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1 Introduction

In the last several decades, a wide range of evidence has been accumulating for the existence
of dark matter (DM). So far, DM has manifested itself only via its gravitational interactions
with ordinary matter, and its precise nature remains unknown. The most studied DM
paradigm is the Weakly Interacting Massive Particle (WIMP). An interesting feature of
the WIMP is the “WIMP miracle”, namely that the thermal history of the WIMP predicts
the correct relic abundance, provided that its mass and couplings are similar to those of
the Standard Model W and Z-bosons. This makes the WIMP compelling, since theoretical
arguments related to the Higgs hierarchy problem independently suggest new physics near
theWeak scale, which is often accompanied by a stable DM candidate, theWIMP. Moreover,
WIMPs are readily discovered with current technologies. In recent years, there has been
an extensive effort to search for WIMPs directly with underground detectors, satellites and
earth-based telescopes, and at colliders such as the LHC. These searches have not found
any unambiguous evidence for DM. This, together with the null results for new-physics
searches at the LHC thus far, and the fact that there are many possible DM candidates
besides the WIMP, urges us to significantly broaden our search for DM.

Many alternative, non-WIMP theories have been studied in recent years, often pointing
to light DM (LDM) below the GeV scale [1–18]. In this paper, we focus on the direct
detection of DM using chemical-bond breaking between atoms in a molecule or a crystal,
as first suggested in [10]. This could probe DM-nucleon interactions for DM as light as
∼ 10 − 100 MeV. Only one analysis, by the CRESST collaboration, has probed below the
GeV scale, to 500 MeV [19], although the planned the SuperCDMS SNOLAB experiment
aims to probe to about 300 MeV [20]. Previous direct detection studies that place bounds
on LDM, e.g. [21], have considered DM-electron scattering, which allows one to probe down
to the MeV scale [10, 21–24] and perhaps even lower [25–28], but assume that DM couples
to electrons. New detection methods involving chemical-bond breaking could significantly
improve upon current detection capabilities, may allow for the detection of cosmic and
solar axions, and may ultimately also be able to probe the lowest energy part of the solar
neutrino spectrum. For other recent proposals see [29–32].

The typical binding energy of atoms is a few to 10’s of eV, so that the scattering of
sub-GeV DM with a nucleus can break the chemical bond in a molecule or crystal. The rate
of such scatterings depends on the internal structure of the target, which can be captured
in a non-trivial target-dependent form factor. In what follows, we discuss the physics of
such scattering events and calculate the expected dissociation rates for DM scattering off a
diatomic molecule. These are a proxy for various experimental setups, including the bond
breaking of a nucleus within a crystal target, which may provide for a more realistic setup.

We further discuss the scattering of solar neutrinos off the same targets. Solar neutrinos
will eventually become an irreducible background for any DM direct detection experiment,
but are an interesting signal by themselves. Indeed, the solar neutrino fluxes have only been
measured partially [33–36], in particular the pp-neutrino component, which dominates the
low-energy neutrinos. Moreover, the neutral current interactions of the low-energy spectrum
have never been fully measured. Their detection is of great interest and would constitute a
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crucial test of our understanding of the solar model [37] and the MSW effect1 [38].
Our study is focused on calculating the theoretical rates and discussing the properties

of the DM and neutrino signals. In this paper, we do not present a proposal for an actual
experiment, but our chosen diatomic molecules capture a range of possible targets and thus
serve as useful examples. Moreover, we do discuss aspects of how one might be able to
see a signal from a DM- or neutrino-induced chemical bond breaking. Any particular idea
will have to deal with environmental and detector backgrounds, and it is currently not
clear which one is most realizable. Crystals are of particular interest, since defects induced
within a crystal by a DM scattering event can alter its spectroscopic properties. Spectro-
scopic measurements of crystals may thus allow for real-time detection of DM interactions.
Ideally, the nature of the scattering process in a particular target may allow for background
versus signal discrimination on an event-by-event basis, much as in existing direct detection
experiments, but a thorough discussion of this is beyond the scope of the paper and is left
for upcoming publications.

The paper is organized as follows. In Sec. 2, we discuss the general principles required
for the detection of light DM and solar neutrinos through chemical bond breaking. The
formalism is presented in detail in Sec. 3. We discuss the physics that is involved in the
calculations and consider a number of approximations that allow for an easy understanding
of the expected rates. In Sec. 4, we present expected rates and potential sensitivities on DM
detection. In Sec. 5, we present expected rates for solar neutrino detection and calculate
the neutrino floor for this class of experiments. We summarize in Sec. 6 and discuss how
realistic experimental setups could be achieved.

2 Principles of Detection

Most nuclear-recoil DM searches have energy thresholds above ∼ 1 keV, not allowing for
sensitivity to DM below the GeV scale. Only DAMIC [39], CDMSlite [40], and CRESST-
II [19] have achieved thresholds of 0.3− 0.5 keV, allowing CRESST-II to achieve sensitivity
down to DM masses of mχ ' 500 MeV. The sensitivity is reduced since for elastic 2 → 2

LDM-nucleus scattering, the recoil energy, Eelastic, of a nucleus with mass mnuc is

Eelastic ≤
2µ2

χ,nucv
2

mnuc
' 5 eV

( mχ

100 MeV

)2
(

28 GeV

mnuc

)
, (2.1)

which is suppressed by mnuc and decreases quadratically with mχ. In Eq. (2.1), the sec-
ond equality assumes that the nuclear mass is roughly that of silicon, which is used by
several experimental groups. We also used the maximum DM-nucleus relative velocity,
which is given by vesc + vEarth, where we take the DM escape velocity from the galaxy
to be vesc = 600 km/s and the mean Earth velocity around the galactic center to be
vEarth = 240 km/s [41]. The energy, Eelastic, is to be contrasted with the total energy
available for the scattering, which is given by the kinetic energy of the LDM particle. The

1Note that as opposed to the well-measured 7Be and 8B neutrinos, the pp-neutrinos admit a non-
adiabatic propagation in the sun and their oscillation probabilities are therefore expected to be distinct
from the former.
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maximum kinetic energy is mχv
2/2 ' 0.37 keV (mχ/100 MeV), which is significantly larger

than Eelastic for the same DM mass. Moreover, note that the nuclear recoil energy is not
directly detectable. Depending on the material, it is usually converted to some combina-
tion of phonons, ionization, and scintillation, which are detected. For elastic LDM-nucleus
recoils, this conversion is inefficient and typically only a few 10’s of percent of Eelastic is
directly measurable in current experiments.

This brief discussion suggests that detecting LDM with masses much below ∼ 1 GeV
with current experiments searching for elastic nuclear recoils is very challenging. Instead,
inelastic processes can greatly enhance the sensitivity to low DM masses. In [10], several
processes were suggested. For example, by scattering off bound electrons, which typically
have much higher speeds than the DM, all the LDM kinetic energy is in principle accessible.
This leads to detectable signals in current noble-liquid target experiments [10, 21]. Tech-
nology that is under development and may be available in the near future could also allow
for the detection of single- or few-electron events in semiconducting targets [10, 22–24], and
single- or few-photon events in scintillating targets [10, 42]. Future possibilities include the
use of superconducting and two-dimensional targets [25, 26, 28]. Searching for DM-induced
nuclear recoils can be done with conventional detectors [32] and is under development using
superfluid helium [31, 43].

Another possibility, suggested in [10], is that inelastic DM-nucleus scattering may dis-
sociate molecules. Here we focus on such chemical-bond breaking interactions, examining
them in more detail. A potential handle to detect such interactions is that they could trigger
a physical or chemical change, which could be much simpler to observe than a slow-moving
recoiling nucleus. The observed signal depends on the target material and the precise ex-
perimental setup. However, the scattering rate that triggers bond breaking is expected to
be rather independent of the details of the binding potential. Indeed, we will show that it
depends sensitively on the binding potential’s depth, which is determined by the binding
energy. As a consequence, one may derive a general formalism to describe such processes,
relevant for a wide range of experimental setups.

Bond-breaking interactions exhibit typical dissociation energies thresholds of up to tens
of eV and probe the DM-nucleon coupling. The basic ingredients required for the detection
of sub-GeV LDM or other feebly-interacting particles are:

• Low dissociation energy for breaking of the chemical bond, ideally of order .
10 eV. This energy is strongly dependent on the binding energy and masses of the
target particles involved.

• A suitable target material. Two competing effects exist as the mass of the target
material is raised: (i) enhancement of the reaction rate by coherence effects (for spin
independent reactions), and (ii) suppression of the corresponding recoil energy. The
choice of material may be influenced by the type of particle we wish to detect. For
instance, heavy atoms may be more appropriate for detecting solar neutrinos, which
are typically more energetic than e.g. 100 MeV LDM, while lighter atoms may be
better suited for detecting LDM.
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• An enhancement mechanism of the signal, which can allow for the detection single
or few bond-breaking event (see Sec. 6 for an example).

• Background discrimination achieved by the ability to differentiate between low-
energy (signal) and high-energy (background) events and between low-energy nuclear
recoils (signal) and low-energy electron recoils (background).

Observing a single or a few bond-breaking events is challenging and requires an en-
hancement mechanism. Although a thorough study of possible setups and corresponding
backgrounds is beyond the scope of this paper, a discussion of few related aspects is given
in Sec. 6. A more detailed study, which employs the detection of color-centers in crystalline
detectors will be presented in [44, 45].

Below, we develop the general formalism to calculate bond-breaking due to DM or
neutrino scattering off nuclei. For concreteness, we consider a system of diatomic molecules,
which have typical binding energies of ∆EB ∼ 1−10 eV. In particular, we choose hydrogen
(H2), nitrogen (N2), and beryllium oxide (BeO), which are meant to be representative of
the range of nuclear masses and binding energies of diatomic molecules (∆EB ' 4.75 eV,
9.79 eV, and 4.54 eV, respectively). We will also consider hypothetical versions of these
molecules with the same nuclear masses but different binding energies to illustrate the
dependence of the scattering rates and other quantities on these parameters. We note that
none of these elements may be ideal experimentally, but they illustrate the basic physics
involved in molecular dissociation. Moreover, diatomic molecular dissociation as a means of
LDM detection may itself not be ideal experimentally, but is representative of the physics
involved in more general chemical-bond breaking interactions using more realistic target
materials such as multi-atomic molecules and possibly dissociation of nuclei within crystals.

3 Inelastic Scattering

We now present the formalism required for calculating the dissociation of a diatomic
molecule due to scattering with a weakly interacting particle. Consider a molecule that
consists of two nuclei with masses m1 and m2 bound by some potential. The weakly inter-
acting particle scatters with nucleus m1 transferring momentum q. If the energy transfer
is large enough, the atoms escape the potential and dissociate, each with some final mo-
mentum k1 and k2. The unbound molecule can be thought of as a single state with some
center of mass (COM) energy, Er, and momentum, q = k1 + k2. One may also define an
internal energy, Eint, and momentum q̃ = µ12

m1
k1 − µ12

m2
k2 (as measured in the molecule’s

COM reference frame) with µ12 the molecular reduced mass. The relations between these
energies and momenta are,

Er =
q2

2(m1 +m2)

Eint =
q̃2

2µ12
. (3.1)

Below, we present the physics involved in calculating the rate for such scattering events.
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For the LDM masses we are considering, the de Broglie wavelength of the DM is
typically larger than the nucleus and smaller than the distance between the nuclei within
the molecule. Thus, the DM always interacts with a specific nucleus within the molecule.
For a given total target mass, the event rate for scattering with a certain element m1 is
proportional to the number of nuclei of type m1. For diatomic molecules with identical
nuclei, the recoil spectrum and event rate are identical for both nuclei and the total rate is
enhanced by a factor of 2. For diatomic molecules with distinct nuclei, both the cross section
and the kinematics differ for the two cases where the DM interacts with either nucleus. In
this case, there are distinct spectra and event rates for each kind of interaction, which may
or may not be distinguishable depending on the specific details of the experimental setup.
In this study, we present event rates and spectra for one kind of interaction per molecule.
Specifically, for H2 and N2 the factor of 2 is present in all results, whereas for BeO all
results assume interactions with Be only. This gives intuition as to what is expected for
any diatomic molecule.

We first consider a classical calculation, which is typically sufficient, since nuclei are
heavy particles bound in a weak potential. We then consider quantum effects, which are
important near or below the classical dissociation thresholds. Quantum effects cause a small
lowering of the minimum DMmass needed for dissociation, typically byO(10%). We discuss
both the full quantum calculation (for isolated diatomic molecules), and approximations,
which allow for a simpler computation and an intuitive understanding of the effects. This
intuition, and some of the formalism, should extend to more general targets. Explicit
formulae for the total rates expected from DM and neutrino interactions will be presented
in Secs. 4 and 5, respectively.

3.1 The Classical Limit

The scattering of an LDM particle, χ, with a diatomic molecule, dissociating the molecule
into its constituents, can be treated as an inelastic 2 → 2 process. In this picture, the
initial state consists of the incoming DM particle and the bound molecule, while the final
state consists of the outgoing DM particle and the unbound molecule. If the final internal
energy is much larger than the binding energy of the system, the angular momentum of the
final state is a quantum number much larger than unity, and the system may be regarded
classically. If the internal energy is of order, or smaller than, the binding energy of the
system, then the importance of quantum effects is determined by the interplay between
the momentum spread of the initial wavefunction of the molecule, the binding energy, and
the reduced mass of the molecule (details below). At these low internal energies, quantum
effects become important for large values of the momentum spread and small values of the
binding energy and reduced mass.

Classically, we can treat a diatomic molecule as two point particles sitting at the mini-
mum of an attractive potential (which binds the two atoms). Energy conservation implies,

q̃2 =

(
µ12

m1

)2

q2 − 2µ12∆EB , (3.2)
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and dissociation occurs if the internal energy is larger than the binding energy, as long
as there is no bound solution with non-zero angular momentum. This translates to the
following minimum momentum transfer from χ to the struck atom in the molecule,

qmin =
m1

µ12

√
2µ12∆EB , (3.3)

where ∆EB is the molecular binding energy. The kinematically allowed range of q is,

0 < q ≤ 2µχ1v , (3.4)

where µχ1 is the reduced mass of the DM-m1 system. Eqs. (3.3) and (3.4) are the kinemat-
ical constraints on the interaction rate. The average differential cross section is,

〈
dσv

dq2

〉
=

σnuc

4µ2
χ1v

, (3.5)

where σnuc is the DM-nucleus interaction cross section with the following relation to the
DM-nucleon interaction cross section, σn,

σnuc = [fPZ + fN (A− Z)]2
µ2
χ1

µ2
χn

σn . (3.6)

Here A and Z are the mass and atomic numbers of m1, fP (fN ) is the coupling strength to
the proton (neutron) and µχn is the reduced-mass of the DM-nucleon system. Throughout
this study we take the nuclear form factor (usually taken to be the Helm form factor [41])
to be unity. This is a good approximation since the momentum transfer involved is much
smaller than the typical binding energy of the nucleus. The [fPZ + fN (A− Z)]2 enhance-
ment occurs because of a coherence effect, as long as the de Broglie wavelength of the
incoming DM particle is larger than the typical size of the nucleus, as is typically the case
for the systems we are considering.

3.2 Quantum Effects

The classical approximation often breaks down close to threshold when the energy transfer
is of order the binding energy of the system. Understanding an experiment’s sensitivity
to the lightest possible DM masses thus requires gaining control over the quantum correc-
tions. Quantum mechanically, the momenta of the individual atoms in the molecule are
not definite. This allows for the atoms in the initial state to have a nonzero momentum, in
contrast to the classical limit, so bond breaking can occur with less momentum transfer to
the target than in the classical case. Consequently, Eq. (3.3) does not hold. In particular,
even at threshold there is a spread in values of q that allow for the dissociation of the target.

Quantum mechanically, the initial state has some typical momentum spread, ∆p, which
decreases the momentum transfer necessary for dissociation,

qquant
min ' m1

µ12

(√
2µ12∆EB −∆p

)
, (3.7)
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whereas the minimal classical value, qclass
min , is given by Eq. (3.3). Thus, the ratio of the

minimal quantum vs classical DM mass is,

mquant
min

mclass
min

=
qquant
min
qclass
min

≈ 1− ∆p√
2µ12∆EB

≈ 1− 0.2

(
∆p

4αme

)(
0.5 GeV
µ12

)1/2( 5 eV
∆EB

)1/2

, (3.8)

where mclass
min , mquant

min are the classical and quantum mass thresholds, respectively. In the
second line of Eq. (3.8) we have taken typical values for an H2 molecule. A more localized
initial wavefunction corresponds to larger values of ∆p. The momentum spread is typically
of order ∆p ∼ αme (αme is the inverse of the Bohr radius) since the typical uncertainty in
distance between nuclei is ∆r0 ∼ (αme)

−1.
When quantum corrections become important, the classical calculation for the cross

section is no longer valid and the quantum mechanical matrix element must be evaluated.
Naively, scattering of DM or a neutrino with a molecular target is a 2 → 3 process. For
instance, in the case of a diatomic molecule, the final states correspond to the outgoing DM
or neutrino particle and the two dissociated atoms. The formalism that follows is relevant
for any process of this type, i.e. a process where the target is initially in a bound state and
consists of free particles after the interaction occurs. However, much like the classical case
discussed above, such a process can be thought of as a 2 → 2 scattering process with a
non-trivial form factor. The matrix element for such a scattering can be written as,

Mfi(q, q̃) ≡Mfree(q)F

(
µ12

m1
q, q̃

)
, (3.9)

whereMfree is the matrix element for the elastic scattering of the incoming particle with
a free nucleon and F (µ12m1

q, q̃) is the form factor which encodes the quantum information of
the initial and final states of the target. The information regarding the binding potential
of the target, and thus the true 2 → 3 process of interest, is parameterized by the form
factor. That said, we show below that quantum information is not important in most
energy-transfer regimes, and the process can be well approximated by a simple classical
scattering.

Assuming a weakly interacting particle scatters against a nucleon within the target,
the form factor is given by,

F (q, q̃) ≡
∫
d3re

i
µ12
m1

q·r
Ψ∗q̃(r)Ψi(r) . (3.10)

The functions Ψq̃(r), Ψi(r) are the COM final and initial molecular wavefunctions respec-
tively. Integrating over the final momentum defines the dimensionless dissociation form
factor as

|Fdis(q, q̃)|2 =
q̃3

(2π)3

∫
dΩq̃|F (

µ12

m1
q, q̃)|2 . (3.11)

The evaluation of Eq. (3.11) involves solving the Schrödinger equation for the initial and
final states of the target molecule, which in turn requires detailed knowledge of the binding
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potential. Fortunately, as we now argue and demonstrate in the next subsection, the form
factor depends only mildly on the precise form of the potential, and the corresponding
theoretical uncertainties regarding the specific shape of the potential for a given target are
therefore low.

The minima of the binding potential are often well approximated by a harmonic po-
tential, so that the radial wavefunction of the ground state of the target is well modeled by
a harmonic solution. The full initial wavefunction takes the form

Ψi(r) = Y`m(Ω)

(
1

σ0
√
π

) 1
2 e
− 1

2

(
r−r0
σ0

)2

r
, (3.12)

where Y`m(Ω) are spherical harmonics, r0 is the distance between nuclei for which the
potential finds its minimum and σ0 is the variance of the wavefunction. The momentum
spread, ∆p, described above is proportional to σ−1

0 . As long as we are solving for the ground
state, Eq. (3.12) is a good approximation. The form of the final wavefunction depends on
the exact form of the binding potential. However, since the form factor calculation involves
only the overlap of the initial and final state wavefunctions, only the form of the final
wavefunction in the vicinity of the origin is of importance. This fact greatly simplifies the
calculations for non-trivial binding potentials.

3.3 Spherical Symmetry

For a spherically symmetric potential, the final wavefunctions can be expanded as

Ψq̃(r) = 4π
∑

`,m

a`
2`+ 1

Y∗`m(Ωq̃)Y`m(Ωr)Rq̃`(r) , (3.13)

where Rq̃`(r) is the radial solution for the final state and Ωr,Ωq̃ are the solid angles with
respect to the coordinates r and q̃ respectively. Summing over all final angular momentum
values, the form factor takes the form (see Appendix A.1 for details),

|Fdis(q, q̃)|2 = 8q̃3
∑

`

|a`|2
(2`+ 1)

∣∣∣∣
∫
drr2j`(

µ12

m1
qr)Rq̃`(r)Ψi(r)

∣∣∣∣
2

, (3.14)

which must be solved in order to calculate the interaction rate.
Evaluating Eq. (3.14) is non-trivial as it requires knowledge of the outgoing states

for all values of the internal energy and angular momenta. However, if we neglect the
binding potential and use the Born approximation for the outgoing wavefunction, i.e. take
the outgoing state to be a plane wave, Eq. (3.14) simplifies considerably. Corrections from
the binding potential deform the outgoing wavefunction around the origin. However, if the
internal energy of the final state is much larger than the binding energy, Eint � ∆EB, the
Born approximation is sufficiently accurate as is shown below.

The quantum mechanical calculation (unlike the classical calculation) takes into ac-
count the non-zero momentum of the initial state, which allows dissociation of a molecule
with momentum transfer lower than the classical threshold given in Eq. (3.3). This en-
hances the rate near threshold with respect to the classical result. In the Born regime,
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assuming zero binding energy, the dissociation form factor, Eq. (3.11), takes the following
analytical form (see Appendix A.2 for details),

|Fdis(q, q̃)|2 =
m1

µ12

q̃2

π3/2σ0q

∫ q̃+
µ12
m1

q

q̃−µ12
m1

q

dK

K
·
∣∣∣∣
∫
dr sin(Kr)e

− 1
2

(
r−r0
σ0

)2∣∣∣∣
2

. (3.15)

The function |Fdis(q, q̃)|2 has non-trivial support around the region

q ' m1

µ12
q̃ =

m1

µ12

√
2µ12Eint , (3.16)

which is just the classical result of energy conservation, Eq. (3.2), assuming zero binding
energy.

To accurately calculate the rate for low DM masses, taking into account the binding
energy, an improvement on the Born approximation is required. This can be achieved sim-
ply by accounting for the binding energy in the internal momentum of the final state,
q̃. This is equivalent to changing the limits of the integral in Eq. (3.15): q̃ → q̃′ =√

2µ12(Eint + ∆EB). The form factor now has sizeable support in the region,

q ' m1

µ12
q̃′ =

m1

µ12

√
2µ12(Eint + ∆EB) , (3.17)

which is the classical result for dissociation of a molecule with non-zero binding energy,
Eq. (3.2). We denote this correction the Improved Born Approximation.

Accounting for the binding energy introduces two competing effects, one which enhances
the rate and the other which acts to suppress it. An enhancement occurs for nonzero ∆EB,
since the minimum momentum required to dissociate the molecule is

√
2µ12(Eint + ∆EB)

as opposed to
√

2µ12Eint in the Born approximation. Consequently, the volume of available
phase space is larger, which increases the dissociation rate. This is directly related to the
Sommerfeld enhancement (for a review see, e.g. [46]) occurring for an outgoing state [10]. A
suppression of the rate occurs, since a larger momentum transfer is required to dissociate the
molecule for nonzero ∆EB. Larger momentum transfers require a larger initial DM velocity,
allowing less DM particles in the halo to participate in the scattering. More precisely, the
minimum DM velocity required for a scattering event to occur is

vmin =
Eint + ∆EB

q
+

q

2µχm
, (3.18)

where µχm is the reduced mass of the DM-target system (i.e. the entire molecule for the
case of DM-molecule scattering)2. Put simply, if more energy is required for dissociation, a
smaller region in the DM velocity profile can contribute to the dissociation.

A diatomic molecule is a suitable spherically symmetric case study with which one can
understand the expected rates for various other target materials. In the COM frame of a
molecule, the potential is spherically symmetric and therefore Eq. (3.13) holds. Solving for

2Note that vmin is minimized at q0 =
√

2µχm(Eint + ∆EB).
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Figure 1. Molecular dissociation form factors, |Fdis(q, q̃)|2, calculated in different approxima-
tions. The dotted and dashed curves correspond to the Born and Improved Born approximations
respectively, while the solid curves correspond to the full quantum calculation using the full final
state wave functions (see Sec. 3.3). These results are for molecular hydrogen with binding energy
�EB = 4.75 eV, with final-state internal energies of 1 eV (top left), 10 eV (top right), and 100 eV
(bottom). The Improved Born approximation agrees well with the full calculation down to energies
close to threshold, but is much easier to compute.

the wavefunctions requires knowledge of the binding potential, V (r), which can often be
modeled by a Morse potential [47] with the form,

VM (r) = �EB · e�↵0(r�r0)
⇣
e�↵0(r�r0) � 2

⌘
, (3.19)

where again r0 is the minima of the potential and ↵0 =
q

V 00(r0)
2�EB

.
Fig. 1 presents examples of the form factor calculated using either the Born or the

Improved Born Approximation, for three values of Eint and for a Morse potential that
approximates molecular hydrogen, H2, with binding energy �EB = 4.75 eV. These have
been compared with the full calculation for each energy, i.e. Eq. (3.14) with the exact
solutions for the final wavefunctions. As the internal recoil energy increases, the three
calculations converge to the same functional form. While the Born approximation does
not hold for low values of Eint, the Improved Born Approximation successfully mimicks the
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the wavefunctions requires knowledge of the binding potential, V (r), which can often be
modeled by a Morse potential [47] with the form,

VM (r) = ∆EB · e−α0(r−r0)
(
e−α0(r−r0) − 2

)
, (3.19)

where again r0 is the minima of the potential and α0 =
√

V ′′(r0)
2∆EB

.
Fig. 1 presents examples of the form factor calculated using either the Born or the

Improved Born Approximation, for three values of Eint and for a Morse potential that
approximates molecular hydrogen, H2, with binding energy ∆EB = 4.75 eV. These have
been compared with the full calculation for each energy, i.e. Eq. (3.14) with the exact
solutions for the final wavefunctions. As the internal recoil energy increases, the three
calculations converge to the same functional form. While the Born approximation does
not hold for low values of Eint, the Improved Born Approximation successfully mimicks the
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correct form factor for even low values of Eint. It is therefore not necessary to fully calculate
Eq. (3.14).

We now show that the most important property of the binding potential that determines
the dissociation rate is the binding energy, while the detailed shape is less relevant. As
mentioned above, this is because the form factor is largely determined by the overlap of the
initial and final wavefunctions. The initial wavefunction is localized around the minimum
of the potential, and the shape of the binding potential does not have a sizable effect on the
final wavefunction around the origin. For a Morse potential, this is equivalent to accounting
for the dependence of the solution on ∆EB and neglecting the dependence on r0 and α0.
In Fig. 2, we present the dissociation rate (blue) for a given DM mass, mχ = 300 MeV for
our three representative diatomic molecules: H2, N2, and BeO. The results are shown as a
function of ∆EB and the inverse of the momentum uncertainty, ∆p−1. As discussed above,
∆p−1 is proportional to the variance, σ0, of the initial wavefunctions, which we take to
be gaussian functions. The figure shows the resulting dissociation rates normalized to the
expected rate for the same molecule with its parameters set at their correct values (in each
panel the correct values are marked by a red colored cross). The results show that there is
only extremely mild dependence on the shape of the initial wavefunction and that the effect
depends mostly on the binding energy. In the same figure, the dashed black lines show the
ratio of the quantum-to-classical mass threshold, Eq. (3.8), for the same parameter space.

3.4 Non-spherical symmetry

Bond breaking in a crystal lattice (as opposed to a diatomic molecule) poses a number
of complications to the physics described above. One complication is related to the fact
that the potential that binds the nucleus to the crystal bulk is non-spherically symmetric
and therefore, in principle, Eq. (3.13) no longer holds. However, as explained above, the
dissociation rate is only mildly dependant on the form of the binding potential and depends
almost solely on the binding energy of the system. This is expected to remain true for a
non-spherical symmetric binding potential as long as the overlap of the initial and final
wavefunctions is highly localised around the origin. In such a case, one needs only to
obtain the form of the outgoing target wavefunction around the origin.

A second modification occurs, since the kinematics and the binding energy of the sys-
tem are no longer straightforward. Since the potential is non-spherical, the classical tra-
jectory of a scattered particle depends on its initial momentum, scanning the potential in
a directionally-dependent manner. Writing the rates as a function of the binding energies
is therefore inconvenient. Instead, it is simpler to discuss the (well-defined) minimal recoil
energy in a given direction, Emin

r (Ωq) = q2
min(Ωq)/2M , needed in order to dissociate the

molecule. The directionally-dependent minimal energy follows from calculating the classical
path for a dissociated nucleon initially at the potential minimum, after receiving a momen-
tum kick. Each classical path takes into account the dissipative multi-scattering process
and can be mapped to such a minimal recoil energy. Correspondingly, the RHS of qmin in
Eqs. (3.3) and (3.7), is replaced by qmin(Ωq).

With the knowledge of the function Emin
r (Ωq) and if the initial wavefunction is localized

and is approximately spherically symmetric, the dissociation rate may be reduced to the
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Figure 2. Dependence of dissociation rates and quantum-to-classical mass thresholds on the
momentum spread of the initial wave-function, �p, and the molecular binding energy, �EB . Blue
contours show the dissociation rates for a given diatomic molecule obtained when varying �p and
�EB , normalized to the rates when �p and �EB are set to their correct values found in Nature. A
red cross on each panel marks the values found in Nature. Dashed black contours present the ratio
of the quantum-to-classical mass thresholds, mquant

min /mclas
min, see Eq. (3.8). We show three diatomic

molecules H2 (top left), N2 (top right), and BeO (bottom), and choose the DM mass m� = 300 MeV.
We see that the dissociation rates are nearly independent of �p but depend sensitively on �EB ,
while quantum corrections are affected by both parameters, especially for lighter elements.

same form as that of the spherical symmetric case with the kinematics and binding energy
modified accordingly, and a dependence on the direction of q. In principle, this should
create a modulation in a DM or neutrino signal that depends on the orientation of the
incoming particles with respect to the orientation of the target.

We conclude that calculating the rates for a crystal target requires taking into account
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the time dependence of the potential, modeling of the binding potential, and secondary
effects after dissociation. This calculation is beyond the scope of this paper, but will be
discussed in a future publication.

4 Dissociation Rates for Light Dark Matter

4.1 Rates and Potential Sensitivities

In order to parametrize the cross section and scattering rate in a model-independent way,
we define a DM form factor, FDM(q), and a reference cross section, σn, as follows,

|FDM(q)|2 ≡ |M2→2(q)|2
|M2→2(q2 = q2

0)|2 , (4.1)

σn ≡
|M2→2(q2 = q2

0)|2
16π(mχ +mn)2

. (4.2)

Here q0 is a fixed value of the momentum transfer, which we take to be q0 = 100 keV
throughout. M2→2(q) is the matrix element for free scattering of DM with a nucleon with
momentum transfer q, and mn is the nucleon mass. All the dependence on the modeling
of the DM sector is encapsulated in |FDM(q)|2 and σn. For a trivial DM form factor, i.e.
|FDM(q)|2 = 1, σn is just the free scattering cross section of DM with a nucleon.

As discussed above, the dissociation rate can be treated as a classical or a quantum pro-
cess depending on the energy transfer to the target. In the classical regime, the dissociation
rate is simply given by

R = [fPZ + fN (A− Z)]2NT
ρχ
mχ

σn
4µ2

χn

∫
dq2 × |FDM(q)|2Θ


q −

√
2m2

1

µ12
∆EB


 η(vmin) ,

(4.3)
where NT is the number of target atoms, ρχ is the DM density, mχ is the DM mass, and
we have used the average differential cross section from Eq. (3.5). The function η(vmin) is

η(vmin) =

∫ ∞

vmin

d3v
f(v)

v
, (4.4)

where f(v) is the velocity distribution profile of the DM in the Milky-Way halo (see e.g. [41])
with v0 = 230 km/s, vEarth = 240 km/s, and vesc = 600 km/s. The minimum velocity is
Eq. (3.18) with the classical value of Eint, i.e. vmin = q

2µχ1
.

In the quantum regime the dissociation form factor becomes important. Combining
these definitions with the equation for the scattering rate leads to the differential dissociation
rate,

dR

d lnEr
= [fPZ + fN (A− Z)]2NT

ρχ
mχ

σn
8µ2

χn

∫
d lnEint × q2|FDM(q)|2|Fdis(q, q̃)|2η(vmin) ,

(4.5)
with vmin taken from Eq. (3.18). The classical and quantum rates for various molecules,
calculated in the classical approximation and in the Improved Born Approximation are
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Figure 3. Comparison of expected event rates for dissociation of diatomic molecules: H2 with
�EB = 4.75 eV (blue), an H2-like molecule with �EB = 2 eV (cyan) , N2 with �EB = 9.79 eV
(green), and BeO with �EB = 4.54 eV (purple). For the case of BeO, the scattering is with the
Be nucleus only. The rates are calculated both classically (dashed lines) and with quantum effects
included (solid lines) for a DM-nucleon cross section �n = 10�37 cm2, and for a DM form-factor
of FDM = 1 (left) and FDM / 1/q2 (right). The quantum rates are calculated using the Improved
Born Approximation (see Sec. 3.3).

shown in Fig. 3. For BeO, we plot the interaction rate of DM with the Be nuclei. The
left and right panels present the total rates for a range of DM masses with two DM form

factors, |FDM(q)|2 = 1 and |FDM(q)|2 =
⇣

q0

q

⌘4
, respectively. For large DM masses, the

approximations all coincide with the full result. However, at small DM masses the classical
approximation breaks down, underestimating the true scattering rate.

The reason for the difference between the Improved Born Approximation and classical
calculations can be seen in Fig. 4. Classically, there is a minimal value for the recoil energy,
Er,min = m1

m2
�EB, whereas for the quantum calculation there is no such rigid minimal value

(see Sec. 3.2). Thus, the true quantum process receives contributions from lower values of
recoil energy than in the classical approximation. This correction is important for low
DM masses. Below a certain DM mass, there is no classical contribution, and the entire
measurable rate is due to quantum effects. This is evident in the figure, where the classical
contribution is almost negligible compared to the quantum rate for the lower DM mass.
These effects depend largely on the tail of the velocity profile and are therefore extremely
sensitive to the exact shape of this tail.

We have checked that the Improved Born Approximation agrees very well with the
full calculation (see also Fig. 1 and discussion in Sec. 3.3), even for DM masses close to
the dissociation threshold. We stress that the classical rates, which are straightforward
to compute, can be safely used for masses slightly above threshold. In the left panel of
Fig. 3, the event rate for molecular nitrogen and for beryllium oxide exhibit non-trivial
features in the mass range m� ⇡ 0.1 � 10 GeV. These effects can be understood when
considering the three mass scales involved in the process: (i) the minimal DM mass for
which dissociation occurs, (ii) the mass of the nucleon (⇠ 1 GeV), and (iii) the mass of
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left and right panels present the total rates for a range of DM masses with two DM form

factors, |FDM(q)|2 = 1 and |FDM(q)|2 =
(
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, respectively. For large DM masses, the

approximations all coincide with the full result. However, at small DM masses the classical
approximation breaks down, underestimating the true scattering rate.

The reason for the difference between the Improved Born Approximation and classical
calculations can be seen in Fig. 4. Classically, there is a minimal value for the recoil energy,
Er,min = m1

m2
∆EB, whereas for the quantum calculation there is no such rigid minimal value

(see Sec. 3.2). Thus, the true quantum process receives contributions from lower values of
recoil energy than in the classical approximation. This correction is important for low
DM masses. Below a certain DM mass, there is no classical contribution, and the entire
measurable rate is due to quantum effects. This is evident in the figure, where the classical
contribution is almost negligible compared to the quantum rate for the lower DM mass.
These effects depend largely on the tail of the velocity profile and are therefore extremely
sensitive to the exact shape of this tail.

We have checked that the Improved Born Approximation agrees very well with the
full calculation (see also Fig. 1 and discussion in Sec. 3.3), even for DM masses close to
the dissociation threshold. We stress that the classical rates, which are straightforward
to compute, can be safely used for masses slightly above threshold. In the left panel of
Fig. 3, the event rate for molecular nitrogen and for beryllium oxide exhibit non-trivial
features in the mass range mχ ≈ 0.1 − 10 GeV. These effects can be understood when
considering the three mass scales involved in the process: (i) the minimal DM mass for
which dissociation occurs, (ii) the mass of the nucleon (∼ 1 GeV), and (iii) the mass of
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Figure 4. Comparison of differential event rates in an H2 molecule of the classical approxima-
tion (dashed lines) with those including quantum effects (solid lines). Gray vertical lines indicate
the minimal classical recoil energy, Er,min = m1

m2
�EB , which corresponds classically to Eint = 0.

Quantum effects are important below the classical threshold, especially for lower DM masses, as
illustrated by the cyan (m� = 25 MeV) and blue (m� = 50 MeV) curves. We set FDM = 1 (left)
and FDM ⇠ 1/q2 (right). The quantum rates are calculated in the Improved Born Approximation
(see Sec. 3.3).

the nucleus. In particular, the integral over ⌘(vmin) depends on all three of these scales,
while the reduced mass, µ�n, turns over at approximately the nucleon mass. For molecular
nitrogen, these masses are separated by about one decade each and for beryllium slightly
more, accounting for the features visible in the event rate. The result depends on µ�n,
since we have chosen a fixed nucleon cross section. For the non-trivial DM form factor,
|FDM(q)|2 / 1

q4 , this effect is washed out.

The potential experimental sensitivities, assuming zero background, are shown in Fig. 5

for two DM form factors, |FDM(q)|2 = 1 and |FDM(q)|2 =
⇣

q0

q

⌘4
. In each panel, the

left axis shows the cross-section sensitivity at 95% confidence level (corresponding to 3.6
observed signal events) for an experiment with 1 kg·year exposure and sensitivity to a single
bond-breaking event. Equivalently, the right axis shows the event rate assuming a cross
section of �n = 10�37 cm2. Solid lines correspond to the target material being molecular
hydrogen, molecular nitrogen, and beryllium oxide, in the top, middle, and bottom plots,
respectively. We also show the results for molecular hydrogen, nitrogen, and beryllium
oxide-like molecules bound by a potential with binding energy �EB = 20 eV, which is in
the range of typical binding energies of atoms within crystals. Since the other parameters
of the Morse potential do not have a significant effect on the expected rate, for the larger
binding energies the parameters r0 and ↵ have been chosen to be equal to those of the
real molecules. The dashed dark orange lines in all panels of Fig. 5 correspond to the cross
section for which the expected number of DM events is equal to the expected number of
neutrino events (see a detailed discussion regarding solar neutrino detection and background
in Sec. 5). This limit is exposure independent (since both the DM rate and the neutrino
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tion (dashed lines) with those including quantum effects (solid lines). Gray vertical lines indicate
the minimal classical recoil energy, Er,min = m1

m2
∆EB , which corresponds classically to Eint = 0.

Quantum effects are important below the classical threshold, especially for lower DM masses, as
illustrated by the cyan (mχ = 25 MeV) and blue (mχ = 50 MeV) curves. We set FDM = 1 (left)
and FDM ∼ 1/q2 (right). The quantum rates are calculated in the Improved Born Approximation
(see Sec. 3.3).

the nucleus. In particular, the integral over η(vmin) depends on all three of these scales,
while the reduced mass, µχn, turns over at approximately the nucleon mass. For molecular
nitrogen, these masses are separated by about one decade each and for beryllium slightly
more, accounting for the features visible in the event rate. The result depends on µχn,
since we have chosen a fixed nucleon cross section. For the non-trivial DM form factor,
|FDM(q)|2 ∝ 1

q4
, this effect is washed out.

The potential experimental sensitivities, assuming zero background, are shown in Fig. 5

for two DM form factors, |FDM(q)|2 = 1 and |FDM(q)|2 =
(
q0
q

)4
. In each panel, the

left axis shows the cross-section sensitivity at 95% confidence level (corresponding to 3.6
observed signal events) for an experiment with 1 kg·year exposure and sensitivity to a single
bond-breaking event. Equivalently, the right axis shows the event rate assuming a cross
section of σn = 10−37 cm2. Solid lines correspond to the target material being molecular
hydrogen, molecular nitrogen, and beryllium oxide, in the top, middle, and bottom plots,
respectively. We also show the results for molecular hydrogen, nitrogen, and beryllium
oxide-like molecules bound by a potential with binding energy ∆EB = 20 eV, which is in
the range of typical binding energies of atoms within crystals. Since the other parameters
of the Morse potential do not have a significant effect on the expected rate, for the larger
binding energies the parameters r0 and α have been chosen to be equal to those of the
real molecules. The dashed dark orange lines in all panels of Fig. 5 correspond to the cross
section for which the expected number of DM events is equal to the expected number of
neutrino events (see a detailed discussion regarding solar neutrino detection and background
in Sec. 5). This limit is exposure independent (since both the DM rate and the neutrino
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Figure 5. Potential cross-section sensitivities of a background-free search for chemical bond
breaking with 1 kg·year exposures (left axes). Equivalently, the right axes show the event rate
assuming �n = 10�37 cm2. Top, middle, and bottom plots correspond to H2, N2, and BeO-like
targets, respectively, with solid curves calculated using the true binding energy for each target, and
dashed curves with the binding energy set to 20 eV, which is closer to the energy barrier for many
crystal transitions (these are illustrative and are not intended to represent realistic experiments).
For the case of BeO the result is shown for DM scattering with Be only. Quantum effects are
included for all curves using the Improved Born Approximation. Left and right plots correspond
to FDM = 1 and FDM ⇠ 1/q2, respectively. Black dashed lines/gray shaded regions show current
nuclear recoil bounds (see text). Dark orange dashed lines show where the solar neutrino event rate
equals the DM rate: reaching below these would require background subtraction. Orange bands
indicate the ultimate reach using background subtraction, limited only by statistics and theoretical
uncertainties in solar neutrino modeling, assuming a 100 kg·year exposure.
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equals the DM rate: reaching below these would require background subtraction. Orange bands
indicate the ultimate reach using background subtraction, limited only by statistics and theoretical
uncertainties in solar neutrino modeling, assuming a 100 kg·year exposure.
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rate scale linearly with exposure) and represents the approximate cross section for which
neutrino background reduction becomes important.

For cross sections on and below the dashed brown lines in Fig. 5, a likelihood analysis
based on modeling of the solar neutrino event rate and spectrum may be able differentiate
between a neutrino-only hypothesis and a neutrino + DM hypothesis. Details regarding
such an analysis are presented in Sec. 5. The thick orange bands in Fig. 5 correspond to the
maximal cross section that can be probed after such a neutrino background subtraction for
a 100 kg·year exposure. Features present in these curves for certain DM masses arise if the
DM recoil spectrum for that mass mimics one or more families of the solar-neutrino spectra.
In such a case, the uncertainty in the neutrino flux dominates and neutrino subtraction
becomes less efficient. The neutrino family that dominates the uncertainty is shown in
Fig. 5 for various DM masses. Also shown in the figure are the bounds derived from current
nuclear recoil experiments, namely CRESST II [48], CDMSLite [49], SuperCDMS [50], and
LUX [51].

4.2 Annual Modulation

To illustrate the prospects of detection for various setups, we present a plot of the discovery
potential as a function of the number of background events. We define the modulation
signal as,

∆Smod ≡
1

2
[Rmax −Rmin] , (4.6)

where Rmax, Rmin are the maximal and minimal rates expected from modulation of the
Earth’s velocity with respect to the DM halo [52]. For a given DMmass and target molecule,
we calculate the cross section for which

∆Smod√
S +B

= 5, (4.7)

where S is the total number of events expected from DM interactions and B is the number
of background events.

In the left panel of Fig. 6, we show the discovery reach for H2, N2, and BeO, for a 300
MeV DM mass and for two DM form factors. In the right panel, we show the modulation
amplitude, fmod, as a function of the recoil energy, which is defined by,

fmod(Er) ≡
∂∆Smod(Er)/∂Er
∂S(Er)/∂Er

. (4.8)

The features in these curves corresponds to the values of Er for which the phase of modula-
tion reverses (see [52] for details). A more complex analysis is required for non-spherically-
symmetric targets, which can also produce a (sub-)daily event-rate modulation that depends
on the orientation of the target with respect to the DM “wind”.

4.3 Example: Light Dark Matter coupled to a Dark Photon

Until now we have not specified any model for the DM. For concreteness, we briefly discuss
a model for which the dark sector includes a fermionic DM particle charged under a local
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Figure 6. Left: The discovery reach as a function of the background event rate using annual
modulation, for three illustrative diatomic molecules H2 (blue), N2 (green), and BeO (purple), for
a DM mass m� = 300 MeV. Solid (dashed) lines correspond to a DM form-factor of FDM = 1

(FDM ⇠ 1/q2). Right: Modulation amplitude, fmod(Er) as defined in Eq. (4.8), as a function of
recoil energy, for FDM = 1, and for m� = 300 MeV (solid lines) and m� = 1 GeV (dashed lines).
The minimum of each curve occurs at the value of Er for which the phase of modulation reverses.
Quantum effects are included for all curves using the Improved Born Approximation. (Sub-)daily
modulation for a non-spherically symmetric target, which may significantly improve the discovery
reach, is not shown.

U(1) symmetry with gauge coupling gD (we denote ↵D ⌘ g2
D/4⇡) [10, 22]. The dark

photon couples to the SM photon via kinetic mixing (with the parameter denoted as ✏) and
consequently, the DM form factor and �n are given by

|FDM(q)|2 =
(M2

AD
+ q2

0)
2

(M2
AD

+ q2)2
=

8
<
:

1, MAD
� q0⇣

q0

q

⌘4
, MAD

⌧ q0

, (4.9)

�n =
16⇡↵↵D✏2µ2

�n

(M2
AD

+ q2
0)

2
=

8
<
:

16⇡↵↵D✏2µ2
�n

M4
AD

, MAD
� q0

16⇡↵↵D✏2µ2
�n

q4
0

, MAD
⌧ q0

. (4.10)

Current bounds from a range of experimental data for the two limiting cases MAD
� q0

and MAD
⌧ q0 are presented in Fig. 7 where for concreteness we take MAD

= 3m� for
the heavy dark photon regime and MAD

⌧ q0 for the light dark photon regime. Pre-
sented in both panels are nuclear-recoil cross-section constraints from a number of ex-
periments. For cases in which electron recoil measurements constrain the dark photon
parameter space, the results have been recast to constrain the DM-nucleon cross section
expected from the same set of parameters. The constraints presented in the figure include
self-interaction [53, 54] and unitarity bounds [55] on ↵D, as well as bounds from electron
recoil analysis of XENON10 data (brown) [21], electron beam-dump E137 (red) [56, 57],
proton beam-dump LSND (yellow) [58, 59] and BaBar search for e+e� ! � + invisible
(blue) [59]. We further show the current nuclear recoil constraints from the conventional
nuclear recoil searches CRESST II [48], CDMSLite [49], SuperCDMS [50], and LUX [51]
(black) and the 2� region in parameter space for which a dark photon can explain the
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Figure 6. Left: The discovery reach as a function of the background event rate using annual
modulation, for three illustrative diatomic molecules H2 (blue), N2 (green), and BeO (purple), for
a DM mass mχ = 300 MeV. Solid (dashed) lines correspond to a DM form-factor of FDM = 1

(FDM ∼ 1/q2). Right: Modulation amplitude, fmod(Er) as defined in Eq. (4.8), as a function of
recoil energy, for FDM = 1, and for mχ = 300 MeV (solid lines) and mχ = 1 GeV (dashed lines).
The minimum of each curve occurs at the value of Er for which the phase of modulation reverses.
Quantum effects are included for all curves using the Improved Born Approximation. (Sub-)daily
modulation for a non-spherically symmetric target, which may significantly improve the discovery
reach, is not shown.

U(1) symmetry with gauge coupling gD (we denote αD ≡ g2
D/4π) [10, 22]. The dark

photon couples to the SM photon via kinetic mixing (with the parameter denoted as ε) and
consequently, the DM form factor and σn are given by

|FDM(q)|2 =
(M2

AD
+ q2

0)2

(M2
AD

+ q2)2
=





1, MAD � q0(
q0
q

)4
, MAD � q0

, (4.9)

σn =
16πααDε

2µ2
χn

(M2
AD

+ q2
0)2

=





16πααDε
2µ2χn

M4
AD

, MAD � q0

16πααDε
2µ2χn

q40
, MAD � q0

. (4.10)

Current bounds from a range of experimental data for the two limiting casesMAD � q0

and MAD � q0 are presented in Fig. 7 where for concreteness we take MAD = 3mχ for
the heavy dark photon regime and MAD � q0 for the light dark photon regime. Pre-
sented in both panels are nuclear-recoil cross-section constraints from a number of ex-
periments. For cases in which electron recoil measurements constrain the dark photon
parameter space, the results have been recast to constrain the DM-nucleon cross section
expected from the same set of parameters. The constraints presented in the figure include
self-interaction [53, 54] and unitarity bounds [55] on αD, as well as bounds from electron
recoil analysis of XENON10 data (brown) [21], electron beam-dump E137 (red) [56, 57],
proton beam-dump LSND (yellow) [58, 59] and BaBar search for e+e− → γ + invisible
(blue) [59]. We further show the current nuclear recoil constraints from the conventional
nuclear recoil searches CRESST II [48], CDMSLite [49], SuperCDMS [50], and LUX [51]
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Figure 7. Potential reach, and existing experimental bounds, for a dark-photon model in two
regimes: a dark photon heavier than the DM (left) and an ultra-light dark photon (right). For the
former we take MAD

= 3m�, while for the latter we take MAD
⌧ q0 = 100 keV. Shaded regions show

existing constraints from electron-recoil analysis of XENON10 data (brown), electron beam-dump
E137 (red), proton beam-dump LSND (yellow), BaBar search for e+e� ! � + invisible (blue), con-
ventional nuclear recoil searches CRESST II, CDMSLite, SuperCDMS, and LUX (labeled Current
NR Constraints) (black) and the 2� region that can explain the muon anomalous magnetic moment,
aµ (light green). Also shown are cross sections for which one gets the correct relic abundance (thick
purple) via freeze-out (heavy hidden photon) or freeze-in (light hidden photon). The maximal fu-
ture sensitivity is shown for DM scattering off electrons in a silicon target at SuperCDMS with a
10 kg·years exposure on silicon (dashed cyan). Also shown is the SuperCDMS SNOLAB nuclear
recoil projection (dashed black). The sensitivity of a hypothetical molecular N2-based detector with
exposures of 1 kg-year are shown in thick green.

discrepancy between the measurement and the SM prediction for the muon anomalous
magnetic moment, aµ (light green) [60]. In the left panel, the thick purple line shows the
cross section for which the correct relic abundance is obtained via freeze-out of DM to SM
particles through an off-shell dark photon (e.g. [1, 22, 61]). Above or below this line, the
model must be slightly revised in order to account for the observed relic abundance. In the
right panel, the dark photon is effectively massless and the coupling of DM to the SM is so
small that thermal equilibrium is never reached. In this scenario, the relic abundance can
be obtained via freeze-in [62] from 2 ! 2 annihilation of SM particles to DM as well as Z
boson decays to DM [10, 63]. The same colored line in this panel shows the parameter space
for which the correct relic abundance is achieved. Dashed lines in both panels show the
SuperCDMS SNOLAB nuclear recoil projection [20] (dashed black) as well as the maximum
future sensitivity from a SuperCDMS-like experiment searching for DM-electron scattering
with a threshold of one electron and an exposure of 10 kg·years [22] (dashed cyan). The
SuperCDMS NR projection for the light dark photon case has been simply rescaled from
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(black) and the 2σ region in parameter space for which a dark photon can explain the
discrepancy between the measurement and the SM prediction for the muon anomalous
magnetic moment, aµ (light green) [60]. In the left panel, the thick purple line shows the
cross section for which the correct relic abundance is obtained via freeze-out of DM to SM
particles through an off-shell dark photon (e.g. [1, 22, 61]). Above or below this line, the
model must be slightly revised in order to account for the observed relic abundance. In the
right panel, the dark photon is effectively massless and the coupling of DM to the SM is so
small that thermal equilibrium is never reached. In this scenario, the relic abundance can
be obtained via freeze-in [62] from 2 → 2 annihilation of SM particles to DM as well as Z
boson decays to DM [10, 63]. The same colored line in this panel shows the parameter space
for which the correct relic abundance is achieved. Dashed lines in both panels show the
SuperCDMS SNOLAB nuclear recoil projection [20] (dashed black) as well as the maximum
future sensitivity from a SuperCDMS-like experiment searching for DM-electron scattering
with a threshold of one electron and an exposure of 10 kg·years [22] (dashed cyan). The
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SuperCDMS NR projection for the light dark photon case has been simply rescaled from
the |FDM(q)|2 = 1 case, and neglects possible differences in the signal-versus-background
shape. Finally, presented in the figure are potential cross-section sensitivities for a molecular
N2 based experiment with 1 kg·year exposure. Such an experiment could be competitive
to, and in some cases more sensitive than, the bounds and projections discussed above.
Importantly, if the DM coupling with SM particles is leptophobic, then electron-recoil ex-
perimental constraints have no sensitivity, whereas a molecular based experiment would be
sensitive to such a scenario.

5 Dissociation Rates for Solar Neutrinos

An experiment sensitive to nuclear interactions with weakly interacting particles and low
threshold can be sensitive to solar neutrinos. Solar neutrinos will be an irreducible back-
ground for DM searches with large exposures, but since much of the low-energy solar neu-
trino spectrum is yet to be fully measured, their detection is itself of great interest. In
what follows, we discuss the bond-breaking event rate due to neutrino interactions and the
corresponding irreducible background relevant for DM direct detection.

5.1 Neutrino Scattering

The inelastic spin-independent3 neutrino-nucleus cross section is,

∂σ(Er, Eν)

∂Er
= G2M

8π
[Z(4 sin2 θW−1)+N ]2

(
1− MEr

2E2
ν

)∫
d lnEint|Fdis(Er, Eint)|2 . (5.1)

The recoil energy, Er = q2

2M , is that of the entire molecule with M denoting the molecular
mass and |Fdis(Er, Eint)|2 is the molecular form factor. The differential dissociation rate is

dRν
dEr

= NT

∫
∂F

∂Eν

∂σ(Er, Eν)

∂Er
dEν , (5.2)

where Eν is the incoming neutrino energy, ∂F
∂Eν

is the differential neutrino flux, and NT is
the number of targets in the system.

Two examples of the differential molecular dissociation rate for neutrino scattering are
shown in Fig. 8. Presented are the expected recoil spectra from the solar neutrino flux
for 1 ton-year of a hydrogen, nitrogen, and beryllium-oxide molecular target (where the
target atom is taken to be Be). Our spectra account for nine families of solar neutrino
fluxes, namely: pp, pep, hep, Be7a, Be7b, B8, N13, O15, and F17 [64]. These are the
dominant sources of known background for recoil energies expected from a light DM search
(for large exposures), while the energies of atmospheric neutrinos are too high. The spectra
have some dependance on the target particle. For example, the pp-neutrino contribution
is much more prominent in the beryllium oxide spectrum, since beryllium is lighter than
nitrogen and the beryllium-oxide binding energy is much smaller than the nitrogen binding

3The spin-independent neutrino-nucleus cross section is a good approximation for atoms with large
atomic numbers. Results shown for hydrogen have been calculated using both the spin-dependent and
spin-independent contributions. Details are presented in Appendix B.
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Figure 8. The differential dissociation rate due to solar neutrinos for three example molecules:
H2 with A = 1 and �EB = 4.75 eV (top left), N2 with A = 14 and �EB = 9.79 eV (top right)
and BeO (interactions with Be only) with A = 9 for Be and �EB = 4.54 eV (bottom). The pp
neutrinos are pronounced in the H2 and BeO spectra because of the nuclei’s relatively low mass and
binding energy with respect to N2. The H2 cross section is partly dominated by the spin dependent
interaction, which explains the less smooth shape of the spectrum. The total expected rate for H2

is ⇠ 3040 events/ton/year, for N2 is ⇠ 780 events/ton/year, and for BeO is ⇠ 480 events/ton/year.

background reduction of neutrinos in order to detect a DM signal. The details of such
background reduction are discussed below.

5.2 Neutrino Background Reduction and the Neutrino Floor

The neutrino spectrum introduces an irreducible background to any DM direct detection
experiment. At low exposures, the background is negligible. However, as the exposure of
an experiment increases, this background must be removed in order to detect a signal.

Following [65], we have performed a binned maximum-likelihood test-statistics analysis
in order to determine the significance of a potential anomaly in the measured spectra. We
define the likelihood function as

L(���n, �⌫) =

NbinY

i=1

P

0
@N i

����µi
� +

N⌫X

j=1

µi,j
⌫

1
A⇥

N⌫Y

j=1

Lj
⌫(�

j
⌫) , (5.3)
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Figure 8. The differential dissociation rate due to solar neutrinos for three example molecules:
H2 with A = 1 and ∆EB = 4.75 eV (top left), N2 with A = 14 and ∆EB = 9.79 eV (top right)
and BeO (interactions with Be only) with A = 9 for Be and ∆EB = 4.54 eV (bottom). The pp
neutrinos are pronounced in the H2 and BeO spectra because of the nuclei’s relatively low mass and
binding energy with respect to N2. The H2 cross section is partly dominated by the spin dependent
interaction, which explains the less smooth shape of the spectrum. The total expected rate for H2

is ∼ 3040 events/ton/year, for N2 is ∼ 780 events/ton/year, and for BeO is ∼ 480 events/ton/year.

energy. The specific shape of the spectrum governs the ability of an experiment to perform
background reduction of neutrinos in order to detect a DM signal. The details of such
background reduction are discussed below.

5.2 Neutrino Background Reduction and the Neutrino Floor

The neutrino spectrum introduces an irreducible background to any DM direct detection
experiment. At low exposures, the background is negligible. However, as the exposure of
an experiment increases, this background must be removed in order to detect a signal.

Following [65], we have performed a binned maximum-likelihood test-statistics analysis
in order to determine the significance of a potential anomaly in the measured spectra. We
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define the likelihood function as

L(σχ−n, φν) =

Nbin∏

i=1

P


N i

∣∣∣∣µiχ +

Nν∑

j=1

µi,jν


×

Nν∏

j=1

Ljν(φjν) , (5.3)

where P (N,µ) is a Poisson distribution, Ni is the number of events in the i-th bin, and
µiχ, µ

i,j
ν are, respectively, the expected number of events for the DM and neutrino j-th

family in the i-th bin. The functions Lj(φjν) are likelihood functions related to the flux
normalization of the j-th neutrino family. These functions are taken to be normalized
Gaussian distributions with standard deviations corresponding to the uncertainty of each
neutrino family flux [66]. A test statistics ratio is defined as follows,

q0 =




−2 ln

[
L(σχ−n=0,

ˆ̂
φjν)

L(σ̂χ−n,φ̂
j
ν)

]
σ̂χ−n > 0

0 σ̂χ−n < 0

, (5.4)

where values with the carot symbol are treated as nuisance parameters whose values are
chosen such that L is maximal. For a given measurement of Ni, a large value of q0 implies
a large discrepancy between a neutrino only hypothesis and a neutrino + DM hypothesis.
Following Wilk’s theorem [67], the function q0 follows a half-χ2 distribution with one degree
of freedom. Thus, the significance of a given value of q0 in units of standard deviations is
Z =

√
q0.

To understand the impact of neutrinos on the reach of an experiment, we assume
now an idealized experiment that has no backgrounds except for, possibly, neutrinos. For
exposures low enough such that the neutrino background is effectively zero, the cross section
reach scales simply as 1/MT , where MT denotes the exposure (target mass × time). As
neutrino events begin to enter the signal region, their uncertainty reduces the significance
of a DM signal thereby weakening the cross section reach. This uncertainty has two main
contributions. The first is a Poisson contribution originating from the Poisson behavior
of the number of neutrino events. The second contribution is the uncertainty in the solar
neutrino flux. This uncertainty is assumed to be gaussian distributed. If the neutrino and
DM spectra are significantly different from each other, and if the experiment has sufficient
energy resolution, then this extra handle can reduce the effect of the neutrino uncertainty.
However, if these requirements are not fulfilled, the overall cross-section reach scales as the
inverse of the neutrino uncertainty over the total number of signal events. The evolution of
the cross section reach can be understood by considering a DM signal that perfectly mimics
some part of the neutrino spectrum. In this case, the reach is proportional to [65, 68]

σreach ∝
√
MT + ε2(MT )2

MT
, (5.5)

where ε is the uncertainty of some member of the neutrino flux. When ε2MT � 1 the
uncertainty is in the Poisson regime, and the cross section reach scales as 1/

√
MT . At larger

exposures when ε2MT � 1, the flux uncertainty dominates, and the cross section reach
saturates and becomes constant with growing exposure. If the exposure is further increased,
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the tail of the neutrino spectrum becomes measurable, and this additional discriminating
power allows the experiment to return to the Poisson regime where again the reach scales
as 1/

√
MT .

For a given DM mass, there is an optimal exposure and threshold that allows for the
largest cross section reach before reaching the saturation regime.4 This defines the so-
called neutrino floor. In this study, we have calculated the cross section reach by finding
the parameters for which the test statistics defined in Eq. (5.4) gives a 2σ significance. This
has been done for a number of exposures and for a recoil-energy threshold corresponding
to the quantum momentum transfer threshold discussed in Sec. 3.2. Setting the threshold
to be the classical threshold changes the sensitivity only for the lightest DM masses.

The results are presented in Fig. 5 for an exposure of 0.1 ton·years. For all three
molecules, the Be7a, O15, and B8 uncertainties limit dominate the total neutrino flux
uncertainty. The pp and pep components contribute to the total spectrum, but have much
smaller uncertainties. All other components have a negligible contribution to the neutrino
background for all three molecules. The features in the cross section reach correspond to
DM masses whose spectra happen to mimic a component of the neutrino spectrum. The
various components are marked on the figures, except for cases where the DM spectra are
significantly different from the neutrino spectra for all DM masses. In the latter case, the
dominant uncertainty is just the Poisson uncertainty and no features are present.

6 Discussion: Towards a Real Experimental Setups

In the study presented above, we do not attempt to describe a realistic experimental setup
that allows for the measurement of bond-breaking events. Instead, the aim of this paper
is to set up the problem and study the prospects of an ideal experiment that would be
sensitive to such low-energy events. Of course, a true experiment could suffer from numerous
backgrounds and will have various experimental challenges that will require a dedicated
study. While this is beyond the scope of this paper, there are interesting features that
would motivate the use of crystals for the detection of bond-breaking events. In particular,
in addition to having relatively low binding energies, crystals may allow one to enhance
the signal spectroscopically and also to discriminate between low-energy (signal) and high-
energy (background) events as well as electron versus nuclear recoils. A more detailed study
will appear in upcoming publications [44, 45].

As mentioned above, the choice of target material is crucial. Crystals composed of
ions that are heavy, allow for an enhanced signal due to the coherence effect, while those
composed of light ions allow for sensitivity to lower DM masses. One could potentially
choose a target crystal that is composed of both light and heavy nuclei, thus utilizing the
advantages of both and gaining sensitivity to a wide range of DM masses and cross sections.
As discussed in Sec. 4 and derived in App. C, the expected signal rate depends on the mass
number of the scattered atom, A (or equivalently m1), the binding energy ∆EB, and the

4For some DM masses, the spectrum is sufficiently different from the neutrino spectrum such that the
saturation regime may be totally avoided.
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DM mass, mχ. For instance, for a trivial DM form factor, the maximum rate behaves as

Rmax ∝
{

A1/2 ·∆E−1/2
B mχ � mn,m1

A3 ·m−1
χ mχ � mn,m1

. (6.1)

The above results can be seen in Fig. 5, where dissociation rates have been plotted for
diatomic molecules with varying elements and binding energies. For the case of |FDM(q)|2 =

1, in order to increase the maximal rate it is better to have large A and small ∆EB. On the
other hand, the mass threshold (which depends on qmin) is always lower for smaller A and
∆EB as can be seen from Eqs. (3.3), (3.7), and (3.8). For more details see App. C. With
the above in mind, a target material may be chosen in order to maximize sensitivity to a
given feebly-interacting particle, be it light dark matter or a specific neutrino spectrum.

To summarize, while much R&D is still required to employ bond-breaking interactions
for the detection of weakly interacting particles, the potential is significant. This paper takes
a first step towards exploring such directions. With growing theoretical motivation for light
dark matter in the sub-GeV mass range, and very few current experimental capabilities to
explore them, we find the prospect of bond-breaking searches very appealing and strongly
encourage further studies of possible experimental setups that may realize this in practice.

Acknowledgement

We thank Ranny Budnik and Ori Cheshnovsky for many useful discussions. R.E. is sup-
ported by the DoE Early Career research program DESC0008061 and through a Sloan
Foundation Research Fellowship. O.S. is supported in part by a grant from the Clore Israel
Foundation. T.V. is supported by the European Research Council (ERC) under the EU
Horizon 2020 Programme (ERC-CoG-2015 - Proposal n. 682676 LDMThExp), by the PAZI
foundation, by the German-Israeli Foundation (grant No. I-1283- 303.7/2014) and by the
I-CORE Program of the Planning Budgeting Committee and the Israel Science Foundation
(grant No. 1937/12). J.M. was supported by grant DE-SC0012012.

A Derivation of the Form Factor

In this appendix, we study the evaluation of the form factor, deriving both the exact
solution in the spherically symmetric case, and the form factor in the Born approximation.
Our starting point is Eq. (3.11), which we reproduce here:

|Fdis(q, q̃)|2 =
q̃3

(2π)3

∫
dΩq̃

∣∣∣∣
∫
d3re

i
µ12
m1

q·r
Ψ∗q̃(r)Ψi(r)

∣∣∣∣
2

. (A.1)

A.1 Evaluation of the Exact Solution

Calculating the exact form factor involves solving for the eigenfunctions of the unbound
Schrödinger equation. This can be done numerically by summing up solutions for all val-
ues of angular momentum and for each value of internal recoil energy, Eint. The final
wavefunctions can be expanded in terms of spherical harmonics,

Ψq̃(r) = 4π
∑

`,m

a`
2`+ 1

Y∗`m(Ωq̃)Y`m(Ωr)Rq̃`(r) , (A.2)
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where Ωq̃, Ωr are solid angles of the vectors q̃ and r with respect to q, respectively. The
exponent can be expanded as,

e
i
µ12
m1

q·r
= 4π

∑

`,m

i`Y∗`m(Ωq)Y`m(Ωr)j`

(µ12

m1
qr
)
, (A.3)

where j` are spherical Bessel functions. Finally, the absolute value in Eq. (A.1) can be
rewritten as,
∣∣∣∣
∫
d3re

i
µ12
m1

q·r
Ψ∗q̃(r)Ψi(r)

∣∣∣∣
2

=

[∫
d3r′ei

µ12
m1

q·r′
Ψ∗q̃(r′)Ψi(r′)

] [∫
d3r′′e−i

µ12
m1

q·r′′
Ψq̃(r′′)Ψ∗i (r

′′)
]
.

(A.4)
Substituting Eqs. (A.2)-(A.4) into Eq. (A.1), integrating over Ωq̃ ,Ωr′ ,Ωr′′ for a spherically-
symmetric initial state, and using the identity

∑̀

m=−`
Y∗`m(Ω)Y`m(Ω) =

2`+ 1

4π
, (A.5)

the full expression for the form factor as a function of the eigenstates of the unbound
wavefuntion becomes

|Fdis(q, q̃)|2 = 8q̃3
∑

`

|a`|2
(2`+ 1)

∣∣∣∣
∫
drr2j`

(µ12

m1
qr
)
Rq̃`(r)Ψi(r)

∣∣∣∣
2

. (A.6)

If the final wavefunctions are plane waves at large distances from the origin then it follows
that Eqs. (A.2) and (A.3) are equivalent asymptotically. In this case, a` = i`(2` + 1).
Under this assumption, and choosing a spherically-symmetric ground state for the initial
wavefunction,

Ψi,n`m = Ψi,000 = Y00R00(r) , (A.7)

and Eq. (A.6) becomes

|Fdis(q, q̃)|2 =
2

π
q̃3
∑

`

(2`+ 1)

∣∣∣∣
∫
drr2j`

(µ12

m1
qr
)
Rq̃`(r)R00(r)

∣∣∣∣
2

. (A.8)

A.2 The Born Approximation

The Born approximation of the form factor in Eq. (A.1) is obtained by taking the initial
bound wavefunction to be the solution of the Schrödinger equation, solved for the Morse
potential, and by assuming plane waves for the radial solution of the final state,

|Fdis(q, q̃)|2 =
q̃3

(2π)3

∫
dΩq̃

∣∣∣∣
∫
d3re

i
µ12
m1

q·r
e−iq̃·rΨi(r)

∣∣∣∣
2

. (A.9)

We define,

K ≡ −
(
µ12

m1
q− q̃

)
, (A.10)

and

K2 = q̃2 +

(
µ12

m1

)2

q2 − 2
µ12

m1
qq̃cθq̃ , (A.11)
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with cθq̃ the cosine of the angle between the vectors q and q̃. For an initial state that is
symmetric around the direction of q, we then obtain

|Fdis(q, q̃)|2 =
m1

µ12

q̃2

(2π)2

∫ q̃+
µ12
m1

q

q̃−µ12
m1

q

KdK

q

∣∣∣∣
∫
d3re−iK·rΨi(r)

∣∣∣∣
2

. (A.12)

For Ψi(r) = Y00R00(r),

|Fdis(q, q̃)|2 =
m1

µ12

q̃2

4π

∫ q̃+
µ12
m1

q

q̃−µ12
m1

q

KdK

q

∣∣∣∣
∫
dcθdrr

2e−iKrcθR00(r)

∣∣∣∣
2

(A.13)

=
m1

µ12

q̃2

πq

∫ q̃+
µ12
m1

q

q̃−µ12
m1

q

dK

K

∣∣∣∣
∫
drr sin(Kr)R00(r)

∣∣∣∣
2

. (A.14)

Approximating the initial radial wave function with a Gaussian of the form,

R00(r) =

(
1

σ0
√
π

) 1
2 e
− 1

2

(
r−r0
σ0

)2

r
, (A.15)

the Born approximation for the form factor takes the form,

|Fdis(q, q̃)|2 =
m1

µ12

q̃2

π3/2σ0q

∫ q̃+
µ12
m1

q

q̃−µ12
m1

q

dK

K

∣∣∣∣
∫
dr sin(Kr)e

− 1
2

(
r−r0
σ0

)2∣∣∣∣
2

. (A.16)

B Neutrino Scattering Rate

The differential neutrino-molecule cross section is given by,

∂σ(Er, Eν)

∂Er
= G2M

2π

[
(GV +GA)2 + (GV −GA)2

(
1− Er

Eν

)2

− (G2
V −G2

A)
MEr
E2
ν

]

×
∫
d lnEint|Fdis(Er, Eint)|2 , (B.1)

where G is the Fermi constant and GV , GA are the vector and axial contributions to the
hadronic current, respectively. They can be parameterized as,

GV ≡
[
gpV Z + gnVN

]
F Vnuc(q

2) ,

GA ≡
[
gpA(Z+ − Z−) + gnA(N+ −N−)

]
FAnuc(q

2) , (B.2)

where Z (N) is the number of protons (neutrons) and Z± (N±) are the number of protons
(neutrons) with spin plus or minus. For our purposes, the form factors F V/Anuc (q2) are just
unity, since the momentum transfer is small. The appropriate values of the coefficients gpV ,
gnV , g

p
A, and g

n
A can be found in [69].

For large nuclei, the spin dependent (SD) part of the cross section is negligible and we
obtain,

∂σ(Er, Eν)

dEr
' G2M

8π
[Z(4 sin2 θW−1)+N ]2

(
1− MEr

2E2
ν

)∫
d lnEint|Fdis(Er, Eint)|2 . (B.3)
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For small nuclei like hydrogen, the SD cross section cannot be neglected. For molecular
hydrogen, we obtain

∂σ(Er, Eν)

∂Er
' G2M

8π
× 1.46

[
1 +

mEr
2E2

ν

] ∫
d lnEint|Fdis(Er, Eint)|2 . (B.4)

C Optimization of Target Material

Various considerations will affect the choice of the target material for a realistic setup.
Larger nuclei will have larger cross sections, because of coherence, but also a suppressed en-
ergy transfer, because of large masses, and less targets per kg of detector material. Smaller
binding energies will allow for larger interaction rates and lower mass thresholds. In the
classical regime, and for a given DM-nucleon cross section, the dissociation rate for scat-
tering events with atom type i within a given molecule scales as

Ri ∝ [fPZi + fN (Ai − Zi)]2
NT i

mχµ2
χn

∫
dq2 × |FDM(q)|2Θ


q −

√
2m2

i

µ12
∆EB


 η(vmin,i) .

(C.1)
In what follows, we present the approximate scaling of the expected interaction rate for two
regimes of DM masses and as a function of the target parameters.

For a given total target mass Mtot and taking fP = fN , the rate scales as,

Ri ∝
A2
i

mχµ2
χn

Mtot

m1 +m2

∫ qmax,i

qmin,i

dq2 × |FDM(q)|2 , (C.2)

where we have used NT i = Mtot
m1+m2

and m2 is the mass of second atom within the diatomic
molecule. The classical minimal and maximal values of q are given by,

q2
min,i = 2(m1 +m2)

mi

m2
∆EB ,

q2
max,i = 4µ2

χiv
2
max . (C.3)

For simplicity we take m1 = m2. Then the variables in Eq. (C.2) scale as

A ∝ m1 ∝ N−1
T , (C.4)

where we have suppressed the i index. At the value of mχ for which the rate peaks just
above the threshold mass, one finds m2

χ ∝ m1∆EB (as long as mχ � m1). (For the case
where m1 6= m2 these relations are slightly modified.)

For |FDM(q)|2 = 1,

R ∝ A2

mχµ2
χnm1

(
q2
max − q2

min

)
, (C.5)

while for |FDM(q)|2 =
(
q0
q

)4
,

R ∝ A2

mχµ2
χnm1

(
1

q2
min

− 1

q2
max

)
. (C.6)
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Taking the limits mχ � mn and mχ � mn, and choosing the maximal rate in each regime,
the results (up to O(1) factors) is,

Rmax ∝
mχ � mn,m1 mχ � mn,m1

|FDM(q)|2 = 1 A1/2 ·∆E−1/2
B A3 ·m−1

χ

|FDM(q)|2 = (q0/q)
4 A−3/2 ·∆E−5/2

B ∆E−1
B ·m−1

χ

. (C.7)

The above results can be seen in Fig. 5, where dissociation rates are shown for diatomic
molecules for various elements and binding energies. Small binding energies always increase
the dissociation rate, except for |FDM(q)|2 = 1 and large DM mass, for which the binding-
energy dependence vanishes. For |FDM(q)|2 ∝ 1/q4, the A dependence vanishes for large
DM masses. In the low DM mass regime, the maximal rate’s dependence on A and ∆EB
highly depends on the DM form factor. For |FDM(q)|2 = 1, it is better to have large A
and small ∆EB, while for the non-trivial form factor, it is better to have small A and small
∆EB.
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