises the phonon modes at low q and the maxon and roton

at high q (in particular, the modes at around q ∼ 4 keV where ε(q) reaches a local minimum is

called the roton), but does not include the broad multi-excitation response centered around the

free-particle dispersion at high q. In the Bijl-Feynman theory, which does track the quadratic

dispersion at high q (shown as the dotted black line), these high q modes are treated as single-

particle excitations.

particle correlations are primarily contained in the ground state wavefunction. Given the

exact ground state, excited states are obtained simply with repeated applications of the

density operator. Following Ref. [40], we define a lowest-order set of basis states using the

Bijl-Feynman states:

|q〉0 ≡ 1√
n0S(q)

nq|Ψ0〉 (11)

|q1,q2〉0 ≡
1√

n0S(q1)

1√
n0S(q2)

nq1nq2|Ψ0〉. (12)

|Ψ0〉 is full ground state of the interacting system. Importantly, the states here are not

orthogonal and hence phonon number is not conserved. Instead, the propagating excitations

are superpositions of these states. We deal with this complication in the following section.
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To compute the energies and matrix elements, we require an interaction Hamiltonian.

This Hamiltonian may either be written as the effective theory of a quantum fluid, or in terms

of the microscopic degrees of freedom. Let us first consider the fluid Hamiltonian, which

directly allows for a second-quantized approach, see e.g. [41]. (This discussion most closely

follows Ref. [28].) Here we elevate the status of the density fluctuation nq to independent

operators which create excitations in the fluid, and consider an effective Hamiltonian for

these fluid degrees of freedom,

H =

∫
d3r

(
1

2
mHe v · nv + V(n)

)
. (13)

By expanding in the density and velocity fluctuations, the system can be approximated to

leading order as a harmonic oscillator with Hamiltonian

H0 =
1

2

∑

q

mHe n0vq · v−q + φ(q)nqn−q , (14)

where φ(q) ≡ δ2V/δn2
q can be thought of as a momentum dependent force constant. As

we show in App. A, this Hamiltonian lends itself to canonical quantization of the nq,vq

variables, and Eq. (14) be can expressed in terms of creation and annihilation operators

H0 =
∑

q

ε0(q)

(
a†qaq +

1

2

)
. (15)

The single-excitation energy is simply 0〈q|H0 − E0|q〉0 = ε0(q). The three-excitation inter-

action vertex and corrected energy eigenvalues can then be obtained by expanding Eq. (13)

to higher order in the density and velocity fluctuations. While this setup may be more fa-

miliar to a particle physicist, it is less convenient for our purposes. In particular, the ground

state in the fluid is nontrivial: in a medium, quantum fluctuations require us to consider an

active vacuum, where the asymptotic states of the strongly-interacting fluid are not well-

approximated by the free states of a weakly-interacting system. This effect can be accounted

for in the second-quantized quantum fluid formalism by correcting the ground state order

by order, as we show in App. A, although the calculation is somewhat cumbersome.

In practice, matrix elements are often derived more simply in a first-quantized formula-

tion of the microscopic theory, which has the advantage, as we will see, that knowledge of

the ground state is not required to compute the matrix element that we are interested in.

Given the energies and vertices computed in this approach, one can of course construct an

equivalent second-quantized, quantum fluid Hamiltonian, which may be more convenient for
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certain scattering and self-energy calculations. The first-quantized microscopic Hamiltonian

is given by

H =
∑

i

(
− ∇

2
i

2mHe

)
+ V({ri}), (16)

where the sum runs over all N particles in the fluid. Writing ψ0({ri}) as the wavefunction

corresponding to the ground state |Ψ0〉, we require that Hψ0 = E0ψ0 such that ψ0 is the

exact ground state of the full Hamiltonian. For a translationally-invariant system, we thus

find that the ground state energy is E0 = 〈Ψ0|V({ri})|Ψ0〉.
We can show that this formulation also gives the Bijl-Feynman energy in Eq. (8). Using

〈...〉 →
∫
d3r1 ...rN with integration over the coordinates of all atoms, and acting with H−E0

on the wavefunction |q〉0 → nqψ0/
√
n0S(q) =

∑
i e
iri·qψ0/

√
N S(q),

0〈q|H − E0|q〉0 =
1

NS(q)

∑

i,`

∫
d3r1 ...rN ψ0e

−iq·ri [H − E0]
(
eiq·r`ψ0

)

=
1

2mHe

1

NS(q)

∑

i,j,`

∫
d3r1 ...rN ψ0e

−iq·ri [−ψ0

(
∇2
je
iq·r`)− 2 (∇jψ0)

(
∇je

iq·r`)]

=
1

2mHe

1

NS(q)

∑

i,j,`

∫
d3r1 ...rN ψ2

0

(
∇je

−iq·ri) (∇je
iq·r`) =

q2

2mHeS(q)

(17)

where we used Hψ0 = E0ψ0 and rearranged the derivatives with partial integration. We

have also assumed ψ0 is a properly normalized, real wavefunction,
∫
d3r1 ...rN(ψ0)2 = 1.

(Notice that the dependence on the unknown forms of ψ0 and V({ri}) dropped out.) While

we have only computed the average energy for a given state, it can furthermore be shown

that |q〉 approaches an exact eigenstate of H in the q → 0 limit [42].

C. Three-excitation vertex

In the previous section, we defined a single excitation state which we regard as an approx-

imately free quasiparticle, as well as multi-excitation states which are products of the single

excitations. However, an important subtlety in treating a non-dilute, strongly interacting

fluid is that the asymptotic states do not have a well defined particle number. In particular,

the states defined so far are not orthogonal, and we must first define an orthogonal basis of

states before considering the three-excitation vertex. In other words, to correctly calculate
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the cross section, we need to compute the matrix element for states which are long-lived

compared to the time-scale set by the interaction Hamiltonian. This way the factorization

principle allows us to compute the total rate without detailed knowledge of the ultimate fate

of the external states in the matrix element.1

A set of orthogonal states can be obtained by performing a Gram-Schmidt rotation to

orthogonalize the basis. Concretely, we start with the same single excitation state |q〉0 =

nq|Ψ0〉/
√
n0S(q) and then define a set of orthogonal states relative to |q〉0 by

|q〉 ≡ |q〉0 (18)

|q1,q2〉 ≡ |q1,q2〉0 −
∑

q′

〈q′|q1,q2〉0 |q′〉. (19)

In what follows we alway drop the 0 superscript for the single particle state, since it is by

construction identical to the corresponding state in the orthogonalized basis. We identify

this new basis of states with the orthogonal eigenstates of the quadratic Hamiltonian for the

quasiparticles, which will be corrected by the cubic interactions derived below.

The unknown particle correlations of the strongly coupled fluid are now conveniently

packaged in the 〈q′|q1,q2〉0 matrix element, which we will discuss later in this section. In

the microscopic Hamiltonian of Eq. (16), this overlap term encodes the unknown potential

term which dictates the correlations of particles in the ground state. For the quantum fluid

effective Hamiltonian in Eq. (13), the same information is encoded in the interactions coming

from both the kinetic term, the unknown potential and possible matching terms encoding

the unknown short distance physics. (In this sense one may roughly think of the overlap term

〈q′|q1,q2〉0 as a counterterm which enforces the orthogonality of the renormalized states.)

To compute the three-excitation matrix element, we again use δH = H − E0 with the

Hamiltonian given in Eq. (16) and with E0 the ground state energy:

〈q− k,k|δH|q〉 = 0〈q− k,k|H − E0|q〉 − ε0(q) 0〈q− k,k|q〉, (20)

In the second term, we have used the leading order energy of the single-excitation state;

this three-excitation vertex will itself correct the single-excitation energy at higher order in

perturbation theory. The first term in Eq. (20) can be computed directly with the basis

1 This is a familiar concept in hard parton scattering in QCD, where we can compute the leading order,

total inclusive cross section without detailed knowledge about the shower and hadronization.
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states in the previous section:

0〈q− k,k|δH|q〉 =
1√

n3
0S(q− k)S(k)S(q)

∫
d3r1...d

3rNn
∗
q−kn

∗
kψ0(H − E0)nqψ0. (21)

Again, (H − E0) acts on nqψ0, and after integration by parts plus the fact that ψ0 satisfies

(H − E0)ψ0 = 0, we can show that

0〈q− k,k|δH|q〉 =
∑

j

1√
n3
0S(q−k)S(k)S(q)

∫
d3r1...d

3rN
(ψ0)2

2mHe
∇j

(
n∗q−kn

∗
k

)
∇j (nq) (22)

=
∑

j

1

N
√
n0S(q−k)S(k)S(q)

∫
d3r1...d

3rN
(ψ0)2

2mHe

(
−i(q− k)e−i(q−k)·rjn∗k − i(k)e−ik·rjn∗q−k

)
(iqeiq·rj) .

We rewrite the terms above in terms of the static structure function,

1√
N

∑

i

〈Ψ0|e−iqrinq|Ψ0〉 =
1√
n0

〈Ψ0|n∗qnq|Ψ0〉 =
√
n0S(q). (23)

Using this result, we obtain

0〈q− k,k|H − E0|q〉 =
q · (q− k)S(k) + q · kS(q− k)

2mHe
√
N
√
S(q− k)S(k)S(q)

(24)

Next, to directly compute the overlap matrix element 0〈q−k,k|q〉 requires some working

assumption for the form of the ground state wavefunction. Alternatively, one may estimate

for this overlap term with a more indirect method. The simplest ansatz which yields the

correct long-wavelength behavior and satisfies a certain set of consistency conditions is known

as the “convolution approximation.” With this ansatz, one finds [36, 40]

0〈q− k,k|q〉 =

√
S(q− k)S(k)S(q)√

N
, (25)

which we derive in detail in App. B. It has been shown that using this form gives good

agreement with experimental data on neutron scattering. Various improvements to the

convolution approximation have been considered (see e.g. [43]), though for our approximate,

analytic treatment we choose to keep the simplest possibility. This has the main advantage

that the formulae of the final answer are very manageable. In particular, utilizing Eq. (20),

the full matrix element is then given by

〈q− k,k|δH|q〉 =
q · (q− k)S(k) + q · kS(q− k)− q2S(k)S(q− k)

2mHe
√
N
√
S(q− k)S(k)S(q)

(26)
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+ · · ·

FIG. 3. Expansion of the dynamic response function in terms of diagrams, where the dashed

lines indicate the excitations as defined in Eq. (19). The two-excitation diagram is the leading

contribution to S(q, ω) for q, ω away from the dispersion relation.

Having obtained the three-excitation matrix element, it is now possible to systematically

compute the single excitation energy as a perturbation series in this matrix element. To lead-

ing order in Brillouin-Wigner perturbation theory [44], the eigenstates of the Hamiltonian

are

|Ψq〉 = |q〉+
1

2

∑

p,k

|p,k〉 〈p,k|δH|q〉
ε(q)− ε0(k)− ε0(p)

δp+k,q (27)

|Ψk,q〉 = |k,q〉+
1

2

∑

p

|p〉 〈p|δH|k,q〉
ε(k) + ε(q)− ε0(p)

δp,k+q . (28)

Similarly, the energy of |Ψq〉 is then given by the recursive relation

ε(q) = 〈Ψq|H|Ψq〉 = ε0(q) +
1

2

∫
d3k

(2π)3

V |〈q− k,k|δH|q〉|2
ε(q)− ε0(q− k)− ε0(k)

. (29)

where we took the continuum limit. To solve for the resummed energy to lowest order, ε(q)

is replaced by ε0(q) inside the integral above. By inserting Eq. (28) in Eq. (2), one can

compute the two-excitation contribution to the dynamic structure function to leading order

Sm(q, ω) =
S(q)

2

∫
d3k

(2π)3

V |〈q− k,k|δH|q〉|2
(ε0(q)− ω)2

δ(ω − ε0(k)− ε0(q− k)). (30)

This is shown diagrammatically in Fig. 3. Whenever we use this approximation, we use

the Bijl-Feynman dispersion relation and the measured form of S(q), both shown in Fig. 2.

While this form is enough to obtain a rough estimate of the scattering rate, it clearly has

the incorrect structure as it only uses the lowest-order energies.

This deficiency is addressed in many detailed calculations of S(q, ω) found in the literature

[39, 45, 46], using different approximations for the three-excitation vertex and in defining

the multi-excitation states. We note that the approach presented here is not entirely unique
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in giving reasonable agreement with the data. Recently, a fully self-consistent calculation

which resums the corrections due to the three-phonon vertex and gives good agreement with

experimental data has been presented by Campbell, Krotscheck and Lichtenegger in Ref. [39]

(hereafter, CKL15). Rather than model the effect of the interactions with a heuristic ansatz

for the overlap term, they explicitly include the leading term from the potential in Eq. (16).

Operationally, they obtain S(q, ω) by recursively solving for the self-energy Σ(q, ω), which

satisfies

Σ(q, ω) = ε0(q) +
1

2

∫
d3k

(2π)3

V |〈q− k,k|δH|q〉|2
ω − Σ(q− k, ω − ε0(k))− Σ(k, ω − ε0(q− k))

. (31)

Using this self-energy, the renormalized energies ε(q) then match the observed single-

excitation energies, and the dynamic structure factor is given by the optical theorem

S(q, ω) = − 1

π

S(k)Im Σ(q, ω)

(ω − ε0(q))2 + (Im Σ(q, ω))2
. (32)

The result for S(q, ω) is shown in Fig. 4, which includes both the single and multi-excitation

response. We emphasize that the method of Ref. [39] includes multi-excitation production

beyond just the leading order two-excitation production, with the limitation that the multi-

excitation production still relies on the three-excitation vertex (in general, higher-point

vertices are present). A detailed comparison of this theoretical calculation with inelastic

neutron scattering data can be found in Ref. [47]. Accounting for neutrons that scatter

multiple times in the liquid, the data is in reasonably good agreement with theory for the

multi-excitation component.

As we will discuss in the following section, the results shown in Fig. 4 are in broad

agreement with the lowest order calculation of Sm(q, ω) using Eq. (30), although there

are significant differences in detailed structure. Where available, we will therefore use the

numerical results of CKL15 to compute DM scattering, and use the lowest order results only

as a guide to extending CKL15 to low momentum transfer.

III. REACH FOR DARK MATTER SCATTERING

We now turn to DM detection with an idealized liquid helium detector, applying our

knowledge of the dynamic structure function derived in the previous section. A possible

concept for this detector has been shown in [30]: the basic idea is that a scattering event
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FIG. 4. Self-consistent calculation of the dynamic structure function S(q, ω), obtained from Ref. [39]

(CKL15). For a given q, the onset of the response at a minimum ω clearly shows the one-excitation

component of S(q, ω). The response at larger ω corresponds to the multi-excitation component,

where the structures at 2 meV and above arise from multi-excitations of rotons/maxons. In the

experimental data these structures are less prominent, which is expected once additional interactions

are included (see figures 21-22 and discussion in Ref. [39].)

creates quasiparticle excitations, which can propagate to the surface of the liquid. At the

liquid-gas interface, the quasiparticle has a high probability to eject a free helium atom via

quantum evaporation, followed by calorimetric detection of the helium atom. Furthermore,

the evaporation process may give a natural amplification technique (with amplification fac-

tors of ∼10), and in principle could be applied for single quasiparticle energies as low as

ω = 0.6 meV.

In this section we use the various results for the dynamic structure function S(q, ω) to

obtain the rate for DM scattering. We discuss the derivation of the rate given in [28] in

greater detail, considering the expanded calculation of S(q, ω). As a benchmark, we will

consider a background-free kg-year exposure. For multi-excitation final states, we take a

minimum energy of ω = 1.2 meV and energies up to 8.6 meV. This upper value on ω
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coincides with the upper cutoff of the numerical results we take from CKL15; furthermore,

this energy range constitutes the bulk of the response, and the rate falls off rapidly at higher

ω.

The results of this section are applicable to models of dark matter interacting coherently

with helium atoms via a new mediator, where we consider both the heavy mediator and

light mediator limits. In contrast, in the long wavelength limit the helium atom does not

have a net charge for a mediator such as a hidden photon. We will discuss signals related

to the hidden photon in Sec. IV.

A. Preliminaries

The total DM scattering rate per unit target mass is given by

dR

dω
=

1

ρHe

ρX
mX

∫
d3vf(v)

∫ pi+pf

|pi−pf |
dq

dΓ

dωdq
, (33)

where dΓ
dωdq

is the differential scattering rate per incoming DM particle. We denote the initial

momentum of the DM pi and the final momentum pf , with

pf = mX

√
v2 − 2ω

mX

, pi = mX |v|. (34)

For the velocity distribution for the dark matter, we assume the standard halo model

Maxwellian distribution, boosted to the earth’s frame:

f(v) =
1

N(v0, vesc)
exp

[
−(v + ve)

2

v2
0

]
Θ(vesc − |v + ve|), (35)

N(v0, vesc) = π3/2v3
0

[
erf(vesc

v0
)− 2vesc

v0
exp

(
−(vesc

v0
)2
)]

(36)

where v0 = 220 km/s, the escape velocity vesc = 500 km/s, and we take the average earth’s

velocity to be ve = 240 km/s. The normalization factor N(v0, vesc) accounts for the hard

cutoff in the distribution at vesc. For the local dark matter density, we take ρX = 0.3

GeV/cm3. (Note that this velocity distribution differs somewhat from that used in Ref. [28],

with more weight at higher initial velocities. This leads to a factor of few larger scattering

rate.)

Analogous to the case for neutron scattering Eq. (4), DM in superfluid helium sees the

potential

V (r) =
2πbX
mX

∑

i

δ(3)(r− ri) =
2πbX
mX

n(r), (37)
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where bX is the DM-helium scattering length. This prescription works both for a light

mediator and for a contact operator, where in the former case bX is momentum dependent.

We can then compute the scattering rate with Fermi’s golden rule,

Γ = 2π

(
2πbX
mX

)2 ∫
d3pf
(2π)3

∑

β

|〈Ψβ|nq|Ψ0〉|2δ(Ei − Ef − ωβ). (38)

With a suitable change of variables, the differential rate is then

dΓ

dqdω
=

1

2
n0
σX(q)

mX

q

pi
S(q, ω), (39)

where we used the definition of S(q, ω) in Eq. (2). (The derivation of the neutron scattering

rate in Eq. (1) is completely analogous.) The DM-nucleus scattering cross section σX(q) =

4πbX(q)2, where bX(q) is the DM scattering length. Assuming the DM-nucleus interaction

is mediated by a new force carrier φ, we can express this as

σX(q) ≡




σp

(fpZ+fn(A−Z))2

f2p
, mφ � q (massive mediator)

σpq4ref
q4

(fpZ+fn(A−Z))2

f2p
, mφ � q (massless mediator)

, (40)

where we consider the massive and massless mediator limits, and σp is the DM-proton cross

section at a reference momentum transfer qref ≡ mXv0. In what follows we take fn = fp.

The expression for DM scattering rate is then

dR

dω
=

ρX
2mHem2

X

∫
d3vf(v)

∫ pi+pf

|pi−pf |
dq
q

pi
σX(q)S(q, ω). (41)

B. Scattering rate and reach

Since a full, self-consistent calculation of S(q, ω) has been made available in CKL15, we

would like to use these results. However, for scattering of light dark matter, the kinematic

regime is somewhat different from that of neutron scattering measurements (q & keV) and

existing simulation data (q & 100 eV). In particular, for dark matter in the keV to MeV

range, we expect typical momentum transfer and energy deposits given by

eV . |q| . keV and meV . ω . eV. (42)

This is partially outside the regime that was considered in CKL15 and is shown in Fig. 4,

which includes q ≈ 100 eV - 4 keV and ω < 8.6 meV. The reason for the kinematic mismatch

between dark matter and the data is the relatively large velocity of the dark matter compared
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to the speed of sound in helium, which pushes the interaction away from the linear dispersion

phonon regime.

For the time being, we must therefore rely on a theoretically sensible extrapolation to

compute the rate for lighter DM. The numerical data in particular shows a q4 scaling in the

low q region, which we can exploit to extrapolate to lower momenta. This q4 power law can

be understood analytically using our approximate expression for S(q, ω) in Eq. (30). In the

long-wavelength limit (q . keV) and at deposited energies ω & 0.6 meV, we can take the

q � k, |q− k| where k and q− k are the momenta of the final state phonons. The matrix

element in Eq. (26) then simplifies to

〈q− k,k|δH|q〉 ≈ 1

2mHe
√
N

q2

√
S(q)

(
1− S(k)

)
. (43)

Inserting this in Eq. (30) gives

S(q, ω) ≈ 1

16π2

q4

n0m2
Heω

2

∑

i

k̃2
i

(
1− S(k̃i)

)2
, (44)

where the k̃i are the solutions to ε0(ki) = ω/2. We show the q-dependence of the numerical

data from CKL15 in Fig. 5, along with the extrapolation to lower q with the q4 power

law. For comparison, we also show our own numerical calculations of the leading order

S(q, ω) using Eq. (30), where we took the Bijl-Feynman dispersion relation and measured

form of S(q), each shown in Fig. 2. (While the Bijl-Feynman dispersion relation is strictly

speaking not correct for high momenta, we use it to roughly estimate the contribution from

the response above 2 meV, as seen in Fig. 4.) In both cases, we see the low-q behavior is

very well described by a q4 power law.

To indicate the relative importance of this extrapolation for dark matter scattering, we

show the q values that are most relevant for the DM scattering rate in Fig. 6, compared to

the momenta covered by the CKL15 results. What is shown in the average q, weighted by

the relevant factors in Eq. (41), or more explicitly

〈q〉 ≡
∫ pi+pf

|pi−pf |
dq q2σX(q)S(q, ω)

/∫ pi+pf

|pi−pf |
dq q σX(q)S(q, ω) (45)

using the S(q, ω) extrapolated below q = 100 eV with the q4 power law. Thus the DM rate

computed here relies heavily on the q4 extrapolation for DM masses below 50-100 keV, and

a dedicated simulation along the lines of CKL15 will eventually be needed in this part of

parameter space.
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FIG. 5. The numerical results from CKL15 are compared with our leading order calculation of

S(q, ω) at two representative values of ω. The dashed line shows the extrapolation with the q4

power law, which is a good fit at low q and agrees with the scaling we find in the leading order

calculations.
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FIG. 6. We show typical values for the total momentum transfer q = |q| as a function of dark

matter mass mX , considering both a massive mediator (left) and massless mediator (right). We

use S(q, ω) extrapolated as q4 to plot 〈q〉 as well as the variance for q (indicated by the shaded

region). The energy deposited is fixed at ω = 3 meV, and we consider two values of the initial DM

velocity. The range of q covered in the CKL15 results (Ref. [39]) is indicated by the light gray lines;

as can be seen, these numerical results start to be insufficient for DM masses below ∼ 50 keV, and

we must rely entirely on the q4 extrapolation of the CKL results for masses below ∼ 30 keV.
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FIG. 7. (left) The DM scattering rate via a massive mediator is computed using the S(q, ω)

obtained from CKL15. (right) Here we used the leading order result in Eq. (30), with the Bijl-

Feynman dispersion for single-excitations. There are significant differences in the structure of

the spectrum between the two methods, due to the incorrect energies given by the Bijl-Feynman

dispersion. However, we find the total integrated rate is similar to within a factor of 2.
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FIG. 8. Same as Fig. 7, but for DM scattering via a massless mediator.

Fig. 7 and Fig. 8 show the spectrum for scattering via a massive and massless mediator,

respectively. In both cases, we compare the result using S(q, ω) from CKL15 and that using

Eq. (30). When computing S(q, ω) from Eq. (30), we use the Bijl-Feynman dispersion for

excitations, along with the measured S(q); since this method gives roton/maxon energies

which are too high compared to the measured ε(q), the structure here is shifted to higher

22



ω. These differences illustrate the importance of obtaining the correct energies (and widths)

of the rotons and maxons, since the rate is clearly dominated by pair-production of these

excitations.

The projected best-case sensitivity for DM scattering is shown in Fig. 9, for 1 kg-year

exposure and assuming zero background events. The results for both computations of S(q, ω)

are similar once the rate is integrated over the energy range ω ∈ [1.2, 8.6] meV, despite

the significant differences in the spectrum. In the same plots, we show the reach if only

regular nuclear recoils can be observed down to ∼ 3 meV (gray line). (Below ∼ 3 meV, we

know that the only modes available are quasiparticle (phonon or roton/maxon) modes – see

Fig. 2.) In our estimates, we assumed a 30% signal efficiency to account for possible losses

due to absorption of quasiparticles by the container walls, or from rotons failing to induce

evaporation when reaching the surface of the liquid [48, 49]. We did not include possible

backgrounds from scattering of solar neutrinos (see for example Ref. [26]) and coherent

photon scattering [50], which are small for these exposures.

Note our results are consistent with the reach computed in Ref. [28], where the results

utilizing the CKL15 S(q, ω) match exactly (up to the different velocity distributions used).

Ref. [28] also calculated the multi-excitation rate in the leading order approximation, but

using a different form of S(k) = k/
√

4m2
Hec

2
s + k2. This assumption made it tractable to

obtain an analytic result for the rate, but does not include the peaked spectrum from the

rotons that we see in Fig. 7 and Fig. 8. However, accounting for a missing symmetry factor

of 1/2 in the analytic results of Ref. [28] and the different velocity distributions, the reach

is similar.

In Fig. 9, we also show contours in σp for various model-dependent coupling and mass

parameters. In particular, the cross section for DM scattering off a single proton or nucleon

can be written in the massive and massless mediator limits as

σp =





4αXg
2
nµ

2
nX

m4
φ

, mφ � qref (massive mediator)

4αXg
2
nµ

2
nX

q4ref
, mφ � qref (massless mediator)

, (46)

for fixed momentum transfer qref = mXv0. Here we have written the mediator coupling to

the DM and nucleons as gX and gn, respectively. (To relate results with the form of the

scattering potential given in Eq. (37), we take bX/mX → A(gngX)/m2
φ with A = 4, in the

limit of mX � mHe.)
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FIG. 9. Projected reach at 90% CL (2.4 events) for DM scattering through multi-excitation pro-

duction in superfluid helium for a 1 kg-year exposure, for the massive mediator (top) and massless

mediator (bottom) cases defined in Eq. (40). The dashed (solid) blue line shows the result using

the leading order (CKL15) result for S(q, ω). We assume a 30% signal efficiency, zero background,

and experimental sensitivity down to ω ∼ meV. The reach is derived from the integrated rate with

ω ∈ [1.2− 8.6] meV, where the multi-excitation scattering rate is largest. The reach from ordinary

nuclear recoils is also shown, assuming sensitivity to the energy range ω ∈ [3−100] meV (for smaller

ω, ordinary nuclear recoils are not possible). The dotted lines show σp for sample mediator masses

and couplings, chosen to roughly satisfy self-interaction, neutron scattering, and stellar bounds (see

text).
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Setting aside the cosmological production mechanism for the DM, there are a number of

model-dependent existing constraints on light dark matter, in particular for the case of a

light mediator. The DM-mediator coupling gX is bounded from DM self-interactions, which

can affect DM halo shapes and small-scale structure. The momentum-transfer weighted

self-interaction cross section is given by [51],

σT ≈





4πα2
Xm

2
X

m4
φ

, mφ � mXv (massive mediator)

16πα2
X

m2
Xv

4 ln mXv
2

2mφαX
, mφ � mXv (massless mediator)

, (47)

where v is the velocity of the DM and in the above we have assumed 2mφαX/(mXv
2)� 1,

always valid here. A comparison of observed structure with simulations that incorporate

DM self-interactions leads to upper bounds in the ball park of σT/mX . 0.1 − 10 cm2/g,

depending on the system. In particular, observations of dwarf galaxies (with v ∼ few×10−4)

allow cross sections as high as σT/mX ≈ 10 cm2/g [52, 53] and comparison with shapes of

elliptical galaxies (with v ∼ 10−3) gives an upper bound of about σT/mX . 0.1 cm2/g [54].

However, we emphasize these bounds can vary by up to an order of magnitude depending

on the detailed modeling of structure formation. Furthermore, existing simulations have

focused on hard-sphere scattering, and the bounds may be modified significantly in the

massless mediator case, where the scattering is dominantly in the forward direction, leading

to less isotropization than the hard-sphere scattering case for a given interaction cross-

section. Nevertheless, we can use these results to obtain an approximate bound on the DM

coupling. Taking σT/mX < 10 cm2/g and setting v = 3× 10−4, we find

αX .





2× 10−3
( mφ

MeV

)2
√

MeV
mX

, mφ � mXv (massive mediator)

2× 10−11
(
mX
MeV

)3/2
, mφ � mXv (massless mediator)

, (48)

where in the light mediator limit we took ln mXv
2

2mφαX
∼ 30. Note also that we have assumed

mφ � αXmX , such that quantum mechanical resonance effects can be neglected [51].

A new mediator which couples to nucleons is also strongly constrained, for instance by

measurements of neutron-nucleus scattering or from stellar cooling constraints. For massive

mediators at the MeV scale or heavier, neutron-lead scattering experiments set a constraint

of [55]

gn . 2× 10−5
( mφ

MeV

)2

. (49)
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Combining this with the self-interaction constraint in Eq. (48) gives for mφ = MeV an upper

limit of σp . 10−33cm2 (mX/MeV)3/2, which is well above the cross sections considered here.

For reference, we show the cross section for several parameter choices satisfying the self-

interaction and neutron-lead scattering constraints in the top panel of Fig. 9.

For the light mediator case, there are also strong constraints from energy loss in helium

burning stars, which require gn . 4× 10−11 for mediator mass mφ . 10 keV [56]. Combined

with the self-interaction constraint given in Eq. (48), this would put a strong upper bound

on the allowed σp. However, in both cases the limits are model-dependent and may be

uncertain. With this caveat, in Fig. 9, we show σp for couplings that are roughly consistent

with stellar cooling and self-interactions, where for αX we include the strongmX-dependence

of the bound in Eq. (48).

Additionally, we expect that for the cross sections shown here, the effect of DM stopping

in the earth can be neglected (see e.g. Ref. [57] for a recent detailed analysis of this effect).

Assuming an average density of 5.5 g/cm3 with a chemical composition of Fe (32%), Si

(30%), O (15%), Mg (14%) and S (3%), we estimate the mean free path for DM scattering

in the earth to be roughly 9000 km for σp ∼ 10−35 cm2. The mean free path is therefore larger

than the radius of the earth for all cross sections we consider. Moreover, given that every

scattering event would only result in a relatively small energy loss, dark matter stopping in

the earth can be safely neglected for the cross sections of interest.

IV. HIDDEN PHOTON PROCESSES

A hidden photon is a well-motivated ingredient of many dark matter models, either as

a component of the dark matter itself (e.g. [58–60]) or as a mediator for DM interactions.

(For a recent review, see Ref. [10].) The hidden photon A′ couples to standard model fields

through the kinetic mixing operator,

L ⊃ κ

2
F µνF ′µν (50)

where κ is the kinetic mixing parameter and Fµν (F ′µν) is the photon (hidden photon) field

strength. For a massive hidden photon, this mixing leads to a coupling of the hidden photon

with the regular electromagnetic current, κeA′µJ
µ
EM , after performing a field redefinition

Aµ → Aµ+κA′µ. Here, we consider two scenarios: in the first case, a fermionic DM candidate
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with keV-MeV mass scatters via the hidden photon mediator. Since our expressions only

depend on κ × gA′ , with gA′ the DM coupling to the hidden photon, for simplicity we set

gA′ = 1 and quote our results only in terms of κ. In addition, we will calculate absorption

of sub-eV mass hidden photons in helium, assuming that the hidden photons constitute the

dark matter.

Since the electric charge of the helium atom is screened at long wavelengths (or small

momentum transfers q . 1 keV), the analysis of the previous section no longer applies.

Instead, a hidden photon (or photon) couples to the medium by inducing a dipole moment,

where the strength of the dipole is determined by the atomic polarizability α. Note also

that this implies there is negligible difference between the in-medium kinetic mixing and

the vacuum kinetic mixing, in contrast to other low-threshold targets like superconductors

where in-medium effects substantially affect the rate [26].

Our treatment of this coupling via the polarizability will closely follow Ref. [61], which

considered photon scattering in liquid helium. First, we obtain the photon coupling with

the medium. To leading order, the target medium is treated as a linear dielectric, with an

atomic polarizability α ≈ 2 × 10−25 cm3 (see e.g. [61]) for helium. The polarization of the

medium is given by

P(r) = αn(r)E(r), (51)

where n is the number density at helium atoms and E is the total electric field in the medium.

The interaction Hamiltonian of the polarization with a radiation field Eγ is then

HI = −1

2

∫
d3rP(r) · Eγ(r). (52)

If the polarization is solely induced by the incident radiation field, then E(r) ≈ Eγ(r). From

the coupling to the number density n(r), this interaction allows for photon scattering by

creation of excitations in the liquid. When just a single excitation is emitted, this process

is known as Brillouin scattering.2 Since the sound speed is much smaller than the speed of

light, here the phonon excitation only carries a small fraction of the energy, such that the

frequency shift in the outgoing photon is minimal.

2 Another possibility is Raman scattering, where in addition to the final state photon, two back-to-back,

high momentum phonons are being emitted. However, the rate for Raman scattering is proportional to

α2 and is generally three to four orders of magnitude weaker than Brillouin scattering. We neglect it here,

but refer to Ref. [62] for a review of both Brillouin and Raman scattering in superfluid helium.
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(k1, ω1)

(k2, ω2)

(q, ω)
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pi pf

(k2, ω2)

(k1, ω1)

(q, ω)E0 A′

FIG. 10. Processes for dark matter scattering via a hidden photon mediator; the diagrams for

absorption of hidden photons are identical to these but without the external fields pi and pf .

(left) In the absence of an external E-field, the DM scattering creates a photon and quasiparticle

excitation (dashed line) in the final state. The coupling of the hidden photon is given in Eq. (53).

(right) In the presence of an external electric field E0, the intermediate hidden photon is converted

to an off-shell excitation, which subsequently splits into two or more on-shell excitations. See

Eq. (54).

To obtain the coupling for the hidden photon field, we perform the field redefinition

Aµ → Aµ + κA′µ, which gives

HI = −κα
∫
d3r n(r)E(r) · E′(r) (53)

and E′(r) is the hidden photon field. From this, we see that the hidden photon couples

to a photon and the density field. A DM scattering (or absorption) would thus give rise

to both an observable photon and quasiparticle excitation, as shown in the left panel of

Fig. 10. The physical interpretation is as follows: an incoming hidden photon must first

induce a polarization in the medium, which subsequently relaxes back to the ground state

by emitting a photon and a phonon. We calculate the rate for these processes in Sec. IVA.

Additionally, the polarization vector P may be present already if the experimental setup

includes a strong external electric field applied in the liquid. In particular, in neutron EDM

experiments, superfluid helium is used for storage of the cold neutrons, and a strong electric

field is applied to study the neutron spin precession. Recently, a stable electric field as high

as 100 kV/cm has been demonstrated [63]. The interaction Hamiltonian in this case is

HI = −κα
2

∫
d3r n(r)E0 · E′(r), (54)
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where the external field E0 allows for conversion of the hidden photon into a density pertur-

bation. In this case, there is no final state photon produced, but the kinematics of light DM

scattering requires us to consider the multi-excitation final state, analogous to the discussion

in previous sections. This process is shown in the right panel of Fig. 10, and we calculate

the corresponding rates in Sec. IVB.

A. Scattering and absorption without an external E-field

We first consider DM scattering in the absence of any external E fields. The process

is shown in Fig. 10, which also defines our conventions for the kinematic variables. For

non-relativistic DM, a typical scattering is characterized by a small deposited energy, but

a relatively sizable momentum transfer (q ∼ 103 × ω). Since the speed of sound in the

superfluid is much smaller than the speed of light, nearly all the deposited energy will be

carried away by the photon, while the phonon will absorb the momentum:

ω1 ≈ ω, k2 ≈ q and ω2 ≈ 0. (55)

To calculate the matrix element, we quantize the electric field of the photon in an arbitrary

volume V by

E(r) =
i√
2V

∑

k1,λ

√
ω1

[
ε(k1, λ)ak1,λe

ik1·r − ε∗(k1, λ)a†k1,λ
e−ik1·r

]
(56)

where ε(k1, λ) is the polarization vector and ak1,λ (a†k1,λ
) the annihilation (creation) opera-

tors. Since the DM is non-relativistic, it can be viewed as sourcing a Coulomb potential for

the hidden photon with

E′(r) = −∇Φ′(r) (57)

Φ′(r) =

∫
d3r′

: X(r′)†X(r′) :

4π|r− r′| e−|r−r
′|mA′ (58)

where the : indicates normal ordering and X is the dark matter operator. After Fourier

transforming, the hidden photon field can then be written as

E′(r) = −i 1

V

∑

q,s

q eiq·r
NX(q, s)−NX̄(q, s)

q2 +m2
A′

, (59)

where mA′ is the hidden photon mass and we set the DM charge with respect to the hidden

photon equal to one. NX(q, s) and NX̄(q, s) are the number operators for dark matter
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and anti-dark matter respectively, where s denotes the spin. Finally, we take the density

field n(r) from Eq. (3). In all of the above expressions the momenta q, k1 and k2 are

summed over, and their naming conventions are arbitrary. However, to make the notation

as transparent as possible, we chose to label them according to the external state in Fig. 10

they will eventually contract with.

Using Eq. (53), one can obtain the relevant term in the interaction Hamiltonian

HI = −ακ
V

∑

k1,k2,q
s,λ

√
ω1

2

q · ε∗(k1, λ)

q2 +mA′2
a†k1,λ

n−k2NX(q, s) δq,k1+k2 . (60)

The polarization-averaged squared matrix element is then given by

|〈pi|HI |pf ;k1;k2〉|2 =
α2κ2

2V 2
ω1

q2

(q2 +mA′2)2

∣∣〈Ψ0|n−k2|k2〉
∣∣2δq,k1+k2 (61)

=
α2κ2n0

2V 2
ω1

q2

(q2 +mA′2)2
S(k2)δq,k1+k2 , (62)

where we used Eqs. (5), (6) in the last step.

The scattering rate is given by Fermi’s golden rule,

Γ = 2π
∑

k1,k2,pf

|〈pi|HI |pf ;k1;k2〉|2δ(Ei − ω1 − ω2 − Ef ) (63)

with Ei,f the initial and final state energy of the dark matter. In the continuum limit, the

rate can then be written as

Γ =
1

2

1

(2π)5
α2κ2n0

∫
d3pf d

3k1 d
3k2 ω1

q2

(q2 +mA′2)2
S(k2)δ(ω − ω1 − ω2)δ(3)(q− k1 − k2)

(64)

If we trade pf for q, eliminate the k2 integral with the momentum δ-function and take

ω2 ≈ 0, the integral above can be written in terms of two angles and two magnitudes

Γ = n0α
2κ2 1

2(2π)3

∫
dq dω d cos θ d cosψ

q4ω3

(q2 +m2
A′)2

×S
(√

q2 + ω2 − 2q ω cosψ
)
δ

(−q2 + 2 q p1 cos θ

2mX

− ω
)

(65)

where we used the photon dispersion relation to trade k1 = ω1 ≈ ω. Since the final state

momentum is k2 ≈ q ∼ mXv, for DM masses below an MeV, the momentum transfer is in

the linear regime for S(k2) and we can take S(k2) ≈ |k2|/2mHecs in our calculation. We can

then evaluate the integrals over the angles and q to obtain the differential rate, which is

dΓ

dω
=
n0α

2κ2ω3mX

8π3csmHepi

√
p2
i − 2mXω (66)
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in the mA′ � q limit. The total integrated rate is

Γ(v) ≈ 1

1260π3

n0α
2κ2m5

Xv
8

mHecs
. (67)

The total rate is then

R =
1

ρHe

ρX
mX

∫
d3vf(v)Γ(v) (68)

≈ 9.2× 1014 × κ2 ×
( mX

MeV

)4

/kg/year (69)

with f(v) the dark matter velocity distribution in Eq. (35). Given that current stellar

constraints on hidden photons already require κ×mA′ . 3× 10−12 eV [64, 65] (for the case

of Stueckelberg breaking of the hidden force), the reach in κ is not particularly promising.

Next, we consider the scenario where the hidden photon itself is the dark matter, taking

mA′ to be sub-eV. (For heavier mA′ in the eV-keV range, semiconductor targets are a more

promising target [21, 22].) In this case, the hidden photon can be absorbed by the superfluid,

such that ω = mA′ , which again results in the emission of a phonon and a real photon with

energy ω1 ≈ ω. The computation is analogous to the one outlined above, with the exception

that for the hidden photon we must use the expansion analogous to Eq. (56). Again using

Eq. (53), the relevant term in the Hamiltonian is then

HI = ακ
1

2
√
V

∑

k1,k2,q

√
ω1ω a

†
k1,λ

n−k2a
′
q,λ′ε

′(q, λ′) · ε∗(k1, λ)δq,k1+k2 (70)

where a′λ,q and ε′(q, λ) are respectively the hidden photon destruction operator and polar-

ization vector. The momentum transfer in this case is given by mA′v, such that we can again

take the linear regime for the structure factor, S(k2) ≈ |k2|/2mHecs. This approximation is

always justified for absorption, since q � ω . eV. The absorption rate can then be obtained

with a similar computation to one described above, with

Γ =
1

12π

n0α
2κ2m5

A′

mHecs
. (71)

which is independent of the hidden photon velocity. The total observable rate is

R =
1

ρHe

ρX
mA′

Γ (72)

≈ 7.8× 1016 × κ2 ×
(mA′

eV

)4

/kg/year. (73)

This rate is only competitive with current stellar constraints on the mixing parameter κ if

mA′ ∼ 1 keV. However with an energy deposition as large as 1 keV, other experiments, such

as semiconductor targets [21, 22], are likely to be more sensitive.
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B. Scattering and absorption with an external E-field

If an external background electric field E0 is turned on, then the medium already has a

polarization P0 = α n(r)E0 and the interaction Hamiltonian is given by Eq. (54). The pres-

ence of the external field allows a hidden photon to be converted to a density perturbation,

as shown in the right panel of Fig. 10. As for the case of hard sphere scattering considered in

Sec. III, energy and momentum conservation does not allow for a single phonon excitation

and the leading process necessarily involves multiple excitations.

For DM scattering, we follow the same treatment of the hidden photon as in the previous

section, and we obtain the quantized interaction Hamiltonian,

HI =
ακ

2

i√
V

∑

q,q′,s

E0 · q
q2 +mA′2

n−q′ NX(q, s) δq,q′ (74)

which we can directly match onto Eq. (4) by defining an effective dark matter scattering

length
2πbX
mX

=
1

2
κ
αE0 · q
q2 +mA′2

. (75)

With σX = 4πb2
X , we can now directly use all the results from Sec. III. Interestingly, the

rate depends on the direction of the background electric field E0, which in principle induces

a daily modulation in the scattering rate. To obtain an upper bound on the rate, we take

the field to be parallel with the momentum transfer, after which we obtain

dΓ

dq dω
=

1

8π
n0mXκ

2α2 q

pi

|E0|2q2

(q2 +mA′2)2S(q, ω). (76)

For an electric field of E0 = 100 kV/cm, we find that the upper bound on the potential reach

for mA′ � q is

κ ∼ 2× 10−9 ×
(

MeV

mX

)3/2

(77)

for a kg-year of liquid helium. This value of κ is only competitive with stellar constraints

for mA′ . 10−3 eV.

For the case of hidden photon absorption, the Hamiltonian is

HI =
ακ

2
√

2

∑

q

√
ω a′q,λ n−q ε

′(q, λ) · E0. (78)
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Next we can compute the polarization averaged, squared matrix element and sum over all

multi-excitation final states of the superfluid

∑

β

∣∣〈q|HI |Ψβ〉
∣∣2 =

1

24
|E0|2 α2 κ2ω

∑

β

∣∣〈Ψ0|n−q|Ψβ〉
∣∣2. (79)

Considering multi-excitation production,

Γ =
π

12
|E0|2 α2 κ2 ω

∑

β

∣∣〈Ψ0|n−q|Ψβ〉
∣∣2δ(ωβ − ω) (80)

=
π

12
n0 |E0|2 α2 κ2 ω S(q, ω). (81)

For hidden photon absorption, the kinematics dictates q ∼ 10−3 × ω with ω . eV. For such

small momentum transfers and comparatively large energies, we expect a strong suppression

of the dynamic structure factor S(q, ω) due in part to the q4 dependence discussed in Sec. III,

as this regime is very far away from the dispersion relations of the quasi-particle states we

seek to scatter off. In particular, from Fig. 4, we can already see that S(q, ω) ∼ 10−4 eV−1

even for q = 0.1 keV and ω ≈ 0.01 eV. For reference, the rate for this value is

R ∼ 1.3× 1019 × κ2 ×
(

S(q, ω)

10−4 eV−1

)
/kg/year. (82)

for a 100 kV/cm electric field. Even without a reliable extrapolation to q � ω, we can

therefore estimate that the rate must be very small for κ values that satisfy current stellar

constraints.

V. CONCLUSIONS

We have considered multi-excitation production in superfluid helium from dark matter

scattering and absorption, showing that superfluid helium may be sensitive to DM in the

keV to MeV mass range, with DM-nucleon cross sections between 10−36 and 10−44 cm2. This

extends the reach of superfluid helium beyond ordinary nuclear recoils, which can reach dark

matter as light as ∼MeV for the same ∼meV energy threshold.

We provided an explicit calculation for the multi-excitation process, focusing on the lead-

ing two-excitation contribution to the dynamic structure function Sm(q, ω). This theoretical

understanding is necessary, as the existing neutron scattering data on multi-excitation pro-

duction samples only a limited region in phase space for the response of the fluid. We
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calculated Sm(q, ω) in a leading order approximation, which does not account for impor-

tant self-interactions that modify the roton/maxon contributions and lead to substantial

differences in the spectrum. Nevertheless, we have compared this method to the re-summed

numerical results in Ref. [39] (CKL15), which focused on momentum transfers q & 100 eV,

finding that the reach for DM scattering is similar in the two cases. In the future, a more

complete calculation of the low momentum regime, complemented with accurate measure-

ments in neutron scattering experiments, is highly desirable. We further calculated the rate

of hidden photon absorption and hidden photon mediated dark matter scattering, both with

and without an external electric field applied on the fluid. For these processes, we find that

the reach is not competitive with existing stellar constraints.

Dark matter detection by multi-excitation production in superfluid helium illustrates a

more general idea: by harnessing a coupling to modes other than ordinary nuclear recoils,

new regimes in dark matter mass may be reached with the same technology. While we have

focused on superfluid helium as a promising target, this idea warrants exploration in other

types of materials.
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Appendix A: Second quantization of the fluid Hamiltonian

In this appendix, we provide more details on the second quantization of the fluid Hamil-

tonian in Eq. (13), and give the details to derive Eq. (15). Our discussion of the formalism

closely follows [41].

34



At distances longer than the inter-atomic spacing, the fluid can be described by a density

field n(r, t) and a (dimensionless) velocity field v(r, t), which can be decomposed as

n(r, t) = n0 + V −1/2
∑

q

eiq·rnq(t), (A1)

v(r, t) = V −1/2
∑

q

eiq·rvq(t) (A2)

with V the arbitrary quantization volume. These perturbations must satisfy the continuity

equation; for a classical field, the continuity equation in momentum space can be written as

vq =
iq ṅq

n0q2
. (A3)

With V the potential energy in the fluid, the Hamiltonian of the system is

H =

∫
d3r

1

2
mHe v · nv + V(n). (A4)

By expanding in the density fluctuations, the system can be approximated as a quantum

harmonic oscillator with Hamiltonian

H0 =
1

2

∑

q

mHe n0vq · v−q + φ(q)nqn−q (A5)

=
1

2

∑

q

mHe

n0q2
ṅqṅ−q + φ(q)nqn−q, (A6)

where φ(q) ≡ δ2V/δn2
q can be thought of as a momentum dependent force constant. The

frequencies associated with the excitations are thus given by

ε20(q) =
n0q

2φ(q)

mHe
. (A7)

This system can be quantized with the standard methods: We first compute the conjugate

momentum to the density perturbation nq

πq =
δH0

δṅq

=
mHeṅ−q
n0q2

(A8)

which inserted in Eq. (A6) gives

H0 =
1

2

∑

q

n0q
2

mHe
πqπ−q + φ(q)nqn−q. (A9)
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We then enforce the canonical quantization condition [nq′ , πq] = iδq,q′ and decompose nq

and πq as

nq = i

√
n0q2

2mHeε0(q)

(
a−q − a†q

)
, (A10)

π−q =

√
mHeε0(q)

2n0q2

(
a−q + a†q

)
(A11)

where the aq are the usual ladder operators, which satisfy
[
aq, a

†
q′

]
= δq,q′ . This finally

reduces the Hamiltonian to the familiar form

H0 =
∑

q

ε0(q)

(
a†qaq +

1

2

)
. (A12)

With Eq. (A10) we can also explicitly recover the Bijl-Feynman result shown in Eq. (8)

S(q) =
1

n0

〈Ψ0|n−qnq|Ψ0〉 =
q2

2mHeε0(q)
. (A13)

Equivalently, we can compute

〈q|H0 − E0|q〉 =

〈
q

∣∣∣∣
∑

k

(
1

2mHe

k2

4n0S(k)2
nkn−k +

ε0(k)

4n0S(k)
nkn−k

) ∣∣∣∣q
〉

(A14)

=
1

2

(
q2

2mHeS(q)
+ ε0(q)

)
= ε0(q). (A15)

where we used Eq. (A10) and Eq. (A11) to rewrite the Hamiltonian in Eq. (A9), while

dropping terms that are annihilated by the external states. For later usage, we also rewrite

Eq. (A10) and (A11) as

nq = i
√
n0S(q)

(
a−q − a†q

)
, (A16)

vq =
iq

2mHe

√
1

n0S(q)

(
a−q + a†q

)
. (A17)

To compute three excitation matrix element one must include the first non-trivial term

in the expansion of Eq. (A4), which is

H1 =
mHe

2V 1/2

∑

q,k

vqnk−qv−k (A18)

where we neglect a possible cubic contribution from V(n). In second quantized form this

can be written as

H1 = − i
8

C

mHe V 1/2
n0

∑

q′,k′l′

q′ · l′ S(k′) (a−q′ + a†q′)(a−k′ − a†k′)(a−l′ + a†l′)δk′+q′+l′,0(A19)
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with C ≡ 1/
√
n3

0S(q)S(k)S(q− k). As discussed in Sec. II B, the vacuum of the free

Hamiltonian in Eq. (A5) is not a good approximation of the true vacuum. The true vacuum

can however be approximated to leading order in perturbation theory by

|Ψ0〉 ≈ |0〉+
1

H0 − E0

H1|0〉+ · · · (A20)

where |0〉 is the vacuum of the free Hamiltonian.

The orthogonalized, excited states are defined as in Eqn. (11), (12) and (19). The matrix

element of interest is then

〈q|δH|k,q− k〉 = 〈q|H0 − E0|k,q− k〉0 − ε0(q)〈q|k,q− k〉0 + 〈q|H1|k,q− k〉(A21)

where we neglected corrections of order O(H1). Using (A20), the first term can then be

written as

〈q|H0 − E0|k,q− k〉0 = C

[
〈0|H1

1

H0 − E0

n−q(H0 − E0)nknq−k|0〉 (A22)

+〈0|n−q(H0 − E0)nknq−k
1

H0 − E0

H1|0〉
]

(A23)

= C
[
r〈0|H1n−qnknq−k|0〉+ (1− r)〈0|n−qnknq−kH1|0〉

]
(A24)

with

r ≡ ωk + ωk−q
ωq + ωk + ωk−q

(A25)

where the ωk etc are the eigenvalues of H0 corresponding to the state nk|0〉. Assuming that

none of the external momenta are equal to one another, we find

〈0|H1n−qnknq−k|0〉 =
i

C
〈0|H1a

†
−qa

†
ka
†
q−k|0〉 (A26)

=
n0

4mHe V 1/2
[q · k S(q− k) + q · (q− k) S(k)− k · (q− k) S(q)]

We moreover have

〈0|n−qnknq−kH1|0〉 = 〈0|n−qnknq−kH1|0〉† (A27)

= 〈0|H1nk−qn−knq|0〉 (A28)

= 〈0|H1n−qnknq−k|0〉 (A29)

where in the last line we used that all n commute and that the theory is parity invariant.

Putting all of this together, we then have

〈q|(H0 − E0)|k,q− k〉0 =
n0C

4mHe V 1/2

[
q · k S(q− k) + q · (q− k) S(k)− k · (q− k) S(q)

]
.
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Similarly, we can compute 〈q|H1|k,q−k〉. In this case the relevant term in the Hamiltonian

is

H1 = − in0C

8mHe V 1/2

∑

q′,k′,l′

[
2q′ · l′ S(k′)− k′ · l′S(q′)

]
a†q′a−k′a−l′ δq′+k′+l′,0 + · · · (A30)

To leading order in H1, this matrix element is then

〈q|H1|k,q− k〉 = C〈0|n−qH1nknq−k|0〉 (A31)

= −i〈0|aqH1a
†
ka
†
q−k|0〉 (A32)

=
n0C

4mHeV 1/2
[q · k S(q− k) + q · (q− k) S(k) + k · (q− k) S(q)] .(A33)

The final result is

〈q|(H0 +H1 − E0)|k,q− k〉0 =
q · k S(q− k) + q · (q− k) S(k)

2mHe
√
NS(k)S(q)S(q− k)

. (A34)

which matches the result in Eq. (24), which was performed in the microscopic formalism.

One may also attempt to compute the overlap term 〈q|k,q − k〉0 is this quantum fluid

formalism. This however gives an answer which differs from the convolution approximation,

as computed in App. B. This is unsurprising, since the fluid Hamiltonian is merely a low

energy effective theory, which in itself does not capture the full UV dynamics. Ideally, one

would address this by computing the relevant matching terms from directly coarse-graining

the microscopic physics. In the absence of such microscopic understanding, we estimate the

overlap term with the heuristic ansatz provided by the convolution approximation.

Appendix B: Derivation of the overlap term

In this appendix we provide a derivation for the overlap term in Eq. (25). As discussed

in Sec. II C, the 0〈k− q,k|q〉 overlap term encodes aspects of the dynamics of the strongly

coupled fluid, and is not known from first principles. It is however possible to constrain it

with a number of consistency conditions and subsequently derive a closed form expression

by choosing an ansatz for the remaining unknown part. The ansatz we work with here is

known as the convolution approximation, and our derivation closely follows the discussion

in Ref. [40].

In integral form, the overlap term can be written as

0〈q− k,k|q〉 =
1√

n3
0S(q− k)S(q)S(k)

∫
d3r1...d

3rN ψ0n
∗
q−kn

∗
knqψ0. (B1)
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Using Eq. (3), we can rewrite the density operators as follows

n∗q−kn
∗
knq =V −3/2

∑

m,n,p

eik·(rm−rn)+iq·(rp−rm) (B2)

=V −3/2

[
N +

∑

m,n
m6=n

eik·(rm−rn) +
∑

m,p
m 6=p

eiq·(rp−rm) (B3)

+
∑

p,n
p 6=n

ei(q−k)·(rp−rn) +
∑

m,n,p
m6=n6=p

eik·(rm−rn)+iq·(rp−rm)

]
(B4)

→ V −3/2

[
− 2N +

∣∣∑

n

eik·rn
∣∣2 +

∣∣∑

n

eiq·rn
∣∣2 +

∣∣∑

n

ei(q−k)·rn
∣∣2 +N3eiq·r12+ik·r23

]

(B5)

with rij ≡ ri − rj. In the last term we collected equivalent terms under the integral. We

hereby used that ψ0 is assumed to be invariant under permutations of the ri and we took

N ≈ N − 1 ≈ N − 2. If substituted in Eq. (B1), this results in

0〈q− k,k|q〉 =
1√

NS(q− k)S(q)S(k)

[
− 2 + S(q) + S(k) + S(q− k)

+
1

N

∫
d3r1d

3r2d
3r3 e

iq·r12+ik·r23 p3(r1, r2, r3)

]
(B6)

with

p3(r1, r2, r3) ≡ N(N − 1)(N − 2)

∫
d3r4...d

3rN ψ
2
0. (B7)

The function p(r1, r2, r3) is usually referred to as the three-particle distribution function.

Similarly, we can define the two-particle distribution function

p2(r1, r2) ≡ N(N − 1)

∫
d3r3...d

3rN ψ
2
0. (B8)

The Fourier transform of the two-particle distribution function is closely related to the static

structure function, in particular

S(q) =
1

n0

∫
ψ2

0 n
∗
q nq d

3r1...d
3rN (B9)

= 1 +
1

N

∫
p2(r1, r2) eiq·r12d3r1d

3r2 (B10)

where the first term comes from the terms in the sum with k = l.
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Assuming translation invariance, the two and three particle distribution functions must

satisfy the following recursion relations

1

N − 1

∫
d3r2 p2(r1, r2) = p1(r1) = n0 (B11)

1

N − 2

∫
d3r3 p3(r1, r2, r3) = p2(r1, r2). (B12)

In particular Eq. (B12) allows us to constrain the three-particle distribution function. It is

convenient to define the dimensionless function

h(r12) =
1

n2
0

p2(r1, r2)− 1. (B13)

Without loss of generality, we can decompose the three particle distribution function as

p3(r1, r2, r3) = n3
0

[
1 + h(r12) + h(r23) + h(r13) + h(r12)h(r23)

+h(r23)h(r31) + h(r31)h(r12)
]

+ δp3(r1, r2, r3). (B14)

The term in the brackets models the behavior of p3(r1, r2, r3) when two or more points are

well separated, and the non-factorized core δp3(r1, r2, r3) captures the UV behavior and is

large when all three points are close together. To satisfy Eq. (B12) one must require
∫
δp3(r1, r2, r3)d3r3 = −n3

0

∫
h(r13)h(r23)d3r3. (B15)

At this point in the derivation it becomes necessary to choose an ansatz for δp3(r1, r2, r3).

A popular choice is the convolution approximation, where we take

δp3(r1, r2, r3) = n4
0

∫
h(r14)h(r24)h(r34)d3r4 (B16)

which satisfies Eq. (B15). Substituting Eq. (B14) in the integral in Eq. (B6), we find that

the first four terms are of the form
∫
d3r1d

3r2d
3r3 e

iq·r12+ik·r23 × 1 = V δ(3)(k) δ(3)(q) (B17)
∫
d3r1d

3r2d
3r3 e

iq·r12+ik·r23h(r12) =
N

n2
0

δ(3)(k)
(
S(q)− 1

)
− V δ(3)(k) δ(3)(q) (B18)

plus permutations. In the second line we used Eq. (B10). These terms all vanish, since we

are interested in k,q 6= 0. The next three terms are of the form
∫
d3r1d

3r2d
3r3 e

iq·r12+ik·r23h(r12)h(r23) =

∫
d3r1d

3r2d
3r3 e

iq·r12+ik·r23 p2(r1, r2)

n2
0

p2(r2, r3)

n2
0

=
N

n3
0

(
S(k)− 1

)(
S(q)− 1

)
(B19)
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where we used Eq. (B10) and dropped terms of the form in Eqs. (B17) and (B18). Similarly,

inserting Eq. (B16) results in

∫
d3r1...d

3r4 e
iq·r12+ik·r23h(r14)h(r24)h(r34) = N

n4
0

(
S(k)− 1

)(
S(q)− 1

)(
S(k− q)− 1

)
.

(B20)

Putting everything together then finally gives

〈q− k,k|q〉0 =

√
S(q− k)S(q)S(k)√

N
. (B21)
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