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Abstract

We explore the influence of finite volume effects on baryon number fluctuations in a non-

perturbative chiral model. In order to account for soft modes, we use the functional renormalization

group in a finite volume, using a smooth regulator function in momentum space. We compare the

results for a smooth regulator with those for a sharp (or Litim) regulator, and show that in a finite

volume, the latter produces spurious artifacts. In a finite volume there are only apparent critical

points, about which we compute the ratio of the fourth to the second order cumulant of quark

number fluctuations. When the volume is sufficiently small the system has two apparent critical

points; as the system size decreases, the location of the apparent critical point can move to higher

temperature and lower chemical potential.
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I. INTRODUCTION

Experiments with ultrarelativistic heavy-ion collisions at RHIC and LHC explore the

phase structure of Quantum ChromoDynamics (QCD) at nonzero temperature and density,

and so probe the phase transitions associated with deconfinement and the restoration of

chiral symmetry. Two of the most promising observables are the fluctuations of the net

baryon number and electric charge. The cumulants and related quantities (see e.g. Ref. [1])

of these fluctuations may provide experimental evidence for a chiral critical endpoint [2–4]

or chirally inhomogenous phases.

The interest in the analysis of cumulants is not restricted only to high baryon densities.

As was pointed out in Ref. [5, 6], higher order cumulants reflect the underlying O(4) critical

dynamics, as cumulants of higher order are driven to negative values at temperatures close

to that for a phase transition. This may lead to a strong suppression of the higher order

cumulants, and help to identify the chiral crossover experimentally.

The STAR collaboration has measured fluctuations in the net proton number, as a proxy

for the net baryon number, and demonstrated that the kurtosis depends non-monotonically

on the collision energy [7]. This may serve as a strong indication of the chiral critical

endpoint.

However, there are many other effects besides the critical dynamics which might be

important in the interpretation of the data. Those include the conservation of baryon

number [8], corrections for efficiency in the detectors [9], hadronic rescattering [10], non-

equilibrium effects [11, 12], and finally volume fluctuations [13–15]. The latter are important

due to a finite size of a domain passing through the critical region during the evolution of

the fireball. Usually one tries to minimize the effects of fluctuations in the volume by

considering the ratios of cumulants. As we describe in the main text, in such ratios the

explicit dependence on the volume cancels out, making the analysis of volume fluctuations

trivial. However, we show that the implicit dependence on the volume might be very strong

if the characteristic system size is below ∼ 5 fm.

In this paper we compute using the functional renormalization group (FRG) in a Quark-

Meson (QM) model. In the next section we formulate the FRG approach to the QM model

in a finite volume and stress the importance of using a smooth cut-off function in momentum

space for the FRG. In Sec. III, we show how the chiral order parameter depends on the size
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of the system. We perform the calculation in a box with both isotropic and anisotropic

dimensions. In Sec. IV we find the location of apparent critical points and trace their

dependence on the system size. Finally, in Sec. V we compute the cumulants of quark

number fluctuations for different system sizes and anisotropies.

II. FUNCTIONAL RENORMALIZATION GROUP FOR CHIRAL MODELS IN

FINITE VOLUME

In this paper we use the quark-meson model as a realization of the chiral symmetry

in QCD at low energies. The quark-meson model consists of a O(4) multiplet of mesons,

φ = (σ, ~π), coupled to quark fields q through a Yukawa-type coupling, y. The Lagrangian

density is given by

L = q̄[iγµ∂
µ − y(σ + iγ5~τ · ~π)]q +

1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − U(σ, ~π),

where U(σ, ~π) denotes the mesonic potential,

U(σ, ~π) =
1

2
m2φ2 +

λ

4

(
φ2
)2 − hσ , (1)

φ2 = σ2 + ~π2. For m2 < 0 and h = 0, the O(4) symmetry of the potential is spontaneously

broken to O(3), resulting in a non-vanishing value of the vacuum scalar condensate 〈σ〉 and

a non-zero quark mass. The last term, h = fπm
2
π, breaks the chiral symmetry explicitly and

yields a nonzero pion mass.

In order to formulate a non-perturbative thermodynamics in the QM model we adopt

a method based on the functional renormalization group (FRG). The FRG is based on an

infrared regularization with the momentum scale parameter, k, where the full propagator is

derived from a corresponding effective action, Γk.

For an infinite volume, in the Local Potential Approximation [16] the FRG equation for

the quark-meson model is

∂kΩ =
1

4

∫
d3q

(2π)3

(
1 + 2nB(Eσ)

Eσ
+ 3

1 + 2nB(Eπ)

Eπ
− 2νq

1− nF (Eq)− n̄F (Eq)

Eq

)
∂kRk(q) ,

(2)

where νq = 2NcNf is the fermion degeneracy factor, Rk(q) is the regulator function,

nB(E) =
1

eEβ − 1
, nF (E) =

1

e(E−µ)β + 1
, n̄F (E) =

1

e(E+µ)β + 1
(3)
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are the Bose-Einstein and Fermi-Dirac distribution functions with the quasi-particle energies

defined as

Ex =
√
m2
x + q2 +Rk(q) (4)

and β = 1/T is the inverse temperature. The masses for the quasi-particles are

m2
σ =

∂2Ω

∂σ2
, (5)

m2
π =

1

σ

∂Ω

∂σ
, (6)

mq = yσ. (7)

Here we assume the symmetry is broken in the σ direction.

The solutions of the FRG flow equation determines Ω(k → 0, σ) at any possible value of

σ. We are interested in the equilibrium value, which can be found by locating the minimum

of the thermodynamic potential, Ω(k → 0, σ). In the presence of the explicit symmetry

breaking term, instead of minimizing Ω(k → 0, σ), one minimizes Ω(k → 0, σ) − hσ. Note

that the symmetry breaking parameter h does not enter the FRG evolution equation, which

is solved for any value of σ.

In a finite volume we consider periodic boundary conditions, and that means momentum

integrals are replaced by summations. The general flow equation becomes

∂kΩ =
1

4L3

∑
nx,ny ,nz

(
1 + 2nB(Eσ)

Eσ
+ 3

1 + 2nB(Eπ)

Eπ
− 2νq

1− nF (Eq)− n̄F (Eq)

Eq

)
∂kRk(q).

(8)

The external momentum q is an appropriate function of the modes q = q(~n) defined by the

boundary conditions. For the box of dimensions Lx, Ly, and Lz, with periodic boundary

conditions we have

q2 =
∑
i=x,y,z

(
2πni
Li

)2

. (9)

In this work, we do not restrict ourselves a symmetric box where Lx = Ly = Lz = L,

but consider as well geometries with equal transversal extents, Lx = Ly = L, and longer

in Lz = AL. The mode summation in Eq. (2) is performed numerically by introducing a

multiplicity of state function, as described in Appendix A. The numerical algorithms and

the input parameters are detailed in Appendix B.

So far we have not defined the regulator function Rk(q) that we use. Previously, regulator

functions which are sharp in momentum space have been used: see, e.g., Refs. [17, 18].
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However, sharp cutoffs results in numerical artifacts. As we show in the next section, these

include oscillations in the order parameters and meson masses. Mathematically, a sharp

cutoff is awkward for the fact that the spatial momenta are quantized in a finite volume, as

discussed by Fister and Pawlowski [19]. In this paper, we adopt an exponential cutoff

Rk(q) =
q2

eq2/k2 − 1
. (10)

Such an exponential clearly cuts off fluctuations above the momentum scale k, but does so

smoothly.

III. ZERO TEMPERATURE AND CHEMICAL POTENTIAL

In this section we compute expectation value of the order parameter and its flow as a

function of the cut off momentum k. We compare our results, with a smooth, exponential

regulator, to those with a sharp cutoff

Rsharp
k (q) = (k2 − q2)θ(k2 − q2), (11)

where θ denotes the Heaviside step function, θ(x) = 0 for x < 0 and = 1 for x > 0.

In Fig. 1 we show the flow of the expectation value of the order parameter, which is the

location of the minimum of the potential, in the chiral limit. As expected in the IR limit,

the expectation of the order parameter is zero, demonstrating the absence of spontaneous

symmetry breaking in a finite volume. We discuss this point further in Appendix C. We

also show this figure to demonstrate that a sharp regulator in momentum space produces

non-analytic flow in the Functional Renormalization Group.

These artifacts become more prominent when we plot the dependence of the order param-

eter on the size of the system. In Fig. 2 we perform the calculations at a physical pion mass.

We have checked our computations analytically in the limits of small and large volumes,

L→ 0 and L→∞, in Appendix E.

These artifacts are elementary to understand. In a finite volume we uniformly take

periodic boundary conditions, so that each momentum is a multiple of 2π/L. With a sharp

cutoff in momentum space, then, the momenta included by the Functional Renormalization

Group jumps whenever 2π/L crosses that cutoff. With a smooth cutoff, the effects of

high momenta are automatically included, but vanish smoothly, and so do not produce any

artificial discontinuities.
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FIG. 1. The flow of the chiral condensate, σ, in the chiral limit as a function of the scale k for

the exponential and Litim regulators. The scale dependent condensate is obtained by minimizing

the potential at each RG scale. The system size was chosen to be L = 3 fm and L = ∞, at zero

temperature and chemical potential. The chiral condensate is normalized by the physical value of

fπ

In Fig. 3, we show how the order parameter depends upon the anisotropy parameter A.

While the results differ for small volume, as the volume increases, then the results approaches

that for infinite volume, regardless of the value of the anisotropy. Curves with anisotropy

parameters A1 and A2 > A1 start to differ at the point, where A1L ≈ 8 fm.

IV. LOCATION OF APPARENT CRITICAL END POINT

We consider systems in which there is a true critical point in infinite volume. In finite vol-

ume, instead there is an apparent critical point (ACP). There is some degree of arbitrariness

in how one defines an apparent critical point. We define the position of the apparent critical

point from the maximum in the corresponding chiral susceptibility, which is equivalent to

the minimum in the sigma mass, mσ. We stress, however, that unlike the case of infinite

volume, that in finite volume other definitions will give different positions for the apparent
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FIG. 2. The chiral condensate, σ, as a function of the system size, L, at zero temperature and

chemical potential for the exponential and the Litim regulators.

critical point.

With our definition, we show that at some intermediate system size, the system has

two apparent critical points, located at different values of T and µ. One of the apparent

critical points, which we call ACP I, approaches the true critical point in the limit of infinite

volume; we show that for the ACP I, it approaches the zero temperature axis as the volume

decreases. The second apparent critical point, which we call ACP II, appears near the zero

temperature axis, and evolves to higher temperature as the volume decreases. The location

of the two apparent critical points is depicted in Fig. 4. The emergence of a second apparent

critical point influences the cumulants of baryon number, and is studied in the next section.

To grasp the essence of the behavior of the critical point, we carried out a mean-field

calculation by omitting the bosonic contribution. A recent study suggests that the apparent

critical point within this approximation shows a qualitatively similar behavior [20]. We

refitted the parameters to reproduce mq = 335 MeV and mσ = 500 MeV. For transparency,

we chose a slightly smaller sigma mass compared to our calculations. In this case the first-

order phase transition occurs at slightly smaller chemical potential, and so the minimum of

the potential at σ = fπ is not influenced by finite density effects at the relevant chemical
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FIG. 3. The chiral condensate as a function of the system size, L = Lx = Ly for the different

anisotropy parameter A ≡ Lz/Lx,y. The results are normalized by the corresponding values of the

chiral condensate for the isotropic volume, Lx = Ly = Lz = L. Periodic boundary conditions are

used.

potentials.

In mean-field calculations one drops bosonic fluctuations, and there appears to be a second

order chiral phase transition even in finite volume. For simplicity, we consider the the chiral

limit at zero temperature. For each volume, at some intermediate chemical potential the

system goes from the ground state at σ = fπ to a chirally restored phase at σ = 0 through

a first order transition. We assume that where this transition happens on the T = 0 axis

is related to the location of the critical end-point in the plane of temperature and chemical

potential.

On the axis where T = 0, the phase transition occurs when the condition

Ω(µ, L, σ = fπ) = Ω(µ, L, σ = 0) (12)

is fulfilled. For chemical potentials µ < gfπ, the left-hand side is independent of µ. After
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subtracting the value in infinite volume,

Ω(µ < gfπ, L, σ = fπ)−Ω(0,∞, fπ) = νq

 1

L3

∑
nx,ny ,nz

(E1 − E2)− 1

(2π)3

∫
d3p (E1 − E2)

 ,

(13)

with

E1 =
√
g2f 2

π + q2 +RΛ(q), E2 =
√
g2f 2

π + q2, q =
2π

L

√
n2
x + n2

y + n2
z. (14)

This is depicted by the black, solid line in Fig. 5. The right-hand side of Eq. (12) depends

on the chemical potential and is given by

Ω(µ, L, 0) =
νq
L3

∑
nx,ny ,nz

(
√
q2 +RΛ(q)− q − (µ− q)θ(µ− q)), (15)

where θ denotes again the Heaviside step function. Let us consider the finite density part of

this function at constant chemical potential as the size of the system changes. It is expected

that the finite density part (µ-dependent term in Eq. (15)) will be affected by finite-volume

effects stronger than the vacuum part, since we only probe modes up to the Fermi surface,

and in small volumes they are few in number. The finite density part contributes with

a negative sign, so as it gets larger, the value of the potential decreases driving a phase

transition.

As the volume decreases, the contribution of each mode is ∼ 1/L3, and so the total

increases. On the other hand, as L decreases the momentum of each mode goes up, ∼ 2π/L,

so in all fewer modes fall below the Fermi momentum qf = µ. In total, there is a balance

between these two effects, so that at large L there is an oscillatory behavior, as shown in

Fig. 5. If the volume is very small, say below L = 3 fm, only the zero mode contributes.

This enhances the quark contribution to the potential at nonzero density at small volume,

and triggers a first order phase transition at lower values of the chemical potential. This

is illustrated in Fig. 5, where the potential of the σ = fπ solution is compared to the

σ = 0 solution at different chemical potentials. When the two curves cross, there is a

first order phase transition in the given volume at the corresponding chemical potential.

In relatively high volumes, i.e. above L = 4 fm, the phase transition occurs in the range

µ = 320 − 335 MeV. Its location as the function of system size is not monotonous due

to oscillations. At low volumes, i.e. L < 3.5 fm, only the zero mode contributes to the

finite density part, and the phase transition moves down to very low chemical potential: at
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FIG. 4. The location of the apparent critical points (ACP) as a function of the system size, L.

Due to the numerical difficulties we were not able to resolve ACPs at temperatures below 5 MeV.

The red points continuously approach the true critical point in the limit of infinite volume, which

is already well approximated by L = 5 fm.

L = 3 fm the chemical potential is µ = 250 MeV. As the temperature is turned on, the

transition line is expected to reach higher temperatures, since the phase transition at T = 0

is strengthened by the sudden change in the zero mode contribution to Ω(σ) at µ = gσ.

This brief analysis suggests that the behavior of the ACP I is difficult to understand, as

its location may show oscillatory behavior. At small volumes, the position of the apparent

critical point is expected to move to very low chemical potentials, and its temperature is

also expected to increase. This is in agreement with our findings about ACP II.

V. CUMULANTS

In this section we discuss the dependence of the cumulants of baryon number fluctuations

on the size of the system. In particular, we consider the ratio of the fourth to the second order

cumulant of quark number fluctuations. Up to an overall factor of 1/9, this corresponds to

the same ratio for baryon number. The second and fourth order cumulants for quark number
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FIG. 5. The potential at σ = fπ and σ = 0 as a function of the system size for different chemical

potentials.

are

c2 = 〈(δNq)
2〉, (16)

c4 = 〈(δNq)
4〉 − 3〈(δNq)

2〉2 (17)

respectively, where δNq = Nq − 〈Nq〉.
In the limit of infinite volume a cumulant cn is proportional to the volume times the

susceptibility

cn = V T 3 χn , (18)

where

χn =
∂n

∂(µ/T )n

( p

T 4

)
. (19)

Thus in infinite volume, it is natural to go from the experimentally observable cumulants

to the susceptibilities by taking their ratio,

c4/c2 = χ4/χ2. (20)

In a finite volume, however, the factors of volume do not cancel. As we demonstrated in
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FIG. 6. The ratio of the fourth to the second order susceptibilities as a function of temperature for

different systems sizes and the anisotropy parameter A; the results are computed at zero chemical

potential.

the previous section, the value of the chiral condensate depends upon the volume, and this

influences the position of any apparent critical point.

In our model, we derived flow equations for the density, which is closely related to χ1.

Using numerical derivatives with respect to the chemical potential, we were able to extract

χ2 and χ4. In order to get the correct high temperature behavior, we took into account

quark contributions above the UV cutoff perturbatively. This is discussed in Appendix D.

In Figs. 6, 7, 8 and 9, we show the dependence of the ratio χ4/χ2 on the temperature

for different system sizes and different anisotropy parameters. The calculations are done

on lines of constant ratio of µ/T . We consider the values µ/T = 0, 0.5, 1, 1.5. We observe

that the cumulant ratio does not vary much at high temperatures T > 1.6Tpc and is almost

independent of the system size. However there is a significant variation in the vicinity of

the phase transition and at lower temperatures. The figures also show that the location

of the maximum of χ4/χ2 shifts to lower temperatures with the decreasing system size.

The behavior of the maximal value of χ4/χ2 on the system size is non-monotonous: with

decreasing L, the maximum first decreases until L reaches about 3 fm and than increases.

The dependence on the system size becomes more complicated at higher chemical potential,

because the cumulants become sensitive to the ACP II.
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FIG. 7. The ratio of the fourth to the second order susceptibilities as a function of temperature for

different systems sizes and the anisotropy parameter A; the results are computed at µ/T = 0.5.
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FIG. 8. The ratio of the fourth to the second order susceptibilities as a function of temperature

for different systems sizes and the anisotropy parameter A; the results are computed at µ/T = 1.

VI. CONCLUSIONS

In this article, we considered the quark-meson model in a finite volume. We carried out

our calculations using the functional renormalization group approach. We demonstrated
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FIG. 9. The ratio of the fourth to the second order susceptibilities as a function of temperature for

different systems sizes and the anisotropy parameter A; the results are computed at µ/T = 1.5.
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that the previously employed Litim regulator is not suitable for finite volume studies in

small values, and we proposed to use an exponential regulator instead.

We computed the chiral susceptibility on the phase diagram in finite volume and we

showed that for some volumes there are two distinct apparent critical end points. One of

them, which we called ACP I, is smoothly connected to the critical point of the infinite

volume calculation when its location is considered in the function of volume. The location

of this point moves to lower temperatures and higher chemical potentials with decreasing

system size. The other apparent critical endpoint, ACP II, approaches the zero temperature

axis and is not detectable for system size larger than 4 fm. For small system sizes however its

location shifts towards higher temperatures and lower chemical potentials with decreasing

system size.

Our main goal was to calculate the ratio of the fourth to the second order baryon number

cumulant. These calculations showed that there is a rather strong volume dependence of

the ratio for system size less than 5 fm. This dependence becomes more significant with

increasing value of chemical potential, because it probes regions of the phase diagram which

are close to the apparent critical point ACP II.

Our results indicate that an estimate of the effect of the volume fluctuations [13, 14] for

system sizes less than 5 fm might be very challenging and should account not only for the

explicit, but also for the implicit volume dependence of the cumulants. We note however

that in this paper we adopted periodic boundary conditions; obviously the system created

in heavy-ion collision is not periodic, but rather a finite volume system with inhomogeneity.

The finite volume effect discussed in this paper thus can be quite different from those in the

medium created in heavy-ion collisions.

Appendix A: Mode summation

In this appendix, we consider an efficient numerical way to perform summation of the

discrete modes for the different boundary conditions.
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1. Isotropic periodic boundary conditions

The calculation in a finite volume with the periodic boundary conditions involves a three

dimensional summation of functions that depend only on the magnitude ~n2 = n2
x + n2

y + n2
z.

We use this symmetry to rewrite the sum as∑
~n

f(~n2) =
∞∑
m=0

(∑
~n

δm,~n2

)
f(m) =

∞∑
m=0

G(m)f(m), (A1)

where the function, the multiplicity of states, G(m) ≡ ∑~n δm,~n2 automatically takes the

symmetries of the magnitude ~n2 = n2
x + n2

y + n2
z into account. The function G(m) is to be

computed once and tabulated for repeated use. This method gives a significant reduction

in computational time.

2. Anisotropic periodic boundary conditions

Here, following the logic of Sec. A 1, we extend the method for anisotropic volumes. Let

us consider particular anisotropy Lz = ALx = ALy = AL, where A is an integer number.

The momentum is, just as in the isotropic case, discrete and its magnitude is given by

~p 2 =

(
2π

LA

)2 (
A2n2

x + A2n2
y + n2

z

)
. (A2)

Thus, as before, we can introduce the multiplicity of states

GA(m) =
∑
~n

δm,A2n2
x+A2n2

y+n2
z

(A3)

to perform the summation∑
~n

f(A2n2
x + A2n2

y + n2
z) =

∞∑
m=0

GA(m)f(m) . (A4)

3. Anti-periodic boundary conditions

Although not used in this paper, for completeness we also consider the anti-periodic

boundary conditions

~p 2 =
(π
L

)2 (
(2nx + 1)2 + (2ny + 1)2 + (2nz + 1)2

)
=

(
2π

L

)2(
n2
x + nx + n2

y + ny + n2
z + nz +

3

4

)
. (A5)
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Thus it is convenient to introduce

GAP(m) =
∑
~n

δm,n2
x+nx+n2

y+ny+n2
z+nz (A6)

so that summation can be represented as

∑
~n

f((2nx + 1)2 + (2ny + 1)2 + (2nz + 1)2) =
∞∑
m=0

GAP(m)f(4m+ 3) . (A7)

Appendix B: Numerical details and tests

In order to explore the region of the phase diagram at a high chemical potential, where

Ωk(σ) may potentially develop two minima, we avoided the polynomial/Taylor expansion

anzatz for the thermodynamic potential. An alternative approach would be to use the

so-called grid method; which is based on the evenly spaced discretization of the classical

field, σ, see e.g. Ref. [21]. It is however very well known that uniform discretization results

in the worse possible approximation of a function. Instead we use the pseudo-spectral

Chebyshev collocation method. We found that this method is numerically more reliable

and substantially faster than the grid method. The details of the numerical method can be

found in Ref. [22, 23]; here we only present the most important ingredients. The function

Ωk(σ) is approximated by the Chebyshev expansion up to the N -th order

Ωk(σ) =
N−1∑
i=0

ai(k)Ti(σ) . (B1)

The flow equation is then solved in the range −σmax < σ < σmax at the collocation nodes

defined by the zeros of TN(σ). The boundary conditions have to be provided additionally.

To enhance stability, we keep the meson masses at the outermost collocation points constant

during the flow given by their UV value. The maximal value of the field, σmax = 400 MeV,

and the order of Chebyshev approximation, N = 120, were chosen by testing the convergence

of the results (obviously, physics should be independent of our choice of either σmax or N).

We note that it is absolutely crucial to use σmax ≥ 400 MeV, at or below L = 1 fm.

While the final value of σ (minimum of the potential) is only a few dozen percents above

fπ; it may reach substantially larger values, ∼ 300 MeV at intermediate k.

The free parameters and the initial conditions are defined to describe the following vacuum

properties in the infinite system
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• the pion decay constant, fπ = 93 MeV,

• the constituent quark mass, mq = 300 MeV,

• the pion mass, mπ = 140 MeV,

• the sigma mass, mσ = 585 MeV.

These result in y = 3.2, and Ω(k = Λ, σ) = m2
I
σ2

2
+λI

σ4

4
with mI = 753 MeV and λI = 27.8,

together with the UV cutoff Λ = 950 MeV.

Appendix C: Absence of spontaneous symmetry breaking in finite volume

In this section, we discuss the absence of spontaneous symmetry breaking in finite volume

with periodic boundary conditions. To this end, we consider the quark-meson model without

explicit chiral symmetry breaking, so the external field is set to h = 0.

The periodic boundary conditions naturally include a zero mode px = py = pz = 0.

Therefore, as in the case of the infinite volume, we expect the potential to evolve to a

convex one, in contrast to anti-periodic boundary conditions, which do not include the zero

mode. Using the numerical calculations of a finite volume system, we want to demonstrate

that in this case the spontaneous symmetry breaking is impossible. We will start, however,

with an analytic argument. Let us consider a schematic form of the flow equation:

∂kΩk ∝
1

L3

kT

k2 +m2
k

, (C1)

where we considered sigma meson contribution and included the ~n = 0 zero mode. Higher

modes do not play an important role at small k, where the most important part of the FRG

evolution takes place. Other degrees of freedom can be included as well, but they do not

change the main conclusion. Additionally, we only consider the “high-temperature” limit of

the Bose-Einstein distribution function, i.e. we approximate

1 + 2nB(ω) ≈ 2T

ω
. (C2)

This is a good approximation for the zero mode at k � T and mk � T . These restrictions

are suitable to study the spontaneous symmetry breaking.
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FIG. 10. The dependence of the minimum of the potential on the FRG flow parameter k for

different system sizes in the chiral limit h = 0. The calculations are performed at T = 10 MeV.

For higher L, the non-trivial minimum of the potential is preserved by the FRG evolution to lower

values of k, as expected.

Next we assume that limk→0 ∂kΩk = 0. This condition manifests the convergence of the

FRG flow equation. It also implies that

lim
k→0

kT

k2 +m2
k

= 0 , (C3)

which has a few important consequences. First of all, it restricts m2
k from being non-

negative to positive values only. Next, it also demands that at small k, m2
k cannot be

proportional to a larger or equal positive power of k to unity. That being said, the masses,

and hence the curvature will either converge to a positive constant, in which case there is

no spontaneous symmetry breaking, or go to zero with a power of k smaller than one. In

the latter case however, since m2
k approaches zero slower, than k2, the bosonic modes will

decouple. The dynamics is then purely fermionic, hence Landau-treatment is possible. The

resulting potential will be analytic, and this rules out the possibility of m2
k approaching

zero with a power of k between 0 and 1. This rules out the second possibility, so m2
k has

to approach a positive constant, no spontaneous symmetry breaking possible. Following
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similar logic, this argument can be also easily extended to the T = 0 limit; we leave this as

an exercise for an interested reader.

Note that the above argument does not restrict m2
k being negative at some non-zero

k. Indeed our numerical simulation do show that the transitional potential does develop

a minimum at some non-zero σ; it, however, evolves at small k to σ = 0. Intuitively the

transition between this two regimes starts at the values of k inversely proportional to the

system size, L. We confirmed this with direct numerical calculations shown in Fig. 10.

As seen in Fig. 10, the initial evolution of the minimum is independent of the system size.

The curves start to deviate from each other when the discreetness of the momentum start

to play an important role for mesonic fluctuations.

Appendix D: Perturbative contribution

As we alluded to in Section V, the contribution of quarks is not negligible above the

cutoff Λ and must be properly accounted for. Here we follow Ref. [24] and supplement the

FRG flow above the cutoff with the following contribution

∂kΩ(k > Λ) =
−2νq
4L3

∑
nx,ny ,nz

1− nF (Eq)− n̄F (Eq)

Eq
∂kRk(q), (D1)

where Eq is computed using the perturbative quark mass mq = 0. The vacuum contribution

here can be neglected because it does not alter the dynamics. This equation can be integrated

out to yield:

∆Ω =

∫ Λ

∞
∂kΩq =

∫ ∞
Λ

νq
2L3

∑
nx,ny ,nz

(
nF (Eq) + n̄F (Eq)

Eq

)
∂kRk(q)dk (D2)

= −Tνq
L3

∑
nx,ny ,nz

(
log

(
1 + e

µ−EΛ
q

T

)
+ log

(
1 + e−

µ+EΛ
q

T

))
, (D3)

where EΛ
q =

√
m2
q + q2 +RΛ(q).

Appendix E: Large/small L limits in the mean-field approximation

To get the mean-field (MF) approximation we start from the RG flow equation in finite

volume and we drop the boson contribution. This yields

∂kΩ = − νq
2L3

∑
nx,ny ,nz

(
1− nF (Eq)− n̄F (Eq)

Eq

)
∂kRk(q) (E1)
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for an arbitrary regulator function Rk(q). The quark energies are given by

Eq =
√
g2σ2 + q2 +Rk(q), q =

2π

L

√
n2
x + n2

y + n2
z. (E2)

For simplicity let us consider T = µ = 0 to understand the asymptotic behavior of the

theory in the function of system size. The grand canonical potential is given by

Ω = UΛ(σ) +

∫ 0

Λ

dk∂kΩ (E3)

= UΛ(σ) +
νq

2L3

∫ Λ

0

∑
nx,ny ,nz

∂kRk(q)

Eq
dk = UΛ(σ) +

∑
nx,ny ,nz

νq
L3

∫ Λ

0

dEq
dk

dk (E4)

= UΛ(σ) +
νq
L3

∑
nx,ny ,nz

(√
g2σ2 + q2 +RΛ(q)−

√
g2σ2 + q2

)
. (E5)

The first term is highly suppressed for small momenta, however is essential for the UV

regularization of the theory.

1. Small L behavior

If L→ 0 all momenta will be large, except the zero mode. The contribution to the sum

will be dominated by the zero mode contribution, that depends on L as L−3:

Ω0 = νq

√
g2σ2 +RΛ(0)− |gσ|

L3
. (E6)

Apart from the zero mode all other mode will have diverging momentum as L → 0. The

contribution of a mode can be obtained using the approximation

√
m2 + q2 = q

(
1 +

m2

2q2
− m4

8q4

)
+ . . . (E7)

and yields

Ωn =
νqRΛ(qn)

4πL2
− νq

2g2σ2RΛ(qn) +RΛ(qn)2

64π3
. (E8)

In the case of proper UV regularization these contributions vanish for L → 0. One can

see that the zero mode contribution alone cannot fulfill the gap equation, and tries to push

the condensate to σ → ∞. If we neglect the other modes (due to exact cancellation or

exponential suppression above the UV cutoff), then at finite L an interplay of the zero

mode and the UV potential UΛ(σ) will yield the condensate and hence it is expected that it
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increases with a power law. In particular with the exponential regulator, at L→ 0, assuming

a λ/4σ4 leading term in UΛ(σ), the gap equation will asymptotically be

λσ3 =
νq

2L3

Λ2

gσ2
, (E9)

yielding σ ∼ L−3/5.

2. Large L behavior

The large L behavior will be opposite to the small L behavior, here the interplay of many

modes will yield the final result. We use the Poisson-summation method to obtain the result.

We start from the identity

∞∑
k=−∞

e−2πikx = . . .+ δ(x− 2) + δ(x− 1) + δ(x) + δ(x+ 1) + δ(x+ 2) + . . . (E10)

which can be used to yield

∞∑
n=−∞

f(n) =

∫ ∞
−∞

dxf(x) (. . .+ δ(x− 2) + δ(x− 1) + δ(x) + δ(x+ 1) + δ(x+ 2) + . . .)

(E11)

=

∫ ∞
−∞

dxf(x)
∞∑

k=−∞

e−2πikx =
∞∑

k=−∞

∫ ∞
−∞

dxf(x)e−2πikx. (E12)

In the finite size setup we have summation over momentum modes in 3 dimensions. In all

three we apply this identity and change variable from the discrete mode number back to the

physical momenta. This formally in the x direction is

1

L

∞∑
nx=−∞

f

(
2πnx
L

)
=

∞∑
j=−∞

∫ ∞
−∞

dq

2π
f(q)e−ijqL. (E13)

Applying this in all direction yields for the grand canonical potential

Ω = UΛ(σ) + νq
∑

jx,jy ,jz

∫
d3q

(2π)3

(√
g2σ2 + q2 +RΛ(q)−

√
g2σ2 + q2

)
e−iL

~j~q. (E14)

In this sum we can consider only the smallest winding numbers, ji = ±1; and perform

integration using the saddle point approximation. This is a straightforward derivation and

as such requires only brief description. Let us consider only the winding number jz = 1.

The integration with respect to the transverse coordinate q2
⊥ = q2

x + q2
y can be performed
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analytically assuming that q⊥ � Λ. This assumption is justified because only the momenta

q < Λ contribute to the integral. The upper bound of the integration is thus also limited by

Λ. After the integration is performed, one can use saddle point approximation to integrate

with respect to qz. We obtain that the correction to the infinite volume limit, ~j = 0, is

proportional to gσΛ
L2 exp(−gσL). Hence it is expected that at the L → ∞ limit the order

parameter will approach the infinite volume value exponentially with the system size L.
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